1
|
Zhu L, Yu X, Ren Y, Jin W, Guo Y, Zong J, Liu Y. Polysaccharide from Asparagus officinalis activated macrophages through NLRP3 inflammasome based on RNA-seq analysis. Biomed Pharmacother 2024; 181:117729. [PMID: 39642446 DOI: 10.1016/j.biopha.2024.117729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/20/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024] Open
Abstract
Some polysaccharides with established medical and nutritional values have been identified to possess immunomodulatory properties devoid of any toxic or adverse effects. Previous studies have demonstrated that water-soaked polysaccharides from the skin of white asparagus can enhance cytokine release in RAW 264.7 macrophages, however, the underlying mechanism governing immune regulation remains elusive. In this study, we obtained a lower molecular weight polysaccharide (AP) through acid extraction, with an average MW of approximately 9.5 kDa. SEM and AFM spectroscopy analysis revealed well-dispersed spherical particle with triple helix conformation for AP, characterized by intertwined branching structures. Treatment with AP resulted in a time-dependent increase in nitric oxide levels and cytokine production in both RAW 264.7 cells and primary peritoneal macrophages. RNA-seq analysis indicated that AP activated macrophages via NLRP3 inflammasome signaling pathway. Furthermore, AP activated MAPKs and JAK/STAT signaling pathways to amplify the inflammatory response. Additionally, administration of AP improved visceral index and reduced inflammatory cell counts in CYP-induced immunosuppressed mice models. These findings suggest that AP holds potential as an immuno-enhancement mediator, wherein MAPK and JAK/STAT3 signaling pathways play a role in NLRP3 inflammasome activation of macrophages.
Collapse
Affiliation(s)
- Lin Zhu
- Clinical Laboratory, Qingdao Traditional Chinese Medicine Hospital, Qingdao Hiser Hospital Affiliated of Qingdao University, Qingdao Key Laboratory of Immunodiagnosis, Qingdao 266071, China
| | - Xi Yu
- Clinical Laboratory, Qingdao Traditional Chinese Medicine Hospital, Qingdao Hiser Hospital Affiliated of Qingdao University, Qingdao Key Laboratory of Immunodiagnosis, Qingdao 266071, China
| | - Yuqian Ren
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao 266071, China
| | - Weihua Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yunliang Guo
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao 266071, China
| | - Jinbao Zong
- Clinical Laboratory, Qingdao Traditional Chinese Medicine Hospital, Qingdao Hiser Hospital Affiliated of Qingdao University, Qingdao Key Laboratory of Immunodiagnosis, Qingdao 266071, China
| | - Yingjuan Liu
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
2
|
B J, R R. A critical review on pharmacological properties of sulfated polysaccharides from marine macroalgae. Carbohydr Polym 2024; 344:122488. [PMID: 39218536 DOI: 10.1016/j.carbpol.2024.122488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 09/04/2024]
Abstract
The marine ecosystem contains an assorted range of organisms, among which macroalgae stands out marine resources as an invaluable reservoir of structurally diverse bioactive compounds. Marine macroalgae are considered as primary consumers have gained more attention for their bioactive components. Sulfated polysaccharides (SPs) are complex polymers found in macroalgae that play a crucial role in their cell wall composition. This review consolidates high-tech methodologies employed in the extraction of macroalgal SPs, offering a valuable resource for researchers focuses in the pharmacological relevance of marine macromolecules. The pharmacological activities of SPs, focusing on their therapeutic action by encompassing diverse study models are summarized. Furthermore, in silico docking studies facilitates a comprehensive understanding of SPs interactions with their binding sites providing a valuable insight for future endeavors. The biological properties of algal SPs, along with a brief reference to mode of action based on different targets are presented. This review utilizes up-to-date research discoveries across various study models to elucidate the biological functions of SPs, focusing on their molecular-level mechanisms and offering insights for prospective investigations. Besides, the significance of SPs from seaweeds is highlighted, showcasing their potential beneficial applications in promoting human health. With promising biomedical prospects, this review explores the extensive uses and experimental evidence supporting the important roles of SPs in various fields.
Collapse
Affiliation(s)
- Jegadeshwari B
- Department of Marine Science, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| | - Rajaram R
- Department of Marine Science, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India.
| |
Collapse
|
3
|
Li JJ, Du XK. Will climate change cause Sargassum beds in temperate waters to expand or contract? Evidence from the range shift pattern of Sargassum. MARINE ENVIRONMENTAL RESEARCH 2024; 200:106659. [PMID: 39083877 DOI: 10.1016/j.marenvres.2024.106659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/03/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024]
Abstract
Understanding the range shift patterns of foundation species (e.g., macroalgae) under future climatic conditions is critical for biodiversity conservation in coastal ecosystems. These predictions are typically made using species distribution models (SDMs), and severe habitat loss has been predicted for most brown algal forests. Nevertheless, some models showed that local adaptation within species can reduce range loss projections. In this study, we used the brown algae Sargassum fusiforme and Sargassum thunbergii, which are distributed in the Northwest Pacific, to determine whether climate change will cause the Sargassum beds in Northwest Pacific temperate waters to expand or contract. We divided S. fusiforme and S. thunbergii into northern and southern lineages, considering the temperature gradients and phylogeographic structures. We quantified the realized niches of the two lineages using an n-dimensional hypervolume. Significant niche differentiation was detected between lineages for both species, suggesting the existence of local adaptation. Based on these results, lineage-level SDMs were constructed for both species. The prediction results showed the different responses of different lineages to climate change. The suitable distribution area for both species was predicted to move northward, retaining part of the suitable habitat at low latitudes (along the East China Sea). Unfortunately, this expansion could not compensate for losing middle-low latitude areas. Our results have important implications for the future management and protection of macroalgae and emphasize the importance of incorporating intraspecific variation into species distribution predictions.
Collapse
Affiliation(s)
- Jing-Jing Li
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, 210024, China.
| | - Xiao-Kang Du
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, 210024, China
| |
Collapse
|
4
|
Zhu K, Wang X, Weng Y, Mao G, Bao Y, Lou J, Wu S, Jin W, Tang L. Sulfated Galactofucan from Sargassum Thunbergii Attenuates Atherosclerosis by Suppressing Inflammation Via the TLR4/MyD88/NF-κB Signaling Pathway. Cardiovasc Drugs Ther 2024; 38:69-78. [PMID: 36194354 DOI: 10.1007/s10557-022-07383-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/12/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE Sulfated galactofucan (SWZ-4), which was extracted from Sargassum thunbergii, has recently been reported to show anti-inflammatory and anticancer properties. The present study aimed to evaluate whether SWZ-4 attenuates atherosclerosis in apolipoprotein E-knockout (ApoE-KO) mice by suppressing the inflammatory response through the TLR4/MyD88/NF-κB signaling pathway. METHODS Male ApoE-KO mice were fed with a high-fat diet for 16 weeks and intraperitoneally injected with SWZ-4. RAW246.7 cells were treated with lipopolysaccharide (LPS) and SWZ-4. Atherosclerotic lesions were measured by Sudan IV and oil red O staining. Serum lipid profiles, inflammatory cytokines, and mRNA and protein expression levels were evaluated. RESULTS SWZ-4 decreased serum TNF-α, IL-6 and IL-1 levels, but did not reduce blood lipid profiles. SWZ-4 downregulated the mRNA and protein expression of TLR4 and MyD88, reduced the phosphorylation of p65, and attenuated atherosclerosis in the ApoE-KO mice (p < 0.01). In LPS-stimulated RAW 264.7 cells, SWZ-4 inhibited proinflammatory cytokine production and the mRNA expression of TLR4, MyD88, and p65 and reduced the protein expression of TLR4 and MyD88 and the phosphorylation of p65 (p < 0.01). CONCLUSION These results suggest that SWZ-4 may exert an anti-inflammatory effect on ApoE-KO atherosclerotic mice by inhibiting the TLR4/MyD88/NF-κB signaling pathway in macrophages and therefore may be a treatment for atherosclerosis.
Collapse
Affiliation(s)
- Kefu Zhu
- Department of Cardiology, Zhejiang Hospital, Hangzhou, 310013, Zhejiang Province, China
| | - Xihao Wang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310000, Zhejiang Province, China
| | - Yingzheng Weng
- Department of Cardiology, Zhejiang Hospital, Hangzhou, 310013, Zhejiang Province, China
| | - Genxiang Mao
- Zhejiang Provincial Key Lab of Geriatrics, Department of Geriatrics, Zhejiang Hospital, Hangzhou, 310013, Zhejiang Province, China
| | - Yizhong Bao
- Zhejiang Provincial Key Lab of Geriatrics, Department of Geriatrics, Zhejiang Hospital, Hangzhou, 310013, Zhejiang Province, China
| | - Jiangjie Lou
- Department of Cardiology, Zhejiang Hospital, Hangzhou, 310013, Zhejiang Province, China
| | - Shaoze Wu
- Department of Cardiology, Zhejiang Hospital, Hangzhou, 310013, Zhejiang Province, China
| | - Weihua Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang Province, China
| | - Lijiang Tang
- Department of Cardiology, Zhejiang Hospital, Hangzhou, 310013, Zhejiang Province, China.
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310000, Zhejiang Province, China.
| |
Collapse
|
5
|
Huang X, Li S, Ding R, Li Y, Li C, Gu R. Antitumor effects of polysaccharides from medicinal lower plants: A review. Int J Biol Macromol 2023; 252:126313. [PMID: 37579902 DOI: 10.1016/j.ijbiomac.2023.126313] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/31/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
Cancer is one of the leading causes of death worldwide, yet the drugs currently approved for cancer treatment are associated with significant side effects, making it urgent to develop alternative drugs with low side effects. Polysaccharides are natural polymers with ketone or aldehyde groups, which are widely found in plants and have various biological activities such as immunomodulation, antitumor and hypolipidemic. The lower plants have attracted much attention for their outstanding anticancer effects, and many studies have shown that medicinal lower plant polysaccharides (MLPPs) have antitumor activity against various cancers and are promising alternatives with potential development in the food and pharmaceutical fields. Therefore, this review describes the structure and mechanism of action of MLPPs with antitumor activity. In addition, the application of MLPPs in cancer treatment is discussed, and the future development of MLPPs is explored.
Collapse
Affiliation(s)
- Xi Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Si Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rong Ding
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Canlin Li
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rui Gu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
6
|
Zvyagintseva TN, Usoltseva RV, Shevchenko NM, Surits VV, Imbs TI, Malyarenko OS, Besednova NN, Ivanushko LA, Ermakova SP. Structural diversity of fucoidans and their radioprotective effect. Carbohydr Polym 2021; 273:118551. [PMID: 34560963 DOI: 10.1016/j.carbpol.2021.118551] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/05/2021] [Accepted: 08/07/2021] [Indexed: 12/14/2022]
Abstract
Fucoidans are biologically active sulfated polysaccharides of brown algae. They have a great structural diversity and a wide spectrum of biological activity. This review is intended to outline what is currently known about the structures of fucoidans and their radioprotective effect. We classified fucoidans according to their composition and structure, examined the structure of fucoidans of individual representatives of algae, summarized the available data on changes in the yields and compositions of fucoidans during algae development, and focused on information about underexplored radioprotective effect of these polysaccharides. Based on the presented in the review data, it is possible to select algae, which are the sources of fucoidans of desired structures and to determine the best time to harvest them. The use of high purified polysaccharides with established structures increase the value of studies of their biological effects and the determination of the dependence "structure - biological effect".
Collapse
Affiliation(s)
- Tatiana N Zvyagintseva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159, Prosp. 100 Let Vladivostoku, 690022 Vladivostok, Russian Federation
| | - Roza V Usoltseva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159, Prosp. 100 Let Vladivostoku, 690022 Vladivostok, Russian Federation.
| | - Natalia M Shevchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159, Prosp. 100 Let Vladivostoku, 690022 Vladivostok, Russian Federation
| | - Valerii V Surits
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159, Prosp. 100 Let Vladivostoku, 690022 Vladivostok, Russian Federation
| | - Tatiana I Imbs
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159, Prosp. 100 Let Vladivostoku, 690022 Vladivostok, Russian Federation
| | - Olesya S Malyarenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159, Prosp. 100 Let Vladivostoku, 690022 Vladivostok, Russian Federation
| | - Natalia N Besednova
- G.P. Somov Scientific Research Institute of Epidemiology and Microbiology, 1, Selskaya str., 690087 Vladivostok, Russian Federation
| | - Lyudmila A Ivanushko
- G.P. Somov Scientific Research Institute of Epidemiology and Microbiology, 1, Selskaya str., 690087 Vladivostok, Russian Federation
| | - Svetlana P Ermakova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159, Prosp. 100 Let Vladivostoku, 690022 Vladivostok, Russian Federation
| |
Collapse
|
7
|
Zhang W, Wu W, Bao Y, Yan X, Zhang F, Linhardt RJ, Jin W, Mao G. Comparative study on the mechanisms of anti-lung cancer activities of three sulfated galactofucans. Food Funct 2021; 12:10644-10657. [PMID: 34590105 DOI: 10.1039/d1fo02062e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Sulfated galactofucans, as the active compositions of fucoidan, were reported to exhibit antitumor activity. In the current study, a sulfated galactofucan (SGF) from Sargassum thunbergii and its three derivatives (SGF-H, SGF-L, and SGF-S) were prepared for structural analysis. Structural analysis showed that SGF-H was a high molecular weight sulfated galactofucan (51.5/17.8 kDa) with a high molar ratio of galactose (Gal) to fucose (Fuc) (0.66 : 1), SGF-L was a low molecular weight sulfated galactofucan (17.7 kDa) with a low molar ratio of Gal to Fuc (0.20 : 1), and SGF-S was a mixture (1.7 kDa) of sulfated galacto-fuco-oligomers or fuco-oligomers. It was noteworthy that the linkage of Gal residues in SGF-H was a β-linkage while SGF-L was an α-linkage. A comparative study on the anti-lung cancer activity in vitro and in vivo, antimetastatic effects, the metastasis-associated protein expression, and binding abilities to fibroblast growth factors (FGFs) of SGF, SGF-H, and SGF-L was performed to understand the structure-activity relationship. To some extent, SGF-L showed the strongest activity in the inhibition of human lung cancer cells A549 cell proliferation, while SGF-H exhibited the strongest activity in the inhibition of human bronchial epithelial cells BEAS-2B cell proliferation. SGF-L showed the strongest antimetastatic activity, followed by SGF-H and SGF. The expression of metastasis-associated proteins showed only a small difference. The in vivo tumor inhibition of SGF, SGF-H, and SGF-L was 45%, 41%, and 31%, respectively. SPR analysis showed SGF-H binds preferentially to FGF1 and FGF2, while SGF-L preferentially binds to FGF7 and FGF10, suggesting that the anti-lung cancer activity from sulfated galactofucan could involve the FGF-FAK/mTOR pathway.
Collapse
Affiliation(s)
- Wenjing Zhang
- Department of Endocrinology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Wanli Wu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Yizhong Bao
- Zhejiang Provincial Key Lab of Geriatrics, Department of Geriatrics, Zhejiang Hospital, Hangzhou 310013, China.
| | - Xiaojun Yan
- Marine Science and Technical College, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Fuming Zhang
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Robert J Linhardt
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
- Department of Biological Science, Departments of Chemistry and Chemical Biology and Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Weihua Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Genxiang Mao
- Zhejiang Provincial Key Lab of Geriatrics, Department of Geriatrics, Zhejiang Hospital, Hangzhou 310013, China.
| |
Collapse
|
8
|
Yao Y, Yim EKF. Fucoidan for cardiovascular application and the factors mediating its activities. Carbohydr Polym 2021; 270:118347. [PMID: 34364596 PMCID: PMC10429693 DOI: 10.1016/j.carbpol.2021.118347] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/12/2021] [Accepted: 06/12/2021] [Indexed: 12/17/2022]
Abstract
Fucoidan is a sulfated polysaccharide with various bioactivities. The application of fucoidan in cancer treatment, wound healing, and food industry has been extensively studied. However, the therapeutic value of fucoidan in cardiovascular diseases has been less explored. Increasing number of investigations in the past years have demonstrated the effects of fucoidan on cardiovascular system. In this review, we will focus on the bioactivities related to cardiovascular applications, for example, the modulation functions of fucoidan on coagulation system, inflammation, and vascular cells. Factors mediating those activities will be discussed in detail. Current therapeutic strategies and future opportunities and challenges will be provided to inspire and guide further research.
Collapse
Affiliation(s)
- Yuan Yao
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada.
| | - Evelyn K F Yim
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; Center for Biotechnology and Bioengineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada.
| |
Collapse
|
9
|
Usoltseva RV, Belik AA, Kusaykin MI, Malyarenko OS, Zvyagintsevа TN, Ermakova SP. Laminarans and 1,3-β-D-glucanases. Int J Biol Macromol 2020; 163:1010-1025. [PMID: 32663561 DOI: 10.1016/j.ijbiomac.2020.07.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 07/03/2020] [Accepted: 07/04/2020] [Indexed: 01/12/2023]
Abstract
The laminarans are biologically active water-soluble polysaccharide (1,3;1,6-β-D-glucans) of brown algae. These polysaccharides are an attractive object for research due to its relatively simple structure, low toxicity, and various biological effects. 1,3-β-D-glucanases are an effective tool for studying the structure of laminarans, and can also be used to obtain new biologically active derivatives. This review is to outline what is currently known about laminarans and enzymes that catalyze of their transformation. We focused on information about sources, structure and properties of laminarans and 1,3-β-D-glucanases, methods of obtaining and structural elucidation of laminarans, and biological activity of laminarans and products of their enzymatic transformation. It has an increased focus on the immunomodulating and anticancer activity of laminarans and their derivatives.
Collapse
Affiliation(s)
- Roza V Usoltseva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 690022, 159, 100 Let Vladivostoku prosp., Vladivostok, Russian Federation.
| | - Aleksei A Belik
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 690022, 159, 100 Let Vladivostoku prosp., Vladivostok, Russian Federation
| | - Mikhail I Kusaykin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 690022, 159, 100 Let Vladivostoku prosp., Vladivostok, Russian Federation.
| | - Olesya S Malyarenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 690022, 159, 100 Let Vladivostoku prosp., Vladivostok, Russian Federation.
| | - Tatiana N Zvyagintsevа
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 690022, 159, 100 Let Vladivostoku prosp., Vladivostok, Russian Federation.
| | - Svetlana P Ermakova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 690022, 159, 100 Let Vladivostoku prosp., Vladivostok, Russian Federation
| |
Collapse
|
10
|
Structural analysis of a glucoglucuronan derived from laminarin and the mechanisms of its anti-lung cancer activity. Int J Biol Macromol 2020; 163:776-787. [DOI: 10.1016/j.ijbiomac.2020.07.069] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/05/2020] [Accepted: 07/07/2020] [Indexed: 02/07/2023]
|
11
|
Jin W, Jiang D, Zhang W, Wang C, Xia K, Zhang F, Linhardt RJ. Interactions of fibroblast growth factors with sulfated galactofucan from Saccharina japonica. Int J Biol Macromol 2020; 160:26-34. [PMID: 32464202 PMCID: PMC10466213 DOI: 10.1016/j.ijbiomac.2020.05.183] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/14/2020] [Accepted: 05/22/2020] [Indexed: 01/09/2023]
Abstract
A total 68 types of marine algae oligosaccharides and polysaccharides were prepared and used to study the structure-activity relationship of oligosaccharides and polysaccharides in their interactions with fibroblast growth factors (FGF) 1 and 2. Factors considered include different types of algae, extraction methods, molecular weight, sulfate content and fractions. In the case of low molecular weight polysaccharide (SJ-D) from Saccharina japonica and its fractions eluting from anion exchange column, both 1.0 M NaCl fraction (SJ-D-I) and 2.0 M NaCl fraction (SJ-D-S) had stronger binding affinity than the parent SJ-D, suggesting that sulfated galactofucans represented the major tight binding component. Nuclear magnetic resonance showed that SJ-D-I was a typical sulfated galactofucan, composed of four units: 1, 3-linked 4-sulfated α-L-fucose (Fuc); 1, 3-linked 2, 4-disulfated α-L-Fuc; 1, 6-linked 4-sulfated β-D-Gal and/or 1, 6-linked 3, 4-sulfated β-D-Gal. Modification by autohydrolysis to oligosaccharides and desulfation decreased the FGF binding affinity while oversulfation increased the affinity. The solution-based affinities of SJ-D-I to FGF1 and FGF2 were 69 nM and 3.9 nM, suggesting that SJ-D-I showed better preferentially binding to FGF1 than a natural ligand, heparin, suggesting that sulfated galactofucan might represent a good regulator of FGF1.
Collapse
Affiliation(s)
- Weihua Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China; Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Di Jiang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Wenjing Zhang
- Department of Endocrinology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Chunyu Wang
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA; Department of Biological Science, Departments of Chemistry and Chemical Biology and Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Ke Xia
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Fuming Zhang
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
| | - Robert J Linhardt
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA; Department of Biological Science, Departments of Chemistry and Chemical Biology and Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| |
Collapse
|
12
|
Bao Y, He X, Wu W, Wang S, Dai J, Zhang Z, Jin W, Yan J, Mao G. Sulfated galactofucan from Sargassum thunbergii induces senescence in human lung cancer A549 cells. Food Funct 2020; 11:4785-4792. [PMID: 32421130 DOI: 10.1039/d0fo00699h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Isolated compounds from Sargassum thunbergii (S. thunbergii) have shown to exhibit diverse biological activities, including anti-cancer activity. In this study, we examined the effect of sulfated galactofucan (SWZ-4-H), which was successfully isolated from S. thunbergii, and its underlying mechanism on human lung cancer (LC) A549 cell growth in vitro and in vivo. In vitro experiment indicated that SWZ-4-H decreased cell growth and number in a dose-dependent manner (P < 0.05 vs. control). Besides, cells treated with SWZ-4-H had irregular morphology, including increased cell volumes, and large nuclei, which suggested senescence-like changes. Moreover, SWZ-4-H increased senescence-related β-galactosidase (SA-β-Gal) staining in a dose-dependent manner; however, while lower (1 mg mL-1) concentration induced mainly senescence without causing cell death, higher dosage (3 mg mL-1) induced both senescence and cell death. The effect of SWZ-4-H was further confirmed by analyzing the expression of p53, p21, p16, and Rb (p-RB); SWZ-4-H significantly increased the expression of p53, p21, and p16 and decreased phosphorylated Rb (p-RB) in a dose-dependent manner. Moreover, in vivo experiment showed that SWZ-4-H significantly reduced the tumor volume without affecting the body weight. To sum up, our data indicated that SWZ-4-H could induce lung cancer senescence by regulating p53, p21, p16, and p-Rb, thus providing a novel perspective on anti-cancer mechanisms of SWZ-4-H in human lung cancer A549 cells.
Collapse
Affiliation(s)
- Yizhong Bao
- Zhejiang Provincial Key Lab of Geriatrics, Department of Geriatrics, Zhejiang Hospital, Hangzhou 310013, PR China.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Li B, Xia L, Deji, Zhu M, Lu Y, Chen D. Structural analysis and anticomplement activity of a novel homogenous polysaccharide isolated from Juniperus tibetica kom. J Carbohydr Chem 2019. [DOI: 10.1080/07328303.2019.1647434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Beibei Li
- Department of Pharmocognosy, School of Pharmacy, Fudan University, Shanghai, People’s Republic of China
| | - Long Xia
- Department of Pharmocognosy, School of Pharmacy, Fudan University, Shanghai, People’s Republic of China
| | - Deji
- College of Science, Tibet University, Lhasa, PR China
| | - Mengxia Zhu
- Department of Pharmocognosy, School of Pharmacy, Fudan University, Shanghai, People’s Republic of China
| | - Yan Lu
- Department of Pharmocognosy, School of Pharmacy, Fudan University, Shanghai, People’s Republic of China
| | - Daofeng Chen
- Department of Pharmocognosy, School of Pharmacy, Fudan University, Shanghai, People’s Republic of China
| |
Collapse
|
14
|
Sajadimajd S, Momtaz S, Haratipour P, El-Senduny FF, Panah AI, Navabi J, Soheilikhah Z, Farzaei MH, Rahimi R. Molecular Mechanisms Underlying Cancer Preventive and Therapeutic Potential of Algal Polysaccharides. Curr Pharm Des 2019; 25:1210-1235. [DOI: 10.2174/1381612825666190425155126] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 04/15/2019] [Indexed: 12/22/2022]
Abstract
Background:
Algal polysaccharide and oligosaccharide derivatives have been shown to possess a
variety of therapeutic potentials and drug delivery applications. Algal polysaccharides contain sulfated sugar
monomers derived from seaweed including brown, red, and green microalgae. Here, in this review, the recent
progress of algal polysaccharides’ therapeutic applications as anticancer agents, as well as underlying cellular and
molecular mechanisms was investigated. Moreover, recent progress in the structural chemistry of important polysaccharides
with anticancer activities were illustrated.
Methods:
Electronic databases including “Scopus”, “PubMed”, and “Cochrane library” were searched using the
keywords “cancer”, or “tumor”, or “malignancy” in title/abstract, along with “algae”, or “algal” in the whole text
until July 2018. Only English language papers were included.
Results:
The most common polysaccharides involved in cancer management were sulfated polysaccharides, Fucoidans,
Carageenans, and Ulvan from different species of algae that have been recognized in vitro and in vivo.
The underlying anticancer mechanisms of algal polysaccharides included induction of apoptosis, cell cycle arrest,
modulation of transduction signaling pathways, suppression of migration and angiogenesis, as well as activation
of immune responses and antioxidant system. VEGF/VEGFR2, TGFR/Smad/Snail, TLR4/ROS/ER, CXCL12/
CXCR4, TGFR/Smad7/Smurf2, PI3K/AKT/mTOR, PBK/TOPK, and β-catenin/Wnt are among the main cellular
signaling pathways which have a key role in the preventive and therapeutic effects of algal polysaccharides
against oncogenesis.
Conclusion:
Algal polysaccharides play a crucial role in the management of cancer and may be considered the
next frontier in pharmaceutical research. Further well-designed clinical trials are mandatory to evaluate the efficacy
and safety of algal polysaccharides in patients with cancer.
Collapse
Affiliation(s)
| | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Pouya Haratipour
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Fardous F. El-Senduny
- Biochemistry Division, Chemistry Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Amin Iran Panah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Jafar Navabi
- Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zhaleh Soheilikhah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Roja Rahimi
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran 1416663361, Iran
| |
Collapse
|
15
|
Jin W, Wu W, Tang H, Wei B, Wang H, Sun J, Zhang W, Zhong W. Structure Analysis and Anti-Tumor and Anti-Angiogenic Activities of Sulfated Galactofucan Extracted from Sargassum thunbergii. Mar Drugs 2019; 17:E52. [PMID: 30641954 PMCID: PMC6356460 DOI: 10.3390/md17010052] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 12/26/2018] [Accepted: 01/08/2019] [Indexed: 12/27/2022] Open
Abstract
Sulfated galactofucan (ST-2) was obtained from Sargassum thunbergii. It was then desulfated to obtain ST-2-DS, and autohydrolyzed and precipitated by ethanol to obtain the supernatant (ST-2-S) and precipitate (ST-2-C). ST-2-C was further fractionated by gel chromatography into two fractions, ST-2-H (high molecular weight) and ST-2-L (low molecular weight). Mass spectrometry (MS) of ST-2-DS was performed to elucidate the backbone of ST-2. It was shown that ST-2-DS contained a backbone of alternating galactopyranose residues (Gal)n (n ≤ 3) and fucopyranose residues (Fuc)n. In addition, ST-2-S was also determined by MS to elucidate the branches of ST-2. It was suggested that sulfated fuco-oligomers might be the branches of ST-2. Compared to the NMR spectra of ST-2-H, the spectra of ST-2-L was more recognizable. It was shown that ST-2-L contain a backbone of (Gal)n and (Fuc)n, sulfated mainly at C4 of Fuc, and interspersed with galactose (the linkages were likely to be 1→2 and 1→6). Therefore, ST-2 might contain a backbone of (Gal)n (n ≤ 3) and (Fuc)n. The sulfation pattern was mainly at C4 of fucopyranose and partially at C4 of galactopyranose, and the branches were mainly sulfated fuco-oligomers. Finally, the anti-tumor and anti-angiogenic activities of ST-2 and its derivates were determined. It was shown that the low molecular-weight sulfated galactofucan, with higher fucose content, had better anti-angiogenic and anti-tumor activities.
Collapse
Affiliation(s)
- Weihua Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Wanli Wu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Hong Tang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Bin Wei
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Hong Wang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Jiadong Sun
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA.
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD 20878, USA.
| | - Wenjing Zhang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Weihong Zhong
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
16
|
Antioxidant, anti-inflammatory and anticancer potential of natural bioactive compounds from seaweeds. BIOACTIVE NATURAL PRODUCTS 2019. [DOI: 10.1016/b978-0-12-817901-7.00005-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
17
|
Sanjeewa KA, Kang N, Ahn G, Jee Y, Kim YT, Jeon YJ. Bioactive potentials of sulfated polysaccharides isolated from brown seaweed Sargassum spp in related to human health applications: A review. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2018.02.040] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
18
|
The effect of different substitute groups and molecular weights of fucoidan on neuroprotective and anticomplement activity. Int J Biol Macromol 2018; 113:82-89. [DOI: 10.1016/j.ijbiomac.2018.02.109] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 02/05/2018] [Accepted: 02/15/2018] [Indexed: 12/17/2022]
|
19
|
Structural characterization of blackberry wine polysaccharides and immunomodulatory effects on LPS-activated RAW 264.7 macrophages. Food Chem 2018; 257:143-149. [PMID: 29622190 DOI: 10.1016/j.foodchem.2018.02.122] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 02/19/2018] [Accepted: 02/22/2018] [Indexed: 01/09/2023]
Abstract
Three polysaccharide fractions were isolated from blackberry wine. The crude extract BWPs was obtained with ethanol precipitation and freeze-thawing process, it was then submitted to Fehling treatment, giving soluble BWPFs and insoluble BWPFp fractions. These fractions were characterized by Gas Chromatography-Mass Spectrometry (GC-MS) and Nuclear Magnetic Resonance (NMR). Major polysaccharides were identified for each fraction: mannan, type II arabinogalactan and type I rhamnogalacturonan for BWPs, a mannan formed by a major chain of α-Manp(1 → 6)-linked units, O-2 substituted with α-d-Manp(1 → 2)-linked side chains for BWPFp and a AG II formed by a major chain of β-d-Galp(1 → 3)-linked, substituted at O-6 by side chains of the β-d-Galp(1 → 6)-linked, which then are substituted at O-3 by non-reducing units of α-l-Araf and a RG I, formed by [→4)-α-d-GalpA-(1 → 2)-α-l-Rhap-(1→]n for BWPFs. Anti-inflammatory effects of polysaccharide fractions were evaluated in RAW 264.7 cells. Fractions markedly reduced nitric oxide (NO) and pro-inflammatory cytokine production (TNF-α and IL-1β) in LPS-treated cells.
Collapse
|