1
|
Tian S, Mao Z, Wang Y, Li K, Li Y, Zhu B, Zhou F, Li J, Shen Y, Ding Z. Structural characterization and immunomodulatory activity analysis of a novel pectic polysaccharide extracted from Tetrastigma hemsleyanum Diels et Gilg and its hydrolysis products. Carbohydr Polym 2025; 357:123502. [PMID: 40159016 DOI: 10.1016/j.carbpol.2025.123502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/12/2025] [Accepted: 03/12/2025] [Indexed: 04/02/2025]
Abstract
Tetrastigma hemsleyanum Diels et Gilg (T. hemsleyanum) is a rare traditional Chinese medicine with high medicinal value and T. hemsleyanum polysaccharides (THPs) have attracted increasing attention in recent years. However, detailed structural and functional insights into THPs remain limited. Here, a novel pectic polysaccharide (STHP4) with an average molecular weight (Mw) of 119 kDa was extracted and purified from the aboveground part of T. hemsleyanum. Structurally, STHP4 was mainly composed of galacturonic acid, glucuronic acid, and galactose, with minor glucose, rhamnose, arabinose, and mannose, and its primary backbone was 1,4-GalA. Pectinase treatment of STHP4 yields two distinct fractions: STHP4-1 and STHP4-2. STHP4-1 shared the same types of monosaccharides with STHP4, except for the absence of glucose, but had a broad Mw distribution (9.9 to 251 kDa). Another product, STHP4-2, a mixture of oligosaccharides and free monosaccharides, has a Mw of 1.387 kDa. Their structures were further elucidated via methylation analysis and NMR spectra. Furthermore, STHP4-1 exhibited superior immune regulatory effects on macrophages, including increased nitric oxide release and elevated interleukin-6, interleukin-1β, and tumor necrosis factor α expression. These findings suggest that STHP4-1 might be the core active domain of STHP4, and both STHP4 and STHP4-1 are potential immune enhancers.
Collapse
Affiliation(s)
- Shasha Tian
- School of Pharmaceutical Sciences, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Zian Mao
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yuexia Wang
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Kewei Li
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yafei Li
- School of Pharmaceutical Sciences, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Bingqi Zhu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Fangmei Zhou
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jingchao Li
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yingzhi Shen
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Zhishan Ding
- School of Pharmaceutical Sciences, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Liang S, Guo Q, Li J, Zhao P, Ge C, Li S, Xiao Z. A Novel Polysaccharide Purified from Tricholoma matsutake: Structural Characterization and In Vitro Immunological Activity. Foods 2025; 14:1031. [PMID: 40232050 PMCID: PMC11941717 DOI: 10.3390/foods14061031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/04/2025] [Accepted: 03/11/2025] [Indexed: 04/16/2025] Open
Abstract
Tricholoma matsutake, as a rare wild edible mushroom, is popular due to its unique flavor and taste, as well as high nutritional and economic value. Investigating the relationship between the complex structure and in vitro immunological activity of TMP-2a, a novel polysaccharide isolated from T. matsutake, was the aim of this study. The results showed that TMP-2a consisted of six monosaccharides, fucose, glucosamine hydrochloride, galactose, glucose, mannose, and glucuronic acid, with molar ratios of 8.8:0.6:23.4:48.1:15.1:4.0 and a molecular weight of 27,749 Da. Furthermore, TMP-2a was mainly composed of →6)-β-Glcp-(1→ with →3)-β-D-Glcp-(1→ forming the main chain, with a small amount of →2,6)-α-D-Manp-(1→ and →6)-α-D-Galp-(1→ structural units attached, and the branched chain was mainly composed of β-Glcp-(1→ or a small amount of α-L-Fucp-(1→ as a telosaccharide attached at the O-6 position of →3,6)-β-D-Glcp-(1→. TMP-2a enhanced the proliferation and phagocytic activity of mouse macrophage RAW264.7, as well as the secretion of NO and cytokines (TNF-α, IL-6, IL-1β) to a considerable degree, maybe attributable to its glucan structure and the elevated presence of (1→3)-β-D-Glcp glycosidic bonds. This study establishes a basis for the structural identification and comprehensive investigation of the functional activities of T. matsutake polysaccharides while also offering a theoretical framework for the creation of T. matsutake-related food products.
Collapse
Affiliation(s)
- Shuangmin Liang
- Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China; (S.L.); (Q.G.); (C.G.)
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Qi Guo
- Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China; (S.L.); (Q.G.); (C.G.)
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Jun Li
- College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China;
| | - Ping Zhao
- Yunnan Agricultural University, Kunming 650201, China;
| | - Changrong Ge
- Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China; (S.L.); (Q.G.); (C.G.)
| | - Shijun Li
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Zhichao Xiao
- Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China; (S.L.); (Q.G.); (C.G.)
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Agricultural University, Kunming 650201, China;
| |
Collapse
|
3
|
Liu Y, Yang L, Wang J, Song L. Physicochemical and colon cancer HT-29 cell inhibitory property of homogeneous polysaccharide from Stropharia rugosoannulata. Int J Biol Macromol 2025; 307:141975. [PMID: 40081691 DOI: 10.1016/j.ijbiomac.2025.141975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 01/23/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
The development of active polysaccharides from edible mushrooms for antitumor drugs or functional foods has become a research hotspot. In this study, the physicochemical properties and monosaccharide composition of four homogeneous polysaccharides (CASP-0, CASP-1, CASP-2 and CASP-3) purified from alkali-extracted Stropharia rugosoannulata polysaccharides by DEAE-52 column were investigated, and the inhibitory effect against colon cancer HT-29 cell in vitro were explored. Results showed that four polysaccharides were homogeneous with molecular weights of 84.8 KDa (CASP-0), 11.1 KDa (CASP-1), 58.6 KDa (CASP-2) and 97.8 KDa (CASP-3). CASP-0 and CASP-3 contained glucose, mannose and galactose in molar ratios of 83.76:13.96:2.27 and 89.72:4.68:5.59, while CASP-1 and CASP-2 contained glucan. The four polysaccharides significantly reduced the cell viability of HT-29 cell in dose-dependent and time-dependent manner. With the increase of polysaccharide concentration, CASPs significantly inhibited the migration and invasion of HT-29 cell. The four polysaccharides induced HT-29 cell apoptosis by up-regulating the expression of Caspase-3 and Bax protein, and down-regulating the expression of Bcl-2 protein, suggesting that HT-29 cell apoptosis may be a mitochondria-mediated pathway. This study provides a theoretical basis for the potential application in medicine and functional food.
Collapse
Affiliation(s)
- Yong Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, People's Republic of China.
| | - Linyuan Yang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, People's Republic of China
| | - Junhui Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, People's Republic of China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, People's Republic of China
| | - Liyuan Song
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, People's Republic of China
| |
Collapse
|
4
|
An H, Lin B, Huang F, Wang N. Advances in the study of polysaccharides from Anemarrhena asphodeloides Bge.: A review. Int J Biol Macromol 2024; 282:136999. [PMID: 39476924 DOI: 10.1016/j.ijbiomac.2024.136999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/09/2024] [Accepted: 10/26/2024] [Indexed: 11/05/2024]
Abstract
Anemarrhena asphodeloides Bge. (AA), a traditional Chinese medicine, is used clinically to treat inflammation, diabetes, osteoporosis, and tumors. Polysaccharides are the most abundant components in AA, and have antioxidant, immunomodulatory, anti-inflammatory, hypoglycemic, anti-osteoporosis, and laxative effects. It is necessary to conduct a comprehensive analysis on the structure and pharmacological activity of the polysaccharides from AA (PAAs). This review systematically summarizes the structural characteristics of PAAs, including the monosaccharide compositions, molecular weights, and backbone structures. We discuss the relationship between the structure and pharmacological activities of PAAs. The chemical modification methods of PAAs, including zinc chelation, carboxymethylation, and sulfation, are then reviewed. This review may offer new insights for research on the PAAs and polysaccharides with similar structures.
Collapse
Affiliation(s)
- Huan An
- Department of TCM literature, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang 310007, China
| | - Bingfeng Lin
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang 310007, China
| | - Feihua Huang
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang 310007, China; Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, China
| | - Nani Wang
- Department of TCM literature, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang 310007, China; Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang 310007, China; Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, China.
| |
Collapse
|
5
|
Li P, Wang C, Chen G, Han Y, Lu H, Li N, Lv Y, Chu C, Peng X. Molecular mechanisms of Tetrastigma hemsleyanum Diels&Gilg against lung squamous cell carcinoma: From computational biology and experimental validation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118326. [PMID: 38750988 DOI: 10.1016/j.jep.2024.118326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/25/2024] [Accepted: 05/08/2024] [Indexed: 05/20/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tetrastigma hemsleyanum (T. hemsleyanum), valued in traditional medicine for its potential to boost immunity and combat tumors, contains uncharacterized active compounds and mechanisms. This represents a significant gap in our understanding of its ethnopharmacological relevance. AIM OF THE STUDY To involve the mechanism of anti-lung cancer effect of T. hemsleyanum by means of experiment and bioinformatics analysis. MATERIALS AND METHODS The anticancer mechanism of T. hemsleyanum against lung squamous carcinoma (LUSC) in zebrafish was investigated. The LUSC model was established by injecting NCI-H2170 cells in the zebrafish and evaluating its anti-tumor efficacy. Next, component targets and key genes were obtained by molecular complex detection (MCODE) analysis and protein-protein interaction (PPI) network analysis. Component analysis of T. hemsleyanum was performed by UPLC-Q-TOF-MS. Molecular docking was used to simulate the binding activities of key potential active components to core targets were simulated using. Prognostic and pan-cancer analyses were then performed to validate the signaling pathways involved in the prognostic genes using gene set enrichment analysis (GSEA). Subsequently, Molecular dynamics simulations were then performed for key active components and core targets. Finally, cellular experiments were used to verify the expression of glutamate metabotropic receptor 3 (GRM3) and glutamate metabotropic receptor 7 (GRM7) in the anticancer effect exerted of T. hemsleyanum. RESULTS We experimentally confirmed the inhibitory effect of T. hemsleyanum on LUSC by transplantation of NCI-H2170 cells into zebrafish. There are 20 main compounds in T. hemsleyanum, such as procyanidin B1, catechin, quercetin, and kaempferol, etc. A total of 186 component targets of T. hemsleyanum and sixteen hub genes were screened by PPI network and MCODE analyses. Molecular docking and molecular dynamics simulation results showed that Gingerglycolipid B and Rutin had higher affinity with GRM3 and GRM7, respectively. Prognostic analysis, Pan-cancer analysis and verification experiment also confirmed that GRM3 and GRM7 were targets for T. hemsleyanum to exert anti-tumor effects and to participate in immune and mutation processes. In vitro experiments suggested that the inhibitory effect of T. hemsleyanum on cancer cells was correlated with GRM3 and GRM7. CONCLUSION In vivo, in vitro and in silico results confirmed the potential anticancer effects against LUSC of T. hemsleyanum, which further consolidated the claim of its traditional uses.
Collapse
Affiliation(s)
- Ping Li
- The Affiliated People's Hospital of Ningbo University, Ningbo, 315000, China.
| | - Changchang Wang
- Ningbo Municipal Hospital of TCM, Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo, 315000, China.
| | - Gun Chen
- The Affiliated People's Hospital of Ningbo University, Ningbo, 315000, China.
| | - Yixiao Han
- Ningbo Municipal Hospital of TCM, Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo, 315000, China.
| | - Hanyu Lu
- Ningbo Municipal Hospital of TCM, Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo, 315000, China.
| | - Nan Li
- Ningbo Municipal Hospital of TCM, Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo, 315000, China.
| | - Yangbin Lv
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Chu Chu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Xin Peng
- Ningbo Municipal Hospital of TCM, Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo, 315000, China.
| |
Collapse
|
6
|
Dong X, Xiong YT, He T, Zheng C, Li J, Zhuang Y, Xu Y, Xiu Y, Wu Z, Zhao X, Xiao X, Bai Z, Gao L. Protective effects of Nogo-B deficiency in NAFLD mice and its multiomics analysis of gut microbiology and metabolism. GENES & NUTRITION 2024; 19:17. [PMID: 39182019 PMCID: PMC11344411 DOI: 10.1186/s12263-024-00754-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 08/11/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is a prevalent chronic liver ailment that can lead to serious conditions such as cirrhosis and hepatocellular carcinoma. Hepatic Nogo-B regulates glucose and lipid metabolism, and its inhibition has been shown to be protective against metabolic syndrome. Increasing evidence suggests that imbalances in the gut microbiota (GM) and lipid metabolism disorders are significant contributors to NAFLD progression. Nevertheless, it is not yet known whether Nogo-B can affect NAFLD by influencing the gut microbiota and metabolites. Hence, the aim of the present study was to characterize this process and explore its possible underlying mechanisms. METHODS A NAFLD model was constructed by administering a high-fat diet (HFD) to Nogo-B-/- and WT mice from the same litter, and body weight was measured weekly in each group. The glucose tolerance test (GTT) and insulin tolerance test (ITT) were performed to assess blood glucose levels. At the end of the 12-week period, samples of serum, liver, and intestinal contents were collected and used for serum biochemical marker and inflammatory factor detection; pathology evaluation; and gut microbiome and metabolomics analysis. Spearman's correlation analysis was performed to determine possible correlations between differential gut microbiota and differential serum metabolites between groups. RESULTS Nogo-B deficiency attenuated the effects of the HFD, including weight gain, liver weight gain, impaired glucose tolerance, hepatic steatosis, elevated serum lipid biochemicals levels, and liver function. Nogo-B deficiency suppressed M1 polarization and promoted M2 polarization, thus inhibiting inflammatory responses. Furthermore, Nogo-B-/--HFD-fed mice presented increased gut microbiota richness and diversity, decreased Firmicutes/Bacteroidota (F/B) ratios, and altered serum metabolites compared with those of WT-HFD-fed mice. During analysis, several differential gut microbiota, including Lachnoclostridium, Harryflintia, Odoribacter, UCG-009, and unclassified_f_Butyricoccaceae, were screened between groups. These microbiota were found to be positively correlated with upregulated purine metabolism and bile acid metabolites in Nogo-B deficiency, while they were negatively correlated with downregulated corticosterone and tricarboxylic acid cyclic metabolites in Nogo-B deficiency. CONCLUSION Nogo-B deficiency delayed NAFLD progression, as demonstrated by reduced hepatocellular lipid accumulation, attenuated inflammation and liver injury, and ameliorated gut microbiota dysbiosis and metabolic disorders. Importantly, Odoribacter was strongly positively correlated with ALB and taurodeoxycholic acid, suggesting that it played a considerable role in the influence of Nogo-B on the progression of NAFLD, a specific feature of NAFLD in Nogo-B-/- mice. The regulation of bile acid metabolism by the gut microbiota may be a potential target for Nogo-B deficiency to ameliorate NAFLD.
Collapse
Affiliation(s)
- Xu Dong
- Medical School of Chinese PLA, Beijing, China
- Department of Gastroenterology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China
- Department of Hepatology, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yu-Ting Xiong
- 307 Clinical Medical College of PLA, Anhui Medical University, Beijing, China
| | - Tingting He
- Department of Hepatology Medicine of Traditional Chinese Medicine, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Congyang Zheng
- Medical School of Chinese PLA, Beijing, China
- Department of Gastroenterology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China
- Department of Hepatology, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Junjie Li
- Department of Hepatology, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
- School of Chengde Medical University, Chengdeshi, China
| | - Yingjie Zhuang
- Department of Gastroenterology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yingjie Xu
- Department of Hepatology, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Ye Xiu
- Department of Hepatology, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Zhixin Wu
- Department of Hepatology, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xiaomei Zhao
- Department of Hepatology, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xiaohe Xiao
- Department of Hepatology, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, China.
- China Military Institute of Chinese Materia, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, China.
| | - Zhaofang Bai
- Department of Hepatology, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, China.
- China Military Institute of Chinese Materia, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, China.
| | - Lili Gao
- Medical School of Chinese PLA, Beijing, China.
- Department of Gastroenterology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
7
|
Su H, He L, Yu X, Wang Y, Yang L, Wang X, Yao X, Luo P, Zhang Z. Structural characterization and mechanisms of macrophage immunomodulatory activity of a novel polysaccharide with a galactose backbone from the processed Polygonati Rhizoma. J Pharm Anal 2024; 14:100974. [PMID: 39185336 PMCID: PMC11342111 DOI: 10.1016/j.jpha.2024.100974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/05/2024] [Accepted: 03/28/2024] [Indexed: 08/27/2024] Open
Abstract
A purified polysaccharide with a galactose backbone (SPR-1, Mw 3,622 Da) was isolated from processed Polygonati Rhizoma with black beans (PRWB) and characterized its chemical properties. The backbone of SPR-1 consisted of [(4)-β-D-Galp-(1]9 → 4,6)-β-D-Galp-(1 → 4)-α-D-GalpA-(1 → 4)-α-D-GalpA-(1 → 4)-α-D-Glcp-(1 → 4,6)-α-D-Glcp-(1 → 4)-α/β-D-Glcp, with a branch chain of R1: β-D-Galp-(1 → 3)-β-D-Galp-(1→ connected to the →4,6)-β-D-Galp-(1→ via O-6, and a branch chain of R2: α-D-Glcp-(1 → 6)-α-D-Glcp-(1→ connected to the →4,6)-α-D-Glcp-(1→ via O-6. Immunomodulatory assays showed that the SPR-1 significantly activated macrophages, and increased secretion of NO and cytokines (i.e., IL-1β and TNF-α), as well as promoted the phagocytic activities of cells. Furthermore, isothermal titration calorimetry (ITC) analysis and molecular docking results indicated high-affinity binding between SPR-1 and MD2 with the equilibrium dissociation constant (K D) of 18.8 μM. It was suggested that SPR-1 activated the immune response through Toll-like receptor 4 (TLR4) signaling and downstream responses. Our research demonstrated that the SPR-1 has a promising candidate from PRWB for the TLR4 agonist to induce immune response, and also provided an easily accessible way that can be used for PR deep processing.
Collapse
Affiliation(s)
- Hongna Su
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Lili He
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Xina Yu
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Yue Wang
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People's Republic of China, Southwest Minzu University, Chengdu, 610041, China
| | - Li Yang
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People's Republic of China, Southwest Minzu University, Chengdu, 610041, China
| | - Xiaorui Wang
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Xiaojun Yao
- Centre for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macau, 999078, China
| | - Pei Luo
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Zhifeng Zhang
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People's Republic of China, Southwest Minzu University, Chengdu, 610041, China
| |
Collapse
|
8
|
Zhang Y, Yang B, Sun W, Sun X, Zhao J, Li Q. Structural characterization of squash polysaccharide and its effect on STZ-induced diabetes mellitus model in MIN6 cells. Int J Biol Macromol 2024; 270:132226. [PMID: 38729469 DOI: 10.1016/j.ijbiomac.2024.132226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/05/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024]
Abstract
A novel natural water-soluble acidic polysaccharide (PWESP-3) was isolated from squash with a molecular mass of 140.519 kDa, which was composed of arabinose (Ara, 35.30 mol%), galactose (Gal, 61.20 mol%), glucose (Glc, 1.80 mol%), and Mannuronic acid (ManA, 1.70 mol%) and contained Araf-(1→, →3)-Araf-(1→, →5)-Araf-(1→, Glcp-(1→, Galp-(1→, →3,5)-Araf-(1→, →2)-Glcp-(1→, →2)-Manp-(1→, →3)-Glcp-(1→, →4)-Galp-(1→, →3)-Galp-(1→, →6)-Galp-(1→, →3,4)-Galp-(1→, →4,6)-Galp-(1→ residues in the backbone. Moreover, the structure of PWESP-3 was identified by NMR spectra. The branch chain was connected to the main chain by the O-3 and O-4 atom of Gal. In addition, the effect of PWESP-3 on STZ-induced type I diabetes mellitus model in MIN6 cells was investigated. The results showed that PWESP-3 can increase the viability and insulin secretion of MIN6 cells and reduce the oxidative stress caused by ROS and NO. Meanwhile, PWESP-3 can also reduce the content of ATP, Ca2+, mitochondrial membrane potential and Caspase-3 activity in MIN6 cells. Furthermore, treatment with PWESP-3 can prevent single or double stranded DNA breaking to form DNA fragments and improve DNA damage in MIN6 cells, thereby avoiding apoptosis. Therefore, the above data highlight that PWESP-3 can improve the function of insulin secretion in STZ-induced MIN6 cells in vitro and can be used as an alternative food supplement to diabetes drugs.
Collapse
Affiliation(s)
- Yu Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, China; China National Engineering Research Center for Fruit and Vegetable Processing, China; Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing 100083, China
| | - Bingjie Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, China; China National Engineering Research Center for Fruit and Vegetable Processing, China; Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing 100083, China
| | - Wei Sun
- Huage Wugu Holding Co., Ltd., Hebei 061600, China
| | - Xun Sun
- College of Food Science and Nutritional Engineering, China Agricultural University, China; China National Engineering Research Center for Fruit and Vegetable Processing, China; Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing 100083, China
| | - Jing Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, China; China National Engineering Research Center for Fruit and Vegetable Processing, China; Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing 100083, China
| | - Quanhong Li
- College of Food Science and Nutritional Engineering, China Agricultural University, China; China National Engineering Research Center for Fruit and Vegetable Processing, China; Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing 100083, China.
| |
Collapse
|
9
|
Mao Z, Yang L, Lv Y, Chen Y, Zhou M, Fang C, Zhu B, Zhou F, Ding Z. A glucuronogalactomannan isolated from Tetrastigma hemsleyanum Diels et Gilg: Structure and immunomodulatory activity. Carbohydr Polym 2024; 333:121922. [PMID: 38494202 DOI: 10.1016/j.carbpol.2024.121922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 03/19/2024]
Abstract
A novel acidic glucuronogalactomannan (STHP-5) was isolated from the aboveground part of Tetrastigma hemsleyanum Diels et Gilg with a molecular weight of 3.225 × 105 kDa. Analysis of chain conformation showed STHP-5 was approximately a random coil chain. STHP-5 was composed mainly of galactose, mannose, and glucuronic acid. Linkages of glycosides were measured via methylation analysis and verified by NMR. In vitro, STHP-5 induced the production of nitric oxide (NO) and secretion of IL-6, MCP-1, and TNF-α in RAW264.7 cells, indicating STHP-5 had stimulatory activity on macrophages. STHP-5 was proven to function as a TLR4 agonist by inducing the secretion of secreted embryonic alkaline phosphatase (SEAP) in HEK-Blue™-hTLR4 cells. The TLR4 activation capacity was quantitatively measured via EC50, and it showed purified polysaccharides had stronger effects (lower EC50) on activating TLR4 compared with crude polysaccharides. In conclusion, our findings suggest STHP-5 may be a novel immunomodulator.
Collapse
Affiliation(s)
- Zian Mao
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, 548 Binwen Rd., Hangzhou, Zhejiang 310053, China
| | - Liu Yang
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, 548 Binwen Rd., Hangzhou, Zhejiang 310053, China
| | - Yishan Lv
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, 548 Binwen Rd., Hangzhou, Zhejiang 310053, China
| | - Yuchi Chen
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, 548 Binwen Rd., Hangzhou, Zhejiang 310053, China
| | - Mingyuan Zhou
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, 548 Binwen Rd., Hangzhou, Zhejiang 310053, China
| | - Chengnan Fang
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, 548 Binwen Rd., Hangzhou, Zhejiang 310053, China
| | - Bingqi Zhu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, 548 Binwen Rd., Hangzhou, Zhejiang 310053, China
| | - Fangmei Zhou
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, 548 Binwen Rd., Hangzhou, Zhejiang 310053, China.
| | - Zhishan Ding
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, 548 Binwen Rd., Hangzhou, Zhejiang 310053, China.
| |
Collapse
|
10
|
Zheng W, Wang H, Wang X, Li X, Hu J, Zi X, Zhou Y, Pan D, Fu Y. Kaempferol 3-O-Rutinoside, a Flavone Derived from Tetrastigma hemsleyanum Diels et Gilg, Reduces Body Temperature through Accelerating the Elimination of IL-6 and TNF-α in a Mouse Fever Model. Molecules 2024; 29:1641. [PMID: 38611918 PMCID: PMC11013357 DOI: 10.3390/molecules29071641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/31/2024] [Accepted: 03/31/2024] [Indexed: 04/14/2024] Open
Abstract
Fever is a serious condition that can lead to various consequences ranging from prolonged illness to death. Tetrastigma hemsleyanum Diels et Gilg (T. hemsleyanum) has been used for centuries to treat fever, but the specific chemicals responsible for its antipyretic effects are not well understood. This study aimed to isolate and identify the chemicals with antipyretic bioactivity in T. hemsleyanum extracts and to provide an explanation for the use of T. hemsleyanum as a Chinese herbal medicine for fever treatment. Our results demonstrate that kaempferol 3-rutinoside (K3OR) could be successfully isolated and purified from the roots of T. hemsleyanum. Furthermore, K3OR exhibited a significant reduction in rectal temperature in a mouse model of fever. Notably, a 4 μM concentration of K3OR showed more effective antipyretic effects than ibuprofen and acetaminophen. To explore the underlying mechanism, we conducted an RNA sequencing analysis, which revealed that PXN may act as a key regulator in the fever process induced by lipopolysaccharide (LPS). In the mouse model of fever, K3OR significantly promoted the secretion of IL-6 and TNF-α during the early stage in the LPS-treated group. However, during the middle to late stages, K3OR facilitated the elimination of IL-6 and TNF-α in the LPS-treated group. Overall, our study successfully identified the chemicals responsible for the antipyretic bioactivity in T. hemsleyanum extracts, and it answered the question as to why T. hemsleyanum is used as a traditional Chinese herbal medicine for treating fever. These findings contribute to a better understanding of the therapeutic potential of T. hemsleyanum in managing fever, and they provide a basis for further research and development in this field.
Collapse
Affiliation(s)
- Weilong Zheng
- School of Life Science, Taizhou University, No. 1139 Shifu Road, Taizhou 318000, China; (W.Z.); (X.W.); (X.L.)
- Taizhou Research Institute of Bio-Medical and Chemical Industry Co., Ltd., Taizhou 318000, China
| | - Haina Wang
- Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Department of Hematology, The Second Hospital of Dalian Medical University, Dalian 116027, China;
| | - Xue Wang
- School of Life Science, Taizhou University, No. 1139 Shifu Road, Taizhou 318000, China; (W.Z.); (X.W.); (X.L.)
| | - Xin Li
- School of Life Science, Taizhou University, No. 1139 Shifu Road, Taizhou 318000, China; (W.Z.); (X.W.); (X.L.)
| | - Jiahuan Hu
- Taizhou Key Laboratory of Biomass Functional Materials Development and Application, Taizhou University, Taizhou 318000, China; (J.H.); (X.Z.); (Y.Z.)
| | - Xiangyu Zi
- Taizhou Key Laboratory of Biomass Functional Materials Development and Application, Taizhou University, Taizhou 318000, China; (J.H.); (X.Z.); (Y.Z.)
| | - Yufeng Zhou
- Taizhou Key Laboratory of Biomass Functional Materials Development and Application, Taizhou University, Taizhou 318000, China; (J.H.); (X.Z.); (Y.Z.)
| | - Duotao Pan
- Institute of Information and Engineering, Shenyang University of Chemical and Technology, Shenyang 110142, China;
| | - Yongqian Fu
- School of Life Science, Taizhou University, No. 1139 Shifu Road, Taizhou 318000, China; (W.Z.); (X.W.); (X.L.)
- Taizhou Key Laboratory of Biomass Functional Materials Development and Application, Taizhou University, Taizhou 318000, China; (J.H.); (X.Z.); (Y.Z.)
- Institute of Biomass Resources, Taizhou University, Taizhou 318000, China
| |
Collapse
|
11
|
Xu G, Qin M, Yu M, Liu T, Guo Y, Wang K, Mu L, Wang S, Ma Q. Structural characterization of a polysaccharide derived from Saposhnikovia divaricatee (Turcz.) Schischk with anti-allergic and antioxidant activities. JOURNAL OF ETHNOPHARMACOLOGY 2024; 320:117425. [PMID: 37984545 DOI: 10.1016/j.jep.2023.117425] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/26/2023] [Accepted: 11/12/2023] [Indexed: 11/22/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Saposhnikoviae Radix, the dry root of Saposhnikovia divaricatee (Turcz.) Schischk, is a traditional chinese medicine used for the treatment of cold, headache, and skin pruritus. AIM OF THE STUDY This study aimed to identify novel active polysaccharides from Saposhnikovia divaricatee (Turcz.) Schischk and clarify their structures and bioactivities. MATERIALS AND METHODS The structure of polysaccharides was clarified by PMP-HPLC, methylation analysis, particle acid hydrolysis analysis and NMR analysis. The anti-allergic and antioxidant activities of polysaccharides were evaluated on allergic reaction model in RBL-2H3 cells and oxidative damage model of C. elegans. RESULTS We purified a novel homogenous polysaccharide named SP-3 from Saposhnikovia divaricatee (Turcz.) Schischk and its molecular weight was determined as 3.096 × 104 Da. Monosaccharide composition analysis revealed that SP-3 was composed of mannose, rhamnose, galacturonic acid, glucose, galactose, and arabinose (1.85: 5.22: 38.06: 2.36: 23.25: 29.26). The main linkage type of SP-3 was a repeat unit of →4,6)-β-D-Galp-(1 → 4)-α-D-GalpA-(1 → . The branches of SP-3 contained T-linked-α-L-Araf and 1,3,4-linked-α-L-Rhap. It was observed that SP-3 inhibited β-HEX release and inflammatory factors in RBL-2H3 cells subject to IgE stimulant. Meanwhile, SP-3 increased the mean lifespan of Caenorhabditis elegans under oxidative stress, reduced ROS content and increased antioxidant enzyme activities of C. elegans, potentially through activating the SOD-3. CONCLUSIONS A novel homogenous polysaccharide was identified from Saposhnikovia divaricatee (Turcz.) Schischk, and this polysaccharide SP-3 played key roles for the anti-allergic and antioxidant activities.
Collapse
Affiliation(s)
- Guang Xu
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, PR China
| | - Ming Qin
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, PR China
| | - Mengqi Yu
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, PR China
| | - Tian Liu
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, PR China
| | - Yuying Guo
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, PR China
| | - Kaihe Wang
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, PR China
| | - Leixin Mu
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, PR China
| | - Shifeng Wang
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, PR China.
| | - Qun Ma
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, PR China.
| |
Collapse
|
12
|
Yang MH, Yang Y, Zhou X, Chen HG. Advances in polysaccharides of natural source of anti-diabetes effect and mechanism. Mol Biol Rep 2024; 51:101. [PMID: 38217792 DOI: 10.1007/s11033-023-09081-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/29/2023] [Indexed: 01/15/2024]
Abstract
PURPOSE Diabetes is a chronic disease in metabolic disorder, and the pathology is characterized by insulin resistance and insulin secretion disorder in blood. In current, many studies have revealed that polysaccharides extracted from natural sources with significant anti-diabetic effects. Natural polysaccharides can ameliorate diabetes through different action mechanisms. All these polysaccharides are expected to have an important role in the clinic. METHODS Existing polysaccharides for the treatment of diabetes are reviewed, and the mechanism of polysaccharides in the treatment of diabetes and its structural characteristics are described in detail. RESULTS This article introduced the natural polysaccharide through different mechanisms of action in the treatment of diabetes, including oxidative stress, apoptosis, inflammatory response and regulation of intestinal bacteria. Natural polysaccharides can treat of diabetes by regulating signaling pathways is also a research hotspot. In addition, the structural characteristics of polysaccharides were explored. There are some structure-activity relationships between natural polysaccharides and the treatment of diabetes.
Collapse
Affiliation(s)
- Mao-Hui Yang
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, 550001, China
- Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang, 550001, China
| | - Yan Yang
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, 550001, China
- Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang, 550001, China
| | - Xin Zhou
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, 550001, China
- Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang, 550001, China
| | - Hua-Guo Chen
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, 550001, China.
- Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang, 550001, China.
| |
Collapse
|
13
|
Cheng J, Wang Y, Wei H, He L, Hu C, Cheng S, Ji W, Liu Y, Wang S, Huang X, Jiang Y, Han S, Xing Y, Wang B. Fermentation-mediated variations in structure and biological activity of polysaccharides from Tetrastigma hemsleyanum Diels et Gilg. Int J Biol Macromol 2023; 253:127463. [PMID: 37852397 DOI: 10.1016/j.ijbiomac.2023.127463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 10/01/2023] [Accepted: 10/14/2023] [Indexed: 10/20/2023]
Abstract
Variations in the structure and activities of polysaccharides from Tetrastigma hemsleyanum Diels et Gilg fermented by Sanghuangporus sanghuang fungi were investigated. Compare with the unfermented polysaccharide (THDP2), the major monosaccharide composition and molecular weight of polysaccharide after fermentation (F-THDP2) altered dramatically, which caused galactose-induced conversion from glucose and one-third of molecular weight. F-THDP2 had a molecular weight of 1.23 × 104 Da. Moreover, the glycosidic linkage of F-THDP2 varied significantly, a 1, 2-linked α-d-Galp and 1, 2-linked α-d-Manp backbone was established in F-THDP2, which differed from that of 1, 4-linked α-d-Glcp and 1, 4-linked β-d-Galp in THDP2. In addition, F-THDP2 showed a more flexible chain conformation than that of THDP2 in aqueous solution. Strikingly, F-THDP2 exhibited superior inhibitory effects on HeLa cells via Fas/FasL-mediated Caspase-3 signaling pathways than that of the original polysaccharide. These variations in both structure and biological activities indicated that fermentation-mediated modification by Sanghuangporus sanghuang might a promising novel method for the effective conversion of starch and other polysaccharides from Tetrastigma hemsleyanum Diels et Gilg into highly bioactive biomacromolecules, which could be developed as a potential technology for use in the food industry.
Collapse
Affiliation(s)
- Junwen Cheng
- Key Laboratory of Biological and Chemical Utilization of Zhejiang Forest Resources, Department of Forest Foods, Zhejiang Academy of Forestry, Hangzhou 310023, China
| | - Yanbin Wang
- Key Laboratory of Biological and Chemical Utilization of Zhejiang Forest Resources, Department of Forest Foods, Zhejiang Academy of Forestry, Hangzhou 310023, China
| | - Hailong Wei
- Key Laboratory of Biological and Chemical Utilization of Zhejiang Forest Resources, Department of Forest Foods, Zhejiang Academy of Forestry, Hangzhou 310023, China
| | - Liang He
- Key Laboratory of Biological and Chemical Utilization of Zhejiang Forest Resources, Department of Forest Foods, Zhejiang Academy of Forestry, Hangzhou 310023, China.
| | - Chuanjiu Hu
- Key Laboratory of Biological and Chemical Utilization of Zhejiang Forest Resources, Department of Forest Foods, Zhejiang Academy of Forestry, Hangzhou 310023, China
| | - Shiming Cheng
- Key Laboratory of Biological and Chemical Utilization of Zhejiang Forest Resources, Department of Forest Foods, Zhejiang Academy of Forestry, Hangzhou 310023, China.
| | - Weiwei Ji
- Huzhou Liangxi Forest Park Management Office, Huzhou 313000, China
| | - Yu Liu
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Sheping Wang
- Forestry and Water Conservancy Bureau of Changshan County, Changshan 324200, China
| | - Xubo Huang
- Key Laboratory of Biological and Chemical Utilization of Zhejiang Forest Resources, Department of Forest Foods, Zhejiang Academy of Forestry, Hangzhou 310023, China
| | - Yihan Jiang
- Key Laboratory of Biological and Chemical Utilization of Zhejiang Forest Resources, Department of Forest Foods, Zhejiang Academy of Forestry, Hangzhou 310023, China; Zhejiang A & F University, Hangzhou 311300, China
| | - Sufang Han
- Key Laboratory of Biological and Chemical Utilization of Zhejiang Forest Resources, Department of Forest Foods, Zhejiang Academy of Forestry, Hangzhou 310023, China
| | - Yiqi Xing
- Key Laboratory of Biological and Chemical Utilization of Zhejiang Forest Resources, Department of Forest Foods, Zhejiang Academy of Forestry, Hangzhou 310023, China; Zhejiang A & F University, Hangzhou 311300, China
| | - Baohui Wang
- Zhejiang hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou 310060, China
| |
Collapse
|
14
|
Wan P, Liu H, Ding M, Zhang K, Shang Z, Wang Y, Ma Y. Physicochemical characterization, digestion profile and gut microbiota regulation activity of intracellular polysaccharides from Chlorella zofingiensis. Int J Biol Macromol 2023; 253:126881. [PMID: 37709223 DOI: 10.1016/j.ijbiomac.2023.126881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
A number of studies have shown that the polysaccharides from microalgae exhibit diverse biological activities, however, little is known about their digestibility and impact on human gut microbiota. In this study, a simulating digestion and fermentation system were established to investigate the digestibility and fermentation of intracellular polysaccharides from Chlorella zofingiensis (CZIP-S3). The results indicated that CZIP-S3 is a macromolecular polysaccharide composed of mannose, glucose, galactose and rhamnose, consisting of a main chain and two branched repeating units. CZIP-S3 could not be digested in the upper gastrointestinal tract. However, CZIP-S3 could be metabolized into smaller molecules by the gut microbiota. The pH values continuously decrease during fermentation, whereas, the amount of short-chain fatty acids steadily increase. Furthermore, CZIP-S3 could modulate the composition of gut microbiota, via lowering the ratio of Firmicutes/Bacteroidetes and increasing the relative abundance of Bacteroides, Bifidobacterium and Akkermansia. The data suggested that CZIP-S3 could potentially be used as an ingredient for functional foods or prebiotics to improve human health by promoting the relative abundances of beneficial bacteria.
Collapse
Affiliation(s)
- Peng Wan
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Nanyang 473000, China; Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Nanyang Institute of Technology, Nanyang 473000, China.
| | - Han Liu
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Mengyan Ding
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Nanyang 473000, China; Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Nanyang Institute of Technology, Nanyang 473000, China
| | - Kailu Zhang
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Nanyang 473000, China; Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Nanyang Institute of Technology, Nanyang 473000, China
| | - Zhen Shang
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Nanyang 473000, China; Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Nanyang Institute of Technology, Nanyang 473000, China
| | - Yuanli Wang
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Nanyang 473000, China; Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Nanyang Institute of Technology, Nanyang 473000, China
| | - Yanli Ma
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Nanyang 473000, China; Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Nanyang Institute of Technology, Nanyang 473000, China
| |
Collapse
|
15
|
Ke J, Zhang Y, Wang X, Sun J, Wang S, Ma Y, Guo Q, Zhang Z. Structural characterization of cell-wall polysaccharides purified from chayote ( Sechium edule) fruit. Food Chem X 2023; 19:100797. [PMID: 37780328 PMCID: PMC10534154 DOI: 10.1016/j.fochx.2023.100797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/30/2023] [Accepted: 07/13/2023] [Indexed: 10/03/2023] Open
Abstract
Chayote (Sechium edule), an underutilized cucurbit vegetable crop, has gained attention as it exhibits health-promoting properties. However, the primary structure of chayote cell-wall polysaccharides has not been comprehensively studied. In this study, two cell-wall polysaccharides, CP-1 (41.1 KDa) and CP-2 (15.6 KDa), were extracted from chayote, and the structural analysis of CP-1 and CP-2 was carried out by monosaccharide composition analysis, Fourier transform infrared spectroscopy (FTIR), methylation analysis, and nuclear magnetic resonance spectroscopy (NMR). The results demonstrated that CP-1 was a galactan, and CP-2 was an anionic heteropolysaccharide composed of galacturonic acid, galactose, arabinose, rhamnose, glucose, glucuronic acid, mannose, and xylose in the molar ratio of 31.2:26.3:24.9:7.4:6.5:1.9:1.3:0.5. CP-2 has a backbone of → 4)-β-d-Galp-(1 → 3,6)-β-d-Galp-(1 → 3)-β-d-Galp-(1 → 4)-α-d-GalpA-(1→, with branches at O-6 of → 3,6)-β-d-Galp-(1→, consisting of α-l-Araf-(1 → 5)-α-l-Araf-(1 → 4)-β-d-Glcp-(1 →. Analysis of the structural and physicochemical properties confirmed the excellent application characteristics of CP-1 and CP-2. Hence, cell-wall polysaccharides of chayote could be used as new polysaccharides materials.
Collapse
Affiliation(s)
- Jingxuan Ke
- School of Zhang Zhongjing Health Care and Food, Nanyang Institute of Technology, Nanyang 473004, China
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China
| | - Yuhao Zhang
- School of Zhang Zhongjing Health Care and Food, Nanyang Institute of Technology, Nanyang 473004, China
| | - Xin Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Jing Sun
- School of Zhang Zhongjing Health Care and Food, Nanyang Institute of Technology, Nanyang 473004, China
| | - Siqi Wang
- School of Zhang Zhongjing Health Care and Food, Nanyang Institute of Technology, Nanyang 473004, China
| | - Yanli Ma
- School of Zhang Zhongjing Health Care and Food, Nanyang Institute of Technology, Nanyang 473004, China
| | - Qing Guo
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China
| | - Zhiqing Zhang
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China
| |
Collapse
|
16
|
Lin Y, Lv Y, Mao Z, Chen X, Chen Y, Zhu B, Yu Y, Ding Z, Zhou F. Polysaccharides from Tetrastigma Hemsleyanum Diels et Gilg ameliorated inflammatory bowel disease by rebuilding the intestinal mucosal barrier and inhibiting inflammation through the SCFA-GPR41/43 signaling pathway. Int J Biol Macromol 2023; 250:126167. [PMID: 37558022 DOI: 10.1016/j.ijbiomac.2023.126167] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/26/2023] [Accepted: 08/04/2023] [Indexed: 08/11/2023]
Abstract
In this study, the therapeutic effects of Tetrastigma hemsleyanum polysaccharide (THP) on inflammatory bowel disease (IBD) and its possible mechanisms were investigated based on the IBD mouse model induced by dextran sodium sulfate (DSS) and the lipopolysaccharide (LPS)-stimulated Caco-2 cell model. THP significantly alleviated the signs and symptoms of DSS-induced IBD mice, including the reduced weight, shortened colonic length, and increased colitis disease activity index. In vivo, THP significantly reduced inflammatory cell infiltration and oxidative damage, promoted intestinal mucus secretion, and restored the integrity of the intestinal epithelial barrier and mucus barrier. Furthermore, THP reversed the changes in the intestinal flora of colonized mice and restored the levels of short-chain fatty acids (SCFAs) by increasing the abundance of potentially beneficial bacteria and increasing the abundance of butyrate-producing bacteria. In addition, THP upregulated the expression of G-protein-coupled receptors (GPR41 and GPR43) both in vivo and in vitro. In summary, the current investigation showed that THP effectively protected against intestinal inflammation and impairment in the intestinal barrier in the setting of DSS-induced IBD, possibly by regulating gut microbiota structure and corresponding SCFA metabolites, and the pathway of SCFAs action may be related to SCFA-GPR41/43 signaling pathway.
Collapse
Affiliation(s)
- Yue Lin
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Yishan Lv
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Zian Mao
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Xingcan Chen
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Yuchi Chen
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Bingqi Zhu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Ying Yu
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Zhishan Ding
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Fangmei Zhou
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China.
| |
Collapse
|
17
|
Jiang XL, Ma GF, Zhao BB, Meng Y, Chen LL. Structural characterization and immunomodulatory activity of a novel polysaccharide from Panax notoginseng. Front Pharmacol 2023; 14:1190233. [PMID: 37256230 PMCID: PMC10225580 DOI: 10.3389/fphar.2023.1190233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/04/2023] [Indexed: 06/01/2023] Open
Abstract
Introduction: Polysaccharides are important components of Panax notoginseng that contribute to its immunomodulatory ability. This study aimed to isolate polysaccharides from notoginseng and investigate the structural feature and potential immunomodulatory activity. Methods: The polysaccharide was isolated from notoginseng by anion exchange and gel permeation chromatography. Its preliminary structure was characterized by Fourier transform infrared (FT-IR) spectroscopy, gas chromatography-mass spectrometry (GC-MS) and nuclear magnetic resonance (NMR) spectroscopy. The immunoregulatory function was further investigated in cyclophosphamide induced immunosuppressive mice, murine splenocytes and macrophages. Results: A novel homogeneous polysaccharide (PNPB1) was isolated from notoginseng with the molecular weight of 9.3 × 105 Da. Monosaccharide composition analysis indicated that PNPB1 consisted of Glc (88.2%), Gal (9.0%), Ara (2.4%) and trace GlcA, with the major backbone of (1→4)-linked α-Glcp, (1→6)-linked β-Glcp, and (1, 4→6)-linked β-Glcp. The polysaccharide was found to significantly enhance murine body weight, improve their thymus and spleen indices and increase the white blood cells (WBC). PNPB1 significantly enhanced splenic lymphocyte proliferation, NO and cytokine (TNF-α, IL-2, IL-10 and IFN-γ) production, as well as the phagocytosis and TLR2 expression of peritoneal macrophages, indicating potent immunoenhancement effect. Discussion: These findings provide a theoretical basis for elucidating the structure and immune activity of notoginseng polysaccharides.
Collapse
Affiliation(s)
- Xue-Lian Jiang
- Key Laboratory of Traditional Chinese Medicine Resource and Compound Prescription, Ministry of Education, Hubei University of Chinese Medicine, Wuhan, China
| | - Gai-Fan Ma
- Key Laboratory of Traditional Chinese Medicine Resource and Compound Prescription, Ministry of Education, Hubei University of Chinese Medicine, Wuhan, China
| | - Bin-Bin Zhao
- School of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Yan Meng
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Lin-Lin Chen
- Key Laboratory of Traditional Chinese Medicine Resource and Compound Prescription, Ministry of Education, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
18
|
Liu X, Liu X, Mao W, Guo Y, Bai N, Jin L, Shou Q, Fu H. Tetrastigma polysaccharide reprogramming of tumor-associated macrophages via PPARγ signaling pathway to play antitumor activity in breast cancer. JOURNAL OF ETHNOPHARMACOLOGY 2023; 314:116645. [PMID: 37196813 DOI: 10.1016/j.jep.2023.116645] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/01/2023] [Accepted: 05/15/2023] [Indexed: 05/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tetrastigma Hemsleyanum Diels et Gilg (SYQ) is a typical She ethnomedicine that has been used in anti-tumor treatment in Chinese folklore. The polysaccharide of SYQ (SYQ-PA) has been reported to have antioxidant and anti-inflammatory effects, but the effect and mechanism on antitumor is still unclear. AIM OF THE STUDY To investigate the activity and mechanism of SYQ-PA against breast cancer in vitro and in vivo. MATERIALS AND METHODS In this study, different stages of MMTV-PYMT mice, which at 4-week-old and 8-week-old representative the transition from hyperplasia to late carcinoma, were used to investigate the potential effect of SYQ-PA of breast cancer development in vivo. The mechanism was explored with IL4/13-induced peritoneal macrophages model. Flow cytometry assay was employed to analysis the change of tumor microenvironment and the macrophages typing. The inhibition of the condition medium from macrophages on breast cancer cells was detected with xCELLigence system detection. The inflammation factors were tested with cytometric bead array. Co-culture system was used to detect the cell migration and invasion. In addition, the underlying mechanism was investigated using RNAseq analysis, Q-PCR and Western blot, and the PPARγ inhibitor was used to verify the mechanism. RESULTS SYQ-PA significantly attenuated the process of breast primary tumor growth and reduced the infiltration of TAMs accompanied promoting the polarization of M1 phenotype in MMTV-PyMT mice. Then in vitro studies showed that SYQ-PA promoted macrophages polarization form IL4/13 induced M2 toward to the anti-tumor M1 phenotypes, and the conditioned medium (CM) from the induced macrophages inhibited the proliferation of breast cancer cells. At the same time, SYQ-PA treated macrophages inhibited the migration and invasion of 4T1 in the co-culture system. Further results indicated that SYQ-PA suppressed the release of anti-inflammatory factors and promoted the production of inflammatory cytokines which may induce M1 macrophage polarization and inhibit breast cancer cell proliferation. Subsequently, the underlying mechanism analysis based on RNAseq and molecular assays indicated that SYQ-PA inhibited PPARγ expression and regulated downstream NF-κB in macrophages. After treated with PPARγ inhibitor, T0070907, the effect of SYQ-PA was decreased, or even disappeared. As the downstream, the expression of β-catenin was also inhibited obviously, those above all contribute the process of SYQ-PA induced M1 macrophages polarization. CONCLUSIONS Collectively, SYQ-PA was observed inhibited breast cancer, at least in part, via PPARγ activation- and β-catenin-mediated M2 macrophages polarization. These data expound the antitumor effect and mechanism of SYQ-PA, and provide a possible that SYQ-PA can be used as an adjuvant drug for macrophage tumor immunotherapy in breast cancer.
Collapse
Affiliation(s)
- Xia Liu
- Second Clinical Medical School, Zhejiang Provincial Key Laboratory of Sexual Function of Integrated Traditional Chinese and Western Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xianli Liu
- School of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Weiye Mao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, China
| | - Yingxue Guo
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, China
| | - Ningning Bai
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, China
| | - Lu Jin
- Second Clinical Medical School, Zhejiang Provincial Key Laboratory of Sexual Function of Integrated Traditional Chinese and Western Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Qiyang Shou
- Second Clinical Medical School, Zhejiang Provincial Key Laboratory of Sexual Function of Integrated Traditional Chinese and Western Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China; Jinghua Academy, Zhejiang Chinese Medical University, Jinhua, 321000, China.
| | - Huiying Fu
- Second Clinical Medical School, Zhejiang Provincial Key Laboratory of Sexual Function of Integrated Traditional Chinese and Western Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
19
|
Ren T, Xu M, Zhou S, Ren J, Li B, Jiang P, Li H, Wu W, Chen C, Fan M, Jiao L. Structural characteristics of mixed pectin from ginseng berry and its anti-obesity effects by regulating the intestinal flora. Int J Biol Macromol 2023; 242:124687. [PMID: 37146855 DOI: 10.1016/j.ijbiomac.2023.124687] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/25/2023] [Accepted: 04/28/2023] [Indexed: 05/07/2023]
Abstract
Ginseng berry is the mature berry of ginseng and its polysaccharide has hypolipidaemic effect, but its mechanism remains unclear. A pectin (GBPA) with a molecular weight of 3.53 × 104 Da was isolated from ginseng berry, it was mainly composed of Rha (25.54 %), GalA (34.21 %), Gal (14.09 %) and Ara (16.25 %). Structural analysis showed that GBPA is a mixed pectin containing rhamnogalacturonan-I and homogalacturonan domains and has a triple helix structure. GBPA distinctly improved lipid disorders in obese rats, and changed intestinal flora with enrichments of Akkermansia, Bifidobacterium, Bacteroides and Prevotella, improved the levels of acetic acid, propionic acid, butyric acid and valeric acid. Serum metabolites which involved in the lipid regulation-related pathway, including cinnzeylanine, 10-Hydroxy-8-nor-2-fenchanone glucoside, armillaribin, 24-Propylcholestan-3-ol, were also greatly changed after GBPA treatment. GBPA activated AMP-activated protein kinase, phosphorylated acetyl-CoA carboxylase, and reduced the expression of lipid synthesis-related genes sterol regulatory element-binding protein-1c and fatty acid synthases. The regulatory effects of GBPA on lipid disorders in obese rats are related to the regulation of intestinal flora and activation of AMP-activated protein kinase pathway. Ginseng berry pectin could be considered in the future as a health food or medicine to prevent obesity.
Collapse
Affiliation(s)
- Ting Ren
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin 130117, China
| | - Mengran Xu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin 130117, China
| | - Shuo Zhou
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin 130117, China
| | - Jing Ren
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin 130117, China
| | - Bo Li
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin 130117, China
| | - Peng Jiang
- National Demonstration Center for Experimental Biology Education, Northeast Normal University, Changchun, Jilin 130024, China
| | - Hui Li
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin 130117, China
| | - Wei Wu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin 130117, China
| | - Changbao Chen
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin 130117, China
| | - Meiling Fan
- The Affiliated Hospital of ChangChun University of Chinese Medicine, Changchun, Jilin 130021, China.
| | - Lili Jiao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin 130117, China.
| |
Collapse
|
20
|
Wu J, Mo J, Xiang W, Shi X, Guo L, Li Y, Bao Y, Zheng L. Immunoregulatory effects of Tetrastigma hemsleyanum polysaccharide via TLR4-mediated NF-κB and MAPK signaling pathways in Raw264.7 macrophages. Biomed Pharmacother 2023; 161:114471. [PMID: 36889110 DOI: 10.1016/j.biopha.2023.114471] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Polysaccharide of Tetrastigma hemsleyanum (THP) exert antioxidant, antibacterial, lipid-lowering, and anti-inflammatory properties, especially some evidences have highlighted the efficiency of it as an anti-tumor agent. However, as a biological macromolecule with bidirectional immune regulation, the immunological enhancement effects of THP on macrophages and its underlying mechanisms are still largely unknown. In the present study, THP was prepared and characterized, and then the effect of THP on Raw264.7 cell activation was investigated. Structural characteristics of THP showed that the average molecular weight was 370.26 kDa, and the main monosaccharide composition was galactose, glucuronic acid, mannose, and glucose at a ratio of 31.56: 25.15: 19.44: 12.60, with high viscosity causing by relative high uronic acid. For immunomodulatory activity investigation, THP promoted the production of NO, IL-6 and TNF-α, as well as the expression of IL-1β, MCP-1, iNOS and COX-2, which were almost completely inhibited by TLR4 antagonist. Further study showed that THP could activate NF-κB and MAPK signaling pathways, and thus enhanced the phagocytic activity of Raw264.7 macrophages. In conclusion, the present study provided evidences that THP could be served as a new immunomodulator in both functional foods and the pharmaceutical field.
Collapse
Affiliation(s)
- Jiayuan Wu
- The key Laboratory, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, China
| | - Juanfen Mo
- The key Laboratory, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, China
| | - Wei Xiang
- Chongqing College of Traditional Chinese Medicine, Chongqing 402760, China
| | - Xiaowen Shi
- Department of Cardiology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, China
| | - Li Guo
- The key Laboratory, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, China
| | - Yi Li
- The key Laboratory, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, China
| | - Yi Bao
- The key Laboratory, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, China
| | - Li Zheng
- The key Laboratory, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, China.
| |
Collapse
|
21
|
Structural characterization of corn fiber hemicelluloses extracted by organic solvent and screening of degradation enzymes. Carbohydr Polym 2023; 313:120820. [PMID: 37182944 DOI: 10.1016/j.carbpol.2023.120820] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/27/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023]
Abstract
An integrated treatment coupling peracetic acid delignification, dimethyl sulfoxide extraction, and ethanol precipitation were performed to isolate hemicellulose from de-starched corn fiber. Based on chemical composition, molecular weight distribution, methylation, and nuclear magnetic resonance spectroscopy, it is proposed that hemicelluloses in corn fiber were composed of two polysaccharides, glucuronoarabinoxylan (about 80 %) and xyloglucan (about 20 %). Xylose (about 46 %) and arabinose (about 32 %) were the main components in glucuronoarabinoxylan. More than half of the xylose units in the glucuronoarabinoxylan backbone chain were substituted at O-2 and/or O-3 by various monomers or oligomeric side chains. Based on structure analysis, five hemicellulases were selected and added to Penicillium oxalicum MCAX enzymes for enzymatic hydrolysis of corn fiber. The results showed that the addition of hemicellulases increased the sugar yield of corn fiber. These results demonstrate the effectiveness of enzyme consortium constructed by elucidating the chemical structure of hemicellulose in corn fiber for the degradation of corn fiber and also provide a general solution for the rational construction of targeted and efficient enzyme systems for the degradation of lignocellulosic biomass.
Collapse
|
22
|
Chen J, Li L, Zhang X, Zhang Y, Zheng Q, Lan M, Li B. Structural characteristics and antioxidant and hypoglycemic activities of a heteropolysaccharide from Anemarrhena asphodeloides Bunge. Int J Biol Macromol 2023; 236:123843. [PMID: 36858093 DOI: 10.1016/j.ijbiomac.2023.123843] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 02/12/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023]
Abstract
In this study, an acid polysaccharide (AABP-1B) was extracted from the rhizome of Anemarrhena asphodeloides Bunge and purified using 60 % alcohol precipitation and DEAE-52 cellulose. The molecular weight of AABP-1B was 105 kDa, and it consisted of mannose (Man), rhamnose (Rha), galacturonic acid (GalA), glucose (Glc), galactose (Gal), and arabinose (Ara) in a ratio of 6.3:1.3:1.1:0.2:0.4:0.7. Methylation and NMR analyses revealed that the backbone of AABP-1 consists of 4)-β-D-Manp-(1 and 4)-2-O-acetyl-β-D-Manp-(1. In addition, the biological activity assays showed that AABP-1B not only displays potential antioxidant activity but also exhibits the α-glucosidase and α-amylase inhibitory effect. Moreover, AABP-1B enhanced glucose consumption and glycogen synthesis in insulin-resistant (IR) HepG2 cells. These results suggest that AABP-1B has potential hypoglycemic activity.
Collapse
Affiliation(s)
- Juncheng Chen
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China; International School of Public Health and One Health, Hainan Medical University, Haikou, Hainan 571199, China
| | - Lin Li
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China; School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Xia Zhang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Yuan Zhang
- Guangdong Provincial Institute of Sports Science, Guangzhou 510640, China
| | - Qingsong Zheng
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Meijuan Lan
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Bing Li
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
23
|
Song H, Han L, Zhang Z, Li Y, Yang L, Zhu D, Wang S, He Y, Liu H. Structural properties and bioactivities of pectic polysaccharides isolated from soybean hulls. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
24
|
Jiang W, Hu Y, Zhu Z. Structural characteristics of polysaccharide from Zingiber striolatum and its effects on gut microbiota composition in obese mice. Front Nutr 2022; 9:1012030. [PMID: 36386925 PMCID: PMC9643871 DOI: 10.3389/fnut.2022.1012030] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/10/2022] [Indexed: 12/28/2023] Open
Abstract
To investigate a polysaccharide from Zingiber striolatum favorably modulates gut microbiota in mice fed a high-fat diet. Z. striolatum was utilized to extract the crude polysaccharide CZSP, which was subsequently refined using DEAE-52 cellulose and Sephadex G-150 to yield the novel polysaccharide Zingiber strioatum pure polysaccharide-1 (ZSPP-1). ZSPP-1 was an acidic heteroglycan made up of galactose, mannose, glucose, xylose, arabinose, glucuronic acid, and galacturonic acid with an average molecular weight of 1.57 × 106 Da. The structure of ZSPP-1 was investigated by FT-IR, methylation and NMR analysis, and the results denoted that the linkage structure types include T-Manp-linked, β-Xylp-(1,2)-linked, β-Galp-(1,4)-linked, α-GlcpA-(1,6)-linked, β-Arap-(1,4)-linked, α-Glcp-(1,3,4,6)-linked, α-Glcp-(1,2)-linked, and β-T-Xylp-linked, in which β-Galp-(1,4)-linked and α-GalpA-(1,4)-linked might be the main linkage. The results of the intervention experiments showed that ZSPP-1 changed the intestinal flora structure of the Firmicutes and Bacteroidetes in obese mice, and promoted the growth of beneficial bacteria such as Akkermansia, Lactobacillus, and Bacteroides in the intestine. It also restored the imbalanced flora structure due to high-fat diet to normal. It also restored the imbalanced flora structure due to high-fat diet to normal. Z. striolatum polysaccharides presented a considerable advantage in alleviating high-fat diet induced obesity, which indicates that it can be further exploited as a natural functional food resource.
Collapse
Affiliation(s)
- Wei Jiang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, China
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
- Department of Health Management, Zunyi Medical and Pharmaceutical College, Guizhou, China
| | - Ying Hu
- School of Public Health, Zunyi Medical University, Guizhou, China
| | - Zhenyuan Zhu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, China
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
25
|
Guan X, Wang Q, Lin B, Sun M, Zheng Q, Huang J, Lai G. Structural characterization of a soluble polysaccharide SSPS1 from soy whey and its immunoregulatory activity in macrophages. Int J Biol Macromol 2022; 217:131-141. [PMID: 35835298 DOI: 10.1016/j.ijbiomac.2022.07.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/15/2022] [Accepted: 07/07/2022] [Indexed: 11/05/2022]
Abstract
A soluble soybean polysaccharide SSPS1 with a molecular weight of 2737 kDa was extracted and purified from soy whey. SSPS1 was composed of glucose (97.3 %) and a small amount of mannose (2.7 %). Structural analysis results suggested that SSPS1 had a → 6)-α-d-Glcp-(1 → glucan structure, with a trace amount of α-d-Glcp-(1 → connected to the main chain via O-3. In vitro immunological experiments suggested that SSPS1 enhanced the growth rate and phagocytic activity of RAW 264.7 macrophages. In addition, SSPS1 stimulated the secretion of cytokines (TNF-α, INF-β, IL-6 and IL-1β) as well as nitric oxide (NO) production through upregulating the expression of the related genes and proteins in RAW 264.7 cells. This study provided a new method for efficient utilization of soy whey, and the results indicate that SSPS1 extracted from soy whey could be used as a novel immunomodulator.
Collapse
Affiliation(s)
- Xuefang Guan
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350002, Fujian, China; Fujian Key Laboratory of Agricultural Product (Food) Processing, Fuzhou 350002, Fujian, China
| | - Qi Wang
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350002, Fujian, China; Fujian Key Laboratory of Agricultural Product (Food) Processing, Fuzhou 350002, Fujian, China.
| | - Bin Lin
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350002, Fujian, China
| | - Meiling Sun
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350002, Fujian, China
| | - Qi Zheng
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350002, Fujian, China
| | - Juqing Huang
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350002, Fujian, China; Fujian Key Laboratory of Agricultural Product (Food) Processing, Fuzhou 350002, Fujian, China
| | - Gongti Lai
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350002, Fujian, China
| |
Collapse
|
26
|
Feng X, Wang P, Lu Y, Zhang Z, Yao C, Tian G, Liu Q. A Novel Polysaccharide From Heimioporus retisporus Displays Hypoglycemic Activity in a Diabetic Mouse Model. Front Nutr 2022; 9:964948. [PMID: 35898716 PMCID: PMC9311259 DOI: 10.3389/fnut.2022.964948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 06/20/2022] [Indexed: 12/03/2022] Open
Abstract
A novel polysaccharide, Heimioporus retisporus Polysaccharide (HRP) was extracted from the edible mushroom Heimioporus retisporus. HRP had weight-average molecular weight 1,949 kDa and number-average molecular weight 873 kDa, and its major components were arabinose (0.71%), galactose (12.93%), glucose (49.00%), xylose (8.59%), mannose (17.78%), and glucuronic acid (10.99%). Fourier transform infrared spectroscopy and nuclear magnetic resonance spectroscopy revealed that HRP was composed of 1,3-linked β-D-glucose, 1,6-linked β-D-mannose, 1,6-linked β-D-galactose, 1,4-linked β-D-galactose, 1,4-linked β-D-xylose, and 1,5-linked α-L-arabinose. Thermogravimetric analysis indicated that degradation temperature (T0) of HRP was 200°C. In an STZ-induced diabetic mouse model, oral administration of HRP (40 mg/kg/d) for 28 days significantly reduced blood glucose levels, and reduced heart organ index by decreasing expression of IL-6 and TNF-α. Our findings indicate hypoglycemic effect of HRP, and its potential application as a hypoglycemic agent.
Collapse
Affiliation(s)
- Xiaobin Feng
- Department of Vegetables, College of Horticulture, China Agricultural University, Beijing, China
| | - Peng Wang
- Department of Vegetables, College of Horticulture, China Agricultural University, Beijing, China
| | - Yuxiao Lu
- Department of Environment and Chemical Engineering, Tangshan College, Tangshan, China
| | - Zejun Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Chunxin Yao
- Institute of Biotechnology and Germplasm Resources, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Guoting Tian
- Institute of Biotechnology and Germplasm Resources, Yunnan Academy of Agricultural Sciences, Kunming, China
- *Correspondence: Qinghong Liu,
| | - Qinghong Liu
- Department of Vegetables, College of Horticulture, China Agricultural University, Beijing, China
- Guoting Tian,
| |
Collapse
|
27
|
Yang B, Luo Y, Wei X, Kan J. Polysaccharide from Hovenia dulcis (Guaizao) improves pancreatic injury and regulates liver glycometabolism to alleviate STZ-induced type 1 diabetes mellitus in rats. Int J Biol Macromol 2022; 214:655-663. [PMID: 35764168 DOI: 10.1016/j.ijbiomac.2022.06.147] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022]
Abstract
Hovenia dulcis is a traditional medicinal and edible plant and has a major geographical presence in China. In this study, a polysaccharide purified from H. dulcis (HDPs-2A) was found to ameliorate type 1 diabetes mellitus (T1DM) in streptozotocin-induced diabetic rat. HDPs-2A treatment resulted in significantly lower fasting blood glucose levels, but higher body weight, plasma insulin, and liver glycogen levels. Moreover, HDPs-2A improved dyslipidemia, pancreatic oxidative stress, and reduced serum pro-inflammatory factors. In addition, HDPs-2A up-regulated PDX-1, activated and up-regulated IRS2 expression, and regulated apoptosis and regeneration of islet β cells to recover islet β-cell function injury in TIDM rats. HDPs-2A also up-regulated the expression of pancreatic GK and GLUT2 to improve insulin secretion ability of islet β-cells, ultimately improving the glucose metabolism disorder of T1DM rats. Moreover, HDPs-2A significantly up-regulated the expression of GK and down-regulated the expression of G6Pase in liver to improve liver glycogen synthesis, inhibit liver gluconiogenesis, and improve liver glucose metabolism disorder of T1DM rats. In summary, the hypoglycemic mechanisms of HDPs-2A may include regulating the regeneration and apoptosis of islet β-cells and activating liver glycometabolism-related signaling pathways in T1DM rats.
Collapse
Affiliation(s)
- Bing Yang
- College of Food Science and Technology, Hebei Agricultural University, 289 Lingyusi Road, Baoding, Hebei 071001, PR China; College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, PR China
| | - Yuxin Luo
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, PR China
| | - Xunyu Wei
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, PR China
| | - Jianquan Kan
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, PR China.
| |
Collapse
|
28
|
The possible future changes in potential suitable habitats of Tetrastigma hemsleyanum (Vitaceae) in China predicted by an ensemble model. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
29
|
Wang J, Wang F, Yuan L, Ruan H, Zhu Z, Fan X, Zhu L, Peng X. Blood-Enriching Effects and Immune-Regulation Mechanism of Steam-Processed Polygonatum Sibiricum Polysaccharide in Blood Deficiency Syndrome Mice. Front Immunol 2022; 13:813676. [PMID: 35250989 PMCID: PMC8892585 DOI: 10.3389/fimmu.2022.813676] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/31/2022] [Indexed: 12/13/2022] Open
Abstract
Polygonatum sibiricum Red. has been used as a medicinal herb and nutritional food in traditional Chinese medicine for a long time. It must be processed prior to clinical use for safe and effective applications. However, the present studies mainly focused on crude Polygonatum sibiricum (PS). This study aimed to investigate the chemical properties, blood-enriching effects and mechanism of polysaccharide from the steam-processed Polygonatum sibiricum (SPS), which is a common form of PS in clinical applications. Instrumentation analyses and chemistry analyses revealed the structure of SPS polysaccharide (SPSP). A mice model of blood deficiency syndrome (BDS) was induced by acetylphenylhydrazine (APH) and cyclophosphamide (CTX). Blood routine test, spleen histopathological changes, serum cytokines, etc. were measured. The spleen transcriptome changes of BDS mice were detected by RNA sequencing (RNA-seq). The results showed that SPSP consists predominantly of Gal and GalA together with fewer amounts of Man, Glc, Ara, Rha and GlcN. It could significantly increase peripheral blood cells, restore the splenic trabecular structure, and reverse hematopoietic cytokines to normal levels. RNA-seq analysis showed that 122 differentially expressed genes (DEGs) were obtained after SPSP treatment. GO and KEGG analysis revealed that SPSP-regulated DEGs were mainly involved in hematopoiesis, immune regulation signaling pathways. The reliability of transcriptome profiling was validated by quantitative real-time PCR and Western blot, and the results indicated that the potential molecular mechanisms of the blood-enriching effects of SPSP might be associated with the regulating of JAK1-STAT1 pathway, and elevated the hematopoietic cytokines (EPO, G-CSF, TNF-α and IL-6). This work provides important information on the potential mechanisms of SPSP against BDS.
Collapse
Affiliation(s)
- Juan Wang
- Department of Traditional Chinese Medicine, Zhejiang Pharmaceutical College, Ningbo, China
| | - Furong Wang
- Department of Traditional Chinese Medicine, Zhejiang Pharmaceutical College, Ningbo, China
| | - Lixia Yuan
- Department of Traditional Chinese Medicine, Zhejiang Pharmaceutical College, Ningbo, China
| | - Hongsheng Ruan
- Department of Traditional Chinese Medicine, Zhejiang Pharmaceutical College, Ningbo, China
| | - Zhibiao Zhu
- Department of Quality Control, Zhejiang Sanxitang Chinese Medicine Co., LTD, Yiwu, China
| | - Xiaoling Fan
- Department of Quality Control, Zhejiang Sanxitang Chinese Medicine Co., LTD, Yiwu, China
| | - Lingyan Zhu
- Department of Quality Control, Zhejiang Sanxitang Chinese Medicine Co., LTD, Yiwu, China
| | - Xin Peng
- Ningbo Research Institute of Zhejiang University, Ningbo, China
| |
Collapse
|
30
|
Shi Y, Yang L, Yu M, Li Z, Ke Z, Qian X, Ruan X, He L, Wei F, Zhao Y, Wang Q. Seasonal variation influences flavonoid biosynthesis path and content, and antioxidant activity of metabolites in Tetrastigma hemsleyanum Diels & Gilg. PLoS One 2022; 17:e0265954. [PMID: 35482747 PMCID: PMC9049315 DOI: 10.1371/journal.pone.0265954] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 03/10/2022] [Indexed: 01/14/2023] Open
Abstract
Environmental conditions contribute to plant growth and metabolism. This study aimed to determine a suitable environment and climate for large-scale artificial cultivation of an endangered plant, Tetrastigma hemsleyanum, by investigating the seasonal variations influencing the flavonoid biosynthetic selectivity and antioxidant activity of its major metabolites. Under conditions of precipitation (2.0~6.6 mm), temperature (17.5~24.1°C), humidity (67.3~80.2%), and sunshine duration (3.4~5.8 h) from April to May, the total flavonoid content in T. hemsleyanum reached higher levels between 281.3 and 392.8 μg/g. In the second half of April, the production selectivity (PS) of isoorientin (IsoO), orientin (Or), rutin (Rut), isoquercitin (IsoQ), kaempferol-3-O-rutinoside (Km3rut), astragalin (Ast), quercetin (Qu), apigenin (Ap), and kaempferol (Km) were 0.30, 0.06, 0.07, 0.07, 0.00, 0.04, 0.38, 0.05, and 0.03, respectively. Naringenin was dehydrogenated or hydroxylated to initiate two parallel reaction pathways for flavonoid biosynthesis in T. hemsleyanum: path I subsequently generated flavone derivatives including apigenin, luteolin, orientin, and isoorientin, and path II subsequently generated flavonol derivatives including Km, Qu, IsoQ, Rut, Ast, and Km3rut. The reaction selectivity of path II (RPSII) from January 1 to September 30 was considerably higher than that of path I (RPSI), except for March 16-31. In addition, either the content or antioxidant activity of three major metabolites in T. hemsleyanum followed the order of phenolic compounds > polysaccharides > sterols, and exhibited dynamic correlations with environmental factors. Naringenin favored hydroxylation and derived six flavonol compounds from January to September, and favored dehydrogenation and derived three flavone compounds from October to December. In most months of a year, Km preferentially favored hydroxylation rather than glucosylation.
Collapse
Affiliation(s)
- YanShou Shi
- Ningbo Technology University, Ningbo, China
- Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Li Yang
- Ningbo Technology University, Ningbo, China
- Ningbo Research Institute, Zhejiang University, Ningbo, China
| | | | - ZhaoHui Li
- Department of Traditional Chinese Medicines, Zhejiang Pharmaceutical College, Ningbo, China
| | - ZhiJun Ke
- Bureau of Natural Resources and Planning Xianju County, Taizhou, China
| | - XiaoHua Qian
- Ningbo Technology University, Ningbo, China
- Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Xiao Ruan
- Ningbo Technology University, Ningbo, China
- Ningbo Research Institute, Zhejiang University, Ningbo, China
- * E-mail: (QW); (XR)
| | | | - Feng Wei
- Ningbo Technology University, Ningbo, China
- Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - YingXian Zhao
- Ningbo Technology University, Ningbo, China
- Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Qiang Wang
- Ningbo Technology University, Ningbo, China
- Ningbo Research Institute, Zhejiang University, Ningbo, China
- * E-mail: (QW); (XR)
| |
Collapse
|
31
|
Zhang L, Li B, Wang M, Lin H, Peng Y, Zhou X, Peng C, Zhan J, Wang W. Genus Tetrastigma: A review of its folk uses, phytochemistry and pharmacology. CHINESE HERBAL MEDICINES 2022; 14:210-233. [PMID: 36117671 PMCID: PMC9476684 DOI: 10.1016/j.chmed.2022.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/27/2021] [Accepted: 01/17/2022] [Indexed: 11/12/2022] Open
Abstract
The genus Tetrastigma belongs to the Vitaceae family and contains over 100 species. This paper reviewed folk uses, chemical constituents, pharmacological activities, and clinical applications of the medicinal plants in the genus Tetrastigma. In addition, the paper also discussed the current problems for the further studies. Up to now, more than 240 compounds were reported from the genus Tetrastigma, covering 74 flavonoids, 14 terpenoids, 19 steroids, 21 phenylpropanoids, 14 alkaloids and others constituents. Among them, flavonoids are the major and the characteristic chemical constituents in this genus. Modern pharmacological studies and clinical practice showed that the extracts and chemical constituents of Tetrastigma species possessed wide pharmacological activities including antitumor, antioxidative, hepatoprotective, antiviral, anti-inflammatory, and analgesic activities. The information summarized in this paper provides valuable clues for new drug discovery and an incentive to expand the research of genus Tetrastigma.
Collapse
|
32
|
Tetrastigma hemsleyanum alleviates sarcoidosis through metabolomic regulation and Th17/Treg immune homeostasis. J Funct Foods 2022. [DOI: 10.1016/j.jff.2021.104910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
33
|
Jiao C, Xu Z, Bian Q, Forsberg E, Tan Q, Peng X, He S. Machine learning classification of origins and varieties of Tetrastigma hemsleyanum using a dual-mode microscopic hyperspectral imager. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 261:120054. [PMID: 34119773 DOI: 10.1016/j.saa.2021.120054] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/26/2021] [Accepted: 06/02/2021] [Indexed: 06/12/2023]
Abstract
A dual-mode microscopic hyperspectral imager (DMHI) combined with a machine learning algorithm for the purpose of classifying origins and varieties of Tetrastigma hemsleyanum (T. hemsleyanum) was developed. By switching the illumination source, the DMHI can operate in reflection imaging and fluorescence detection modes. The DMHI system has excellent performance with spatial and spectral resolutions of 27.8 μm and 3 nm, respectively. To verify the capability of the DMHI system, a series of classification experiments of T. hemsleyanum were conducted. Captured hyperspectral datasets were analyzed using principal component analysis (PCA) for dimensional reduction, and a support vector machine (SVM) model was used for classification. In reflection microscopic hyperspectral imaging (RMHI) mode, the classification accuracies of T. hemsleyanum origins and varieties were 96.3% and 97.3%, respectively, while in fluorescence microscopic hyperspectral imaging (FMHI) mode, the classification accuracies were 97.3% and 100%, respectively. Combining datasets in dual mode, excellent predictions of origin and variety were realized by the trained model, both with a 97.5% accuracy on a newly measured test set. The results show that the DMHI system is capable of T. hemsleyanum origin and variety classification, and has the potential for non-invasive detection and rapid quality assessment of various kinds of medicinal herbs.
Collapse
Affiliation(s)
- Changwei Jiao
- Centre for Optical and Electromagnetic Research, National Engineering Research Center for Optical Instruments, Zhejiang Provincial Key Laboratory for Sensing Technologies, Zhejiang University, Hangzhou 310058, China
| | - Zhanpeng Xu
- Centre for Optical and Electromagnetic Research, National Engineering Research Center for Optical Instruments, Zhejiang Provincial Key Laboratory for Sensing Technologies, Zhejiang University, Hangzhou 310058, China.
| | - Qiuwan Bian
- Centre for Optical and Electromagnetic Research, National Engineering Research Center for Optical Instruments, Zhejiang Provincial Key Laboratory for Sensing Technologies, Zhejiang University, Hangzhou 310058, China
| | - Erik Forsberg
- Centre for Optical and Electromagnetic Research, National Engineering Research Center for Optical Instruments, Zhejiang Provincial Key Laboratory for Sensing Technologies, Zhejiang University, Hangzhou 310058, China
| | - Qin Tan
- Centre for Optical and Electromagnetic Research, National Engineering Research Center for Optical Instruments, Zhejiang Provincial Key Laboratory for Sensing Technologies, Zhejiang University, Hangzhou 310058, China
| | - Xin Peng
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China.
| | - Sailing He
- Centre for Optical and Electromagnetic Research, National Engineering Research Center for Optical Instruments, Zhejiang Provincial Key Laboratory for Sensing Technologies, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
34
|
Chen Y, Zhang Y, Luo Q, Zhu Y, Du H, Liao S, Yang Y, Chen H. Inhibition of porcine epidemic diarrhea virus by Alpiniae oxyphyllae fructus polysaccharide 3. Res Vet Sci 2021; 141:146-155. [PMID: 34749099 DOI: 10.1016/j.rvsc.2021.10.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/23/2021] [Accepted: 10/30/2021] [Indexed: 12/17/2022]
Abstract
Porcine epidemic diarrhea virus (PEDV) is a deadly pathogen that still plagues suckling piglets. However, there is still no anti-PEDV drug available in clinics. To develop potential anti-PEDV drugs, the antiviral activity of Alpiniae oxyphyllae fructus polysaccharide 3 (AOFP3) against PEDV infection in IPEC-J2 cells were assessed in our present study. The structural characterization of AOFP3 was studied by using HPAEC, GC-MS, FT-IR and NMR techniques. At the same time, the anti-PEDV activity of AOFP3 was investigated by performing RT-qPCR, Western blot and immunofluorescence assays. The results showed that AOFP3 (44.4 kDa) was composed of glucose and galacturonic acid at a molar ratio of 77.54:22.46 and consisted of →4)-α-D-Glcp-(1→, →4,6)-α-D-Glcp-(1→, T-α-D-Glcp-(1→ and →4)-α-D-GalAp-(1→. AOFP3 significantly decreased PEDV titer in IPEC-J2 cells and prevented cellular damage of IPEC-J2 cells caused by PEDV infection. Furthermore, AOFP3 showed an antioxidative activity in inhibiting PEDV reproduction. Therefore, AOFP3 was expected to be a material of anti-PEDV drug.
Collapse
Affiliation(s)
- Yun Chen
- Institute of Traditional South Chinese Veterinary Pharmacology, College of Animal Science and Technology, Hainan University, Haikou 570228, PR China.
| | - Yu Zhang
- Institute of Traditional South Chinese Veterinary Pharmacology, College of Animal Science and Technology, Hainan University, Haikou 570228, PR China
| | - Qiyuan Luo
- Institute of Traditional South Chinese Veterinary Pharmacology, College of Animal Science and Technology, Hainan University, Haikou 570228, PR China
| | - Yongjian Zhu
- Institute of Traditional South Chinese Veterinary Pharmacology, College of Animal Science and Technology, Hainan University, Haikou 570228, PR China
| | - Huijun Du
- Institute of Traditional South Chinese Veterinary Pharmacology, College of Animal Science and Technology, Hainan University, Haikou 570228, PR China
| | - Suya Liao
- Institute of Traditional South Chinese Veterinary Pharmacology, College of Animal Science and Technology, Hainan University, Haikou 570228, PR China
| | - Yuhui Yang
- Institute of Traditional South Chinese Veterinary Pharmacology, College of Animal Science and Technology, Hainan University, Haikou 570228, PR China
| | - Huricha Chen
- Institute of Traditional South Chinese Veterinary Pharmacology, College of Animal Science and Technology, Hainan University, Haikou 570228, PR China
| |
Collapse
|
35
|
Sun L, Lu JJ, Wang BX, Sun T, Zhu BQ, Ding ZS, Zhou FM, Jin QX. Polysaccharides from Tetrastigma hemsleyanum Diels et Gilg: optimum extraction, monosaccharide compositions, and antioxidant activity. Prep Biochem Biotechnol 2021; 52:383-393. [PMID: 34339343 DOI: 10.1080/10826068.2021.1952600] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The optimization of extraction of Tetrastigma hemsleyanum Diels et Gilg polysaccharides (THP) using ultrasonic with enzyme method and its monosaccharide compositions and antioxidant activity were investigated in this work. Single-factor experiments and response surface methodology (RSM) were performed to optimize conditions for extraction, and the independent variables were (XA) dosage of cellulase, (XB) extraction time, (XC) ultrasonic power, and (XD) ratio of water to the material. The extraction rate of THP was increased effectively under the optimum conditions, and the maximum (4.692 ± 0.059%) was well-matched the predicted value from RSM. THP was consisted of mannose, glucuronic acid, rhamnose, galacturonic acid, glucose, galactose, and arabinose, while glucose was the dominant (26.749 ± 0.634%). According to the total antioxidant capacity assay with the FRAP method, DPPH, and hydroxyl radical scavenging assay, THP showed strong antioxidant activity with a dose-dependent behavior. The results indicated that THP has the potential to be a novel antioxidant and could expand its application in food and medicine.
Collapse
Affiliation(s)
- Ling Sun
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jing-Jing Lu
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Bi-Xu Wang
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Tong Sun
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Bing-Qi Zhu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Zhi-Shan Ding
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Fang-Mei Zhou
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Qian-Xing Jin
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
| |
Collapse
|
36
|
Lou TL, Ji T, Peng X, Ji WW, Yuan LX, Wang J, Li SM, Zhang S, Shi QY. Extract From Tetrastigma hemsleyanum Leaf Alleviates Pseudomonas aeruginosa Lung Infection: Network Pharmacology Analysis and Experimental Evidence. Front Pharmacol 2021; 12:587850. [PMID: 34349638 PMCID: PMC8326761 DOI: 10.3389/fphar.2021.587850] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 06/21/2021] [Indexed: 01/22/2023] Open
Abstract
Tetrastigma hemsleyanum Diels & Gilg (T. hemsleyanum) has attracted much attention due to its ability on pneumonia, bronchitis, and immune-related diseases, while its functional components and underlying mechanism of action on pneumonia have not been fully elucidated. Herein, we used a systematic network pharmacology approach to explore the action mechanism of T. hemsleyanum leaf in the treatment of pneumonia. In this study, the results of network pharmacology demonstrated that there were 34 active components and 80 drug-disease targets in T. hemsleyanum leaf, which were strongly in connection with signal transduction, inflammatory response, and the oxidation-reduction process. Subsequently, a mouse model of pneumonia induced by Pseudomonas aeruginosa (P. aeruginosa) was established to validate the predicted results of network pharmacology. In the animal experiments, aqueous extract of T. hemsleyanum leaf (EFT) significantly attenuated the histopathological changes of lung tissue in P. aeruginosa-induced mice and reduced the number of bacterial colonies in BALFs by 96.84% (p < 0.01). Moreover, EFT treatment suppressed the increase of pro-inflammatory cytokines IL-17, IL-6, and TNF-α in lung tissues triggered by P. aeruginosa, which led to the increase of Th17 cells (p < 0.05). High concentration of EFT treatment (2.0 g/kg) obviously increased the anti-inflammatory cytokine levels, accompanied by the enhancement of Treg proportion in a dose-dependent manner and a notable reversal of transcription factor RORγt expression. These findings demonstrated that network pharmacology was a useful tool for TCM research, and the anti-inflammatory effect of EFT was achieved by maintaining Th17/Treg immune homeostasis and thereby suppressing the inflammatory immune response.
Collapse
Affiliation(s)
| | - Tao Ji
- Zhejiang Pharmaceutical College, Ningbo, China
| | - Xin Peng
- Food and Health Branch, Ningbo Research Institute of Zhejiang University, Ningbo, China
| | - Wei-Wei Ji
- Zhejiang Pharmaceutical College, Ningbo, China
| | - Li-Xia Yuan
- Zhejiang Pharmaceutical College, Ningbo, China
| | - Juan Wang
- Zhejiang Pharmaceutical College, Ningbo, China
| | - Shi-Min Li
- Zhejiang Pharmaceutical College, Ningbo, China
| | - Shun Zhang
- Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Qiao-Yun Shi
- Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| |
Collapse
|
37
|
Chen J, Li L, Zhang X, Wan L, Zheng Q, Xu D, Li Y, Liang Y, Chen M, Li B, Chen Z. Structural characterization of polysaccharide from Centipeda minima and its hypoglycemic activity through alleviating insulin resistance of hepatic HepG2 cells. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104478] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
38
|
Chang X, Shen CY, Jiang JG. Structural characterization of novel arabinoxylan and galactoarabinan from citron with potential antitumor and immunostimulatory activities. Carbohydr Polym 2021; 269:118331. [PMID: 34294341 DOI: 10.1016/j.carbpol.2021.118331] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 01/13/2023]
Abstract
This study aimed to extract polysaccharides from citron and analyze their structures and potential bioactivities. Two novel polysaccharides CM-1 and CM-2 were purified from citron by DEAE-Sepharose Fast Flow and Sephadex G-100 column chromatography. Monosaccharide composition, linkage and NMR data were used to infer their sugar chains composition. The anti-breast cancer cells and immunoregulatory activities of CM-1 and CM-2 were investigated. Results indicated that CM-1 (Mw = 21,520 Da), composed of arabinose, xylose, mannose and glucose in a molar ratio of 10.78:11.53:1.00:1.70, was arabinoxylan (AX) with (1 → 4)-linked β-d-Xylp skeleton monosubstituted with α-l-Araf units at O-3 position. While CM-2 (Mw = 22,303 Da), composed of arabinose, mannose, glucose and galactose in a molar ratio of 25.46:1.45:1.00:6.57, was galactoarabinan (GA) with (1 → 5)-linked α-l-Araf backbone substituted by β-d-Galp units at O-2 and/or O-3 positions. Both polysaccharides exhibited potential inhibiting cancer and immunostimulatory activities in vitro, especially CM-1. These results provide a basis for further research on citron polysaccharides.
Collapse
Affiliation(s)
- Xu Chang
- College of Food and Bioengineering, South China University of Technology, Guangzhou 510640, China
| | - Chun-Yan Shen
- College of Food and Bioengineering, South China University of Technology, Guangzhou 510640, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China.
| | - Jian-Guo Jiang
- College of Food and Bioengineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
39
|
Hu W, Zheng Y, Xia P, Liang Z. The research progresses and future prospects of Tetrastigma hemsleyanum Diels et Gilg: A valuable Chinese herbal medicine. JOURNAL OF ETHNOPHARMACOLOGY 2021; 271:113836. [PMID: 33465440 DOI: 10.1016/j.jep.2021.113836] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/10/2021] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tetrastigma hemsleyanum Diels et Gilg, known as Sanyeqing in China, was an extensively used folk Chinese herbal medicine. This plant had been validated to be highly effective for treating high fever, pneumonia, hepatitis, gastritis, cervicitis, lymphatic tuberculosis, septicemia, and viral meningitis. AIM OF THE REVIEW As a review in T. hemsleyanum, this article aims to provide a critical and comprehensive evaluation for future research as well as the development of new drugs. The possible uses and future research directions of this plant were also discussed. MATERIALS AND METHODS A literature search was conducted on different scientific search engines, including Google Scholar, Science Direct, PubMed, Web of Science, and CNKI. Additional information was obtained from classic books about Chinese herbal medicine and scientific databases. RESULTS T. hemsleyanum was a perennial herb climbing vine, which was mainly based on field cultivation. About 150 chemical compounds have been isolated from T. hemsleyanum, including flavonoids, phenolic acids, polysaccharides, triterpenoids, steroids, and organic acids. Studies on the physiological aspects of T. hemsleyanum have been focused on the effects of light and fertilizer on their growth, and few other studies have been conducted. The plant had widespread pharmacological effects on the immune system, as well as anti-tumor, anti-inflammatory, analgesic, and antipyretic. CONCLUSIONS T. hemsleyanum was a valuable traditional Chinese medical herb with pharmacological activities that mainly affected the immune system. This review summarized its botanical description, cultivation techniques, physiology, ethnopharmacology, chemical components, and pharmacological functions. This information suggested that we should focus on the development of new drugs related to T. hemsleyanum. Meanwhile, it was important to emphasize the traditional use of T. hemsleyanum, avoiding over-harvesting that exerted a great impact on resource scarcity. And developing its new clinical usage and comprehensive utilize would augment the therapeutic potentials of T. hemsleyanum.
Collapse
Affiliation(s)
- Wanying Hu
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yujie Zheng
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Pengguo Xia
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Zongsuo Liang
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| |
Collapse
|
40
|
Structural analysis and biological effects of a neutral polysaccharide from the fruits of Rosa laevigata. Carbohydr Polym 2021; 265:118080. [PMID: 33966844 DOI: 10.1016/j.carbpol.2021.118080] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 04/10/2021] [Accepted: 04/11/2021] [Indexed: 02/06/2023]
Abstract
A neutral water-soluble polysaccharide (RLP50-2) was extracted and purified from the fruits of Rosa laevigata. The absolute molecular weight was determined as 1.26 × 104 g/mol. Monosaccharide composition analysis showed that RLP50-2 mainly consisted of glucose, arabinose, and galactose. Structural analysis revealed that RLP50-2 consisted of →5)-α-L-Araf-(1→, →2,5)-α-L-Araf-(1→, →3,5)-α-L-Araf-(1→, →4)-α-D-Glcp-(1→, →6)-α-D-Glcp-(1→, →3,6)-β-D-Glcp-(1→, →4)-α-D-Galp-(1→, →6)-β-D-Galp-(1→, →2)-β-D-Xylp-(1→, terminal α-L-arabinose, and terminal β-D-mannose. Biological assays showed that RLP50-2 had immunomodulatory activities using cell and zebrafish models. Moreover, RLP50-2 showed significantly antitumor activities by inhibiting tumor cell proliferation and migration and blocking angiogenesis. These results suggested that RLP50-2 could be developed as a potential immunomodulatory agent or antitumor candidate drug in biomedicine field.
Collapse
|
41
|
Liu P, Guo Y, He Y, Tang Y. Radix Tetrastigma Hemsleyani Flavone Inhibits the Occurrence and Development of Ovarian Cancer Cells by Regulating miRNA-4458 Expression. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Ovarian cancer (OC) has been identified to have the highest mortality rate among gynecological tumors. Most patients are diagnosed at an advanced stage because of its asymptomatic nature and a lack of effective early diagnostic methods. Advanced-stage cancer cells are prone to metastasis
which reduces the efficacy of standard therapies. Thus, we evaluated the effect of different concentrations of radix tetrastigma hemsleyani flavone (RTHF) on SKOV3 OC cells. Our findings indicated a significant inhibition in cell proliferation, migration, and invasion. RTHF treatment resulted
in a significant increase in p21 protein expression, whereas the expression of cyclin D1, MMP-2, and MMP-9 has reportedly decreased. In addition, the expression of miRNA-4458 expression increased significantly in a dose-dependent manner. Co-transfection of miRNA-4458 mimics into SKOV3 cells
revealed that overexpressed miRNA-4458 can increase SKOV3 cell proliferation and p21 protein expression. Reduced cell migration and invasion were also observed along with decreased expression of cyclin D1, MMP-2, and MMP-9. Furthermore, inhibition of miRNA-4458 expression reversed the RTHF
effect on SKOV3 cell proliferation, migration, invasion, and cyclin D1, MMP-2, and MMP-9 expression. These results indicate that RTHF reduces the proliferation, migration, and invasion of OC cells, and the underlying mechanism is associated with the upregulation of miRNA-4458 expression. These
findings provide a new treatment strategy for advanced OC.
Collapse
Affiliation(s)
- Ping Liu
- Department of Obstetrics and Gynecology, The Affiliated Hospital North China University of Science and Technology, Tangshan 063000, Hebei, PR China
| | - Yanjuan Guo
- Department of Obstetrics and Gynecology, The Affiliated Hospital North China University of Science and Technology, Tangshan 063000, Hebei, PR China
| | - Yanfang He
- Department of Obstetrics and Gynecology, The Affiliated Hospital North China University of Science and Technology, Tangshan 063000, Hebei, PR China
| | - Yajuan Tang
- Department of Obstetrics and Gynecology, The Affiliated Hospital North China University of Science and Technology, Tangshan 063000, Hebei, PR China
| |
Collapse
|
42
|
Characterization of a novel polysaccharide from Moutan Cortex and its ameliorative effect on AGEs-induced diabetic nephropathy. Int J Biol Macromol 2021; 176:589-600. [PMID: 33581205 DOI: 10.1016/j.ijbiomac.2021.02.062] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/26/2021] [Accepted: 02/08/2021] [Indexed: 02/02/2023]
Abstract
This study aimed to investigate the structure of a new heteropolysaccharide (MC-Pa) from Moutan Cortex (MC), and its protection on diabetic nephropathy (DN). The MC-Pa composed of D-glucose and L-arabinose (3.31:2.25) was characterized with homogeneous molecular weight of 1.64 × 105 Da, and the backbone was 4)-α-D-Glcp-(1 → 5-α-L-Araf-(1 → 3,5-α-L-Araf-(1→, branched partially at O-3 with α-L-Araf-(1 → residue with methylated-GC-MS and NMR. Furthermore, MC-Pa possessed strong antioxidant activity in vitro and inhibited the production of ROS caused by AGEs. In vivo, MC-Pa could alleviate mesangial expansion and tubulointerstitial fibrosis of DN rats in histopathology and MC-Pa could decrease significantly the serum levels of AGEs and RAGE. Western blot and immunohistochemical analysis showed that MC-Pa can reduce the expression of main protein (FN and Col IV) of extracellular-matrix, down-regulate the production of inflammatory factors (ICAM-1 and VCAM-1), and therefore regulate the pathway of TGF-β1. The above indicated that MC-Pa has an improving effect on DN.
Collapse
|
43
|
Huang Q, He W, Khudoyberdiev I, Ye CL. Characterization of polysaccharides from Tetrastigma hemsleyanum Diels et Gilg Roots and their effects on antioxidant activity and H 2O 2-induced oxidative damage in RAW 264.7 cells. BMC Chem 2021; 15:9. [PMID: 33546740 PMCID: PMC7866644 DOI: 10.1186/s13065-021-00738-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/20/2021] [Indexed: 12/29/2022] Open
Abstract
This work presents an investigation on the composition and structure of polysaccharides from the roots of Tetrastigma hemsleyanum (THP) and its associated antioxidant activity. It further explores the protective effect of THP on RAW264.7 cells against cytotoxicity induced by H2O2. Ion chromatography (IC) revealed that THP contained glucose, arabinose, mannose, glucuronic acid, galactose and galacturonic acid, in different molar ratios. Furthermore, gel permeation chromatography-refractive index-multiangle laser light scattering (GPC-RI-MALS) was employed to deduce the relative molecular mass (Mw) of the polysaccharide, which was 177.1 ± 1.8 kDa. Fourier transform infrared spectroscopy (FT-IR) and Congo red binding assay highlighted that the THP had a steady α-triple helix conformation. Similarly, assays of antioxidant activity disclosed that THP had reasonable concentration-dependent hydroxyl radical and superoxide radical scavenging activities, peroxidation inhibition ability and ferrous ion chelating potency, in addition to a significant 1,1-diphenyl-2-picrylhydrazyl radical scavenging capacity. Moreover, THP could protect RAW264.7 cells against H2O2-induced cytotoxicity by decreasing intracellular ROS levels, reducing catalase (CAT) and superoxide dismutase (SOD) activities, increasing lactate dehydrogenase (LDH) activity and increment in malondialdehyde (MDA) level. Data retrieved from the in vitro models explicitly established the antioxidant capability of polysaccharides from T. hemsleyanum root extracts.
Collapse
Affiliation(s)
- Qi Huang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, P. R. China
| | - Wen He
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, P. R. China
| | - Ilkhomjon Khudoyberdiev
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, P. R. China
| | - Chun-Lin Ye
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, P. R. China.
| |
Collapse
|
44
|
Ji T, Ji WW, Wang J, Chen HJ, Peng X, Cheng KJ, Qiu D, Yang WJ. A comprehensive review on traditional uses, chemical compositions, pharmacology properties and toxicology of Tetrastigma hemsleyanum. JOURNAL OF ETHNOPHARMACOLOGY 2021; 264:113247. [PMID: 32800929 PMCID: PMC7422820 DOI: 10.1016/j.jep.2020.113247] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/26/2020] [Accepted: 08/03/2020] [Indexed: 05/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tetrastigma hemsleyanum Diels et Gilg (T.hemsleyanum), a rare herbal plant distributed in subtropical areas of mainland China, has become a focus of scientific attention in recent years because of its high traditional value, including uses for treatment of children with fever, pneumonia, asthma, rheumatism, hepatitis, menstrual disorders, scrofula, and pharynx pain. AIM This systematic review aims to provide an insightful understanding of traditional uses, chemical composition, pharmacological effect and clinical application of T. hemsleyanum, and lay a foundation for the further study and for the utilization of T. hemsleyanum resource. MATERIALS AND METHODS A domestic and overseas literature search in known databases was conducted for published articles using the relevant keywords. RESULTS One hundred and forty-two chemical constituents identified from T. hemsleyanum have been reported, including flavonoids, phenolic acids, polysaccharide, organic acids, fatty acids, terpenoids, steroids, amino acid and others. Among these components, flavonoids and polysaccharides were the representative active ingredients of T. hemsleyanum, which have been widely investigated. Modern pharmacological studies have shown that these components exhibited various pharmacological activities, such as anti-inflammatory, antioxidant, antivirus, antitumor, antipyretic, anti-hepatic injury, immunomodulatory, antibacterial etc. Moreover, different toxicological studies indicated that the clinical dosage of T. hemsleyanum was safe and reliable. CONCLUSIONS Modern pharmacological studies have well supported and clarified some traditional uses, and T. hemsleyanum has a good prospect for the development of new drugs due to these outstanding properties. However, the present findings did not provide an in-depth evaluation of bioactivity of the extracts, the composition of its active extracts was not clear. Moreover, they were insufficient to satisfactorily explain some mechanisms of action. Data regarding many aspects of T. hemsleyanum, such as links between the traditional uses and bioactivities, pharmacokinetics, quality control standard and the clinical value of active compositions is still limited which need more attention.
Collapse
Affiliation(s)
- Tao Ji
- Zhejiang Pharmaceutical College, Ningbo, 315100, Zhejiang, People's Republic of China
| | - Wei Wei Ji
- Zhejiang Pharmaceutical College, Ningbo, 315100, Zhejiang, People's Republic of China
| | - Juan Wang
- Zhejiang Pharmaceutical College, Ningbo, 315100, Zhejiang, People's Republic of China
| | - Hong Jiang Chen
- Zhejiang Pharmaceutical College, Ningbo, 315100, Zhejiang, People's Republic of China
| | - Xin Peng
- Ningbo Research Institute of Zhejiang University, Ningbo, 315100, Zhejiang, People's Republic of China.
| | - Ke Jun Cheng
- Chemical Biology Center, Lishui Institute of Agriculture and Forestry Sciences, Lishui, 323000, Zhejiang, People's Republic of China
| | - Dan Qiu
- Feng Hua Institute of Science and Technology, Ningbo University of Technology, Ningbo, 315100, Zhejiang, People's Republic of China
| | - Wei Jie Yang
- Feng Hua Institute of Science and Technology, Ningbo University of Technology, Ningbo, 315100, Zhejiang, People's Republic of China
| |
Collapse
|
45
|
Chen X, Weng M, Lan M, Weng Z, Wang J, Guo L, Lin Z, Qiu B. Superior antibacterial activity of sulfur-doped g-C 3N 4 nanosheets dispersed by Tetrastigma hemsleyanum Diels & Gilg's polysaccharides-3 solution. Int J Biol Macromol 2020; 168:453-463. [PMID: 33275975 DOI: 10.1016/j.ijbiomac.2020.11.155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/15/2020] [Accepted: 11/23/2020] [Indexed: 12/29/2022]
Abstract
Bacterial resistance has become a serious global health issue over the past decades due to the misuse and abuse of antibiotics. The development of effective antibacterial drugs with a new antibacterial mechanism is thus very critical. At present, there are many reports on the antibacterial properties and mechanisms of two-dimensional materials. Currently, the modification of g-C3N4 materials, as widely used two-dimensional materials, has become a key step in extending their potential applications in the field of antimicrobial therapy. In the present work, we prepared sulfur-doped g-C3N4 nanosheets (SCNNSs), which have good water dispersibility and sharp tips. The electrostatic interaction of SCNNSs with Tetrastigma hemsleyanum Diels & Gilg's polysaccharide-3 (THDG-3) provides a new strategy that can improve the killing efficiency of SCNNSs. In addition, THDG-3 can rapidly inhibit bacterial proliferation in the early stage of administration. Combined with the antibacterial activity of the SCNNSs, TPS/SCNNSs can inhibit bacteria for a long time. Scanning electron microscopy (SEM) observation of Escherichia coli (E. coli) after administration of the materials revealed that the bacterial cells were ruptured and their intracellular contents were completely separated from the cell membrane. Therefore, we speculate that the bactericidal mechanism of the TPS/SCNNSs probably involves cell membrane damage. In summary, TPS/SCNNSs achieve fast, long-term, dual-function bacteriostatic properties.
Collapse
Affiliation(s)
- Xiao Chen
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Eel Farming and Processing, Fuzhou University, Fuzhou, Fujian, 350108, PR China
| | - Mingfeng Weng
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Eel Farming and Processing, Fuzhou University, Fuzhou, Fujian, 350108, PR China
| | - Maojin Lan
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Eel Farming and Processing, Fuzhou University, Fuzhou, Fujian, 350108, PR China
| | - Zuquan Weng
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China.
| | - Jian Wang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Eel Farming and Processing, Fuzhou University, Fuzhou, Fujian, 350108, PR China; State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, PR China.
| | - Longhua Guo
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Eel Farming and Processing, Fuzhou University, Fuzhou, Fujian, 350108, PR China
| | - Zhenyu Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Eel Farming and Processing, Fuzhou University, Fuzhou, Fujian, 350108, PR China
| | - Bin Qiu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Eel Farming and Processing, Fuzhou University, Fuzhou, Fujian, 350108, PR China.
| |
Collapse
|
46
|
Sajadimajd S, Bahrami G, Mohammadi B, Nouri Z, Farzaei MH, Chen JT. Protective effect of the isolated oligosaccharide from Rosa canina in STZ-treated cells through modulation of the autophagy pathway. J Food Biochem 2020; 44:e13404. [PMID: 32761921 DOI: 10.1111/jfbc.13404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/01/2020] [Accepted: 07/03/2020] [Indexed: 12/26/2022]
Abstract
Isolation of active components of therapeutic plants and discovering molecular mechanisms play a pivotal role in therapy of diabetes. This study aimed to determine the antidiabetic mechanism of an oligosaccharide isolated from Rosa canina (RCO) by measuring the expression of some miRNAs and their targets involved in autophagy. RCO was extracted and characterized by using HPLC and spectroscopic methods. Rin-5F cells were treated with STZ and RCO alone and in combination. The viability of the cells and the expression of miR-21, miR-22, Akt, ATG5, Beclin1, LC3A, and LC3B were analyzed using MTT assay, and qRT-PCR, respectively. Oligosaccharide fraction could improve the viability of RCO-treated cells as compared to STZ-treated cells. Further, the expression of autophagy markers was increased in RCO-treated diabetic cells compared to STZ-treated cells. The results indicated that the antidiabetic effects of the oligosaccharide components of R. canina seem to be mediated by modulation of autophagy pathway. PRACTICAL APPLICATIONS: Given effectiveness of an oligosaccharide fraction isolated from Rosa canina in management of diabetes in STZ-induced diabetic rats, we have intention to scrutinize its molecular mechanism as modulation of autophagy pathway in STZ-treated Rin-5F cells. It is expected that the results paved the way to speculate novel antidiabetic strategies.
Collapse
Affiliation(s)
| | - Gholamreza Bahrami
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Bahareh Mohammadi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zeinab Nouri
- Student's Research Committee, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Jen-Tsung Chen
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung, Taiwan
| |
Collapse
|
47
|
Zhu R, Xu X, Ying J, Cao G, Wu X. The Phytochemistry, Pharmacology, and Quality Control of Tetrastigma hemsleyanum Diels & Gilg in China: A Review. Front Pharmacol 2020; 11:550497. [PMID: 33101019 PMCID: PMC7546407 DOI: 10.3389/fphar.2020.550497] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 09/04/2020] [Indexed: 12/18/2022] Open
Abstract
Tetrastigma hemsleyanum Diels & Gilg (TDG), the family member of Vitaceae, is a traditional herbal medicine in China. The root of TDG can be immediately used after cleaning the muddy soil, and can be dehydrated for dry use. TDG is able to be collected all year round, which is commonly used in the treatment of hepatitis, infantile high fever, snake bite, etc. Based on phytochemistry, the chemical components of TDG are divided into flavonoids, phenolic acids, terpenes, steroids, polysaccharide, and other compounds, showing many pharmacological effects which include anti-tumor, anti-oxidation, anti-inflammatory, antipyretic, analgesic, and immunomodulatory activity, as well as other activities. Currently, TDG involves some problems of the reduction of wild resources, the backward processing methods, and storage difficulties as well as the imperfection of detection methods. Therefore, this review summarizes the literature of the past 20 years, and the purpose of this review is to summarize the recent researches on the phytochemistry, pharmacology, quality control, and clinical application of TDG. The above discussions provide new insights for the future research on TDG.
Collapse
Affiliation(s)
- Ruyi Zhu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaofen Xu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jialiang Ying
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Gang Cao
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xin Wu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
48
|
Li F, Wei Y, Liang L, Huang L, Yu G, Li Q. A novel low-molecular-mass pumpkin polysaccharide: Structural characterization, antioxidant activity, and hypoglycemic potential. Carbohydr Polym 2020; 251:117090. [PMID: 33142631 DOI: 10.1016/j.carbpol.2020.117090] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/20/2020] [Accepted: 09/08/2020] [Indexed: 12/12/2022]
Abstract
The novel natural low-molecular-mass polysaccharide (SLWPP-3) from pumpkin (Cucurbia moschata) was separated from the waste supernatant after macromolecular polysaccharide production and purified using a DEAE cellulose-52 column and gel-filtration chromatography. Chemical and instrumental studies revealed that SLWPP-3 with a molecular mass of 3.5 kDa was composed of rhamnose, glucose, arabinose, galactose and uronic acid with a weight ratio of 1: 1: 4: 6: 15, and primarily contained →3,6)-β-d-Galp-(1→, →4)-α-GalpA-(1→(OMe), →4)-α-GalpA-(1→, →2,4)-α-d-Rhap-(1→, →3)-β-d-Galp-(1→, →4)-α-d-Glcp, and →4)-β-d-Galp residues in the backbone. The branch chain passes were connected to the main chain through the O-4 atom of glucose and O-3 atom of arabinose. Physiologically, the ability of SLWPP-3 to inhibit carbohydrate-digesting enzymes and DPPH and ABTS radicals, as well as protect pancreatic β cells from oxidative damage by decreasing MDA levels and increasing SOD activities, was confirmed. The findings elucidated the structural types of pumpkin polysaccharides and revealed a potential adjuvant natural product with hypoglycemic effects.
Collapse
Affiliation(s)
- Fei Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, PR China; National Engineering Research Center for Fruits and Vegetables Processing, Beijing, 100083, PR China.
| | - Yunlu Wei
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, PR China; National Engineering Research Center for Fruits and Vegetables Processing, Beijing, 100083, PR China.
| | - Li Liang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, PR China; National Engineering Research Center for Fruits and Vegetables Processing, Beijing, 100083, PR China.
| | - Linlin Huang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, PR China; National Engineering Research Center for Fruits and Vegetables Processing, Beijing, 100083, PR China.
| | - Guoyong Yu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, PR China; National Engineering Research Center for Fruits and Vegetables Processing, Beijing, 100083, PR China.
| | - Quanhong Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, PR China; National Engineering Research Center for Fruits and Vegetables Processing, Beijing, 100083, PR China.
| |
Collapse
|
49
|
Yu S, Yu J, Dong X, Li S, Liu A. Structural characteristics and anti-tumor/-oxidant activity in vitro of an acidic polysaccharide from Gynostemma pentaphyllum. Int J Biol Macromol 2020; 161:721-728. [PMID: 32544584 DOI: 10.1016/j.ijbiomac.2020.05.274] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/18/2020] [Accepted: 05/21/2020] [Indexed: 01/14/2023]
Abstract
In this paper, a novel acidic polysaccharide (CPS-1) was successively prepared from Gynostemma pentaphyllum using hot water isolation method to explore its antitumor and antioxidant activities. Structural characteristics of CPS-1 were evaluated by SEM, HPGPC, HPAEC-PAD, FT-IR, and NMR. The results indicated: CPS-1 was mainly composed of Ara, Gal, Glc, Xyl, Man, GalA and GlcA in a molar ratio of 1.23:2.14:0.67:0.2:0.29:0.16:0.04 with molecular weight of 3297 kDa. Combining with the results of FT-IR and NMR, it was inferred that CPS-1 was mainly possessed the five main linkages including α-D-Ara, α-D-Gal, α-D-Man, α-D-Xyl and β-D-Glc. Furthermore, MTT results exhibited that the IC50 value of CPS-1 for inhibitive effect on SPC-A-1 and MGC-803 cells for 24 h were 284.36 and 365.27 μg/mL, respectively. Microscopic observations showed that the cells exhibited significant apoptotic characteristics, such as cell shrinkage, the decreased of cell adherence and the appearance of apoptotic bodies. It was shown that CPS-1 had significant anti-tumor activity. In addition, the ability of CPS-1 to scavenge superoxide radical, ABTS and DPPH radicals was also enhanced with the increased of concentration. Therefore, it was revealed that CPS-1 might be used as a natural anticancer and antioxidant component.
Collapse
Affiliation(s)
- Shasha Yu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; QingYunTang Biotech (Beijing) Co., Ltd., No. 14, Zhonghe Street, Beijing Economic-Technological Development Area, Beijing 100176, China
| | - Juan Yu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiaodan Dong
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; QingYunTang Biotech (Beijing) Co., Ltd., No. 14, Zhonghe Street, Beijing Economic-Technological Development Area, Beijing 100176, China
| | - Shan Li
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Anjun Liu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
50
|
Novel polysaccharide from Chaenomeles speciosa seeds: Structural characterization, α-amylase and α-glucosidase inhibitory activity evaluation. Int J Biol Macromol 2020; 153:755-766. [DOI: 10.1016/j.ijbiomac.2020.03.057] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/02/2020] [Accepted: 03/09/2020] [Indexed: 12/28/2022]
|