1
|
Li H, Wang S, Chen J, Sun M, Tang H. Preparation and characterization of thymol-loaded ZIF-8/κ-carrangeenan/Zein composite film as active food packaging with enhanced functional properties for blueberry preservation. Carbohydr Polym 2025; 356:123406. [PMID: 40049976 DOI: 10.1016/j.carbpol.2025.123406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/11/2025] [Accepted: 02/13/2025] [Indexed: 05/13/2025]
Abstract
Polysaccharide-protein-based composite films are promising for food packaging, but interfacial incompatibility between hydrophilic biopolymers and hydrophobic proteins limits their use. In this study, a new thymol-loaded zeolitic imidazolate framework-8/κ-carrageenan/Zein composite film was developed for blueberry preservation. The film exhibited excellent physical properties with a thickness of 0.052 ± 0.0001 mm, a high tensile strength of 40.631 ± 1.527 MPa, an elongation at break of 21.223 ± 1.018 %, and a reduced water vapor permeability of (0.764 ± 0.166) × 10-8 kg·m·m-2·s-1·Pa-1. The incorporation of thymol and ZIF-8 improved the film's microstructure and interfacial compatibility between κ-carrageenan and Zein. Thymol release was pH-dependent and sustained with a cumulative release of 91.959 ± 0.454 % over 36 h at pH 4.5. Biological testing revealed significant antibacterial properties with survival rates of 0.002 ± 0.002 % against Staphylococcus aureus and 5.973 ± 0.307 % against Escherichia coli, and antioxidant capacity with DPPH and ABTS radical scavenging rates of 75.60 ± 0.53 % and 61.49 ± 1.19 %, respectively. The film showed good biodegradability and extended blueberry shelf life by 9 days. This composite film offers enhanced mechanical properties, controlled release, and bioactivity, showing great potential as active food packaging for fruit preservation.
Collapse
Affiliation(s)
- Huihui Li
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, PR China
| | - Shunchang Wang
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, PR China
| | - Jin Chen
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, PR China
| | - Mengchu Sun
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, PR China
| | - Hongjin Tang
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, PR China.
| |
Collapse
|
2
|
Amur SA, Khuhro Q, Soomro NA, Sharma BP, Nadeem A, Tariq M, Liang H. Synthesis, characterization and computational study of chitosan-modified pH-responsive Mag@ZIF-8/CS drug delivery system loaded with magnolol for sustained drug release and synergistic antibacterial activity. Int J Biol Macromol 2025; 308:142144. [PMID: 40107541 DOI: 10.1016/j.ijbiomac.2025.142144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/03/2025] [Accepted: 03/14/2025] [Indexed: 03/22/2025]
Abstract
ZIF-8 has strong potential for biomedical applications due to its excellent biocompatibility. In this study, 89.67 % of natural drug magnolol (Mag) was loaded in ZIF-8 to form Mag@ZIF-8, which was subsequently modified with chitosan (CS) to obtain Mag@ZIF-8/CS. The prepared materials were characterized using the UV-Vis spectroscopy, FTIR, XRD, DLS, SEM and TEM techniques. Thermal stability of materials was analyzed using Thermos Gravimetric Analysis system. PDI and Z-average hydrodynamic sizes of Mag@ZIF-8/CS and Mag@ZIF-8 were increased compared to ZIF-8. Similarly, Mag@ZIF-8 revealed higher zeta potential (+17.5 ± 2.3 mV) than ZIF-8 (+9.8 ± 0.5 mV), but Mag@ZIF-8/CS exposed -3.2 ± 0.9 mV, in water; however, at pH 4 it was changed to +5 mV. Pure ZIF-8 and Mag@ZIF-8 exhibited a hexagonal morphology, while Mag@ZIF-8/CS had a rotund, flat-like structure, with mean particle size of 101 nm, 123 nm and 343 nm, respectively. Density Functional Theory (DFT) analysis offered a deeper insight into the electronic properties and binding interactions of the composites. Under acidic conditions, drug release from Mag@ZIF-8 was higher (86.4 %) and faster than from Mag@ZIF-8/CS (74 %), when tested at physiological pH 7.4 and 37 °C. This, suggests that CS modification of Mag@ZIF-8 is crucial for achieving prolonged and sustained drug release. Mag@ZIF-8 and Mag@ZIF-8/CS depicted a two-fold increase in antibacterial activity against E. coli and S. aureus, demonstrating a synergistic effect. The MIC value for E. coli and S. aureus were, 35 μg/mL and 20 μg/mL, respectively, confirming the enhanced antibacterial efficacy of the composites. Molecular docking analysis provided deeper insights into the binding interactions between the materials and the E. coli protein 5AZC.
Collapse
Affiliation(s)
- Safdar Ali Amur
- College of Life Science and Technology, and State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Quratulain Khuhro
- Institute of Biochemistry, University of Sindh, Jamshoro 76080, Pakistan
| | - Najaf Ali Soomro
- Institute of Biochemistry, University of Sindh, Jamshoro 76080, Pakistan
| | - Bharat Prasad Sharma
- Beijing Key Laboratory of Electrochemical Process and Technology of Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Muhammad Tariq
- College of Life Science and Technology, and State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hao Liang
- College of Life Science and Technology, and State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
3
|
Jazi FE, Ghoreishi SM, Gholami A. Detection of Trace Amounts of Fe 3+ and Cr 6+ Ions Using a ZIF-8 Fluorescent Sensor with High Selectivity and Fast Response. J Fluoresc 2025:10.1007/s10895-025-04259-1. [PMID: 40266482 DOI: 10.1007/s10895-025-04259-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 03/09/2025] [Indexed: 04/24/2025]
Abstract
While zeolitic imidazole framework (ZIF)-based materials have shown promising metal ion detection performances, they did not achieve the same results as for pure ZIFs. Here, a highly porous ZIF-8 material is synthesized using a chemical method under stirring at room temperature, and characterized in terms of crystallinity and chemical state. The resulting ZIF-8 is employed as a multifunctional fluorescent sensor to detect Fe3+ and Cr6+ metal ions dissolved in water, exhibiting high luminescence with a broad wavelength band in the visible light region. The water-soluble metal ions are found to be very sensitive to a decrease in the luminescence intensity of ZIF-8, and can be detected at trace amounts with high selectivity. The detection limits of Fe3+ and Cr6+ ions are achieved to be 2.1 × 10-6 and 7.6 × 10-7 M, respectively. The intensity of luminescence decreases with increasing the concentration of both metal ions, thereby giving rise to the complete fluo>rescence quenching with a very fast response time using Fe3+ and Cr6+ ion concentrations higher than 1.0 × 10-4 and 4.7 × 10-5 M, respectively. These results may pave the way for the utilization of pure ZIF materials in the development of highly efficient fluorescent sensors in order to rapidly detect trace amounts of environmental pollutants.
Collapse
Affiliation(s)
- Fariba Erfani Jazi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Kashan, P.O. Box 87317-51167, Kashan, Islamic Republic of Iran
| | - Sayed Mehdi Ghoreishi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Kashan, P.O. Box 87317-51167, Kashan, Islamic Republic of Iran.
| | - Ali Gholami
- Department of Analytical Chemistry, Faculty of Chemistry, University of Kashan, P.O. Box 87317-51167, Kashan, Islamic Republic of Iran
| |
Collapse
|
4
|
Liu D, Chen J, Gao L, Chen X, Lin L, Liu Y, Wei X, Pan Y, Wang Y, Cheng H. Nano Sim@ZIF8@PDA modified injectable temperature sensitive nanocomposite hydrogel for photothermal/drug therapy for peri-implantitis. Carbohydr Polym 2025; 354:123327. [PMID: 39978909 DOI: 10.1016/j.carbpol.2025.123327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/22/2025]
Abstract
Dental implant restoration has become one of the most important treatments for missing teeth. However, peri-implantitis is a common complication of implant restorations, and lack of timely and effective treatment will most likely lead to implant failure. Here, we developed a chitosan-based multifunctional temperature-sensitive hydrogel. Chitosan (CS)/β-glycerophosphate (β-GP) as the body of the hydrogel enabled a gelation transition at physiological temperatures. To enhance functionality, we designed Sim@ZIF8@PDA nanoparticles (SZP), where simvastatin (Sim) was loaded onto the zeolitic imidazolate framework-8 (ZIF8), leveraging its high drug-loading capacity and pH-sensitive release properties. These nanoparticles were further coated with polydopamine (PDA) to enhance photothermal efficiency and stability. The SZP nanoparticles were subsequently integrated with CS/β-GP to form the SZP/CS/β-GP hydrogel. The results showed that under near-infrared light irradiation, PDA exerted a photothermal effect to achieve anti-infection, while the release of simvastatin could promote the differentiation of CD4+ T cells to regulatory T cells (Tregs) to achieve immunoregulation. SZP/CS/β-GP hydrogel attenuated the infection and inflammation at the peri-implantitis lesion. In conclusion, this study provides a new approach for the non-surgical treatment of peri-implantitis.
Collapse
Affiliation(s)
- Dingkun Liu
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350004, China
| | - Jinbing Chen
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350004, China
| | - Linjuan Gao
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350004, China
| | - Xing Chen
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350004, China
| | - Liujun Lin
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350004, China
| | - Yuan Liu
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350004, China
| | - Xia Wei
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350004, China
| | - Yu Pan
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350004, China
| | - Yinghui Wang
- Institute of Stomatology and Research Center of Dental Esthetics and Biomechanics, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, China.
| | - Hui Cheng
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350004, China; Institute of Stomatology and Research Center of Dental Esthetics and Biomechanics, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, China.
| |
Collapse
|
5
|
Suhag S, Hooda V. Epoxy-Affixed ZIF-8/CS/Cellulase: a Sustainable Approach for Hydrolysis of Agricultural Waste to Reducing Sugars. Appl Biochem Biotechnol 2025; 197:2681-2712. [PMID: 39792338 DOI: 10.1007/s12010-024-05144-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/24/2024] [Indexed: 01/12/2025]
Abstract
Cellulase was effectively immobilized onto an epoxy-bound chitosan-modified zinc metal-organic framework (epoxy/ZIF-8/CS/cellulase) support, yielding a conjugation rate of 0.64 ± 0.02 mg/cm2 and retaining 80.01 ± 0.01% of its specific activity. The bare and cellulase-bound supports was characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, atomic force microscopy and energy-dispersive X-ray spectroscopy. The immobilized enzyme exhibited optimal activity at pH 5.5 and a temperature of 70 ℃. The efficiency, stability and reactivity of the enzyme improved after immobilization, as evidenced by a decrease in activation energy, enthalpy and Gibbs free energy along with an increase in entropy change. The epoxy-affixed ZIF-8/CS/cellulase strip was successfully employed for rice husk hydrolysis achieving an impressive conversion efficiency of 95%. The method demonstrated a linear range from 0.1 to 0.9% (0.1 × 10-2 to 0.9 × 10-2 mg/ml) and exhibited a strong correlation (R2 = 0.998) with the widely adopted 3, 5-dinitrosalicylic acid method. The epoxy/ZIF-8/CS bound cellulase exhibited remarkable thermal stability, retaining 100% of its activity at 70 °C, in contrast to just 53% for the free enzyme and displayed a half-life of 21 days after storage at 4 °C compared to 9 days for the free enzyme. Furthermore, it retained over 95% activity after 12 h at pH levels of 4.5 and 5.5 and showcased excellent reusability, maintaining activity over 25 cycles. Overall, this method offers high conversion efficiency and selectivity under benign conditions, with no undesirable by-products, making it a cost-effective solution for the routine hydrolysis of lignocellulosic biomass feedstock.
Collapse
Affiliation(s)
- Shashi Suhag
- Department of Botany, Maharshi Dayanand University, Rohtak, 124001, India
| | - Vinita Hooda
- Department of Botany, Maharshi Dayanand University, Rohtak, 124001, India.
| |
Collapse
|
6
|
Alsharif B, Biasiotti M, Bader A, Kukula-Koch W, Davey GP, Boylan F. Acetylcholinesterase and monoamine oxidase inhibitory activities of Pistacia falcata Becc. ex Martelli extract. Nat Prod Res 2025:1-6. [PMID: 40028752 DOI: 10.1080/14786419.2025.2472272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/07/2024] [Accepted: 02/20/2025] [Indexed: 03/05/2025]
Abstract
Plants in the genus Pistacia represent valuable natural resources for neuroprotective research based on ethnomedicinal knowledge. While other Pistacia species have been extensively studied, Pistacia falcata (P. falcata) has received limited attention. This study aimed to characterise the phenolic compounds in P. falcata extract using HPLC-DAD-MS/MS and evaluate its neuroprotective potential by assessing its ability to inhibit important central nervous system (CNS) enzymes-acetylcholinesterase (AChE) and monoamine oxidases (MAO-A and MAO-B). P. falcata displayed a rich profile of phenolic acids and unique glucuronidated flavonoids, contributing to its potent antioxidant activity (IC50 23.37 ± 0.63 µg/mL). The extract exhibited a stronger inhibitory effect on MAO-B than MAO-A and inhibited AChE (IC50 0.22 ± 0.01 mg/mL). These findings suggest that P. falcata has significant neuroprotective potential, warranting further investigation as a source of functional food and nutraceutical ingredients for managing neurodegenerative diseases.
Collapse
Affiliation(s)
- Bashaer Alsharif
- School of Pharmacy and Pharmaceutical Sciences and Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | | | - Ammar Bader
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, Lublin, Poland
| | - Gavin P Davey
- School of Biochemistry and Immunology, Trinity College, Dublin 2, Ireland
| | - Fabio Boylan
- School of Pharmacy and Pharmaceutical Sciences and Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
7
|
Jin X, Wang C, Sun Z, Lian Y, Ji Q, Tang J, Ma X. Biocompatible dually reinforced gellan gum hydrogels with selective antibacterial activity. Carbohydr Polym 2025; 351:123071. [PMID: 39779001 DOI: 10.1016/j.carbpol.2024.123071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/17/2024] [Accepted: 11/26/2024] [Indexed: 01/30/2025]
Abstract
The poor mechanics and functionality of natural-polymer hydrogels from gellan gum (GG) prohibit their practical application, despite the intrinsic thermo-reversible gelation nature, structural and quality consistency, biocompatibility, biodegradability and sustainability of microbial fermentation-produced GG. Herein, a dual-reinforcing strategy, i.e., ionic-crosslinking along with rigid nano-particulate reinforcing, was realized to modify pristine GG hydrogels for the first time during the in-situ formation of zeolitic imidazolate framework-8 (ZIF-8). Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, rheology and X-ray diffraction confirm the synchronous formation of ZIF-8 and ionic bonds between Zn2+ and -COO- of GG molecules. The mechanics of the final hydrogels are far superior to GG hydrogel, with the maximum compressive and tensile strength attaining 1.17 MPa and 592.2 kPa, ~4 times and ~ 66 times respectively of the corresponding GG hydrogel. Especially, the obtained hydrogels display selective antibacterial activity against Staphylococcus aureus as a modeling Gram positive strain. Whereas, the hydrogels retain good biocompatibility despite the introduction of ZIF-8 and Zn2+ crosslinks, with the cell viability (NIH3T3 cells as the model) >79 % after 48 h' cultivation in either the hydrogels or gel extracts. The excellent properties suggest them tremendous application prospects as biomedical materials, instrumental in averting drug-resistant problems.
Collapse
Affiliation(s)
- Xixi Jin
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, PR China
| | - Cuicui Wang
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, PR China
| | - Zhaolong Sun
- School of Public Health, Qingdao University, Qingdao 266071, PR China
| | - Yudong Lian
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, PR China
| | - Quan Ji
- Institute of Marine Biobased Materials, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, PR China
| | - Jinglong Tang
- School of Public Health, Qingdao University, Qingdao 266071, PR China
| | - Xiaomei Ma
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, PR China.
| |
Collapse
|
8
|
Zeng W, Jiang Q, Ruan C, Ni W, Zhu C, Zeng X, Shi X, You R, Ma N, Tsai FC. A rewritable and shape memory hydrogel doped with fluorescein-functionalized ZIF-8 for information storage and fluorescent anti-counterfeiting. Talanta 2025; 283:127088. [PMID: 39461041 DOI: 10.1016/j.talanta.2024.127088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/27/2024] [Accepted: 10/20/2024] [Indexed: 10/29/2024]
Abstract
The emergence of stimuli-responsive fluorescence anti-counterfeiting technology has garnered increasing attention in the era of intelligent internet. Smart fluorescent hydrogels combine the characteristics of luminous materials with the unique structure of hydrogels, offering the potential for dynamic reversible erasing and multi-tiered data encryption. In this work, a fluorescent hydrogel was constructed by zeolitic imidazolate framework-8 loaded with fluorescein and then mixed with polyvinyl alcohol hydrogel, sodium carboxymethyl cellulose and borax, which could be used for image hiding in visible light. The reversible bonds cross-linked fluorescent hydrogel was stretchable and self-healing with a three-dimensional network structure. The hydrogel presented bright green fluorescence under 365 nm UV light, which was quenched by adding copper ions. Meanwhile, the imprint of the hydrogel could be cleared by L-Cysteine and repeatedly recorded information many times. The alkali-induced shape memory capability was further utilized to achieve multi-tiered data encryption by deforming it to a 3D-specific shape through folding. The rewritable and multi-dimensional encrypted hydrogel is expected to improve data security and reduce resource consumption.
Collapse
Affiliation(s)
- Wenyan Zeng
- Hubei Key Laboratory of Polymer Materials, Key Laboratory for the Green Preparation and Application of Functional Materials (Ministry of Education), Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China.
| | - Qingyuan Jiang
- Hubei Key Laboratory of Polymer Materials, Key Laboratory for the Green Preparation and Application of Functional Materials (Ministry of Education), Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China.
| | - Chaofan Ruan
- Hubei Key Laboratory of Polymer Materials, Key Laboratory for the Green Preparation and Application of Functional Materials (Ministry of Education), Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China.
| | - Wang Ni
- Hubei Key Laboratory of Polymer Materials, Key Laboratory for the Green Preparation and Application of Functional Materials (Ministry of Education), Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China.
| | - Changchang Zhu
- Hubei Key Laboratory of Polymer Materials, Key Laboratory for the Green Preparation and Application of Functional Materials (Ministry of Education), Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China.
| | - Xueling Zeng
- Hubei Key Laboratory of Polymer Materials, Key Laboratory for the Green Preparation and Application of Functional Materials (Ministry of Education), Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China.
| | - Xuan Shi
- Hubei Key Laboratory of Polymer Materials, Key Laboratory for the Green Preparation and Application of Functional Materials (Ministry of Education), Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China.
| | - Rongke You
- Hubei Key Laboratory of Polymer Materials, Key Laboratory for the Green Preparation and Application of Functional Materials (Ministry of Education), Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China.
| | - Ning Ma
- Hubei Key Laboratory of Polymer Materials, Key Laboratory for the Green Preparation and Application of Functional Materials (Ministry of Education), Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China; State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| | - Fang-Chang Tsai
- Hubei Key Laboratory of Polymer Materials, Key Laboratory for the Green Preparation and Application of Functional Materials (Ministry of Education), Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
9
|
Cui C, Qiao W, Li D, Wang LJ. Dual cross-linked magnetic gelatin/carboxymethyl cellulose cryogels for enhanced Congo red adsorption: Experimental studies and machine learning modelling. J Colloid Interface Sci 2025; 678:619-635. [PMID: 39305629 DOI: 10.1016/j.jcis.2024.09.136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 10/27/2024]
Abstract
To achieve highly efficient and environmentally degradable adsorbents for Congo red (CR) removal, we synthesized a dual-network nanocomposite cryogel composed of gelatin/carboxymethyl cellulose, loaded with Fe3O4 nanoparticles. Gelatin and sodium carboxymethylcellulose were cross-linked using transglutaminase and calcium chloride, respectively. The cross-linking process enhanced the thermal stability of the composite cryogels. The CR adsorption process exhibited a better fit to the pseudo-second-order model and Langmuir model, with maximum adsorption capacity of 698.19 mg/g at pH of 7, temperature of 318 K, and initial CR concentration of 500 mg/L. Thermodynamic results indicated that the CR adsorption process was both spontaneous and endothermic. The performance of machine learning model showed that the Extreme Gradient Boosting model had the highest test determination coefficient (R2 = 0.9862) and the lowest root mean square error (RMSE = 10.3901 mg/g) among the 6 models. Feature importance analysis using SHapley Additive exPlanations (SHAP) revealed that the initial concentration had the greatest influence on the model's prediction of adsorption capacity. Density functional theory calculations indicated that there were active sites on the CR molecule that can undergo electrostatic interactions with the adsorbent. Thus, the synthesized cryogels demonstrate promising potential as adsorbents for dye removal from wastewater.
Collapse
Affiliation(s)
- Congli Cui
- College of Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, National Energy R & D Center for Non-food Biomass, China Agricultural University, P. O. Box 50, 17 Qinghua Donglu, Beijing 100083, China
| | - Weixu Qiao
- Department of Automation, Tsinghua University, Beijing 100084, China
| | - Dong Li
- College of Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, National Energy R & D Center for Non-food Biomass, China Agricultural University, P. O. Box 50, 17 Qinghua Donglu, Beijing 100083, China.
| | - Li-Jun Wang
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Functional Food from Plant Resources, China Agricultural University, Beijing, China.
| |
Collapse
|
10
|
Su Y, Wang Y, Ding L, Chen Y, Song D. An innovative and efficient strategy for removing Congo red using magnetic hollow Zn/Co zeolitic imidazolate framework composite. ENVIRONMENTAL RESEARCH 2025; 264:120399. [PMID: 39579850 DOI: 10.1016/j.envres.2024.120399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/01/2024] [Accepted: 11/19/2024] [Indexed: 11/25/2024]
Abstract
The discharge of wastewater containing Congo red (CR) poses a significant threat to aquatic ecosystems and human health, underscoring the urgent need for effective removal methods. In this study, we have developed a novel strategy for efficient removing CR, utilizing the synthesized magnetic hollow Zn/Co zeolitic imidazolate framework composite (MH-ZIF). Comprehensive characterization of MH-ZIF and comparison with contrasting materials were conducted. The adsorption behavior of MH-ZIF towards CR followed the pseudo-second-order kinetic model and Langmuir isothermal adsorption model, demonstrating monolayer chemisorption. Remarkably, MH-ZIF exhibited an impressive adsorption capacity of 1167.9 mg g-1 for CR at 293 K. The addition of merely 0.15 g L-1 of MH-ZIF achieved nearly complete adsorption of CR within a concentration of 150 mg L-1. With the assistance of an external magnetic field, CR adsorbed on MH-ZIF can be effectively and swiftly removed within just 30 s. Hence, MH-ZIF demonstrates great promise in effectively removing CR from wastewater, attributed to its high adsorption capacity, selectivity, and magnetic properties.
Collapse
Affiliation(s)
- Yu Su
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Yanjie Wang
- Food Laboratory of Zhongyuan, Luohe, Henan, 462300, China
| | - Lan Ding
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China.
| | - Yanhua Chen
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Daqian Song
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| |
Collapse
|
11
|
Shao H, Zhang Y, Zhao J, Zhang C, Bai F, Hu J. Stable production of hydrogen peroxide over zinc oxide @ zeolitic imidazolate Framework-8 composite catalysts. J Colloid Interface Sci 2024; 676:139-148. [PMID: 39024814 DOI: 10.1016/j.jcis.2024.07.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/26/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024]
Abstract
A promising method of producing hydrogen peroxide (H2O2) is the electrochemical two-electron water oxidation reaction (2e- WOR). In this process, it is important to design electrocatalysts that are both earth abundant and environmentally friendly, as well as offering high stability and production rates. The research of WOR catalysts, such as the extensively used transition metal oxides, is mainly focused on the modification of transition metal elements. Few studies pay attention to the protective heterostructure of metal oxides. Here, we demonstrate for the first time an organometallic skeleton protection strategy to develop highly stable WOR catalysts for H2O2 generation. Unlike the pure ZnO and zeolite imidazole framework-8 (ZIF-8) catalysts, ZnO@ZIF-8 enabled the production of hydrogen peroxide at high voltages. The experimental results demonstrate that the ZnO@ZIF-8 catalyst stably generates H2O2 even under a high voltage of 3.0 V vs. RHE, with a yield reaching 2845.819 μmolmin-1 g-1. ZnO@ZIF-8 shows a relatively low overpotential, with a current density of 10 mA cm-2 and an overpotential of 110 mV. The ZnO@ZIF-8 catalyst's maximal FE value was 4.72 %. Moreover, the ZnO@ZIF-8 catalyst exhibits remarkable durability even after an extended 60-hour stability test. Operando Raman and theoretic calculation analyses reveal that the metal-organic skeleton being encapsulated on the metal oxide surface synergizes with each other, not only expanding the electrochemical surface area, but also adjusting the catalyst metal sites' adsorption capacity. A novel approach to the modification of 2e- WOR metal oxide catalyst is presented in this work.
Collapse
Affiliation(s)
- Haodong Shao
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, China; Key Laboratory of Unconventional Metallurgy, Kunming University of Science and Technology, Kunming, China
| | - Yue Zhang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, China; Key Laboratory of Unconventional Metallurgy, Kunming University of Science and Technology, Kunming, China
| | - Jianqiang Zhao
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, China; Key Laboratory of Unconventional Metallurgy, Kunming University of Science and Technology, Kunming, China
| | - Chengxu Zhang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, China
| | - Fengning Bai
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, China
| | - Jue Hu
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, China; Key Laboratory of Unconventional Metallurgy, Kunming University of Science and Technology, Kunming, China.
| |
Collapse
|
12
|
Zhang P, Zhong D, Yu Y, Wang L, Li Y, Liang Y, Shi Y, Duan M, Li B, Niu H, Xu Y. Integration of STING activation and COX-2 inhibition via steric-hindrance effect tuned nanoreactors for cancer chemoimmunotherapy. Biomaterials 2024; 311:122695. [PMID: 38954960 DOI: 10.1016/j.biomaterials.2024.122695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/01/2024] [Accepted: 06/27/2024] [Indexed: 07/04/2024]
Abstract
Integrating immunotherapy with nanomaterials-based chemotherapy presents a promising avenue for amplifying antitumor outcomes. Nevertheless, the suppressive tumor immune microenvironment (TIME) and the upregulation of cyclooxygenase-2 (COX-2) induced by chemotherapy can hinder the efficacy of the chemoimmunotherapy. This study presents a TIME-reshaping strategy by developing a steric-hindrance effect tuned zinc-based metal-organic framework (MOF), designated as CZFNPs. This nanoreactor is engineered by in situ loading of the COX-2 inhibitor, C-phycocyanin (CPC), into the framework building blocks, while simultaneously weakening the stability of the MOF. Consequently, CZFNPs achieve rapid pH-responsive release of zinc ions (Zn2+) and CPC upon specific transport to tumor cells overexpressing folate receptors. Accordingly, Zn2+ can induce reactive oxygen species (ROS)-mediated cytotoxicity therapy while synchronize with mitochondrial DNA (mtDNA) release, which stimulates mtDNA/cGAS-STING pathway-mediated innate immunity. The CPC suppresses the chemotherapy-induced overexpression of COX-2, thus cooperatively reprogramming the suppressive TIME and boosting the antitumor immune response. In xenograft tumor models, the CZFNPs system effectively modulates STING and COX-2 expression, converting "cold" tumors into "hot" tumors, thereby resulting in ≈ 4-fold tumor regression relative to ZIF-8 treatment alone. This approach offers a potent strategy for enhancing the efficacy of combined nanomaterial-based chemotherapy and immunotherapy.
Collapse
Affiliation(s)
- Pengfei Zhang
- Department of Urology, the Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Di Zhong
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Yongbo Yu
- Department of Urology, the Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Lupeng Wang
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Yifan Li
- Department of Breast Center of the Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong Province, China
| | - Ye Liang
- Department of Urology, the Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Yanfeng Shi
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Meilin Duan
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Bing Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao 266071, Shandong Province, China.
| | - Haitao Niu
- Department of Urology, the Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| | - Yuanhong Xu
- Department of Urology, the Affiliated Hospital of Qingdao University, Qingdao 266003, China; Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
13
|
Rabeie B, Mahmoodi NM, Hayati B, Dargahi A, Rezakhani Moghaddam H. Chitosan adorned with ZIF-67 on ZIF-8 biocomposite: A potential LED visible light-assisted photocatalyst for wastewater decontamination. Int J Biol Macromol 2024; 282:137405. [PMID: 39521200 DOI: 10.1016/j.ijbiomac.2024.137405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/13/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
The current investigation has utilized a simple and constructive stratified method to synthesize a binary (Cs/Z-8: chitosan (Cs) and zeolitic imidazolate framework-8 (Z-8)) and ternary Cs/Z-8/Z-67 (Z-67: ZIF-67) biocomposites at room temperature. A certain amount of Cs/Z-8 (0.05, 0.1, and 0.2 g) was used to prepare ternary biocomposites (denoted as Cs/Z-8/Z-67-0.05, Cs/Z-8/Z-67-0.1, and Cs/Z-8/Z-67-0.2, respectively). The synthesized materials were characterized. Through the adornment Cs, a non-toxic biopolymer, with Z-8 and Z-67, the desired efficacy in removing pollutants (TCN: Tetracycline, AB92: Acid Blue 92, and MB: Methylene Blue) was achieved under LED visible light. TCN removal in the presence of visible light by Cs, Z-8, Cs/Z-8, Cs/Z-8/Z-67-0.05, Cs/Z-8/Z-67-0.1, and Cs/Z-8/Z-67-0.2 was 22.6 %, 47.3 %, 69.0 %, 77.0 %, 95.5 %, and 65.0 %, respectively. The trapping test showed that TCN degradation by adding ascorbic acid, methanol, and IPA was 44.8 %, 66.9 %, and 78.5 %, respectively. It could be concluded that the O2- play the decisive role for the destruction of TCN. The reusability of Cs/Z-8/Z-67-0.1 as a photocatalyst indicated that it had the capability to preserve its stability and performance for three successive cycles of use (95.5 %, 89.0 %, and 84.0 %). Also, Cs/Z-8/Z-67 had dye degradation ability (39.0 % for Methylene Blue and 81.0 % for Acid Blue 92).
Collapse
Affiliation(s)
- Bahareh Rabeie
- Department of Environmental Research, Institute for Color Science and Technology, Tehran, Iran
| | - Niyaz Mohammad Mahmoodi
- Department of Environmental Research, Institute for Color Science and Technology, Tehran, Iran.
| | - Bagher Hayati
- Department of Environmental Health, Khalkhal University of Medical Sciences, Khalkhal, Iran.
| | - Abdollah Dargahi
- Department of Environmental Health, Khalkhal University of Medical Sciences, Khalkhal, Iran
| | | |
Collapse
|
14
|
Lin M, Sha J, Zhu Z, Ye P, Zhao K, Xiao K. Hydrophobic ZIF-8 nanoparticles loaded on chitosan for improved methanol adsorption from fermented wine. J Food Sci 2024; 89:7747-7759. [PMID: 39331418 DOI: 10.1111/1750-3841.17397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/22/2024] [Accepted: 08/31/2024] [Indexed: 09/28/2024]
Abstract
Metal-organic frameworks (MOFs) have great potential for the adsorption of minor molecular alcohols in the vapor phase. However, the drawbacks of powdered MOFs, including low recyclability and problematic separation, limit their application in fermented wine. Chitosan (CS) is a low-cost, eco-friendly, moldable matrix used in the food industry. In this study, a novel CS@ZIF-8 adsorbent with excellent microporous surface area was successfully synthesized by incorporating hydrophobic ZIF-8 into CS. The results showed that CS@ZIF-8 beads had a high adsorption affinity for methanol at a Zn2+/2-methylimidazole molar ratio of 1:5. The adsorption mechanism of methanol on CS@ZIF-8 beads was systematically studied by X-ray photoelectron spectroscopy, isotherms, and kinetics. The Langmuir model calculated the maximum adsorption of methanol to 56.8 mg/g. Adsorption kinetics are consistent with pseudo-second-order models. Furthermore, CS@ZIF-8 beads presented excellent recyclability for removing methanol for five consecutive cycles. It could treat 60 bed volumes of Chinese yellow wine in column filtration experiments to make the concentration below 50 mg/L. In summary, the highly efficient CS@ZIF-8 adsorbent has great potential for methanol adsorption from fermented wines. PRACTICAL APPLICATION: Methanol will exhibit adverse symptoms such as weakness and headaches after it is ingested. Therefore, methanol control is an important safety factor in the production of fermented wine. The adsorption method is recognized as a widely used technique due to its high efficiency and selectivity. The CS@ZIF-8 adsorbent synthesized in this paper provides a new idea for methanol removal.
Collapse
Affiliation(s)
- Mibin Lin
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Jia Sha
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Zhonghao Zhu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Penghui Ye
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Kai Zhao
- Shenzhen Angel Drinking Water Equipment Co., Ltd, Shenzhen, China
| | - Kaijun Xiao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
15
|
Deng Q, Huang Z, Zhu M, Zong X, Yue Z, Wang X. Improving the particulate matter filtration, antibacterial, and degradation properties of electrospinning poly(lactic acid) membranes with ZIF-8@chitosan. Carbohydr Polym 2024; 342:122427. [PMID: 39048246 DOI: 10.1016/j.carbpol.2024.122427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/02/2024] [Accepted: 06/21/2024] [Indexed: 07/27/2024]
Abstract
In order to improve the filtration efficiency of electrospinning poly(lactic acid) (PLA) membrane on particulate matter (PM), endow the membrane with good antibacterial properties, and accelerate the degradation effect of PLA materials in natural water and soil environments, ZIF-8@chitosan (ZIF-8@CS) was prepared by in situ growth method and was combined with PLA to manufacture the PLA/ZIF-8@CS electrospinning membranes. The PLA/ZIF-8@CS (3 wt%) membrane exhibited filtration efficiencies of 96.79 % for PM2.5 and 91.21 % for PM10, which were significantly higher than that of PP melt-blown cloth. Due to the inherently positive charge and the synergistic interaction between CS and ZIF-8, the antibacterial rates of PLA/ZIF-8@CS membranes were up to 100 % for E. coli and S. aureus after contact for 8 h. The addition of ZIF-8@CS in the membranes also influenced the degradation behavior of PLA/ZIF-8@CS membranes evidently.
Collapse
Affiliation(s)
- Qingchen Deng
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Zhen Huang
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Mengyu Zhu
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Xinyue Zong
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Zhenqing Yue
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Xinlong Wang
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China.
| |
Collapse
|
16
|
Zhang Z, Wang X, Zhang J, Zhang X, Liu J, Du X, Lu X. Yolk-shell MOF-on-MOF hybrid solid-phase microextraction coatings for efficient enrichment and detection of pesticides: Structural regulation cause performance differences. Talanta 2024; 278:126474. [PMID: 38924983 DOI: 10.1016/j.talanta.2024.126474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/18/2024] [Accepted: 06/23/2024] [Indexed: 06/28/2024]
Abstract
Metal-organic frameworks (MOFs) based composites with different structure-activity relationships have been widely used in the field of organic pollutant adsorption and extraction. Here, two MOF-on-MOF composites with different structures (yolk-shell and core-shell) from homologous sources were prepared by a simple in-situ growth synthesis method and structural regulation. In order to verify the effect of composite structure on the extraction capacity, the adsorption performance of the yolk-shell structure (YS-NH2-UiO-66@CoZn-ZIF) and the core-shell structured (NH2-UiO-66@CoZn-ZIF) material were compared by using them as coating material of direct immersion solid-phase microextraction (DI-SPME) to enrich six pesticides in five matrices. The results showed that because of the unique hollow hierarchical structure, high specific surface area (930.68 m2 g-1), abundant and open active sites, and synergistic and complementary adsorption forces, YS-NH2-UiO-66@CoZn-ZIF composites had the maximum adsorption amount of 36.01-66.31 mg g-1 under the same experiment condition, which was 6.81%-34.26 % higher than that of NH2-UiO-66@CoZn-ZIF. In addition, the adsorption mechanism of the prepared materials was verified and elaborated through theoretical simulations and material characterization. Under the optimized conditions, the YS-NH2-UiO-66@CoZn-ZIF-coated SPME-HPLC-UV method had a wide linear range (0.241-500 μg L-1), a good linear correlation coefficient (R2 > 0.9988), a low detection limits (0.072-0.567 μg L-1, S/N = 3) and low quantification limits (0.241-1.891 μg L-1, S/N = 10). The relative standard deviations of individual fibers and different batches of fibers were 0.47-6.20 % and 0.22-2.48 %, respectively, and individual fibers could be recycled more than 104 times. This work provided a good synthetic route and comparative ideas for exploring the in-situ growth synthesis of yolk-shell composites with reasonable structure-activity relationships.
Collapse
Affiliation(s)
- Zhen Zhang
- Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection, Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, PR China
| | - Xuemei Wang
- Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection, Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, PR China; Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, Lanzhou, 730070, PR China.
| | - Jie Zhang
- Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection, Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, PR China
| | - Xinzhong Zhang
- Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection, Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, PR China
| | - Jingwei Liu
- Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection, Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, PR China
| | - Xinzhen Du
- Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection, Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, PR China; Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, Lanzhou, 730070, PR China
| | - Xiaoquan Lu
- Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection, Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, PR China; Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, Lanzhou, 730070, PR China
| |
Collapse
|
17
|
Jiang F, Liang Y, Liu L, Zhang Y, Deng Y, Wei F, Xu C, Fu L, Lin B. One-pot co-crystallized hexanal-loaded ZIF-8/quaternized chitosan film for temperature-responsive ethylene inhibition and climacteric fruit preservation. Int J Biol Macromol 2024; 265:130798. [PMID: 38479674 DOI: 10.1016/j.ijbiomac.2024.130798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/25/2024] [Accepted: 03/09/2024] [Indexed: 03/23/2024]
Abstract
Controlling ethylene production and microbial infection are key factors to prolong the shelf life of climacteric fruit. Herein, a nanocomposite film, hexanal-loaded ZIF-8/CS (HZCF) with "nano-barrier" structure, was developed by a one-pot co-crystallized of ZIF-8 in situ growth on quaternized chitosan (CS) and encapsulation of hexanal into ZIF-8 via microporous adsorption. The resultant film realized the temperature responsive release of hexanal via the steric hindrance and hierarchical pore structure as "nano-barrier", which can inhibit ethylene production in climacteric fruit on demand. Based on this, the maximum ethylene inhibition rate of HZCF was up to 52.6 %. Meanwhile, the film exhibits excellent antibacterial, mechanical, UV resistance and water retention properties, by virtue of the functional synergy between ZIF-8 and CS. Contributed to the multifunctional features, HZCF prolonged the shelf life of banana and mango for at least 16 days, which is 8 days longer than that of control fruit. More strikingly, HZCF is washable and biodegradable, which is expected to replace non-degradable plastic film. Thus, this study provides a convenient novel approach to simplify the encapsulation of active molecule on metal-organic frameworks (MOFs), develops a packaging material for high-efficient freshness preservation, and helps to alleviate the survival crisis caused by food waste.
Collapse
Affiliation(s)
- Fengqiong Jiang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Yuntong Liang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Li Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Yuancheng Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Yongfu Deng
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Fuxiang Wei
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Chuanhui Xu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Lihua Fu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Baofeng Lin
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China.
| |
Collapse
|
18
|
Khalili Z, Motakef Kazemi N, Jafari Azar Z, Mosavi Z, Hasanzadeh M. Fabrication and characterization of a Bi 2O 3-modified chitosan@ZIF-8 nanocomposite for enhanced drug loading-releasing efficacy. Int J Biol Macromol 2024; 263:130295. [PMID: 38382787 DOI: 10.1016/j.ijbiomac.2024.130295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 02/23/2024]
Abstract
In this study, a simple novel hybrid mesoporous nanomaterial derived from a metal-organic framework (ZIF-8) and chitosan, which were coated on green bismuth oxide, has been successfully synthesized, characterized, and applied to investigate its dapsone loading-releasing capability in the aqueous media. This suggested nanocomposite showed promise for drug loading from water b using hydrogen bonds, pi-pi, and electrostatic interactions. Structural and morphological analyses were performed on the proposed green synthesized nanocomposite through scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, Brunauer-Emmett-Teller analysis, and thermogravimetric analysis. Various influencing parameters, including pH, nanocomposite dose, and contact time, were investigated to optimize the dapsone loading process. Utilizing the non-linear optimization methodology, the results show that dapsone-loading efficiency was >85 % for 50 mg.L-1 of dapsone drug. The optimum parameters for achieving maximal loading of dapsone drug were pH = 6.8, hybrid mesosphere dose = 2.6 mg.mL-1, and time = 53 min. Based on the release investigations, the dapsone-loaded nanocomposite was put into phosphate buffer saline, at pH = 7.4 and T = 37 °C, with a maximum efficiency of 93.9 after 24 h.
Collapse
Affiliation(s)
- Zahra Khalili
- Department of Medical Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Negar Motakef Kazemi
- Department of Medical Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Zahra Jafari Azar
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Zahra Mosavi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | |
Collapse
|
19
|
Zhang DX, Qu S, Liu YH, Xu C, Liu XY, Kan H, Dong K, Wang YP. Application of three-dimensional material CZIF-8/CS-MS as adsorbents for the determination of plant growth regulators in Schisandra chinensis. J Chromatogr A 2024; 1718:464727. [PMID: 38359689 DOI: 10.1016/j.chroma.2024.464727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/26/2024] [Accepted: 02/08/2024] [Indexed: 02/17/2024]
Abstract
In this study, we employed a melamine sponge (MS) as the skeleton material and utilized carbonized ZIF-8 (CZIF-8) and chitosan (CS) as the raw materials to prepare CZIF-8/CS-MS, a novel material featuring a three-dimensional interconnected porous network. The resulting CZIF-8/CS-MS material possesses a unique porous structure, significant specific surface area and abundant active sites. These characteristics make CZIF-8/CS-MS a promising absorbent for selective purification of plant growth regulators (PGRs) including 1-naphthlcetic acid (NAA), naphthoxyacetic acid (NOA), 4-chlorophenoxyacetic acid (4-CPA), 2,4-dichlorophenoxyacetic acid (2,4-D). After optimizing the extraction conditions, excellent linearity (r > 0.9994) was observed within a wide linear range of 1-100 ng/mL using ultra high performance liquid chromatography-tandem quadrupole mass spectrometry. The detection limits (LODs) and limits of quantification (LOQs) were found to be in the range of 0.013-0.154 ng/mL and 0.044-0.515 ng/mL, respectively. Additionally, the relative recovery of Schisandra chinensis fruit samples was determined to be 89.7-99.4 %, with a relative standard deviation (RSDs) of ≤ 8.4 % (n = 3). Compared to other methods, this approach offers a multitude of benefits, which include but are not limited to exceptional sensitivity, reduced sample volume requirements, low LODs, a comparable linear range, and high reproducibility. The findings of this study pave the way for exploring novel functionalized sponge columns, which leverage the integration of nano-sorbent materials and coating agents, for the purpose of analyzing PGRs within intricate matrix samples.
Collapse
Affiliation(s)
- Dong-Xue Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, 2888 Xincheng Street, Changchun , Jilin 130118, China
| | - Shuai Qu
- Jilin Institute of Biology, 1244 Qianjin Street, Changchun, Jilin 130012, China
| | - Yu-Han Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, 2888 Xincheng Street, Changchun , Jilin 130118, China
| | - Chen Xu
- College of Chinese Medicinal Materials, Jilin Agricultural University, 2888 Xincheng Street, Changchun , Jilin 130118, China
| | - Xiao-Ying Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, 2888 Xincheng Street, Changchun , Jilin 130118, China
| | - Hong Kan
- College of Chinese Medicinal Materials, Jilin Agricultural University, 2888 Xincheng Street, Changchun , Jilin 130118, China.
| | - Kai Dong
- College of Chinese Medicinal Materials, Jilin Agricultural University, 2888 Xincheng Street, Changchun , Jilin 130118, China.
| | - Ying-Ping Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, 2888 Xincheng Street, Changchun , Jilin 130118, China.
| |
Collapse
|
20
|
Qian G, Mao Y, Shuai Y, Zeng Z, Peng S, Shuai C. Enhancing bone scaffold interfacial reinforcement through in situ growth of metal-organic frameworks (MOFs) on strontium carbonate: Achieving high strength and osteoimmunomodulation. J Colloid Interface Sci 2024; 655:43-57. [PMID: 37925968 DOI: 10.1016/j.jcis.2023.10.133] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 10/19/2023] [Accepted: 10/25/2023] [Indexed: 11/07/2023]
Abstract
Bioceramics have been extensively used to improve osteogenesis of polymers because of their excellent bone-forming capabilities. However, the inadequate interfacial bonding between ceramics and polymers compromises their mechanical properties. In this study, zeolitic imidazolate framework-8 (ZIF-8) was grown in situ on strontium carbonate (SrCO3) to construct a core-shell SrCO3@ZIF-8, which was then added to poly-l-lactic acid (PLLA) to print a SrCO3@ZIF-8/PLLA composite scaffold using selective sintering technology. First, ZIF-8 characterized by its multiple organic ligands, forms a robust interface with PLLA. Second, SrCO3 characterized by its negative zeta potential in solution, exhibits the ability to adsorb positively charged zinc ions. This, in turn, promotes the in situ growth of ZIF-8 on SrCO3, eventually achieving perfect bonding between the second phase and the PLLA matrix. Our findings indicated that the composite scaffold exhibited the highest compressive strength (21.93 MPa) and significantly promoted the osteogenic differentiation of mouse mesenchymal stem cells. Moreover, the in vivo results established that the SrCO3@ZIF-8/PLLA scaffold significantly accelerated bone regeneration efficiency in rat femur defects. The prepared scaffold, with its favorable mechanical properties and osteogenic activity, shows considerable promise for applications in bone repair.
Collapse
Affiliation(s)
- Guowen Qian
- Institute of Additive Manufacturing, Jiangxi University of Science and Technology, Nanchang 330013, China.
| | - Yuqian Mao
- Institute of Additive Manufacturing, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Yang Shuai
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhikui Zeng
- Department of Orthopedics, The Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang 330006, China.
| | - Shuping Peng
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China; NHC Key Laboratory of Carcinogenesis of Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Cijun Shuai
- Institute of Additive Manufacturing, Jiangxi University of Science and Technology, Nanchang 330013, China; State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China.
| |
Collapse
|
21
|
Yu J, Zhu Q, Ma W, Dai Y, Zhang S, Wang F, Zhu H. Hydrophilic Chitosan-Doped Composite Diaphragm Reducing Gas Permeation for Alkaline Water Electrolysis Producing Hydrogen. ACS APPLIED MATERIALS & INTERFACES 2024; 16:1394-1403. [PMID: 38157839 DOI: 10.1021/acsami.3c13426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The present paper studied the chitosan-doped composite diaphragm by the phase exchange method with the objective of developing a composite diaphragm that complies with the alkaline water electrolysis requirements, as well as tested the electrolytic performance of the diaphragm in alkaline water electrolysis. The structure and morphology are characterized by Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). The performance of chitosan-doped composite diaphragms was tested; CS3Z12 composite diaphragm with a low area resistance (0.20 Ω cm2), a high bubble point pressure (2.75 bar), and excellent electrochemical performance (current density of 650 mA cm-2 at 1.83 V) shows the best performance. Moreover, the performance of the synthesized composite diaphragm is significantly elevated compared to commercial diaphragms (Zirfon PERL), which is promising for practical application in alkaline electrolytic cells.
Collapse
Affiliation(s)
- Jinghua Yu
- State Key Laboratory of Chemical Resource Engineering, Institute of Modern Catalysis, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Qingqing Zhu
- State Key Laboratory of Chemical Resource Engineering, Institute of Modern Catalysis, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Wenli Ma
- State Key Laboratory of Chemical Resource Engineering, Institute of Modern Catalysis, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Yajie Dai
- State Key Laboratory of Chemical Resource Engineering, Institute of Modern Catalysis, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Shuhuan Zhang
- State Key Laboratory of Chemical Resource Engineering, Institute of Modern Catalysis, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Fanghui Wang
- State Key Laboratory of Chemical Resource Engineering, Institute of Modern Catalysis, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Hong Zhu
- State Key Laboratory of Chemical Resource Engineering, Institute of Modern Catalysis, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
22
|
Phonlakan K, Meetam P, Chonlaphak R, Kongseng P, Chantarak S, Budsombat S. Poly(acrylic acid- co-2-acrylamido-2-methyl-1-propanesulfonic acid)-grafted chitosan hydrogels for effective adsorption and photocatalytic degradation of dyes. RSC Adv 2023; 13:31002-31016. [PMID: 37876655 PMCID: PMC10591295 DOI: 10.1039/d3ra05596e] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/17/2023] [Indexed: 10/26/2023] Open
Abstract
As a result of the growth of industrialization and urbanization, the water ecosystem is contaminated by various pollutants, including heavy metal ions and dyes. The use of low-cost and environmentally friendly dye adsorbents has been investigated. A hydrogel was fabricated via graft polymerization of acrylic acid (AA) and 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) onto chitosan. The hydrogel was used as a dye adsorbent and support for a zinc oxide (ZnO) powder photocatalyst. The adsorption capacity of the bare hydrogel was greater towards cationic dyes than anionic dyes. Grafting P(AA-co-AMPS) exhibited a 23-time increase in adsorption capacity towards crystal violet (CV) compared to pristine chitosan. The effect of the AA-AMPS molar ratio on CV adsorption was studied. A hydrogel with an AA-AMPS ratio of 10 : 1 had the highest adsorption capacity towards CV in water, removing 91% of the dye in 12 h. The maximum adsorption capacity was 2023 mg g-1. The adsorption kinetics and isotherm were described by the pseudo-second-order model and the Langmuir model, respectively. ZnO particles were in situ synthesized within the 10 : 1 hydrogel to facilitate the recovery of the photocatalyst. The ZnO hydrogel composite could remove 95% and 92% of CV from solutions on the 1st and 2nd cycle, respectively. In addition, the hydrogel composite containing only 8.7 wt% of ZnO particles effectively degraded adsorbed CV under sunlight and could be reused without requiring a chemical regeneration or photocatalyst recovery procedure. This hydrogel composite is an effective dual-functional material for the adsorption and photodegradation of dye pollutants in wastewater.
Collapse
Affiliation(s)
- Kunlarat Phonlakan
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University Khon Kaen 40002 Thailand
| | - Panjalak Meetam
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University Khon Kaen 40002 Thailand
| | - Rungthip Chonlaphak
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University Khon Kaen 40002 Thailand
| | - Piyawan Kongseng
- Division of Physical Science, Faculty of Science, Prince of Songkla University Hat Yai Songkhla 90110 Thailand
| | - Sirinya Chantarak
- Division of Physical Science, Faculty of Science, Prince of Songkla University Hat Yai Songkhla 90110 Thailand
| | - Surangkhana Budsombat
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University Khon Kaen 40002 Thailand
| |
Collapse
|
23
|
Cho JH, Lee C, Hong SH, Jang HY, Back S, Seo MG, Lee M, Min HK, Choi Y, Jang YJ, Ahn SH, Jang HW, Kim SY. Transition Metal Ion Doping on ZIF-8 Enhances the Electrochemical CO 2 Reduction Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208224. [PMID: 36461101 DOI: 10.1002/adma.202208224] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/24/2022] [Indexed: 06/17/2023]
Abstract
The electrochemical reduction of CO2 to diverse value-added chemicals is a unique, environmentally friendly approach for curbing greenhouse gas emissions while addressing sluggish catalytic activity and low Faradaic efficiency (FE) of electrocatalysts. Here, zeolite-imidazolate-frameworks-8 (ZIF-8) containing various transition metal ions-Ni, Fe, and Cu-at varying concentrations upon doping are fabricated for the electrocatalytic CO2 reduction reaction (CO2 RR) to carbon monoxide (CO) without further processing. Atom coordination environments and theoretical electrocatalytic performance are scrutinized via X-ray absorption spectroscopy (XAS) and density functional theory (DFT) calculations. Upon optimized Cu doping on ZIF-8, Cu0.5 Zn0.5 /ZIF-8 achieves a high partial current density of 11.57 mA cm-2 and maximum FE for CO of 88.5% at -1.0 V (versus RHE) with a stable catalytic activity over 6 h. Furthermore, the electron-rich sp2 C atom facilitates COOH* promotion after Cu doping of ZIF-8, leading to a local effect between the zinc-nitrogen (Zn-N4 ) and copper-nitrogen (Cu-N4 ) moieties. Additionally, the advanced CO2 RR pathway is illustrated from various perspectives, including the pre-H-covered state under the CO2 RR. The findings expand the pool of efficient metal-organic framework (MOF)-based CO2 RR catalysts, deeming them viable alternatives to conventional catalysts.
Collapse
Affiliation(s)
- Jin Hyuk Cho
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Chaehyeon Lee
- Department of Chemical and Biomolecular Engineering, Institute of Emergent Materials, Sogang University, Seoul, 04107, Republic of Korea
| | - Sung Hyun Hong
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Ho Yeon Jang
- Department of Chemical and Biomolecular Engineering, Institute of Emergent Materials, Sogang University, Seoul, 04107, Republic of Korea
| | - Seoin Back
- Department of Chemical and Biomolecular Engineering, Institute of Emergent Materials, Sogang University, Seoul, 04107, Republic of Korea
| | - Myung-Gi Seo
- Lotte Chemical R&D Center, Daejeon, 34110, Republic of Korea
| | - Minzae Lee
- Lotte Chemical R&D Center, Daejeon, 34110, Republic of Korea
| | - Hyung-Ki Min
- Lotte Chemical R&D Center, Daejeon, 34110, Republic of Korea
| | - Youngheon Choi
- Lotte Chemical R&D Center, Daejeon, 34110, Republic of Korea
| | - Youn Jeong Jang
- Department of Chemical Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Sang Hyun Ahn
- School of Chemical Engineering and Material Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Ho Won Jang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Soo Young Kim
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
24
|
Ahmed MA, Mohamed AA. The use of chitosan-based composites for environmental remediation: A review. Int J Biol Macromol 2023; 242:124787. [PMID: 37201888 DOI: 10.1016/j.ijbiomac.2023.124787] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/27/2023] [Accepted: 05/05/2023] [Indexed: 05/20/2023]
Abstract
The presence of hazardous pollutants in water sources as a result of industrial activities is a major environmental challenge that impedes the availability of safe drinking water. Adsorptive and photocatalytic degradative removal of various pollutants in wastewater have been recognized as cost-effective and energy-efficient strategies. In addition to its biological activity, chitosan and its derivatives are considered as promising materials for the removal of various pollutants. The abundance of hydroxyl and amino groups in the chitosan macromolecular structure results in a variety of concurrent pollutant's adsorption mechanisms. Furthermore, adding chitosan to photocatalysts increases the mass transfer while decreasing both the band gap energy and the amount of intermediates produced during photocatalytic processes, improving the overall photocatalytic efficiency. Herein, we have reviewed the current design and preparation of chitosan and its composites, as well as their applications for the removal of various pollutants by adsorption and photocatalysis processes. Effects of operating variables such as the pH, catalyst mass, contact time, light wavelength, initial pollutant's concentration, and catalyst recyclability, are discussed. Various kinetic and isotherm models are presented to elucidate the rates, and mechanisms of pollutant's removal, onto chitosan-based composites, and several case studies are presented. Additionally, the antibacterial activity of chitosan-based composites has been discussed. This review aims to provide a comprehensive and up-to-date overview of the applications of chitosan-based composites in wastewater treatment and put forward new insights for the development of highly effective chitosan-based adsorbents and photocatalysts. Finally, the main challenges and future directions in the field are discussed.
Collapse
Affiliation(s)
- Mahmoud A Ahmed
- Chemistry Department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt.
| | - Ashraf A Mohamed
- Chemistry Department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
| |
Collapse
|
25
|
Phonlakan K, Khamsuk B, Soontonhong N, Panawong C, Kongseng P, Chantarak S, Budsombat S. Composite beads from chitosan and zeolitic imidazolate framework-8 for the adsorption and photocatalytic degradation of reactive red 141. RSC Adv 2023; 13:12295-12308. [PMID: 37091605 PMCID: PMC10114064 DOI: 10.1039/d3ra01187a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/10/2023] [Indexed: 04/25/2023] Open
Abstract
This study describes the fabrication of composite beads comprising chitosan and zeolitic imidazolate framework-8 (ZIF-8) as a natural biodegradable dye adsorbent and support for ZnO photocatalyst. Chitosan beads were cross-linked with trisodium citrate dihydrate to enhance the adsorption capacity for the reactive red 141 dye (RR141). The ability was further improved by adding ZIF-8. The optimum loading was 2.5%, and the adsorption equilibrium was reached within 2 h. The maximum adsorption capacity of the composite beads was 6.51 mg g-1 at pH 4 when an initial concentration of 1000 mg L-1 was used. The pseudo-second-order kinetics model and the Langmuir isotherm model best described the adsorption process. The composite beads could also adsorb dyes like reactive black, Congo red, direct yellow, reactive orange, rhodamine B, crystal violet, and methylene blue (MB). Thermal stability was significantly improved after coating the surface of the 2.5% ZIF beads with a ZnO photocatalyst. After UV irradiation for 5 h, the photocatalytic beads containing 2.59 weight percent of ZnO could decolorize 99% of MB and 90% of RR141 dyes with a degradation rate of 0.6032 h-1 and 0.3198 h-1, respectively. Furthermore, the photocatalytic beads remained effective for at least ten consecutive cycles.
Collapse
Affiliation(s)
- Kunlarat Phonlakan
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Materials Chemistry Research Center, Faculty of Science, Khon Kaen University Khon Kaen 40002 Thailand
| | - Benjawan Khamsuk
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Materials Chemistry Research Center, Faculty of Science, Khon Kaen University Khon Kaen 40002 Thailand
| | - Natthanicha Soontonhong
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Materials Chemistry Research Center, Faculty of Science, Khon Kaen University Khon Kaen 40002 Thailand
| | - Chonnakarn Panawong
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Materials Chemistry Research Center, Faculty of Science, Khon Kaen University Khon Kaen 40002 Thailand
| | - Piyawan Kongseng
- Division of Physical Science, Faculty of Science, Prince of Songkla University Hat Yai Songkhla 90110 Thailand
| | - Sirinya Chantarak
- Division of Physical Science, Faculty of Science, Prince of Songkla University Hat Yai Songkhla 90110 Thailand
| | - Surangkhana Budsombat
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Materials Chemistry Research Center, Faculty of Science, Khon Kaen University Khon Kaen 40002 Thailand
| |
Collapse
|
26
|
Geng C, Liu X, Ma J, Ban H, Bian H, Huang G. High strength, controlled release of curcumin-loaded ZIF-8/chitosan/zein film with excellence gas barrier and antibacterial activity for litchi preservation. Carbohydr Polym 2023; 306:120612. [PMID: 36746592 DOI: 10.1016/j.carbpol.2023.120612] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/11/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023]
Abstract
Polysaccharide films containing protein additives have good application prospects in agriculture and food field. However, interfacial incompatibility between hydrophobic proteins and hydrophilic polymers remains a major technical challenge. In this work, the interfacial compatibility between hydrophobic zein and hydrophilic chitosan (CS) is improved by the chemical crosslinking between zinc ions of curcumin-loaded zeolitic imidazolate framework-8 (Cur-ZIF-8) with CS and zein. With the improvement of interface compatibility, the results show that the elongation at break and O2 barrier property of synthesized Cur-ZIF-8/CS/Zein are 9.2 and 1.5 times higher than CS/Zein, respectively. And the Cur-ZIF-8/CS/Zein exhibits superior antibacterial and antioxidant properties as well. Importantly, Cur-ZIF-8/CS/Zein can also be used as an intelligent-responsive release platform for curcumin. As a result, Cur-ZIF-8/CS/Zein can keep the freshness and appearance of litchi at least 8 days longer than that of CS/Zein. Therefore, this study provides a novel method to improve the interfacial compatibility between hydrophobic proteins and hydrophilic polymers, and is expected to expand the application of protein/polymer composites in agriculture and food field.
Collapse
Affiliation(s)
- Chao Geng
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Xueying Liu
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Jinlian Ma
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Haina Ban
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Hedong Bian
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Guohuan Huang
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China.
| |
Collapse
|
27
|
Preparation of metal organic frameworks modified chitosan composite with high capacity for Hg(II) adsorption. Int J Biol Macromol 2023; 232:123329. [PMID: 36669630 DOI: 10.1016/j.ijbiomac.2023.123329] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 12/26/2022] [Accepted: 01/15/2023] [Indexed: 01/19/2023]
Abstract
In this study, a novel modified chitosan composite adsorbent (UNCS) was prepared by crosslinking between chitosan and metal organic frameworks (MOFs) material UiO-66-NH2 using epichlorohydrin as crosslinker. The influence of the prepared conditions was investigated. The structure and morphology of the composite were characterized by FT-IR, XRD, SEM, TGA, BET and zeta potential analysis. Effects of different variables for adsorption of Hg(II) on this adsorbent were explored. The kinetic studies indicated that the adsorption process followed the pseudo-second-order kinetic model and the adsorption equilibrium could be reached within 2 h. The adsorption was mainly controlled by chemical process. Adsorption isothermal studies illustrated that the adsorption fitted Langmuir isotherm model, implying the homogeneous adsorption on the surface of the adsorbent. The adsorbent exhibited high uptake and the maximum capacity from Langmuir model could reach 896.8 mg g-1 at pH 6. Thermodynamic studies showed the spontaneous nature and exothermic nature of the adsorption process. Additionally, the removal of Hg(II) on UNCS could achieve over 90 %. The adsorption-desorption cycled experiments indicated the appropriate reusability of the adsorbent. Hence, this adsorbent would be promising for the removal of Hg(II) from wastewater.
Collapse
|
28
|
Zhao S, Li Y, Wang M, Chen B, Zhang Y, Sun Y, Chen K, Du Q, Wang Y, Pi X, Jing Z, Jin Y. Efficient adsorption of Congo red by micro/nano MIL-88A (Fe, Al, Fe-Al)/chitosan composite sponge: Preparation, characterization, and adsorption mechanism. Int J Biol Macromol 2023; 239:124157. [PMID: 36965569 DOI: 10.1016/j.ijbiomac.2023.124157] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/19/2023] [Accepted: 03/20/2023] [Indexed: 03/27/2023]
Abstract
MIL-88A crystals with three different metal ligands (Fe, Al, FeAl) were prepared by hydrothermal method for the first time. The three materials' crystal structure and surface morphology are different, leading to different adsorption properties of Congo red (CR). The maximum adsorption capacities of MIL-88A (Fe), MIL-88A (FeAl), and MIL-88A (Al) are 607.7 mg · g-1, 536.4 mg · g-1, and 512.1 mg · g-1 respectively. In addition, MIL-88A was combined with chitosan (CS) respectively, and MIL-88A/CS composite sponge was prepared by the freeze-drying method, which not only solved the defect that MIL-88A powder was difficult to recover but also further improved the removal ability of CR by the adsorbent. The maximum adsorption capacities of MIL-88A (FeAl)/CS, MIL-88A (Fe)/CS, MIL-88A (Al)/CS, and CS are 1312 mg · g-1, 1056 mg · g-1, 996.7 mg · g-1, and 769.6 mg · g-1, respectively. The structure and physicochemical properties of the materials were analyzed by SEM, FTIR, XRD, TGA, BET, and Zeta. The adsorption process of CR follows pseudo-second-order kinetics and Langmuir, Sips isotherm model. Combined with thermodynamic parameters, the adsorption behavior was described as endothermic monomolecular chemical adsorption. The removal of CR is attributed to electrostatic interactions, hydrogen bonding, metal coordination effects, and size-matching effects.
Collapse
Affiliation(s)
- Shiyong Zhao
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yanhui Li
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; State Key Laboratory of Bio-polysaccharide Fiber Forming and Eco-Textile, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| | - Mingzhen Wang
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Bing Chen
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yang Zhang
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yaohui Sun
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Kewei Chen
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Qiuju Du
- State Key Laboratory of Bio-polysaccharide Fiber Forming and Eco-Textile, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yuqi Wang
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Xinxin Pi
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Zhenyu Jing
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yonghui Jin
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| |
Collapse
|
29
|
Tan Y, Huang W, Lei Q, Huang S, Yang K, Chen X, Li D. Insight into the adsorption of magnetic microspheres with large mesopores: Tailoring mesoporous structure and ethylenediamine functionalization for ultrahigh Congo red removal. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
30
|
Chen M, Song F, Wu N, Luo H, Cai X, Li Y. Corn‐like mSiO
2
@ZIF‐8 Composite Load with Curcumin for Target Cancer Drug‐Delivery System. ChemistrySelect 2022. [DOI: 10.1002/slct.202204213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Menglan Chen
- School of Pharmacy Guizhou University Guiyang 550025 Guizhou China
- Guizhou Engineering Laboratory for Synthetic Drugs Guizhou University Guiyang 550025 Guizhou
| | - Fangxiang Song
- School of Chemistry and Chemical Engineering Guizhou University Guiyang 550025 Guizhou China
| | - Nian Wu
- School of Pharmacy Guizhou University Guiyang 550025 Guizhou China
- Guizhou Engineering Laboratory for Synthetic Drugs Guizhou University Guiyang 550025 Guizhou
| | - Honghuan Luo
- School of Pharmacy Guizhou University Guiyang 550025 Guizhou China
- Guizhou Engineering Laboratory for Synthetic Drugs Guizhou University Guiyang 550025 Guizhou
| | - Xiaoqin Cai
- School of Pharmacy Guizhou University Guiyang 550025 Guizhou China
- Guizhou Engineering Laboratory for Synthetic Drugs Guizhou University Guiyang 550025 Guizhou
| | - Yan Li
- School of Pharmacy Guizhou University Guiyang 550025 Guizhou China
- Guizhou Engineering Laboratory for Synthetic Drugs Guizhou University Guiyang 550025 Guizhou
| |
Collapse
|
31
|
Wang P, Tan L, Yuan G, Feng S, Tang H, Wang G, Wang C. ZIF-8 modified polyvinyl alcohol/chitosan composite aerogel for efficient removal of Congo red. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
32
|
Li X, Guo Y, Xie Y, Sun Y. Treatment of fluorinated wastewater with chitosan modified activated sludge lysis ash. RSC Adv 2022; 12:34006-34019. [PMID: 36544999 PMCID: PMC9710221 DOI: 10.1039/d2ra05343h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/17/2022] [Indexed: 12/03/2022] Open
Abstract
Preparation of a novel environmentally friendly and cost-effective composite adsorbent for fluoride removal is presented in this work. An activated sludge lysis ash/chitosan (ASLA/C) composite adsorbent was synthesised using an in situ coprecipitation method, and the removal effect of the material was analysed by static adsorption, isothermal adsorption and kinetic adsorption tests. Langmuir model could better describe the adsorption process and the adsorption was in accordance with the kinetic equation of the pseudo-second-order kinetics reaction. The values of adsorption thermodynamic and kinetic parameters were indicated that the adsorption of fluoride ions is a spontaneous, heat-absorbing entropic process, and the reaction was carried out by a combination of mechanisms, such as electrostatic adsorption, ion exchange, surface complexation and hydrogen bonding. The experimental results indicated that ASLA/C can be used as a cheap and readily available alternative efficient adsorbent where the maximum fluorinate absorption was observed with 7.714 mg g-1, while solving the problem of waste from activated sludge lysis disposal and realizing the environmental benefits of waste.
Collapse
Affiliation(s)
- Xiangdong Li
- School of Environment Science and Spatial Informatics, China University of Mining and TechnologyXuzhou 221116China
| | - Yanwen Guo
- School of Environment Science and Spatial Informatics, China University of Mining and TechnologyXuzhou 221116China
| | - Yuhan Xie
- School of Environment Science and Spatial Informatics, China University of Mining and TechnologyXuzhou 221116China
| | - Yue Sun
- Jiangsu Vocational Institute of Architectural TechnologyNo. 26 Xueyuan RoadXuzhou 221433China
| |
Collapse
|
33
|
Elaouni A, El Ouardi M, Zbair M, BaQais A, Saadi M, Ait Ahsaine H. ZIF-8 metal organic framework materials as a superb platform for the removal and photocatalytic degradation of organic pollutants: a review. RSC Adv 2022; 12:31801-31817. [PMID: 36380941 PMCID: PMC9639128 DOI: 10.1039/d2ra05717d] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 10/24/2022] [Indexed: 07/25/2023] Open
Abstract
Metal organic frameworks (MOFs) are attracting significant attention for applications including adsorption, chemical sensing, gas separation, photocatalysis, electrocatalysis and catalysis. In particular, zeolitic imidazolate framework 8 (ZIF-8), which is composed of zinc ions and imidazolate ligands, have been applied in different areas of catalysis due to its outstanding structural and textural properties. It possesses a highly porous structure and chemical and thermal stability under varying reaction conditions. When used alone in the reaction medium, the ZIF-8 particles tend to agglomerate, which inhibits their removal efficiency and selectivity. This results in their mediocre reusability and separation from aqueous conditions. Thus, to overcome these drawbacks, several well-designed ZIF-8 structures have emerged by forming composites and heterostructures and doping. This review focuses on the recent advances on the use of ZIF-8 structures (doping, composites, heterostructures, etc.) in the removal and photodegradation of persistent organic pollutants. We focus on the adsorption and photocatalysis of three main organic pollutants (methylene blue, rhodamine B, and malachite green). Finally, the key challenges, prospects and future directions are outlined to give insights into game-changing breakthroughs in this area.
Collapse
Affiliation(s)
- Aicha Elaouni
- Laboratoire de Chimie Appliquée des Matériaux, Centre des Sciences des Matériaux, Faculty of Sciences, Mohammed V University in Rabat Morocco
| | - M El Ouardi
- Laboratoire de Chimie Appliquée des Matériaux, Centre des Sciences des Matériaux, Faculty of Sciences, Mohammed V University in Rabat Morocco
- Université de Toulon, AMU, CNRS, IM2NP CS 60584, Toulon Cedex 9 F-83041 France
| | - M Zbair
- Université de Haute-Alsace, CNRS IS2M UMR 7361 F-68100 Mulhouse France
- Université de Strasbourg 67081 Strasbourg France
| | - A BaQais
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University P.O. Box 84428 Riyadh 11671 Saudi Arabia
| | - M Saadi
- Laboratoire de Chimie Appliquée des Matériaux, Centre des Sciences des Matériaux, Faculty of Sciences, Mohammed V University in Rabat Morocco
| | - H Ait Ahsaine
- Laboratoire de Chimie Appliquée des Matériaux, Centre des Sciences des Matériaux, Faculty of Sciences, Mohammed V University in Rabat Morocco
| |
Collapse
|
34
|
Farghali MA, Selim AM, Khater HF, Bagato N, Alharbi W, Alharbi KH, Taha Radwan I. Optimized adsorption and effective disposal of Congo red dye from wastewater: Hydrothermal fabrication of MgAl-LDH nanohydrotalcite-like materials. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
35
|
Li J, Liao L, Jia Y, Tian T, Gao S, Zhang C, Shen W, Wang Z. Magnetic Fe3O4/ZIF-8 optimization by Box-Behnken design and its Cd(II)-adsorption properties and mechanism. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
36
|
Liu K, Chen J, Sun F, Liu Y, Tang M, Yang Y. Historical development and prospect of intimately coupling photocatalysis and biological technology for pollutant treatment in sewage: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155482. [PMID: 35483466 DOI: 10.1016/j.scitotenv.2022.155482] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/17/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
Through the synergistic effect of photocatalysis and biodegradation, intimately coupling photocatalysis and biological (ICPB) technology could improve the removal rate and mineralization rate of refractory pollutants and reduce the toxicity of intermediate products. ICPB system was characterized with the advantages of simple operation, low energy consumption and high treatment efficiency. As a new sewage treatment technology, ICPB system has shown great potential in the treatment of refractory pollutants, and has been widely concerned. In this study, the research progress of photocatalyst, carrier and biofilm in ICPB system were discussed, and the degradation mechanism was introduced. The shortcomings of the current ICPB system were pointed out, and the possible research directions of ICPB in the future were proposed. This review aimed to deepen the understanding of ICPB technology and promoted the further development of ICPB technology in the treatment of refractory pollutants.
Collapse
Affiliation(s)
- Kai Liu
- School of Life Sciences, Qufu Normal University, Qufu 273165, PR China
| | - Junfeng Chen
- School of Life Sciences, Qufu Normal University, Qufu 273165, PR China.
| | - Fengfei Sun
- School of Life Sciences, Qufu Normal University, Qufu 273165, PR China
| | - Yanyan Liu
- School of Life Sciences, Qufu Normal University, Qufu 273165, PR China
| | - Meizhen Tang
- School of Life Sciences, Qufu Normal University, Qufu 273165, PR China
| | - Yuewei Yang
- School of Life Sciences, Qufu Normal University, Qufu 273165, PR China.
| |
Collapse
|
37
|
In situ
synthesis of Cu‐doped ZIF‐8 for efficient photocatalytic water splitting. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
38
|
Liu K, Yang Y, Sun F, Liu Y, Tang M, Chen J. Rapid degradation of Congo red wastewater by Rhodopseudomonas palustris intimately coupled carbon nanotube - Silver modified titanium dioxide photocatalytic composite with sodium alginate. CHEMOSPHERE 2022; 299:134417. [PMID: 35351474 DOI: 10.1016/j.chemosphere.2022.134417] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
With a large number of Congo red used in textiles, Congo red wastewater was not easily degraded, resulting in environmental and health-related problems. In order to improve the degradation efficiency of Congo red wastewater, A novel intimately coupled photocatalysis and biodegradation (ICPB) system was prepared by coupling Rhodopseudomonas palustris (R. Palustris), carbon nanotube - silver modified titanium dioxide photocatalytic composite (CNT-Ag -TiO2, CAT) and sodium alginate (SA) (R. palustris/CAT@SA). Compared with immobilized CAT and R. palustris, the R. palustris/CAT@SA improved the degradation and removal rates of Congo red by 14.3% and 42.1%, and the COD removal rates by 76% and 44.6%, respectively. The mechanism of the degradation of Congo red by the new ICPB was that the Congo red on the surface of the support was degraded into long-chain alkanes by the superoxide and hydroxyl radicals of CAT product, and then the long-chain alkanes were completely mineralization by R. Palustris, which reduced the accumulation of intermediates in the photocatalysis. Most of the Congo red was adsorbed to the interior of the carrier was degraded into aromatic hydrocarbons by R. Palustris, and then oxidized and degraded by CAT, and a small part of the Congo red would be directly mineralized by R. Palustris. A novel technical solution of R. palustris/CAT@SA provided a potential application to the degradation of dye wastewater.
Collapse
Affiliation(s)
- Kai Liu
- School of Life Sciences, Qufu Normal University, Qufu, 273165, PR China
| | - Yuewei Yang
- School of Life Sciences, Qufu Normal University, Qufu, 273165, PR China.
| | - Fengfei Sun
- School of Life Sciences, Qufu Normal University, Qufu, 273165, PR China
| | - Yanyan Liu
- School of Life Sciences, Qufu Normal University, Qufu, 273165, PR China
| | - Meizhen Tang
- School of Life Sciences, Qufu Normal University, Qufu, 273165, PR China
| | - Junfeng Chen
- School of Life Sciences, Qufu Normal University, Qufu, 273165, PR China.
| |
Collapse
|
39
|
Kang W, Tian Y, Zhao Y, Yin X, Teng Z. Applications of nanocomposites based on zeolitic imidazolate framework-8 in photodynamic and synergistic anti-tumor therapy. RSC Adv 2022; 12:16927-16941. [PMID: 35754870 PMCID: PMC9178442 DOI: 10.1039/d2ra01102f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/06/2022] [Indexed: 11/21/2022] Open
Abstract
Due to the limitations resulting from hypoxia and the self-aggregation of photosensitizers, photodynamic therapy (PDT) has not been applied clinically to treat most types of solid tumors. Zeolitic imidazolate framework-8 (ZIF-8) is a common metal-organic framework that has ultra-high porosity, an adjustable structure, good biocompatibility, and pH-induced biodegradability. In this review, we summarize the applications of ZIF-8 and its derivatives in PDT. This review is divided into two parts. In the first part, we summarize progress in the application of ZIF-8 to enhance PDT and realize theranostics. We discuss the use of ZIF-8 to avoid the self-aggregation of photosensitizers, alleviate hypoxia, increase the PDT penetration depth, and combine PDT with multi-modal imaging. In the second part, we summarize how ZIF-8 can achieve synergistic PDT with other anti-tumor therapies, including chemotherapy, photothermal therapy, chemodynamic therapy, starvation therapy, protein therapy, gene therapy, and immunotherapy. Finally, we highlight the challenges that must be overcome for ZIF-8 to be widely applied in PDT. To the best of our knowledge, this is the first review of ZIF-8-based nanoplatforms for PDT.
Collapse
Affiliation(s)
- Wen Kang
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University Nanjing 210006 P. R. China
| | - Ying Tian
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine Nanjing 210029 P. R. China
| | - Ying Zhao
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University Nanjing 210006 P. R. China
| | - Xindao Yin
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University Nanjing 210006 P. R. China
| | - Zhaogang Teng
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications Nanjing 210046 P. R. China
| |
Collapse
|
40
|
Musarurwa H, Tavengwa NT. Advances in the application of chitosan-based metal organic frameworks as adsorbents for environmental remediation. Carbohydr Polym 2022; 283:119153. [DOI: 10.1016/j.carbpol.2022.119153] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/15/2022] [Accepted: 01/16/2022] [Indexed: 12/22/2022]
|
41
|
Liang Y, Li H, Li X, Zhang Q, Fei J, Li S, Chen S. Using recycled coffee grounds for the synthesis of ZIF-8@BC to remove Congo red in water. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 236:113450. [PMID: 35364506 DOI: 10.1016/j.ecoenv.2022.113450] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/15/2022] [Accepted: 03/20/2022] [Indexed: 06/14/2023]
Abstract
Around 6.6 million tons of spent coffee is produced per year, resulting in resources loss and potential environmental risks. Hence, a green technique is required to reuse the spent coffee grains. In this study, coffee grounds were burnt at 900 °C to generate the biochar (BC) for the synthesis of the porous adsorbent (ZIF-8 @BC) by growing ZIF-8 on the surface of BC. We applied the well-prepared ZIF-8 @BC to remove Congo red (CR) in water. The maximum adsorption capacity of ZIF-8 @BC on Congo red in water was up to 1080.4 mg/g, which was significantly higher than that of many different types of BCs reported in previous studies. The reasons for its highly efficient adsorption of CR probably was attributed to metal ions and coordinatively unsaturated sites in the material. Also, BC enabled the less aggregation of ZIF-8 to provide sufficient specific surface area for CR adsorption. From the analysis of the pseudo-second-order kinetic model and Langmuir model, the adsorption of ZIF-8 @BC on CR was a homogeneously chemical adsorption process regulated by electrostatic interaction, π-π stacking and metal coordination.
Collapse
Affiliation(s)
- Yixuan Liang
- Department of Environmental Science, Key Laboratory of Beijing on Regional Air Pollution Control, Beijing University of Technology, Beijing 100124, China
| | - Hanbing Li
- Department of Environmental Science, Key Laboratory of Beijing on Regional Air Pollution Control, Beijing University of Technology, Beijing 100124, China
| | - Xiaotong Li
- Department of Environmental Science, Key Laboratory of Beijing on Regional Air Pollution Control, Beijing University of Technology, Beijing 100124, China
| | - Qiyu Zhang
- Department of Environmental Science, Key Laboratory of Beijing on Regional Air Pollution Control, Beijing University of Technology, Beijing 100124, China
| | - Jiaying Fei
- Department of Environmental Science, Key Laboratory of Beijing on Regional Air Pollution Control, Beijing University of Technology, Beijing 100124, China
| | - Sumei Li
- Department of Environmental Science, Key Laboratory of Beijing on Regional Air Pollution Control, Beijing University of Technology, Beijing 100124, China
| | - Sha Chen
- Department of Environmental Science, Key Laboratory of Beijing on Regional Air Pollution Control, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
42
|
Yun Y, Fang Y, Fu W, Du W, Zhu Y, Sheng H, Astruc D, Zhu M. Exploiting the Fracture in Metal-Organic Frameworks: A General Strategy for Bifunctional Atom-Precise Nanocluster/ZIF-8(300 °C) Composites. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107459. [PMID: 35306723 DOI: 10.1002/smll.202107459] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/06/2022] [Indexed: 06/14/2023]
Abstract
Atom-precise nanoclusters-metal-organic framework (APNC/MOF) composites, as bifunctional material with well-defined structures, have attracted considerable attention in recent years. Despite the progress made to date, there is an urgent need to develop a generic and scalable approach for all APNCs. Herein, the authors present the Exploiting Fracture Strategy (EFS) and successfully construct a super-stable bifunctional APNC/ZIF-8(300 °C) composite overcoming the limitations of previous strategies in selecting APNCs. The EFS utilizes the fracture of ZnN in ZIF-8 after annealing at 300 °C. This method is suitable for all kinds of S/P protected APNCs with different sizes, including uncharged clusters Au1 Ag39 , Ag40 , negatively charged Au12 Ag32 , positively charged Ag46 Au24 , Au4 Cu4 and P-ligand-protected Pd3 Cl. Importantly, the generated APNC/MOF show significantly improved performances, for example, the activities of Au12 Ag32 /ZIF-8(300°C), Au4 Cu4 /ZIF-8(300°C), and Au1 Ag39 /ZIF-8(300°C) in the corresponding reactions are higher than those of Au12 Ag32 , Au4 Cu4 , and Au1 Ag39 , respectively. In particular, Au12 Ag32 /ZIF-8(300 °C) shows higher activity than Au12 Ag32 @ZIF-8. Therefore, this work offers guidance for the design of bifunctional APNC/MOF composites with excellent optimization of properties and opens up new horizons for future related nanomaterial studies and nanocatalyst designs.
Collapse
Affiliation(s)
- Yapei Yun
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, China
| | - Yaping Fang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, China
| | - Wengang Fu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, China
| | - Wenjun Du
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, China
| | - Yanan Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, China
| | - Hongting Sheng
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, China
| | - Didier Astruc
- Université de Bordeaux, Talence Cedex, 33405, France
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, China
| |
Collapse
|
43
|
Yang Y, Liu K, Sun F, Liu Y, Chen J. Enhanced performance of photocatalytic treatment of Congo red wastewater by CNTs-Ag-modified TiO 2 under visible light. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:15516-15525. [PMID: 34626335 DOI: 10.1007/s11356-021-16734-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
In order to improve the treatment efficiency of printing and dyeing wastewater, the carbon nanotubes-silver-modified-titanium dioxide (CNTs-Ag-TiO2, CAT) ternary composite was prepared by a mechanical mixing method. It was found that the morphology of the prepared CAT sample was uniformly coated with strips of CNTs, speckled Ag, and lumpy TiO2. The (002) crystal plane of CNTs, the (101) crystal plane of TiO2, and the (111) crystal plane of Ag were observed, which possessed functional groups such as Ti-OH and Ti-O-C, indicating that the prepared CAT sample had photocatalytic reaction sites. The visible light utilization of titanium dioxide can be improved. The treatment effect of different proportions of CNTs-Ag-TiO2 on Congo red wastewater was tested, and the results showed that the optimum degradation effect of Congo red wastewater was CNTs: Ag = 10:1, and the doped amount of CNTs/Ag was 15%, and the removal rate of Congo red wastewater could reach 100% within 140 min. The excellent removal effect of CAT ternary composite on Congo red wastewater provided a new idea and way for the modification of TiO2 and its composites for the potential of organic dyes degradation.
Collapse
Affiliation(s)
- Yuewei Yang
- School of Life Sciences, Qufu Normal University, Qufu, 273165, People's Republic of China
| | - Kai Liu
- School of Life Sciences, Qufu Normal University, Qufu, 273165, People's Republic of China
| | - Fengfei Sun
- School of Life Sciences, Qufu Normal University, Qufu, 273165, People's Republic of China
| | - Yanyan Liu
- School of Life Sciences, Qufu Normal University, Qufu, 273165, People's Republic of China
| | - Junfeng Chen
- School of Life Sciences, Qufu Normal University, Qufu, 273165, People's Republic of China.
| |
Collapse
|
44
|
He L, Chen Y, Li Y, Sun F, Zhao Y, Yang S. Adsorption of Congo red and tetracycline onto water treatment sludge biochar: characterisation, kinetic, equilibrium and thermodynamic study. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 85:1936-1951. [PMID: 35358080 DOI: 10.2166/wst.2022.085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this study, readily available inexpensive water treatment sludge (WTS) was used to prepare adsorbent for the removal of Congo red (CR) and tetracycline (TC) from aqueous solutions. The structural characteristics and adsorption properties of WTS biochar were characterised via scanning electron microscope, energy dispersive X-ray spectroscopy, Brunauer-Emmett-Teller and Fourier Transform infrared spectroscopy. In batch experiments, the adsorption factors, kinetics, isothermal curves and thermodynamics of the adsorption properties were investigated. The optimum preparation condition of WTS biochar was 400 °C for 4 h under O2-limited pyrolysis, which exhibited increased specific surface area and pore structures. The best adsorption was observed when the pH of the CR and TC solutions was 7 and 4, respectively. The adsorption process followed the pseudo-second-order model, indicating that the main control step was the chemical adsorption process. Isotherm data were best described by the Langmuir model, and the maximum adsorption capacities for CR and TC were 116.4 and 58.5 mg·g-1, respectively. Thermodynamic parameters revealed that the adsorption process was spontaneous and endothermic. According to the analysis, the adsorption mechanism of CR could be attributed to electrostatic attraction, π-π conjugation and hydrogen bonding, whereas that of TC was potentially associated with cation exchange, complex precipitation, π-π conjugation and hydrogen bonding.
Collapse
Affiliation(s)
- Liwenze He
- School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Yu Chen
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China E-mail:
| | - Yanjun Li
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China E-mail:
| | - Fei Sun
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China E-mail:
| | - Yuting Zhao
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China E-mail:
| | - Shunsheng Yang
- School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| |
Collapse
|
45
|
Zhu T, Qi P, Wang J, Di S, Wang Z, Xu H, Zhao H, Wang Q, Wang X, Zhang C. Zeolitic imidazolate framework-8 as a dispersive solid phase extraction sorbent for simultaneous determination of 145 pesticide residues in polyphenol-rich plants. J Sep Sci 2022; 45:1326-1335. [PMID: 35172035 DOI: 10.1002/jssc.202100814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 11/09/2022]
Abstract
Many plants showed higher polyphenol content, which caused the matrix effect and made the analysis of trace pesticide residues highly challenging. A common approach to improving matrix effects is to purify pesticides through the use of sorbents, but this requires a combination of multiple sorbents and extensive use. Zeolitic imidazolate framework-8 is widely used for pesticide analysis due to its high porosity, large specific surface area and versatility. Here, We established and validated a modified quick, easy, cheap, effective, rugged, and safe method based on a zeolitic imidazolate framework-8 that was used to test the removal ability for polyphenols. And 145 pesticide residues in peppermint, perilla, fennel, and mulberry leaves were analyzed by the modified method coupled with LC-MS/MS. The mean recoveries of all pesticide residues were in the range of 74.3%-103.7%, with mean relative standard deviations≤ 9.1% at spiked concentrations of 1, 10, 50, and 100 μg kg-1 for mulberry leaves. The limits of quantitation of the method ranged from 1 to 50 μg kg-1 . This study offers a reliable approach for the accurate quantitative analysis of various trace substances in the polyphenol-rich plants. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Telin Zhu
- College of Food Science and Engineering, Hainan University, Haikou, 570228, China
| | - Peipei Qi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, P. R. China.,Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Hangzhou, 310021, P. R. China.,Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou, 310021, P. R. China
| | - Jiao Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, P. R. China.,Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Hangzhou, 310021, P. R. China.,Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou, 310021, P. R. China
| | - Shanshan Di
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, P. R. China.,Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Hangzhou, 310021, P. R. China.,Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou, 310021, P. R. China
| | - Zhiwei Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, P. R. China.,Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Hangzhou, 310021, P. R. China.,Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou, 310021, P. R. China
| | - Hao Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, P. R. China.,Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Hangzhou, 310021, P. R. China.,Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou, 310021, P. R. China
| | - Huiyu Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, P. R. China.,Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Hangzhou, 310021, P. R. China.,Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou, 310021, P. R. China
| | - Qiang Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, P. R. China.,Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Hangzhou, 310021, P. R. China.,Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou, 310021, P. R. China
| | - Xinquan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, P. R. China.,Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Hangzhou, 310021, P. R. China.,Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou, 310021, P. R. China
| | - Chenghui Zhang
- College of Food Science and Engineering, Hainan University, Haikou, 570228, China
| |
Collapse
|
46
|
Metal-organic framework grown in situ on chitosan microspheres as robust host of palladium for heterogeneous catalysis: Suzuki reaction and the p-nitrophenol reduction. Int J Biol Macromol 2022; 206:232-241. [PMID: 35157903 DOI: 10.1016/j.ijbiomac.2022.02.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/30/2022] [Accepted: 02/04/2022] [Indexed: 01/05/2023]
Abstract
In this study, the metal-organic framework ZIF-8 has been successfully planted on the surface of chitosan microspheres (CS/PDA@ZIF-8) using polydopamine as connecting material for the first time, which avoids the use of expensive, non-renewable, and non-biodegradable polystyrene microspheres commonly used as templates to prepare core-shell structures. Moreover, the metal-organic framework ZIF-8 was prepared specially by three different methods and all characterized by SEM, TEM, and BET, and the ZIF-8 shell prepared at room temperature presents a regular morphology, uniform size, large specific surface area (353.1 m2/g) than the shells prepared by the other methods including. The CS/PDA@ZIF-825@Pd with high catalytic activity and high stability was especially prepared by encapsulating Pd nanoparticles into the pores of CS/PDA@ZIF-825. Notably, the fabricated catalyst performed well in an array of reactions, for example the Kapp value of the p-nitrophenol reduction reaction reached 0.0426 s-1, and the TOF of the Suzuki coupling reaction reached 128 h-1. In addition, the ZIF-67, UiO-66, UiO-66-NH2, HKUST-1, and NH2-MIL-53(Al) were also grown on chitosan microcapsules successively to prepare the core-shell microspheres, which prove the universal applicability of this strategy. And beyond that, the introduction of chitosan microspheres endows the material with biodegradable properties and excellent recycling properties.
Collapse
|
47
|
Wan Y, Fang J, Wang Y, Sun J, Sun Y, Sun X, Qi M, Li W, Li C, Zhou Y, Xu L, Dong B, Wang L. Antibacterial Zeolite Imidazole Frameworks with Manganese Doping for Immunomodulation to Accelerate Infected Wound Healing. Adv Healthc Mater 2021; 10:e2101515. [PMID: 34558227 DOI: 10.1002/adhm.202101515] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/06/2021] [Indexed: 12/30/2022]
Abstract
Numerous nanomedicines currently emerge to reduce the dramatic threat in antibiotics resistance for antibacterial application against severe bacterial infections, while it is restricted by over-reacted immune response to pathogenic bacteria. Herein, enzymatic activity is introduced into the zeolitic imidazolate framework-8 (ZIF-8) to achieve sterilization by releasing Zn ions, as well as inflammation regulation through the variable valence of Mn ions that are uniformly doped into its framework. Within this simple metal organic framework (MOF) structure design, Mn-ZIF-8 possesses the co-existence of Mn2+ /Mn4+ to endow the nanocomposite with the anti-inflammatory capabilities, which can be adjusted through the redox environment. The enzymatic activity of Mn ions and superiority of pore structure of ZIF-8 are effectively combined to realize the substrate selection via reactant molecular size and high-efficiency internal catalytic performance. By such design, this nanocomposite would not only exhibit an excellent antibacterial performance against pathogenic bacteria, but also reshape the inflammatory immunity by regulating macrophage polarization to suppress over-reacted inflammation, leading to a favorably therapeutic efficiency on bacteria-infected wound healing in animal models. Taken together, this nanoplatform provides effective approach for accelerating infected wound healing via bacteria killing and inflammation modulation, and may be extended for the therapy of other severe bacteria-induced infections.
Collapse
Affiliation(s)
- Yao Wan
- Department of Oral Implantology, Hospital of Stomatology Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, Jilin University, Changchun, 130021, China
| | - Jiao Fang
- Department of Oral Implantology, Hospital of Stomatology Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, Jilin University, Changchun, 130021, China
| | - Yu Wang
- Department of Prosthodontics, School of Dentistry, Jilin University, Changchun, 130021, China
| | - Jiao Sun
- Department of Cell Biology, Norman Bethune College of Medicine, Jilin University, Changchun, 130021, China
| | - Yue Sun
- Department of Oral Implantology, Hospital of Stomatology Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, Jilin University, Changchun, 130021, China
| | - Xiaolin Sun
- Department of Oral Implantology, Hospital of Stomatology Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, Jilin University, Changchun, 130021, China
| | - Manlin Qi
- Department of Oral Implantology, Hospital of Stomatology Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, Jilin University, Changchun, 130021, China
| | - Wen Li
- Department of Oral Implantology, Hospital of Stomatology Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, Jilin University, Changchun, 130021, China
| | - Chunyan Li
- Department of Prosthodontics, School of Dentistry, Jilin University, Changchun, 130021, China
| | - Yanmin Zhou
- Department of Oral Implantology, Hospital of Stomatology Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, Jilin University, Changchun, 130021, China
| | - Lin Xu
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Biao Dong
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Lin Wang
- Department of Oral Implantology, Hospital of Stomatology Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, Jilin University, Changchun, 130021, China
| |
Collapse
|
48
|
Dai H, Yuan X, Jiang L, Wang H, Zhang J, Zhang J, Xiong T. Recent advances on ZIF-8 composites for adsorption and photocatalytic wastewater pollutant removal: Fabrication, applications and perspective. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213985] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
49
|
Zhang M, Ye S, Wang J, Yu K, Cao J, Li G, Liao X. In situ growth zeolite imidazole framework materials on chitosan for greatly enhanced antibacterial effect. Int J Biol Macromol 2021; 186:639-648. [PMID: 34273340 DOI: 10.1016/j.ijbiomac.2021.07.072] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/03/2021] [Accepted: 07/11/2021] [Indexed: 12/17/2022]
Abstract
Zeolite imidazole framework materials (ZIFs) are a new type of antibacterial material with high chemical and thermal stability, and good antibacterial effect. However, powder ZIFs materials have the disadvantages of difficult separation and easy aggregation, which limit their application. In this work, ZIFs and chitosan (CS) were compounded by in-situ growth method to prepare a new antibacterial agent. The synergism of CS and ZIFs can effectively promote antibacterial effect compared with CS and pristine ZIFs, and CS/ZIF-67(1:6) has the best antibacterial activity, and its inhibitory rate (in 15 h) of E. coli is 96.75%, and the inhibitory rate of S. aureus reaches as high as 100%. This composites can effectively cause bacterial cell membrane rupture and leakage of internal nucleic acid and protein, leads to achieve antibacterial effect, and also exhibit excellent long-term (at least 5 days) antibacterial properties, the leaching of cobalt is below than 0.5 mg·L-1, and this composites are with excellent bio-compatibility.
Collapse
Affiliation(s)
- Meng Zhang
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, China
| | - Shan Ye
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, China
| | - Jiao Wang
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, China
| | - Kuo Yu
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, China
| | - Jingguo Cao
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, China
| | - Guangbi Li
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, China.
| | - Xiaoyuan Liao
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, China.
| |
Collapse
|
50
|
Feng S, Du X, Bat-Amgalan M, Zhang H, Miyamoto N, Kano N. Adsorption of REEs from Aqueous Solution by EDTA-Chitosan Modified with Zeolite Imidazole Framework (ZIF-8). Int J Mol Sci 2021; 22:3447. [PMID: 33810580 PMCID: PMC8038009 DOI: 10.3390/ijms22073447] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/24/2021] [Accepted: 03/24/2021] [Indexed: 11/16/2022] Open
Abstract
Chitosan (CS) modified with ethylenediamine tetraacetic acid (EDTA) was further modified with the zeolite imidazole framework (ZIF-8) by in situ growth method and was employed as adsorbent for the removal of rare-earth elements (REEs). The material (EDTA-CS@ZIF-8) and ZIF-8 and CS were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), and nitrogen adsorption/desorption experiments (N2- Brunauer-Emmet-Teller (BET)). The effects of adsorbent dosage, temperature, the pH of the aqueous solution, contact time on the adsorption of REEs (La(III), Eu(III), and Yb(III)) by EDTA-CS@ZIF-8 were studied. Typical adsorption isotherms (Langmuir, Freundlich, and Dubinin-Radushkevich (D-R)) were determined for the adsorption process, and the maximal adsorption capacity was estimated as 256.4 mg g-1 for La(III), 270.3 mg g-1 for Eu(III), and 294.1 mg g-1 for Yb(III). The adsorption kinetics results were consistent with the pseudo-second-order equation, indicating that the adsorption process was mainly chemical adsorption. The influence of competing ions on REE adsorption was also investigated. After multiple cycles of adsorption/desorption behavior, EDTA-CS@ZIF-8 still maintained high adsorption capacity for REEs. As a result, EDTA-CS@ZIF-8 possessed good adsorption properties such as stability and reusability, which have potential application in wastewater treatment.
Collapse
Affiliation(s)
- Sihan Feng
- Graduate School of Science and Technology, Niigata University, 8050 Ikarashi 2-Nocho, Nishi-ku, Niigata 950-2181, Japan; (S.F.); (X.D.); (M.B.-A.); (H.Z.)
| | - Xiaoyu Du
- Graduate School of Science and Technology, Niigata University, 8050 Ikarashi 2-Nocho, Nishi-ku, Niigata 950-2181, Japan; (S.F.); (X.D.); (M.B.-A.); (H.Z.)
| | - Munkhpurev Bat-Amgalan
- Graduate School of Science and Technology, Niigata University, 8050 Ikarashi 2-Nocho, Nishi-ku, Niigata 950-2181, Japan; (S.F.); (X.D.); (M.B.-A.); (H.Z.)
| | - Haixin Zhang
- Graduate School of Science and Technology, Niigata University, 8050 Ikarashi 2-Nocho, Nishi-ku, Niigata 950-2181, Japan; (S.F.); (X.D.); (M.B.-A.); (H.Z.)
| | - Naoto Miyamoto
- Department of Chemistry and Chemical Engineering, Faculty of Engineering, Niigata University, 8050 Ikarashi 2-Nocho, Nishi-ku, Niigata 950-2181, Japan;
| | - Naoki Kano
- Department of Chemistry and Chemical Engineering, Faculty of Engineering, Niigata University, 8050 Ikarashi 2-Nocho, Nishi-ku, Niigata 950-2181, Japan;
| |
Collapse
|