1
|
Silva EM, Milagres AMF. Enzymatic analysis of eucalyptus harvest residue decomposition by lentinula edodes for enhanced crop management and conservation. World J Microbiol Biotechnol 2025; 41:133. [PMID: 40216633 DOI: 10.1007/s11274-025-04346-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/30/2025] [Indexed: 04/23/2025]
Abstract
Eucalypt wastes (EW), comprising bark, leaf and branches, when retained and distributed on-site are a valuable source of nutrients for soil and microbial biomass. This study investigates the acceleration of EW biodegradation through the introduction of the edible fungus Lentinula edodes in-vitro cultures. Production of enzymes, ergosterol and organic matter consumption (OMC) were assessed in the spent mushroom compost over 90-days incubation. Concurrently, the residual solid decreased to 71.9%, with 35% reduction in lignin and hemicellulose and 28.5% loss of cellulose. EW substrate was supplemented with rice bran (RB) and soybean bran (SB) in different ratios to explore L. edodes enzyme production during substrate decomposition. Composition of EW supplemented with cereal brans (CB) provided high production of endoglucanase (2,300 U / kg) within 45 days, β-glucosidase (375 U / kg) in 60 days. Productions of 80,000 U / kg of xylanase and 195 U / kg of β-xylosidase occurred in 45 days of cultivation. Laccase (3,750 U / kg) was determined in 60 days, along with manganese peroxidase (MnP) (6,000 U / kg) in 75 days in EW: SB (90:10). Ergosterol extraction (45 mg / kg) and L. edodes mycelial biomass (11 g / kg) was obtained in all combinations of EW and CB. The maximum biological efficiency (BE) of 67% was achieved in a single cycle with EW: RB 90:10. Overall, L. edodes emerges as a promising resource for EW biodegradation, and this work sheds light on applications for fungus-based degradation in forest eucalypt plantations. For fungus-based degradation in forest eucalyptus plantations. Parte superior do formulário.
Collapse
Affiliation(s)
- Ezequiel Marcelino Silva
- Department of Biotechnology, Federal University of Tocantins, Gurupi, TO, CEP 77 402 970, Brazil.
| | | |
Collapse
|
2
|
Kang L, Zhu X, Yan Y, Zhu R, Wei W, Peng F, Sun L. Characterization and Antioxidant Activity of Polysaccharides From Agaricus bisporus by Gradient Ethanol Precipitation. Chem Biodivers 2025:e202500120. [PMID: 40165028 DOI: 10.1002/cbdv.202500120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/28/2025] [Accepted: 03/31/2025] [Indexed: 04/02/2025]
Abstract
In this present work, the polysaccharides from Agaricus bisporus were extracted and fractioned with gradient ethanol precipitation method for the first time. Five fractions (ABP40, ABP50, ABP60, ABP70, and ABP80) were obtained with ethanol concentrations of 40%, 50%, 60%, 70%, and 80%, respectively, and their characteristics and antioxidant activities in vitro were investigated. The five fractions presented significant differences in total sugar, protein, and uronic acid content, with a marked discrepancy in the molar ratio of the monosaccharide composition. The molecular weights of the polysaccharides decreased with increasing ethanol concentration. Compared to the other four fractions, ABP70, which has the highest uronic acid content, showed more conspicuous radical-scavenging activities against hydroxyl (89.9 ± 0.33%) and DPPH radicals (80.1 ± 0.01%). Moreover, it was found that the total sugar content and antioxidant activities of polysaccharides increased with the extension of precipitation time, with the highest antioxidant activities at 24 h. Therefore, ABP70, precipitated for 24 h, may have a potential application value for the development of antioxidants. This study provides valuable information for the further commercial applications of polysaccharides from Agaricus bisporus.
Collapse
Affiliation(s)
- Liqin Kang
- School of Life Sciences and Chemical Engineering, Jiangsu Second Normal University, Nanjing, China
| | - Xinji Zhu
- School of Life Sciences and Chemical Engineering, Jiangsu Second Normal University, Nanjing, China
| | - Yangtian Yan
- School of Life Sciences and Chemical Engineering, Jiangsu Second Normal University, Nanjing, China
| | - Rui Zhu
- School of Life Sciences and Chemical Engineering, Jiangsu Second Normal University, Nanjing, China
| | - Wei Wei
- School of Life Sciences and Chemical Engineering, Jiangsu Second Normal University, Nanjing, China
| | - Fei Peng
- Department of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, China
| | - Lei Sun
- School of Life Sciences and Chemical Engineering, Jiangsu Second Normal University, Nanjing, China
| |
Collapse
|
3
|
Wen C, Ye Z, Liu G, Liang L, Liu X, Li Y, Xu X, Zhang J. Isolation, Purification, and Characterization of Lentinus edodes Polysaccharides Extracted With Subcritical Water Enhanced With Deep Eutectic Solvent. Chem Biodivers 2025:e202402658. [PMID: 39825856 DOI: 10.1002/cbdv.202402658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/02/2025] [Accepted: 01/18/2025] [Indexed: 01/20/2025]
Abstract
The Lentinus edodes polysaccharide (LEP) was extracted with a new subcritical water extraction (SWE) enhanced with deep eutectic solvent (DES) method and then purified with a DEAE-52 cellulose column and a Sephadex G-100 column. Two purified polysaccharides (LEP1 and LEP2) were obtained, and their structure, antioxidant activity, and immunomodulatory activity were analyzed. LEP1 and LEP2 were composed of mannose, glucose, and galactose with a molar ratio of 1:12.97:7.84 and 1:51.18:5.29, respectively. The molecular weights were 9.878 × 104 and 1.976 × 104 Da, respectively. Interestingly, both LEP1 and LEP2 were mainly composed of →4)-β-d-Glcp-(1→, →6)-β-d-Glcp-(1→ and →6)-α-d-Galp-(1→ with different molar ratio. Besides, both LEP1 and LEP2 had strong DPPH free radical scavenging activity and Fe2+ chelating capacity. Moreover, they could reduce the level of reactive oxygen species (ROS) and regulate the activities of malondialdehyde (MDA), catalase (CAT), and superoxide dismutase (SOD) in HepG2 cells, demonstrating strong antioxidant activity. Furthermore, both LEP1 and LEP2 could improve the phagocytic capacity, nitric oxide (NO) release, and the content of interleukin (IL)-6, IL-1β, and tumor necrosis factor-α (TNF-α) in RAW264.7 cells, exhibiting significant immunostimulatory activity. It was worth noting that LEP2 exhibited stronger biological activities than LEP1. Therefore, the SWE enhanced with DES is an ideal method for extracting polysaccharides, which can be further applied to extract other polysaccharides.
Collapse
Affiliation(s)
- Chaoting Wen
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Zhiqiang Ye
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Guoyan Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Li Liang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Xiaofang Liu
- School of Tourism and Cuisine, Yangzhou University, Yangzhou, China
| | - Youdong Li
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Xin Xu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Jixian Zhang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China
| |
Collapse
|
4
|
Chen P, Li X, Zhang Y, Wang H, Yu Y, Wu C, Jia L, Zhang J. Oudemansiella radicata polysaccharides alleviated LPS-induced liver damage via regulating TLR4/NF-κB and Bax/Bcl-2 signaling pathways. Int J Biol Macromol 2024; 282:137370. [PMID: 39521227 DOI: 10.1016/j.ijbiomac.2024.137370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/20/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
The study was aimed to develop natural non-toxic substances to prevent LPS-induced liver damages and its complications. In present work, a pyranose polysaccharide of Oudemansiella radicata polysaccharides (ORP) with typical characteristics of α-type glycosidic linkage was isolated from the O. radicata fruiting body by physico-chemical analysis, and the potential impact against LPS-induced liver damage were performed in mice model. The results demonstrated that ORP showed significant hepatoprotective effects through its potential anti-oxidative, anti-inflammatory and anti-apoptosis activities via regulating the TLR4/NF-κB and Bax/Bcl-2 signaling pathway, independently or synergistically. These findings had established a robust theoretical framework for promoting the comprehensive utilization of ORP as supplements in the development of functional foods or drugs targeting LPS-induced liver damage and its associated complications.
Collapse
Affiliation(s)
- Peiying Chen
- College of Life Science, Shandong Agricultural University, Taian 271018, China; Shandong Ocean Agricultural Development Co. LTD, Jining 272600, China
| | - Xiaoxu Li
- College of Life Science, Shandong Agricultural University, Taian 271018, China
| | - Yiwen Zhang
- College of Life Science, Shandong Agricultural University, Taian 271018, China
| | - Houpeng Wang
- Shandong Ocean Agricultural Development Co. LTD, Jining 272600, China
| | - Yunke Yu
- College of Life Science, Shandong Agricultural University, Taian 271018, China
| | - Chao Wu
- College of Life Science, Shandong Agricultural University, Taian 271018, China
| | - Le Jia
- College of Life Science, Shandong Agricultural University, Taian 271018, China; Shandong Ocean Agricultural Development Co. LTD, Jining 272600, China.
| | - Jianjun Zhang
- College of Life Science, Shandong Agricultural University, Taian 271018, China; Shandong Ocean Agricultural Development Co. LTD, Jining 272600, China.
| |
Collapse
|
5
|
Kaleta B, Zielniok K, Roszczyk A, Turło J, Zagożdżon R. Selenopolysaccharide Isolated from Lentinula edodes Mycelium Affects Human T-Cell Function. Int J Mol Sci 2024; 25:11576. [PMID: 39519128 PMCID: PMC11546230 DOI: 10.3390/ijms252111576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/23/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Lentinula edodes polysaccharides are natural immunomodulators. SeLe30, analyzed in this study, is a new mixture of selenium-enriched linear 1,4-α-glucans and 1,3-β- and 1,6-β-glucans isolated from L. edodes mycelium. In the present study, we evaluated its immunomodulatory properties in human T cells. Peripheral blood mononuclear cells (PBMCs) and T cells were isolated from healthy donors' buffy coats. The effects of SeLe30 on CD25, CD366, and CD279 expression, the subsets of CD8+ T cells, and IFN-γ, IL-6, and TNF-α production were analyzed. SeLe30 downregulated CD25, CD279, and CD366 expression on T cells stimulated by the anti-CD3 antibody (Ab) and upregulated in unstimulated and anti-CD3/CD28-Abs-stimulated T cells. It increased the percentage of central memory CD8+ T cells in unstimulated PBMCs and naïve and central memory T cells in anti-CD3-Ab-stimulated PBMCs. SeLe30 decreased the number of central memory and naïve CD8+ T cells in anti-CD3/CD28-stimulated T cells, whereas, in PBMCs, it reduced the percentage of effector memory CD8+ T cells. Moreover, SeLe30 upregulated cytokine production. SeLe30 exhibits context-dependent effects on T cells. It acts on unstimulated T cells, affecting their activation while increasing the expression of immune checkpoints, which sensitizes them to inhibitory signals that can silence this activation. In the case of a lack of costimulation, SeLe30 exhibits an inhibitory effect, reducing T-cell activation. In cells stimulated by dual signals, its effect is further enhanced, again increasing the "safety brake" of CD366 and CD279. However, the final SeLe30 effect is mediated by its indirect impacts by altering interactions with other immune cells.
Collapse
Affiliation(s)
- Beata Kaleta
- Department of Clinical Immunology, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland;
| | - Katarzyna Zielniok
- Laboratory of Cellular and Genetic Therapies, Center for Preclinical Research, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland;
| | - Aleksander Roszczyk
- Department of Clinical Immunology, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland;
| | - Jadwiga Turło
- Department of Drug Technology and Pharmaceutical Biotechnology, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland;
| | - Radosław Zagożdżon
- Laboratory of Cellular and Genetic Therapies, Center for Preclinical Research, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland;
| |
Collapse
|
6
|
Ye Y, Li M, Chen W, Wang H, He X, Liu N, Guo Z, Zheng C. Natural polysaccharides as promising reno-protective agents for the treatment of various kidney injury. Pharmacol Res 2024; 207:107301. [PMID: 39009291 DOI: 10.1016/j.phrs.2024.107301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/13/2024] [Accepted: 07/07/2024] [Indexed: 07/17/2024]
Abstract
Renal injury, a prevalent clinical outcome with multifactorial etiology, imposes a substantial burden on society. Currently, there remains a lack of effective management and treatments. Extensive research has emphasized the diverse biological effects of natural polysaccharides, which exhibit promising potential for mitigating renal damage. This review commences with the pathogenesis of four common renal diseases and the shared mechanisms underlying renal injury. The renoprotective roles of polysaccharides in vivo and in vitro are summarized in the following five aspects: anti-oxidative stress effects, anti-apoptotic effects, anti-inflammatory effects, anti-fibrotic effects, and gut modulatory effects. Furthermore, we explore the structure-activity relationship and bioavailability of polysaccharides in relation to renal injury, as well as investigate their utility as biomaterials for alleviating renal injury. The clinical experiments of polysaccharides applied to patients with chronic kidney disease are also reviewed. Broadly, this review provides a comprehensive perspective on the research direction of natural polysaccharides in the context of renal injury, with the primary aim to serve as a reference for the clinical development of polysaccharides as pharmaceuticals and prebiotics for the treatment of kidney diseases.
Collapse
Affiliation(s)
- Yufei Ye
- Department of Chinese Medicine Authentication, Faculty of Pharmacy, Second Military Medical University/Naval Medical University, 325 Guohe Road, Shanghai 200433, China; Department of Nephrology, Changhai Hospital, Second Military Medical University/Naval Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Maoting Li
- Department of Chinese Medicine Authentication, Faculty of Pharmacy, Second Military Medical University/Naval Medical University, 325 Guohe Road, Shanghai 200433, China; Department of Nephrology, Naval Medical Center of PLA, Second Military Medical University/Naval Medical University, 338 West Huaihai Road, Shanghai 200052, China
| | - Wei Chen
- Department of Nephrology, Changhai Hospital, Second Military Medical University/Naval Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Hongrui Wang
- Department of Chinese Medicine Authentication, Faculty of Pharmacy, Second Military Medical University/Naval Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Xuhui He
- Department of Chinese Medicine Authentication, Faculty of Pharmacy, Second Military Medical University/Naval Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Nanmei Liu
- Department of Nephrology, Naval Medical Center of PLA, Second Military Medical University/Naval Medical University, 338 West Huaihai Road, Shanghai 200052, China.
| | - Zhiyong Guo
- Department of Nephrology, Changhai Hospital, Second Military Medical University/Naval Medical University, 168 Changhai Road, Shanghai 200433, China.
| | - Chengjian Zheng
- Department of Chinese Medicine Authentication, Faculty of Pharmacy, Second Military Medical University/Naval Medical University, 325 Guohe Road, Shanghai 200433, China.
| |
Collapse
|
7
|
Bermúdez-Oria A, Castejón ML, Rubio-Senent F, Rodríguez-Gutiérrez G, Fernández-Bolaños J. Health-Promoting Properties of Pectin-Polyphenol Complex Extracted from Olive Oil By-Product Alperujo: Antioxidant, Antiproliferative, and Anti-Inflammatory Activities. Antioxidants (Basel) 2024; 13:1066. [PMID: 39334725 PMCID: PMC11444132 DOI: 10.3390/antiox13091066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
This research explores the health-promoting properties of the pectin-polyphenol complex extracted from alperujo, a by-product of olive oil production. This study investigates the chemical composition and antioxidant activity of the extracts, revealing their high antioxidant activity in vitro. Cell viability assays conducted on colon carcinoma cells (Caco-2) demonstrate the inhibitory effect of the extracts on cell proliferation. However, the extracts do not affect the viability of differentiated Caco-2 cells, suggesting a selective antiproliferative action. Additionally, the extracts reduce intracellular reactive oxygen species (ROS) and nitrite (NO) production in LPS-stimulated murine peritoneal macrophages. Furthermore, the extracts exhibit anti-inflammatory effects by downregulating the secretion of pro-inflammatory cytokines TNF-α, IL-1β, and IL-6 in these macrophages. These findings highlight the potential of pectin-polyphenol complexes as functional ingredients with significant health benefits, demonstrating antioxidant, antiproliferative, and anti-inflammatory properties.
Collapse
Affiliation(s)
- Alejandra Bermúdez-Oria
- Department of Food Phytochemistry, Instituto de la Grasa (Spanish National Research Council, CSIC), Pablo de Olavide University Campus, Building 46, Ctra. de Utrera km. 1, 41013 Seville, Spain; (M.L.C.); (F.R.-S.); (G.R.-G.)
| | | | | | | | - Juan Fernández-Bolaños
- Department of Food Phytochemistry, Instituto de la Grasa (Spanish National Research Council, CSIC), Pablo de Olavide University Campus, Building 46, Ctra. de Utrera km. 1, 41013 Seville, Spain; (M.L.C.); (F.R.-S.); (G.R.-G.)
| |
Collapse
|
8
|
Yin Z, Zhang J, Qin J, Guo L, Guo Q, Kang W, Ma C, Chen L. Anti-inflammatory properties of polysaccharides from edible fungi on health-promotion: a review. Front Pharmacol 2024; 15:1447677. [PMID: 39130633 PMCID: PMC11310034 DOI: 10.3389/fphar.2024.1447677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/12/2024] [Indexed: 08/13/2024] Open
Abstract
Edible fungus polysaccharides have garnered significant attention from scholars due to their safety and potential anti-inflammatory activity. However, comprehensive summaries of their anti-inflammatory properties are still rare. This paper provides a detailed overview of the anti-inflammatory effects and mechanisms of these polysaccharides, as well as their impact on inflammation-related diseases. Additionally, the relationship between their structure and anti-inflammatory activity is discussed. It is believed that this review will greatly enhance the understanding of the application of edible fungus polysaccharides in anti-inflammatory treatments, thereby significantly promoting the development and utilization of edible fungi.
Collapse
Affiliation(s)
- Zhenhua Yin
- Henan Comprehensive Utilization of Edible and Medicinal Plant Resources Engineering Technology Research Center, Huanghe Science and Technology College, Zhengzhou, China
- National R and D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China
| | - Juanjuan Zhang
- Henan Comprehensive Utilization of Edible and Medicinal Plant Resources Engineering Technology Research Center, Huanghe Science and Technology College, Zhengzhou, China
| | - Jingjing Qin
- Henan Comprehensive Utilization of Edible and Medicinal Plant Resources Engineering Technology Research Center, Huanghe Science and Technology College, Zhengzhou, China
| | - Lin Guo
- National R and D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China
| | - Qingfeng Guo
- Henan Comprehensive Utilization of Edible and Medicinal Plant Resources Engineering Technology Research Center, Huanghe Science and Technology College, Zhengzhou, China
| | - Wenyi Kang
- National R and D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China
- Function Food Engineering Technology Research Center, Kaifeng, China
| | - Changyang Ma
- National R and D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China
- Function Food Engineering Technology Research Center, Kaifeng, China
| | - Lin Chen
- Henan Comprehensive Utilization of Edible and Medicinal Plant Resources Engineering Technology Research Center, Huanghe Science and Technology College, Zhengzhou, China
| |
Collapse
|
9
|
Araújo-Rodrigues H, Sousa AS, Relvas JB, Tavaria FK, Pintado M. An Overview on Mushroom Polysaccharides: Health-promoting Properties, Prebiotic and Gut Microbiota Modulation Effects and Structure-function Correlation. Carbohydr Polym 2024; 333:121978. [PMID: 38494231 DOI: 10.1016/j.carbpol.2024.121978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/19/2024]
Abstract
Mushroom polysaccharides are recognized as "biological response modifiers". Besides several bioactivities, a growing interest in their prebiotic potential has been raised due to the gut microbiota modulation potential. This review comprehensively summarizes mushroom polysaccharides' biological properties, structure-function relationship, and underlying mechanisms. It provides a recent overview of the key findings in the field (2018-2024). Key findings and limitations on structure-function correlation are discussed. Although most studies focus on β-glucans or extracts, α-glucans and chitin have gained interest. Prebiotic capacity has been associated with α-glucans and chitin, while antimicrobial and wound healing potential is attributed to chitin. However, further research is of utmost importance. Human fecal fermentation is the most reported approach to assess prebiotic potential, indicating impacts on intestinal biological, mechanical, chemical and immunological barriers. Gut microbiota dysbiosis has been directly connected with intestinal, cardiovascular, metabolic, and neurological diseases. Concerning gut microbiota modulation, animal experiments have suggested proinflammatory cytokines reduction and redox balance re-establishment. Most literature focused on the anticancer and immunomodulatory potential. However, anti-inflammatory, antimicrobial, antiviral, antidiabetic, hypocholesterolemic, antilipidemic, antioxidant, and neuroprotective properties are discussed. A significant overview of the gaps and research directions in synergistic effects, underlying mechanisms, structure-function correlation, clinical trials and scientific data is also given.
Collapse
Affiliation(s)
- Helena Araújo-Rodrigues
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; Program of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal.
| | - Ana Sofia Sousa
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.
| | - João Bettencourt Relvas
- Program of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; Faculdade de Medicina da Universidade do Porto (FMUP), Porto, Portugal.
| | - Freni K Tavaria
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.
| | - Manuela Pintado
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.
| |
Collapse
|
10
|
Zhang Q, Xu Y, Xie L, Shu X, Zhang S, Wang Y, Wang H, Dong Q, Peng W. The function and application of edible fungal polysaccharides. ADVANCES IN APPLIED MICROBIOLOGY 2024; 127:45-142. [PMID: 38763529 DOI: 10.1016/bs.aambs.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Edible fungi, commonly known as mushrooms, are precious medicinal and edible homologous gifts from nature to us. Edible fungal polysaccharides (EFPs) are a variety of bioactive macromolecular which isolated from fruiting bodies, mycelia or fermentation broths of edible or medicinal fungus. Increasing researches have confirmed that EFPs possess multiple biological activities both in vitro and in vivo settings, including antioxidant, antiviral, anti-inflammatory, immunomodulatory, anti-tumor, hypoglycemic, hypolipidemic, and regulating intestinal flora activities. As a result, they have emerged as a prominent focus in the healthcare, pharmaceutical, and cosmetic industries. Fungal EFPs have safe, non-toxic, biodegradable, and biocompatible properties with low immunogenicity, bioadhesion ability, and antibacterial activities, presenting diverse potential applications in the food industries, cosmetic, biomedical, packaging, and new materials. Moreover, varying raw materials, extraction, purification, chemical modification methods, and culture conditions can result in variances in the structure and biological activities of EFPs. The purpose of this review is to provide comprehensively and systematically organized information on the structure, modification, biological activities, and potential applications of EFPs to support their therapeutic effects and health functions. This review provides new insights and a theoretical basis for prospective investigations and advancements in EFPs in fields such as medicine, food, and new materials.
Collapse
Affiliation(s)
- Qian Zhang
- Sichuan Institute of Edible Fungi, Chengdu, P.R. China; National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, P.R. China; Scientifc Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, P.R. China.
| | - Yingyin Xu
- Sichuan Institute of Edible Fungi, Chengdu, P.R. China; National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, P.R. China; Scientifc Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, P.R. China.
| | - Liyuan Xie
- Sichuan Institute of Edible Fungi, Chengdu, P.R. China; National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, P.R. China; Scientifc Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, P.R. China.
| | - Xueqin Shu
- Sichuan Institute of Edible Fungi, Chengdu, P.R. China; National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, P.R. China; Scientifc Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, P.R. China.
| | - Shilin Zhang
- Sichuan Institute of Edible Fungi, Chengdu, P.R. China; National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, P.R. China; Scientifc Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, P.R. China.
| | - Yong Wang
- Sichuan Institute of Edible Fungi, Chengdu, P.R. China; National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, P.R. China; Scientifc Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, P.R. China.
| | - Haixia Wang
- Horticulture Institute of Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, P.R. China.
| | - Qian Dong
- Sichuan Institute of Edible Fungi, Chengdu, P.R. China; National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, P.R. China; Scientifc Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, P.R. China.
| | - Weihong Peng
- Sichuan Institute of Edible Fungi, Chengdu, P.R. China; National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, P.R. China; Scientifc Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, P.R. China.
| |
Collapse
|
11
|
Ejaz U, Afzal M, Naveed M, Amin ZS, Atta A, Aziz T, Kainat G, Mehmood N, Alharbi M, Alasmari AF. Pharmacological evaluation and phytochemical profiling of butanol extract of L. edodes with in- silico virtual screening. Sci Rep 2024; 14:5751. [PMID: 38459108 PMCID: PMC10923892 DOI: 10.1038/s41598-024-56421-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/06/2024] [Indexed: 03/10/2024] Open
Abstract
L. edodes (L. edodes) is the most consumed mushroom in the world and has been well known for its therapeutic potential as an edible and medicinal candidate, it contains dietary fibers, vitamins, proteins, minerals, and carbohydrates. In the current study butanolic extract of mushroom was used to form semisolid butanol extract. The current study aimed to explore biometabolites that might have biological activities in n-butanol extract of L. edodes using FT-IR and GC-MS and LC-MS. The synergistic properties of bioactive compounds were futher assessed by performing different biological assays such as antioxidant, anti-inflammatory and antidiabetic. FTIR spectra showed different functional groups including amide N-H group, Alkane (C-H stretching), and (C = C stretching) groups at different spectrum peaks in the range of 500 cm-1 to 5000 cm-1 respectively. GC-MS profiling of n-butanol extract depicted 34 potent biomolecules among those dimethyl; Morphine, 2TMS derivative; Benzoic acid, methyl ester 1-(2-methoxy-1-methylethoxy)-2-propanol were spotted at highest range. Results indicate that L. edodes n-butanol extract showed a maximum anti-inflammatory potential 91.4% at 300 mg/mL. Antioxidant activity was observed by measuring free radical scavenging activity which is 64.6% at optimized concentration along with good antidiabetic activity. In-silico study executed the biopotential of active ingredient morphine which proved the best docking score (- 7.0 kJ/mol) against aldose reductase. The in-silico drug design analysis was performed on biometabolites detected through GC-MS that might be a potential target for sulfatase-2 to treat ruminated arthritis. Morphine binds more strongly (- 7.9 kJ/mol) than other bioactive constituents indicated. QSAR and ADMET analysis shown that morphine is a good candidates against ruminated arthritis. The current study showed that L. edodes might be used as potent drug molecules to cure multiple ailments. As mushrooms have high bioactivity, they can be used against different diseases and to develop antibacterial drugs based on the current situation in the world in which drug resistance is going to increase due to misuse of antibiotics so new and noval biological active compounds are needed to overcome the situation.
Collapse
Affiliation(s)
- Umer Ejaz
- Department of Biochemistry, Faculty of Science and Technology, University of Central Punjab, Lahore, 54590, Pakistan
| | - Muhammad Afzal
- Department of Biochemistry, Faculty of Science and Technology, University of Central Punjab, Lahore, 54590, Pakistan
| | - Muhammad Naveed
- Department of Biotechnology, University of Central Punjab, Lahore, 54590, Pakistan
| | - Zeemal Seemab Amin
- School of Biochemistry, Faculty of Applied Sciences, Minhaj University Lahore, Lahore, 54590, Pakistan.
| | - Asia Atta
- Department of Biochemistry, Nur international university, Lahore, 54590, Pakistan
| | - Tariq Aziz
- Laboratory of Animal Health Food Hygiene and Quality, University of Ioannina, 47132, Arta, Greece.
| | - Gul Kainat
- Department of Microbiology, University of Central Punjab, Lahore, 54590, Pakistan
| | - Noshaba Mehmood
- School of Biochemistry, Faculty of Applied Sciences, Minhaj University Lahore, Lahore, 54590, Pakistan
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Abdullah F Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
12
|
Çomaklı S, Küçükler S, Değirmençay Ş, Bolat İ, Özdemir S. Quinacrine, a PLA2 inhibitor, alleviates LPS-induced acute kidney injury in rats: Involvement of TLR4/NF-κB/TNF α-mediated signaling. Int Immunopharmacol 2024; 126:111264. [PMID: 38016342 DOI: 10.1016/j.intimp.2023.111264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/30/2023] [Accepted: 11/16/2023] [Indexed: 11/30/2023]
Abstract
Acute Kidney Injury (AKI) is a major factor in sepsis-related mortality and may occur due to lipopolysaccharide (LPS), an endotoxin produced by gram-negative bacteria that triggers a systemic acute inflammatory response. Quinacrine's (QC) renoprotective properties in sepsis and the underlying mechanism, however, are still not fully understood. This study was done to investigate the anti-inflammatory, antioxidative, and anti-apoptotic effects of QC, a phospholipase A2 (PLA2) inhibitor, against LPS-induced AKI. Rats were randomly divided into five groups: control group, QC30 group, LPS group, LPS+QC 10 group, and LPS+QC 30 group. The rats were administered intraperitoneally QC (10 and 30 mg/kg) for 3 days (once a day) prior to injection of LPS (3 mg/kg). Six hours after the LPS injection, the histopathological changes, oxidative stress, inflammation, and apoptosis in the collected kidney tissues were detected by hematoxylin and eosin staining, enzyme-linked immunosorbent assay (ELISA), real-time PCR (RT-PCR), and immunohistochemistry staining, respectively. QC pretreatment could successfully attenuate LPS-induced AKI, as evidenced by a decrease in tissue histopathological injury. Meanwhile, QC alleviated LPS-induced kidney oxidative stress; it reduced MDA levels and increased levels of SOD, CAT, GPX, and GSH. LPS-induced elevations in kidney TLR4, NF-κB, TNF-α, IL-1β, IL-6, PLA2, caspase 3, and Bax contents were significantly attenuated in QC-treated groups. Our findings revealed a significant effect of QC: protecting against LPS-induced AKI through inhibition of PLA2 and decreasing inflammation, oxidative stress, and apoptosis. To treat LPS-induced AKI, QC may be an effective substance with an excellent protection profile.
Collapse
Affiliation(s)
- Selim Çomaklı
- Department of Pathology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey.
| | - Sefa Küçükler
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey.
| | - Şükrü Değirmençay
- Department of Internal Medicine, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey.
| | - İsmail Bolat
- Department of Pathology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey.
| | - Selçuk Özdemir
- Department of Genetics, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey; German Center for Neurodegenerative Diseases, DZNE, Bonn, Germany.
| |
Collapse
|
13
|
Martín C, Zervakis GI, Xiong S, Koutrotsios G, Strætkvern KO. Spent substrate from mushroom cultivation: exploitation potential toward various applications and value-added products. Bioengineered 2023; 14:2252138. [PMID: 37670430 PMCID: PMC10484051 DOI: 10.1080/21655979.2023.2252138] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 07/28/2023] [Accepted: 08/14/2023] [Indexed: 09/07/2023] Open
Abstract
Spent mushroom substrate (SMS) is the residual biomass generated after harvesting the fruitbodies of edible/medicinal fungi. Disposal of SMS, the main by-product of the mushroom cultivation process, often leads to serious environmental problems and is financially demanding. Efficient recycling and valorization of SMS are crucial for the sustainable development of the mushroom industry in the frame of the circular economy principles. The physical properties and chemical composition of SMS are a solid fundament for developing several applications, and recent literature shows an increasing research interest in exploiting that inherent potential. This review provides a thorough outlook on SMS exploitation possibilities and discusses critically recent findings related to specific applications in plant and mushroom cultivation, animal husbandry, and recovery of enzymes and bioactive compounds.
Collapse
Affiliation(s)
- Carlos Martín
- Department of Biotechnology, Inland Norway University of Applied Sciences, Hamar, Norway
- Department of Chemistry, Umeå University, Umeå, Sweden
| | | | - Shaojun Xiong
- Department of Forest Biomaterials and Technology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | | | - Knut Olav Strætkvern
- Department of Biotechnology, Inland Norway University of Applied Sciences, Hamar, Norway
| |
Collapse
|
14
|
Ahmad I, Arif M, Mimi X, Zhang J, Ding Y, Lyu F. Therapeutic values and nutraceutical properties of shiitake mushroom (Lentinula edodes): A review. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
15
|
Mohamed SS, Ibrahim GS, Ghoneim MAM, Hassan AI. Evaluating the role of polysaccharide extracted from Pleurotus columbinus on cisplatin-induced oxidative renal injury. Sci Rep 2023; 13:835. [PMID: 36646729 PMCID: PMC9842759 DOI: 10.1038/s41598-022-27081-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/26/2022] [Indexed: 01/18/2023] Open
Abstract
This research aimed to examine the antioxidant polysaccharide activity (PsPc-3) derived from Pleurotus columbinus (P. columbinus) on oxidative renal injury (ORI) induced by cisplatin (CP). The principal components of crude polysaccharide were assessed. We studied the preventive impact of polysaccharide on cisplatin-induced renal damage in this study. For 21 days, we employed the CP-induced ORI rat model and divided the rats into four groups: control, CP alone, polysaccharide post CP (100 mg/kg) orally, and CP + polysaccharide (pre and post). The chemical characterization of the polysaccharide fraction PsPc-3 stated that protein was not present. PsPc-3 contained 7.2% uronic acid as assessed as 0% sulfate. PsPc-3 hydrolysate structured of Galacturonic:Glucose:Xylose and their molar proportions were 1:4:5, respectively. The average molecular weight (Mw) and molecular mass (Mn) per molecule of PsPc-3 were 5.49 × 104 g/mol and Mn of 4.95 × 104 g/mol respectively. DPPH radical scavenging activity was demonstrated by the polysaccharide of 65.21-95.51% at 10 mg/ml with IC50 less than 10 mg/ml. CP increased serum urea to 92.0 mg/dl and creatinine up to 1.0 mg/dl, with a concurrent decrease in the levels of total protein to 4.0 mg/dl. Besides, Also, CP-induced ORI raised levels of malondialdehyde (MDA), alkaline phosphatase (ALP), and renal hormones (renin and aldosterone), with a decline in antioxidants compared to control rats. In addition, in the presence of CP, interleukin-6 (IL-6) and tumour necrosis factor-alpha (TNF-alpha) levels increased. PsPc-3 decreased these changes dramatically. PsPc-3 improves pathological renal damage caused by CP and decreases tubular apoptosis measured by DNA ladder formation and cleaved caspase- 3. These findings showed that PsPc-3 isolated from P. columbinus protects and inhibits tubular apoptosis in cisplatin-induced ORI. Furthermore, PsPc-3 has no influence on the anticancer efficacy of CP in rats. Thus, PsPc-3 derived from P. columbinus might provide a novel therapy method for cisplatin-induced nephrotoxicity.
Collapse
Affiliation(s)
- Sahar S Mohamed
- Microbial Biotechnology Department, Biotechnology Research Institute, National Research Centre, Dokki, Cairo, Egypt
| | - Ghada S Ibrahim
- Microbial Biotechnology Department, Biotechnology Research Institute, National Research Centre, Dokki, Cairo, Egypt
| | - Mona A M Ghoneim
- Department of Radioisotopes, Nuclear Research Centre, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Amal I Hassan
- Department of Radioisotopes, Nuclear Research Centre, Egyptian Atomic Energy Authority, Cairo, Egypt.
| |
Collapse
|
16
|
Evaluation of Antimicrobial, Antioxidant, Cytotoxic and DNA Protective Effects of Oyster Mushroom: Pleurotus pulmonarius (Fr.) Quel. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-022-07418-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
17
|
Guo J, Zhang M, Fang Z. Valorization of mushroom by-products: a review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:5593-5605. [PMID: 35460088 DOI: 10.1002/jsfa.11946] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/15/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
With the rapid growth of the global economy and the global population, the production of solid waste has increased remarkably. Mushrooms are gaining popularity among researchers for their ability to turn waste into nutrients. However, a large number of by-products are produced during the industrial processing of mushrooms. Traditional waste management, focusing on the utilization and disposal of mushroom by-products, has attracted the attention of researchers. Meanwhile, the circular economy has become a multidisciplinary research field, and the valorization of mushroom by-products is a very important part of circular economy research. Various mushroom by-products of mushroom are reviewed in this paper. By-products are used in food as raw materials or functional components, in livestock and poultry feed after grinding/fermentation, and as electrochemical materials and papermaking materials. The by-products can also be used to produce ethanol and other biological sources of energy, as absorbing substances in sewage treatment, and as fertilizer in soil amendment. Mushroom processing by-products can be applied in various fields. To improve production efficiency, new extraction technology (including supercritical fluid technology and microwave extraction technology) can be adopted to increase the bioactive substance content in the by-products. Choosing appropriate processing temperature, time, and other processing conditions can also enhance product quality. Finally, more research is needed on the cost-effective utilization of the by-products and the feasibility of industrialization. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jia Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Zhongxiang Fang
- School of Agriculture and Food, The University of Melbourne, Parkville, Australia
| |
Collapse
|
18
|
Lin T, Zhou Z, Xing C, Zhou J, Fan G, Xie C. Effect of color protection treatment on the browning and enzyme activity of Lentinus edodes during processing. Food Sci Nutr 2022; 10:2989-2998. [PMID: 36171772 PMCID: PMC9469847 DOI: 10.1002/fsn3.2895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/26/2022] [Accepted: 04/07/2022] [Indexed: 11/23/2022] Open
Abstract
Fresh Lentinus edodes (L. edodes) are prone to browning (including enzymatic and nonenzymatic browning), which affects their quality and leads to economic losses during later processing. This study explored various effective color protection methods (color protection reagent and/or blanching) for inhibiting the browning of L. edodes. First, a single-factor experiment and a response surface method were used to optimize the concentration of the color retention reagent. The compound color retention reagent (comprising 0.1% phytic acid, 0.8% sodium citrate, and 0.5% d-sodium erythorbate) had the smallest total color difference (ΔE) value, suggesting that the compound color reagent had a better inhibiting effect than the single agent. Following this, the blanching conditions were studied; the polyphenol oxidase (PPO) activity was the lowest when the blanching temperature was 90°C and blanching time 180 s, indicating that browning is likely to be minimal. Finally, comparing the oxidase activity and total color difference (ΔE) revealed that combining the two color protection methods inhibits browning better than using a single method (color protection reagent or blanching). In addition, the polysaccharide and vitamin C (VC) contents of L. edodes under optimal color protection conditions were determined, which were 0.96 and 2.54 g/100 g fresh weight (FW), respectively. The results demonstrated that this color protection method effectively inhibits browning, reduces the nutritional loss, and improves the quality of L. edodes.
Collapse
Affiliation(s)
- Tong Lin
- College of Life ScienceLangfang Normal UniversityLangfangChina
- Technical Innovation Center for Utilization of Edible and Medicinal Fungi in Hebei ProvinceLangfangChina
- Edible and Medicinal Fungi Research and Development Center of Hebei UniversitiesLangfangChina
| | - Zhiguo Zhou
- College of Life ScienceLangfang Normal UniversityLangfangChina
- Technical Innovation Center for Utilization of Edible and Medicinal Fungi in Hebei ProvinceLangfangChina
- Edible and Medicinal Fungi Research and Development Center of Hebei UniversitiesLangfangChina
| | - Chunmiao Xing
- College of Life ScienceLangfang Normal UniversityLangfangChina
| | - Jiahui Zhou
- College of Life ScienceLangfang Normal UniversityLangfangChina
| | - Gongjian Fan
- College of Light Industry and Food EngineeringNanjing Forestry UniversityNanjingChina
| | - Chunyan Xie
- College of Life ScienceLangfang Normal UniversityLangfangChina
- Technical Innovation Center for Utilization of Edible and Medicinal Fungi in Hebei ProvinceLangfangChina
- Edible and Medicinal Fungi Research and Development Center of Hebei UniversitiesLangfangChina
| |
Collapse
|
19
|
Roszczyk A, Turło J, Zagożdżon R, Kaleta B. Immunomodulatory Properties of Polysaccharides from Lentinula edodes. Int J Mol Sci 2022; 23:ijms23168980. [PMID: 36012249 PMCID: PMC9409024 DOI: 10.3390/ijms23168980] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
Lentinula edodes (Berk.) Pegler, also known as shiitake mushroom, is a popular edible macrofungus and a source of numerous bioactive substances with multiple beneficial health effects. L. edodes-derived polysaccharides are the most valuable compounds, with anticancer, antioxidant, antimicrobial, and immunomodulatory properties. It has been demonstrated that their biological activity depends on the extraction method, which affects monosaccharide composition, molecular weight, branching degrees, and helical conformation. In this review, we discuss the immunomodulatory properties of various polysaccharides from L. edodes in animal models and in humans.
Collapse
Affiliation(s)
- Aleksander Roszczyk
- Department of Clinical Immunology, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland
| | - Jadwiga Turło
- Department of Drug Technology and Pharmaceutical Biotechnology, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Radosław Zagożdżon
- Department of Clinical Immunology, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland
| | - Beata Kaleta
- Department of Clinical Immunology, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland
- Correspondence: ; Tel.: +48-600301690
| |
Collapse
|
20
|
Mao B, Guo W, Tang X, Zhang Q, Yang B, Zhao J, Cui S, Zhang H. Inosine Pretreatment Attenuates LPS-Induced Lung Injury through Regulating the TLR4/MyD88/NF-κB Signaling Pathway In Vivo. Nutrients 2022; 14:2830. [PMID: 35889786 PMCID: PMC9318366 DOI: 10.3390/nu14142830] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 12/10/2022] Open
Abstract
Inosine is a type of purine nucleoside, which is considered to a physiological energy source, and exerts a widely range of anti-inflammatory efficacy. The TLR4/MyD88/NF-κB signaling pathway is essential for preventing host oxidative stresses and inflammation, and represents a promising target for host-directed strategies to improve some forms of disease-related inflammation. In the present study, the results showed that inosine pre-intervention significantly suppressed the pulmonary elevation of pro-inflammatory cytokines (including tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β)), malondialdehyde (MDA), nitric oxide (NO), and reactive oxygen species (ROS) levels, and restored the pulmonary catalase (CAT), glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), and myeloperoxidase (MPO) activities (p < 0.05) in lipopolysaccharide (LPS)-treated mice. Simultaneously, inosine pre-intervention shifted the composition of the intestinal microbiota by decreasing the ratio of Firmicutes/Bacteroidetes, elevating the relative abundance of Tenericutes and Deferribacteres. Moreover, inosine pretreatment affected the TLR4/MyD88/NF-κB signaling pathway in the pulmonary inflammatory response, and then regulated the expression of pulmonary iNOS, COX2, Nrf2, HO-1, TNF-α, IL-1β, and IL-6 levels. These findings suggest that oral administration of inosine pretreatment attenuates LPS-induced pulmonary inflammatory response by regulating the TLR4/MyD88/NF-κB signaling pathway, and ameliorates intestinal microbiota disorder.
Collapse
Affiliation(s)
- Bingyong Mao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (B.M.); (W.G.); (X.T.); (Q.Z.); (B.Y.); (J.Z.); (H.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Weiling Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (B.M.); (W.G.); (X.T.); (Q.Z.); (B.Y.); (J.Z.); (H.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xin Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (B.M.); (W.G.); (X.T.); (Q.Z.); (B.Y.); (J.Z.); (H.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qiuxiang Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (B.M.); (W.G.); (X.T.); (Q.Z.); (B.Y.); (J.Z.); (H.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Bo Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (B.M.); (W.G.); (X.T.); (Q.Z.); (B.Y.); (J.Z.); (H.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (B.M.); (W.G.); (X.T.); (Q.Z.); (B.Y.); (J.Z.); (H.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shumao Cui
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (B.M.); (W.G.); (X.T.); (Q.Z.); (B.Y.); (J.Z.); (H.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (B.M.); (W.G.); (X.T.); (Q.Z.); (B.Y.); (J.Z.); (H.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
21
|
Wei M, Hu Y, Zou W, Li Y, Cao Y, Li S, Huang J, Xing L, Huang B, Wang X. Physicochemical property and antioxidant activity of polysaccharide from the seed cakes of Camellia oleifera Abel. Food Sci Nutr 2022; 10:1667-1682. [PMID: 35592294 PMCID: PMC9094452 DOI: 10.1002/fsn3.2789] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 11/23/2022] Open
Abstract
Seed cake refers to the food by‐product of Camellia oleifera Abel, and its insufficient utilization can cause serious environment pollution and resource waste. This study aimed to investigate antioxidant activities of the polysaccharide from the seed cakes of Camellia oleifera Abel (COCP) in vitro and in vivo. The physicochemical property of COCP was also determined. COCP was characterized to be an acidic glycoprotein and mainly consisted of rhamnose (Rha), arabinose (Ara), galactose (Gal), glucose (Glc), xylose (Xyl), mannose (Man), and galacturonic acid (Gal‐UA). COCP exhibited the polysaccharide's characteristic absorption in the Fourier transform infrared (FT‐IR) spectroscopy and showed as sheet‐like structures with a smooth surface under the scanning electron microscope (SEM). COCP exerted good scavenging activities on ABTS, DPPH, and OH radicals, with IC50 values of 2.94, 2.24, and 5.09 mg/ml, respectively. COCP treatment improved learning and memory abilities of D‐galactose‐induced aging mice. Significant decreases were found in the levels of alanine transaminase (ALT), aspartate aminotransferase (AST), creatinine (CRE), blood urea nitrogen (BUN), creatine kinase (CK), and lactate dehydrogenase (LDH) in serum, as aging mice were supplemented with COCP. Aging mice showed obviously higher malondialdehyde (MDA) contents and lower superoxide dismutase (SOD) and glutathione peroxidase (GSH‐Px) activities in serum, brain, liver, kidney, and heart. The phenomena were noticeably reversed when mice were treated with COCP. Results indicated that COCP exerted excellent antioxidant activities in vitro and in vivo, which support its potential application as a natural antioxidant in food and medicine industries.
Collapse
Affiliation(s)
- Meidan Wei
- School of Public Health and Health Management Gannan Medical University Ganzhou China
| | - Yuxin Hu
- School of Public Health and Health Management Gannan Medical University Ganzhou China
| | - Wanshuang Zou
- School of Public Health and Health Management Gannan Medical University Ganzhou China
| | - Yanping Li
- Scientific Research Center Gannan Medical University Ganzhou China
| | - Yiyang Cao
- School of Public Health and Health Management Gannan Medical University Ganzhou China
| | - Shangtong Li
- School of Public Health and Health Management Gannan Medical University Ganzhou China
| | - Jing Huang
- School of Basic Medical Sciences Gannan Medical University Ganzhou China
| | - Lingyu Xing
- First Affiliated Hospital of Gannan Medical University Ganzhou China
| | - Bingjie Huang
- School of Public Health and Health Management Gannan Medical University Ganzhou China
| | - Xiaoyin Wang
- School of Public Health and Health Management Gannan Medical University Ganzhou China.,Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases Ministry of Education Gannan Medical University Ganzhou China
| |
Collapse
|
22
|
Song Y, Zhang H, Song Z, Yang Y, Zhang S, Wang W. Levan polysaccharide from Erwinia herbicola protects osteoblast cells against lipopolysaccharide-triggered inflammation and oxidative stress through regulation of ChemR23 for prevention of osteoporosis. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
23
|
Dou X, Yan D, Ma Z, Gao N, Shan A. Sodium butyrate alleviates LPS-induced kidney injury via inhibiting TLR2/4 to regulate rBD2 expression. J Food Biochem 2022; 46:e14126. [PMID: 35322444 DOI: 10.1111/jfbc.14126] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/05/2022] [Accepted: 02/18/2022] [Indexed: 12/16/2022]
Abstract
Defensins represent an integral part of the innate immune system to ward off potential pathogens. The study used a rat model to investigate mechanisms by which sodium butyrate (NaB) regulates β-defensin to inhibit lipopolysaccharide (LPS)-induced nephrotoxicity. We found that NaB alleviated LPS-induced renal structural damage, as judged by reduced renal lesions and improved glomerular vascular structure. In addition, elevated levels of indicators of kidney damage creatinine and blood urine nitrogen, inflammatory mediators TNF-α, and IL-6 dropped after NaB administration. Rat β-defensin 2 (rBD2), as estimated by mRNA level, was significantly higher in LPS-treated kidneys, whereas the changes of rBD2 reduced in NaB-treated kidneys. In addition, NaB alleviated LPS-induced increase in TLRs mRNA expression. Mechanistically, the present study indicates that NaB has nephroprotective activity resulting from modulation of TLR2/4 to regulate rBD2 expression hence curbing inflammation. PRACTICAL APPLICATIONS: In practice, adding NaB to diet can improve animal performance. Our results suggest that dietary supplementation of NaB increases animal feed intake and improves the body's defense ability to relieve inflammation caused by bacteria. Especially in the age of resistance prohibition, sodium butyrate can partially replace antibiotics to induce the expression of body defensin. It may become a health care product to enhance the body's immunity.
Collapse
Affiliation(s)
- Xiujing Dou
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Di Yan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Ziwen Ma
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Nan Gao
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| |
Collapse
|
24
|
Bachu Mushroom Polysaccharide Alleviates Colonic Injury by Modulating the Gut Microbiota. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:1353724. [PMID: 35371288 PMCID: PMC8966746 DOI: 10.1155/2022/1353724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/12/2022] [Accepted: 01/17/2022] [Indexed: 11/27/2022]
Abstract
Objective This study was to define the protective effect of purified Helvella leucopus polysaccharide (p-HLP) against dextran sulfate sodium- (DSS-) induced colitis. Methods The novel p-HLP was isolated from Bachu mushroom through hot water extraction, ethanol precipitation, and column chromatography. Then, we evaluated the potential effects of p-HLP on colonic histopathology, inflammation, and microbiota composition in DSS-induced colitis mice. Results p-HLP was a homopolysaccharide with an average molecular weight of 39.14 × 108 Da. Functionally, p-HLP significantly attenuated DSS-induced body weight loss and colon shortening. The histological score of the colon lesion was significantly decreased upon p-HLP treatment. Also, p-HLP treatment led to decreased expression of proinflammatory cytokines and mediators (IL-6, IL-1β and TNF-α, and COX-2 and iNOS) and increased expression of anti-inflammatory cytokine (IL-10) in the colon tissues. Illumina MiSeq sequencing revealed that p-HLP modulated the composition of the gut microbiota. Conclusion p-HLP is a potent regulator that protects the lesions from DSS-induced colitis.
Collapse
|
25
|
Wei D, Ma P, Fan Q, Yu H, Peng Y, Li X. Yanning Syrup ameliorates the lipopolysaccharide-induced inflammation: Adjusting the gut microbiota, short-chain fatty acids, and the CD4 + T cell balance. JOURNAL OF ETHNOPHARMACOLOGY 2022; 283:114729. [PMID: 34634365 DOI: 10.1016/j.jep.2021.114729] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/27/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE As a commercial Chinese patent medicine, Yanning Syrup (YN) is used to treat acute upper respiratory tract infections and acute enteritis effectively in clinical practice. However, the underlying mechanism remains unclear. AIMS OF THE STUDY To reveal the effect of YN on gut microbiota dysbiosis, and explore the potential role of the gut microecosystem and CD4+ T cell immune homeostasis in YN-treated respiratory and intestinal diseases in lipopolysaccharide (LPS)-induced inflammatory rats. METHODS Inflammation in rat models was induced by intraperitoneal injection of LPS (8 mg/kg). Histological changes were observed by H & E staining. Changes in gut microbiota and short-chain fatty acid (SCFA) production were analysed using 16S rRNA gene sequencing and targeted metabolomics. A Luminex cytokine microarray and enzyme-linked immunosorbent assay (ELISA) were conducted to evaluate the serum and colon cytokine profiles. The frequencies of immune cells, including Th1, Th2, Th17 and Treg cells in the mesenteric lymph nodes (MLNs), bronchoalveolar lavage fluid (BALF) and whole blood were phenotyped using flow cytometry. RESULTS The YN-treated rats showed less colon inflammation, as evidenced by the reduction in mortality rate and histology score. Notably, YN was found to improve the immunosuppressed state induced by LPS in rats, which not only upregulated the levels of the proinflammatory cytokine IL-17A and the immunosuppressive cytokines IL-4 and IL-10 in colon tissue but also increased the levels of IL-1α, IL-5, IL-7, IL-12 (p70), GM-CSF and VEGF in serum. The numbers of Th17 cells and Treg cells in the MLNs, blood, and BALF of model rats were regulated by YN, with the restoration of the Th17/Treg balance. Additionally, the Th1/Th2 balance in MLNs and whole blood of model rats was restored after YN administration. Sequencing of 16S rRNA gene indicated that YN-treated rats exhibited greater gut microbial diversity and flora composition, specifically inhibiting some harmful bacteria such as Enterobacter and Blautia and increasing Firmicutes and Actinobacteria. Targeted metabolomics analysis demonstrated an increase of SCFA (acetic acid, butyric acid, valeric acid, and hexanoic acid) production in YN-treated rats. Most of the dominant bacterial genera regulated by YN administration were correlated with the concentrations of SCFA and inflammatory cytokines. CONCLUSIONS These results demonstrated that YN could ameliorate LPS-induced inflammation in rats by modifying gut microbiota, increasing microbiota-derived SCFA production and regulating the balance of Th1/Th2 and Treg/Th17 cells.
Collapse
Affiliation(s)
- Danni Wei
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Ping Ma
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Qiqi Fan
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Hanchuan Yu
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Ying Peng
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai, 200240, China.
| | - Xiaobo Li
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai, 200240, China.
| |
Collapse
|
26
|
Lentinan Impairs the Early Development of Zebrafish Embryos, Possibly by Disrupting Glucose and Lipid Metabolism. Processes (Basel) 2022. [DOI: 10.3390/pr10010120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
LNT is the major biologically active substance extracted from Lentinus edodes (L. edodes). Although functional and pharmacological studies have demonstrated that LNT has multiple benefits for animals and humans, the safety assessment is far from sufficient. To evaluate the potential safety risk, larval zebrafish were continuously exposed to varying concentrations of LNT for 120 h. The 96 h LC50 of LNT was determined to be 1228 μg/mL, and morphological defects including short body length, reduced eye and swim bladder sizes and yolk sac edema were observed. In addition, LNT exposure significantly reduced the blood flow velocity and locomotor activity of larval zebrafish. The biochemical parameters were also affected, showing reduced glucose, triglyceride and cholesterol levels in zebrafish larvae after being exposed to LNT. Correspondingly, the genes involved in glucose and lipid metabolism were disrupted. In conclusion, the present study demonstrates the adverse potential of high concentrations of LNT on the development of zebrafish larvae in the early life stage.
Collapse
|
27
|
Differences of gut microbiota composition in mice supplied with polysaccharides from γ-irradiated and non-irradiated Schizophyllum commune. Food Res Int 2022; 151:110855. [PMID: 34980391 DOI: 10.1016/j.foodres.2021.110855] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/09/2021] [Accepted: 11/29/2021] [Indexed: 01/02/2023]
Abstract
In this study, polysaccharides from normal (N-SFP) and γ-irradiated (I-SFP) Schizophyllum commune were supplied to Kunming mice for 30 days. The results showed that N-SFP and I-SFP supplementation prevent body weight gain, enhance kidney uric acid metabolism and increase the concentration of SCFAs to a certain extent. Moreover, N-SFP and I-SFP promote the growth of beneficial gut microbiota and inhibit the growth of harmful bacteria. Compared to N-SFP, I-SFP decreased the relative abundance of Muribaculaceae and Lactobacillaceae, and increased the beneficial gut microbiota, especially the family of Akkermansiaceae, Lachnospiraceae and Bacteroidaceae. In total, I-SFP showed better effects than N-SFP in preventing weight gain, and modulating the mice gut microbiota, which suggests that I-SFP could act as a potential health supplement in the prevention of obesity.
Collapse
|
28
|
Chen R, Xu L, Zhang X, Sun G, Zeng W, Sun X. Protective effect and mechanism of Shenkang injection on adenine-induced chronic renal failure in rats. Acta Cir Bras 2022; 37:e370304. [PMID: 35674582 PMCID: PMC9161622 DOI: 10.1590/acb370304] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/11/2022] [Indexed: 12/13/2022] Open
Abstract
Purpose: To investigate the protective effects of Shenkang injection (SKI) on adenine-induced chronic renal failure (CRF) in rat. Methods: Sprague Dawley rats were randomly divided into five groups: control, model, and SKI groups (5, 10, 20 mL/kg). Rats in model and SKI groups were treated with adenine i.g. at a dose of 150 mg/kg every day for 12 weeks to induce CRF. Twelve weeks later, SKI was administered to the rat i.p. for four weeks. The effects of SKI on kidney injury and fibrosis were detected. Results: SKI inhibited the elevation of the urine level of N-acetyl-b-D-glucosaminidase, kidney injury molecule-1, beta-2-microglobulin, urea protein in CRF rats. The serum levels of uric acid and serum creatinine increased and albumin decreased in the model group, which was prevented by SKI. SKI inhibited the release of inflammatory cytokines and increasing the activities of antioxidant enzymes in serum. SKI inhibited the expression of transforming growth factor-β1, vascular cell adhesion molecule 1, intercellular adhesion molecule 1, collagen I, collagen III, endothelin-1, laminin in kidney of CRF rats. Conclusions: SKI protected against adenine-induced kidney injury and fibrosis and exerted anti-inflammatory, and antioxidant effects in CRF rats.
Collapse
Affiliation(s)
| | - Lijiao Xu
- Institute of Medicinal Plant Development, China
| | - Xu Zhang
- Institute of Medicinal Plant Development, China
| | - Guibo Sun
- Institute of Medicinal Plant Development, China
| | | | - Xiaobo Sun
- Institute of Medicinal Plant Development, China
| |
Collapse
|
29
|
Anusiya G, Gowthama Prabu U, Yamini NV, Sivarajasekar N, Rambabu K, Bharath G, Banat F. A review of the therapeutic and biological effects of edible and wild mushrooms. Bioengineered 2021; 12:11239-11268. [PMID: 34738876 PMCID: PMC8810068 DOI: 10.1080/21655979.2021.2001183] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 01/27/2023] Open
Abstract
Throughout history, mushrooms have occupied an inseparable part of the diet in many countries. Mushrooms are considered a rich source of phytonutrients such as polysaccharides, dietary fibers, and other micronutrients, in addition to various essential amino acids, which are building blocks of vital proteins. In general, mushrooms offer a wide range of health benefits with a large spectrum of pharmacological properties, including antidiabetic, antioxidative, antiviral, antibacterial, osteoprotective, nephroprotective, hepatoprotective, etc. Both wild edible and medicinal mushrooms possess strong therapeutic and biological activities, which are evident from their in vivo and in vitro assays. The multifunctional activities of the mushroom extracts and the targeted potential of each of the compounds in the extracts have a broad range of applications, especially in the healing and repair of various organs and cells in humans. Owing to the presence of the aforementioned properties and rich phytocomposition, mushrooms are being used in the production of nutraceuticals and pharmaceuticals. This review aims to provide a clear insight on the commercially cultivated, wild edible, and medicinal mushrooms with comprehensive information on their phytochemical constituents and properties as part of food and medicine for futuristic exploitation. Future outlook and prospective challenges associated with the cultivation and processing of these medicinal mushrooms as functional foods are also discussed.
Collapse
Affiliation(s)
- G Anusiya
- Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, India
| | - U Gowthama Prabu
- Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, India
| | - N V Yamini
- Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, India
| | - N Sivarajasekar
- Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, India
| | - K Rambabu
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
| | - G Bharath
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Fawzi Banat
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
30
|
Surayot U, Wangtueai S, You S, Palanisamy S, Krusong W, Brennan CS, Barba FJ, Phimolsiripol Y, Seesuriyachan P. Extraction, Structural Characterisation, and Immunomodulatory Properties of Edible Amanitahemibapha subspecies javanica (Corner and Bas) Mucilage Polysaccharide as a Potential of Functional Food. J Fungi (Basel) 2021; 7:683. [PMID: 34575721 PMCID: PMC8468940 DOI: 10.3390/jof7090683] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/20/2021] [Accepted: 08/20/2021] [Indexed: 12/23/2022] Open
Abstract
This research aimed to extract mucilage polysaccharides (MP) from Amanita hemibapha subspecies javanica (Corner and Bas), and further fractionate them using anion-exchange chromatography, yielding two fractions (MPF1 and MPF2). The crude extract, and fractions mainly consisted of carbohydrates (83.5-93.2%) with minor amounts of proteins (5.40-7.20%), and sulphates (1.40-9.30%). Determination of the monosaccharide composition revealed that glucose was the major unit, followed by galactose, mannose, rhamnose, and arabinose. The average molecular weight (MW) of the crude extract and fractions was in the range 104.0-479.4 × 103 g/mol. Interestingly, the crude extract, and fractions did not cause any toxic effect in RAW264.7 cells. However, they stimulated the RAW264.7 cells to release nitric oxide and cytokines through the activation of nuclear factor-kappa B (NF-κB), and mitogen-activated protein kinase (MAPK) pathways via cell surface TLR4. Structural analysis of the most immunestimulating extract fraction, MPF2, revealed that the main backbone consisted of α-D-(1→6)-glucopyranoside. These results suggest that the MPs derived from A. hemibapha subspecies javanica (Corner and Bas) are potent in enhancing immunity; hence, they can be used as a functional ingredient in food products.
Collapse
Affiliation(s)
- Utoomporn Surayot
- College of Maritime Studies and Management, Chiang Mai University, Samut Sakhon 74000, Thailand; (U.S.); (S.W.)
| | - Sutee Wangtueai
- College of Maritime Studies and Management, Chiang Mai University, Samut Sakhon 74000, Thailand; (U.S.); (S.W.)
| | - SangGuan You
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangwon 210-702, Korea; (S.Y.); (S.P.)
- East Coast Life Sciences Institute, Gangneung-Wonju National University, Gangwon 210-720, Korea
| | - Subramanian Palanisamy
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangwon 210-702, Korea; (S.Y.); (S.P.)
- East Coast Life Sciences Institute, Gangneung-Wonju National University, Gangwon 210-720, Korea
| | - Warawut Krusong
- Division of Fermentation Technology, Faculty of Food Industry, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand;
| | - Charles S. Brennan
- School of Science, STEM College, RMIT University, Melbourne 3000, Australia;
| | - Francisco J. Barba
- Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain;
| | - Yuthana Phimolsiripol
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand;
- Cluster of Agro Bio-Circular-Green Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Phisit Seesuriyachan
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand;
- Cluster of Agro Bio-Circular-Green Industry, Chiang Mai University, Chiang Mai 50100, Thailand
- Advanced Manufacturing and Management Technology Research Center (AM2Tech), Department of Industrial Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
31
|
Choi JH, Lee HJ, Park SE, Kim S, Seo KS, Kim KM. Cytotoxicity, metabolic enzyme inhibitory, and anti-inflammatory effect of Lentinula edodes fermented using probiotic lactobacteria. J Food Biochem 2021; 45:e13838. [PMID: 34212412 DOI: 10.1111/jfbc.13838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/19/2021] [Accepted: 06/09/2021] [Indexed: 01/25/2023]
Abstract
We found that the fermented Lentinula edodes (FLE) products exhibited various differences in terms of proximate composition, free sugar, and amino acid. In particular, there were higher levels of ergosterol, and ergothioneine in FLE-Pediococcus pentosaceus (PP) and -Lactobacillus acidophilus (LA) than in the L. edodes (LE) products. The survival rates of lactic acid bacteria (LAB) strains on artificial gastric juice, artificial bile, or heat (50-60°C) were observed to vary from 60%-66%, 60%-66%, to 42%-79%, respectively. The FLE products up to 300 μg/ml had no cytotoxicity on RAW264.7, AGS, and RBL-2H3 cells, but inhibited the activities of α-amylase, α-glucosidase, and pancreatic lipase, as well as the production of nitrite, IL-1β, IL-4, TNF-α, and prostaglandin E2 (PGE2) from lipopolysaccharide (LPS)-induced inflammatory response. Our findings suggest that FLE products have metabolic enzyme inhibitory and anti-inflammatory effects. PRACTICAL APPLICATIONS: Fermentation plays a critical role in improving the functional and nutritional properties of food. In addition, lactobacteria are the main microorganisms involved in the fermentation of food known to have a variety of biological activities. Therefore, the utilization of lactobacteria for research and development of mushroom food materials can be used as a key strategy to improve the biological activity characteristics of mushroom food materials and to increase their active ingredient content. The present results show that FLE products had promising inhibitory efficacies against the activities of obesity-related metabolic enzymes and LPS-induced inflammatory response. These suggest that FLE products have the potential to be developed as functional probiotic dietary supplements or food products.
Collapse
Affiliation(s)
- Jun-Hui Choi
- Department of Food Science and Biotechnology, Gwangju University, Gwangju, Republic of Korea
| | - Hyo-Jeong Lee
- Department of Food Science and Biotechnology, Gwangju University, Gwangju, Republic of Korea
| | - Se-Eun Park
- Department of Food Science and Biotechnology, Gwangju University, Gwangju, Republic of Korea
| | - Seung Kim
- Department of Food Science and Biotechnology, Gwangju University, Gwangju, Republic of Korea
| | - Kyoung-Sun Seo
- Jangheung County Mushroom Research Institute, Jangheung, Republic of Korea
| | - Ki-Man Kim
- Department of Food Science and Biotechnology, Gwangju University, Gwangju, Republic of Korea
| |
Collapse
|
32
|
Niego AG, Rapior S, Thongklang N, Raspé O, Jaidee W, Lumyong S, Hyde KD. Macrofungi as a Nutraceutical Source: Promising Bioactive Compounds and Market Value. J Fungi (Basel) 2021; 7:397. [PMID: 34069721 PMCID: PMC8161071 DOI: 10.3390/jof7050397] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/16/2021] [Accepted: 05/16/2021] [Indexed: 02/06/2023] Open
Abstract
Macrofungi production and economic value have been increasing globally. The demand for macrofungi has expanded rapidly owing to their popularity among consumers, pleasant taste, and unique flavors. The presence of high quality proteins, polysaccharides, unsaturated fatty acids, minerals, triterpene sterols, and secondary metabolites makes macrofungi an important commodity. Macrofungi are well known for their ability to protect from or cure various health problems, such as immunodeficiency, cancer, inflammation, hypertension, hyperlipidemia, hypercholesterolemia, and obesity. Many studies have demonstrated their medicinal properties, supported by both in vivo and in vitro experimental studies, as well as clinical trials. Numerous bioactive compounds isolated from mushrooms, such as polysaccharides, proteins, fats, phenolic compounds, and vitamins, possess strong bioactivities. Consequently, they can be considered as an important source of nutraceuticals. Numerous edible mushrooms have been studied for their bioactivities, but only a few species have made it to the market. Many species remain to be explored. The converging trends and popularity of eastern herbal medicines, natural/organic food product preference, gut-healthy products, and positive outlook towards sports nutrition are supporting the growth in the medicinal mushroom market. The consumption of medicinal mushrooms as functional food or dietary supplement is expected to markedly increase in the future. The global medicinal mushroom market size is projected to increase by USD 13.88 billion from 2018 to 2022. The global market values of promising bioactive compounds, such as lentinan and lovastatin, are also expected to rise. With such a market growth, mushroom nutraceuticals hold to be very promising in the years to come.
Collapse
Affiliation(s)
- Allen Grace Niego
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; (A.G.N.); (N.T.); (O.R.)
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Iloilo Science and Technology University, La Paz, Iloilo 5000, Philippines
| | - Sylvie Rapior
- Laboratory of Botany, Phytochemistry and Mycology, Faculty of Pharmacy, CEFE, CNRS, University Montpellier, EPHE, IRD, CS 14491, 15 Avenue Charles Flahault, CEDEX 5, 34093 Montpellier, France;
| | - Naritsada Thongklang
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; (A.G.N.); (N.T.); (O.R.)
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Olivier Raspé
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; (A.G.N.); (N.T.); (O.R.)
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Wuttichai Jaidee
- Medicinal Plants Innovation Center, Mae Fah Luang University, Chiang Rai 57100, Thailand;
| | - Saisamorn Lumyong
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand
| | - Kevin D. Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; (A.G.N.); (N.T.); (O.R.)
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
- Innovative Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510408, China
| |
Collapse
|
33
|
Sheng K, Wang C, Chen B, Kang M, Wang M, Liu K, Wang M. Recent advances in polysaccharides from Lentinus edodes (Berk.): Isolation, structures and bioactivities. Food Chem 2021; 358:129883. [PMID: 33940295 DOI: 10.1016/j.foodchem.2021.129883] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/26/2021] [Accepted: 04/12/2021] [Indexed: 11/24/2022]
Abstract
Lentinus edodes, an important edible mushroom cultivated in East Asia for thousands of years, has been widely used as food and medicinal ingredient worldwide. Modern phytochemistry studies have demonstrated that L. edodes is very rich in bioactive polysaccharides, especially the β-glucans. Over the past two decades, the isolation, chemical properties, and bioactivities of polysaccharides from fruiting bodies, mycelium and fermentation broth of L. edodes have been drawing much attention from scholars around the world. It has been demonstrated that L. edodes polysaccharides possess various remarkable biological activities, including anti-oxidant, anti-tumor, anti-aging, anti-inflammation, immunomodulatory, antiviral, and hepatoprotection effects. This review summarizes the recent development of polysaccharides from L. edodes including the isolation methods, structural features, bioactivities and mechanisms, and their structure-activity relationship, which can provide useful research underpinnings and update information for their further application as therapeutic agents and functional foods.
Collapse
Affiliation(s)
- Kangjia Sheng
- College of Food Science & Engineering, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China; Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Science, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Cuiling Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Science, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Bitao Chen
- College of Food Science & Engineering, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Meijuan Kang
- Library of Xi'an Shiyou University, Xi'an, Shaanxi 710065, China
| | - Minchang Wang
- Xi'an Modern Chemistry Research Institute, Xi'an, Shaanxi 710065, China
| | - Ke Liu
- Xi'an Modern Chemistry Research Institute, Xi'an, Shaanxi 710065, China
| | - Ming Wang
- College of Food Science & Engineering, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China.
| |
Collapse
|
34
|
Xiong B, Zhang W, Wu Z, Liu R, Yang C, Hui A, Huang X, Xian Z. Preparation, characterization, antioxidant and anti-inflammatory activities of acid-soluble pectin from okra (Abelmoschus esculentus L.). Int J Biol Macromol 2021; 181:824-834. [PMID: 33836194 DOI: 10.1016/j.ijbiomac.2021.03.202] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 12/13/2022]
Abstract
Currently, there are few studies on acid-soluble pectin from okra, especially in biological activity for antioxidant and anti-inflammatory. In this study, the antioxidant properties of acid-soluble okra pectin components and their anti-inflammatory were explored. Firstly, two acid-soluble okra pectic fractions, namely crude acid-soluble okra pectin (CAOP) and acid-soluble okra pectin (AOP), were obtained and exhibited structural and compositional variation. The two pectic fractions contained a low degree of esterification (42.0-46.5%) and a relatively high uronic acid content (31.6-37.3%). AOP was composed of galacturonic acid (79.1 mol/%), galactose (4.3 mol/%), rhamnose (14.5 mol/%) and xylose (2.1 mol/%), and the molecular weight was 92.8 kDa. Morphological and thermal properties of acid-soluble okra pectin components were also investigated. Compared to CAOP, AOP expressed better antioxidant activity, and suppressed the NO production in LPS-induced RAW 264.7 macrophages. All the above results indicated that AOP had the potential to act as a natural antioxidant or a functional anti-inflammatory food, which would broaden the development and utilization of okra resources.
Collapse
Affiliation(s)
- Baoyi Xiong
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, Anhui, China
| | - Wencheng Zhang
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, Anhui, China.
| | - Zeyu Wu
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, Anhui, China.
| | - Rui Liu
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, Anhui, China
| | - Chengying Yang
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, Anhui, China
| | - Ailing Hui
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, Anhui, China
| | - Xusheng Huang
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, Anhui, China
| | - Zhaojun Xian
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, Anhui, China
| |
Collapse
|
35
|
Zuo K, Tang K, Liang Y, Xu Y, Sheng K, Kong X, Wang J, Zhu F, Zha X, Wang Y. Purification and antioxidant and anti-Inflammatory activity of extracellular polysaccharopeptide from sanghuang mushroom, Sanghuangporus lonicericola. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:1009-1020. [PMID: 32767366 DOI: 10.1002/jsfa.10709] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/31/2020] [Accepted: 08/06/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Sanghuang mushrooms are medicinal fungi widely used in eastern Asia. In this study, the antioxidant and anti-inflammatory activity of a novel extracellular polysaccharopeptide, sanghuang extracellular polysaccharopeptide (SePSP) was investigated. The SePSP was purified from the submerged fermentation broth of a sanghuang mycelium, Sanghuangporus lonicericola strain CBS17, which was isolated from a wild sanghuang fruiting body. RESULTS The SePSP was extracted using an ethanol precipitation procedure, followed by diethylaminoethanol (DEAE) anion-exchange and size-exclusion chromatography. The mass ratio of the polysaccharide and peptide components in the purified SePSP was approximately 4.87:1. By determining its free radical scavenging abilities using 2,2-diphenyl-1-picrylhydrazyl (DPPH), the hydroxyl free radical, and the superoxide anion free radical, as well as its total reducing power, SePSP was shown to have strong concentration-dependent antioxidant activity in vitro. Further, SePSP effectively alleviated dextran sodium sulfate (DSS)-induced ulcerative colitis (UC) in mice. Administration of 200 mg kg-1 SePSP by gavage for 7 days prevented body weight loss; significantly reduced the mRNA levels of proinflammatory cytokines, including TNF-α and IL-1β; increased mRNA level of the anti-inflammatory cytokine IL-10 in the colon, and decreased the malondialdehyde concentration from 6.42 to 4.82 μmol L-1 in the blood in UC mice. CONCLUSION The SePSP had strong concentration-dependent antioxidant activity in vitro and effectively alleviated DSS-induced UC in mice. The in vivo therapeutic efficacy in DSS-induced UC may be mediated by modulating the expression of inflammatory cytokines and inhibiting oxidative stress. The findings provide a scientific rationale for the use of bioactive nutraceuticals from sanghuang mushrooms to develop functional foods for the prevention and treatment of UC. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kang Zuo
- School of Life Sciences, Anhui University, Hefei, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, China
| | - Kaijing Tang
- School of Life Sciences, Anhui University, Hefei, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, China
| | - Yue Liang
- School of Life Sciences, Anhui University, Hefei, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, China
| | - Yifan Xu
- School of Life Sciences, Anhui University, Hefei, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, China
| | - Kangliang Sheng
- School of Life Sciences, Anhui University, Hefei, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, China
| | - Xiaowei Kong
- School of Life Sciences, Anhui University, Hefei, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, China
| | - Jingmin Wang
- School of Life Sciences, Anhui University, Hefei, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, China
| | - Fenfang Zhu
- School of Life Sciences, Anhui University, Hefei, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, China
| | - Xiangdong Zha
- School of Life Sciences, Anhui University, Hefei, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, China
| | - Yongzhong Wang
- School of Life Sciences, Anhui University, Hefei, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, China
| |
Collapse
|
36
|
Li H, Feng Y, Sun W, Kong Y, Jia L. Antioxidation, anti-inflammation and anti-fibrosis effect of phosphorylated polysaccharides from Pleurotus djamor mycelia on adenine-induced chronic renal failure mice. Int J Biol Macromol 2021; 170:652-663. [PMID: 33359803 DOI: 10.1016/j.ijbiomac.2020.12.159] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/14/2020] [Accepted: 12/20/2020] [Indexed: 01/16/2023]
Abstract
The mycelia polysaccharides (MPS) from Pleurotus djamor were prepared and purified by anion exchange column chromatography, and the phosphate content of phosphorylated MPS (PMPS) was 15.22 ± 0.37%. FT-IR spectra, HPLC and 1H and 13C-NMR results showed the PMPS contained α-pyranose structure and the peak area percentage composition of galacturonic acid and glucose were 13.01% and 85.82%, respectively. Animal experiment investigated the antioxidant, anti-inflammation, anti-fibrosis effects of PMPS on kidney in adenine-induced chronic renal failure (CRF) mice. All results including serum biochemical indices, histopathological observation, qRT-PCR, western blotting, immunohistochemical staining manifested the kidney injury could be remitted by PMPS interventions. This experiment suggested that PMPS could remit CRF and other kidney injury related diseases as one kind of dietary supplements and functional foods without toxic side effects.
Collapse
Affiliation(s)
- Huaping Li
- College of Life Science, Shandong Agricultural University, Taian 271018, China
| | - Yanbo Feng
- College of Life Science, Shandong Agricultural University, Taian 271018, China
| | - Wenxue Sun
- College of Life Science, Shandong Agricultural University, Taian 271018, China
| | - Yi Kong
- Tai'an Academy of Agricultural Sciences, 271000 Tai'an, China.
| | - Le Jia
- College of Life Science, Shandong Agricultural University, Taian 271018, China.
| |
Collapse
|
37
|
Structural characterization and immunomodulatory activity of a polysaccharide from Eurotium cristatum. Int J Biol Macromol 2020; 162:609-617. [DOI: 10.1016/j.ijbiomac.2020.06.099] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 05/30/2020] [Accepted: 06/11/2020] [Indexed: 12/15/2022]
|
38
|
Shi Y, Liu H, Liu H, Yu Y, Zhang J, Li Y, Luo G, Zhang X, Xu N. Increased expression levels of inflammatory cytokines and adhesion molecules in lipopolysaccharide‑induced acute inflammatory apoM‑/‑ mice. Mol Med Rep 2020; 22:3117-3126. [PMID: 32945469 PMCID: PMC7453663 DOI: 10.3892/mmr.2020.11426] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 04/23/2020] [Indexed: 02/07/2023] Open
Abstract
Apolipoprotein M (apoM) may serve a protective role in the development of inflammation. Nuclear factor‑κB (NF‑κB) and its downstream factors (including a number of inflammatory cytokines and adhesion molecules) are essential for the regulation of inflammatory processes. In the present study, the importance of apoM in lipopolysaccharide (LPS)‑induced acute inflammation and its potential underlying mechanisms, were investigated using an apoM‑knockout mouse model. The levels of inducible nitric oxide synthase (iNOS), NF‑κB, interleukin (IL)‑1β, intercellular adhesion molecule 1 (ICAM‑1) and vascular cell adhesion protein 1 (VCAM‑1) were detected using reverse transcription‑quantitative PCR and western blotting. The serum levels of IL‑6 and IL‑10 were detected using Luminex technology. The results demonstrated that the protein levels of iNOS, NF‑κB, IL‑1β, ICAM‑1 and VCAM‑1 were significantly increased in apoM‑/‑ mice compared with those in apoM+/+ mice. In addition, two‑way ANOVA revealed that the interaction between apoM and LPS had a statistically significant effect on a number of factors, including the mRNA expression levels of hepatic iNOS, NF‑κB, IL‑1β, ICAM‑1 and VCAM‑1. Notably, the effects of apoM and 10 mg/kg LPS on the levels of IL‑6 and IL‑10 were the opposite of those induced by 5 mg/kg LPS, which could be associated with the dual anti‑ and pro‑inflammatory effects of IL‑6 and IL‑10. Collectively, the results of the present study revealed that apoM is an important regulator of inflammatory cytokine and adhesion molecule production in LPS‑induced inflammation, which may consequently be associated with the severity of inflammation. These findings indicated that the anti‑inflammatory effects of apoM may partly result from the inhibition of the NF‑κB pathway.
Collapse
Affiliation(s)
- Yuanping Shi
- Comprehensive Laboratory, Changzhou Key Laboratory of Individualized Diagnosis and Treatment Associated with High Technology Research, Changzhou, Jiangsu 213003, P.R. China
| | - Hongyao Liu
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, P.R. China
| | - Hong Liu
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, P.R. China
| | - Yang Yu
- Comprehensive Laboratory, Changzhou Key Laboratory of Individualized Diagnosis and Treatment Associated with High Technology Research, Changzhou, Jiangsu 213003, P.R. China
| | - Jun Zhang
- Comprehensive Laboratory, Changzhou Key Laboratory of Individualized Diagnosis and Treatment Associated with High Technology Research, Changzhou, Jiangsu 213003, P.R. China
| | - Yanfei Li
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, P.R. China
| | - Guanghua Luo
- Comprehensive Laboratory, Changzhou Key Laboratory of Individualized Diagnosis and Treatment Associated with High Technology Research, Changzhou, Jiangsu 213003, P.R. China
| | - Xiaoying Zhang
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, P.R. China
| | - Ning Xu
- Section of Clinical Chemistry and Pharmacology, Institute of Laboratory Medicine, Lund University, SE-221 85 Lund, Sweden
| |
Collapse
|
39
|
AYTAR EC, AKATA İ, AÇIK L. ANTIOXIDANT, ANTIMICROBIAL AND ANTI-PROLIFERATIVE ACTIVITY OF SUILLUS LUTEUS (L.) ROUSSEL EXTRACTS. ANKARA UNIVERSITESI ECZACILIK FAKULTESI DERGISI 2020:373-387. [DOI: 10.33483/jfpau.707014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
|
40
|
Chuang WY, Hsieh YC, Lee TT. The Effects of Fungal Feed Additives in Animals: A Review. Animals (Basel) 2020; 10:E805. [PMID: 32384791 PMCID: PMC7278461 DOI: 10.3390/ani10050805] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/05/2020] [Accepted: 05/05/2020] [Indexed: 01/01/2023] Open
Abstract
As probiotics, fungi enhance animal health and are suitable animal feed additives. In addition to brewing fungi, there are also edible and medicinal fungi. Common fungi utilized in feeding programs include Saccharomyces cerevisiae, Aspergillus oryzae, Pleurotus spp., Antrodia cinnamomea, and Cordyceps militaris. These fungi are rich in glucans, polysaccharides, polyphenols, triterpenes, ergosterol, adenosine, and laccases. These functional components play important roles in antioxidant, anti-inflammatory, anti-obesity, and immune system regulation. As such, fungal feed additives could be of potential use when breeding livestock. In previous studies, fungal feed additives enhanced body weight and egg production in poultry and improved the feed conversion rate. Several mycotoxins can be produced by hazardous fungi but fortunately, the cell walls constituents and enzymes of fungal probiotics can also act to decrease the toxicity of mycotoxins. Overall, fungal feed additives are of value, but their safety and usage must be studied further, including cost-benefit economic analyses.
Collapse
Affiliation(s)
- Wen Yang Chuang
- Department of Animal Science, National Chung Hsing University, Taichung 402, Taiwan; (W.Y.C.); (Y.C.H.)
| | - Yun Chen Hsieh
- Department of Animal Science, National Chung Hsing University, Taichung 402, Taiwan; (W.Y.C.); (Y.C.H.)
| | - Tzu-Tai Lee
- Department of Animal Science, National Chung Hsing University, Taichung 402, Taiwan; (W.Y.C.); (Y.C.H.)
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|