1
|
Kong T, Li G, Zhao X, Shi E, Wang Y, Wu M, Zhao Y, Ma Y, Chu L. Polysaccharide edible film-the new star in food preservation: A review. Int J Biol Macromol 2025; 308:142716. [PMID: 40180108 DOI: 10.1016/j.ijbiomac.2025.142716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/19/2025] [Accepted: 03/30/2025] [Indexed: 04/05/2025]
Abstract
Polysaccharide edible film (PEF) plays an important role in protecting food from physical extrusion, chemical hazards and microbial invasion. In recent years, on the basis of ensuring food safety, consumers have put forward higher requirements for maintaining sensory characteristics and nutritional value of food in the process of storage and circulation. As a natural component with convenient preparation and rich sources, polysaccharides have antibacterial, anti-inflammatory, antioxidant and other biological activities. The edible preservative film based on polysaccharide has the advantages of environmental protection, safety and no residue. Considering the health of consumers and the sustainable development of the environment, the environment-friendly, safe and effective PEF has become an important material in the field of food preservation and a creative solution to the problem of food preservation. Based on this, review focuses on the application of PEF in the preservation of different kinds of food, and briefly expounds the mechanism of PEF in the preservation of food, the production methods and different types of PEF. At the same time, it summarizes the existing problems and future development prospects and directions of PEF. After years of in-depth research and application, PEF technology has shown an important role and application potential in the field of food preservation. This paper hopes to provide reference value for the further application of PEF in the field of food preservation.
Collapse
Affiliation(s)
- Tianyu Kong
- Jinan Fruit Research Institute, China Supply and Marketing Cooperatives, Jinan 250014, China
| | - Gen Li
- Jinan Fruit Research Institute, China Supply and Marketing Cooperatives, Jinan 250014, China
| | - Xiaodan Zhao
- Jinan Fruit Research Institute, China Supply and Marketing Cooperatives, Jinan 250014, China
| | - Enjuan Shi
- Jinan Fruit Research Institute, China Supply and Marketing Cooperatives, Jinan 250014, China
| | - Yixi Wang
- Jinan Fruit Research Institute, China Supply and Marketing Cooperatives, Jinan 250014, China
| | - Maoyu Wu
- Jinan Fruit Research Institute, China Supply and Marketing Cooperatives, Jinan 250014, China
| | - Yan Zhao
- Jinan Fruit Research Institute, China Supply and Marketing Cooperatives, Jinan 250014, China
| | - Yinfei Ma
- Jinan Fruit Research Institute, China Supply and Marketing Cooperatives, Jinan 250014, China.
| | - Le Chu
- Jinan Fruit Research Institute, China Supply and Marketing Cooperatives, Jinan 250014, China.
| |
Collapse
|
2
|
Wang H, Shao L, Sun Y, Liu Y, Zou B, Zhao Y, Wang Y, Li X, Dai R. Recovery mechanisms of ohmic heating-induced sublethally injured Staphylococcus aureus: Changes in cellular structure and applications in pasteurized milk. Food Control 2025; 171:111086. [DOI: 10.1016/j.foodcont.2024.111086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
3
|
Prajapati C, Rai SN, Singh AK, Chopade BA, Singh Y, Singh SK, Haque S, Prieto MA, Ashraf GM. An Update of Fungal Endophyte Diversity and Strategies for Augmenting Therapeutic Potential of their Potent Metabolites: Recent Advancement. Appl Biochem Biotechnol 2025; 197:2799-2866. [PMID: 39907846 PMCID: PMC12065773 DOI: 10.1007/s12010-024-05098-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2024] [Indexed: 02/06/2025]
Abstract
Endophytic fungi represent a significant renewable resource for the discovery of pharmaceutically important compounds, offering substantial potential for new drug development. Their ability to address the growing issue of drug resistance has drawn attention from researchers seeking novel, nature-derived lead molecules that can be produced on a large scale to meet global demand. Recent advancements in genomics, metabolomics, bioinformatics, and improved cultivation techniques have significantly aided the identification and characterization of fungal endophytes and their metabolites. Current estimates suggest there are approximately 1.20 million fungal endophytes globally, yet only around 16% (190,000) have been identified and studied in detail. This underscores the vast untapped potential of fungal endophytes in pharmaceutical research. Research has increasingly focused on the transformation of bioactive compounds by fungal endophytes through chemical and enzymatic processes. A notable example is the anthraquinone derivative 6-O-methylalaternin, whose cytotoxic potential is enhanced by the addition of a hydroxyl group, sharing structural similarities with its parent compound macrosporin. These structure-bioactivity studies open up new avenues for developing safer and more effective therapeutic agents by synthesizing targeted derivatives. Despite the immense promise, challenges remain, particularly in the large-scale cultivation of fungal endophytes and in understanding the complexities of their biosynthetic pathways. Additionally, the genetic manipulation of endophytes for optimized metabolite production is still in its infancy. Future research should aim to overcome these limitations by focusing on more efficient cultivation methods and deeper exploration of fungal endophytes' genetic and metabolic capabilities to fully harness their therapeutic potential.
Collapse
Affiliation(s)
- Chandrabhan Prajapati
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Sachchida Nand Rai
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Anurag Kumar Singh
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | | | - Yashveer Singh
- Department of Statistics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Santosh Kumar Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India.
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, 45142, Jazan, Saudi Arabia
| | - Miguel Angel Prieto
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department. Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004, Ourense, Spain.
| | - Ghulam Md Ashraf
- Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, 111 Ren'ai road, SIP, Jiangsu Province, Suzhou, 215123, P. R. China.
| |
Collapse
|
4
|
Wang Z, Zheng Y, Guo J, Lai Z, Liu J, Li N, Li Z, Gao M, Qiao X, Yang Y, Zhang H, An L, Xu K. Recent advance on the production of microbial exopolysaccharide from waste materials. Bioprocess Biosyst Eng 2025:10.1007/s00449-025-03169-7. [PMID: 40272479 DOI: 10.1007/s00449-025-03169-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Accepted: 04/09/2025] [Indexed: 04/25/2025]
Abstract
Polysaccharide has been widely used in the fields of industry, agriculture, food and medicine because of its excellent physicochemical properties and bioactivities. Compared to plant and animal polysaccharides, microbial exopolysaccharide has advantages of occupying less cultivated land, short fermentation period, controllable fermentation process and not restricted by seasons. However, due to the deterioration of global climates and outbreak of conflicts, food crisis has become more and more serious. Therefore, searching alternative substrates for microbial exopolysaccharide production has attracted worldwide attention, waste materials might be an ideal substitute due to its high-content nutrients. Present work discussed and reviewed the production of microbial exopolysaccharide from molasses, cheese whey, lignocellulosic biomass, fruit pomace and/or husk, crude glycerol and kitchen waste. It was found that commercial grade exopolysaccharides were mainly produced from waste materials via submerged fermentation, and pretreatment of waste materials is a commonly used strategy. Although industrial production of microbial exopolysaccharides with waste materials as substrate has not been reported, we hoped that this work could not only provide contribution for efficient utilization of waste materials, but also help for alleviating global food crises.
Collapse
Affiliation(s)
- Zichao Wang
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Yi Zheng
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Jinghan Guo
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Ziru Lai
- School of International Education, Henan University of Technology, Zhengzhou, 450001, China
| | - Jiale Liu
- School of International Education, Henan University of Technology, Zhengzhou, 450001, China
| | - Na Li
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhitao Li
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Minjie Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Xueyi Qiao
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Yahui Yang
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China.
| | - Huiru Zhang
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China.
| | - Lemei An
- Department of Rheumatology and Clinical Immunology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China.
| | - Keyu Xu
- Guo Shoujing Innovative College, College of Chemical and Biological Engineering, Xingtai University, Xingtai, 054000, China.
| |
Collapse
|
5
|
Zhu X, Ren M, Zhang Z, Meng F, Li Z, Qin Y, Fang Y, Zhang M. Isolation and characterization of quinoa antimicrobial peptides and its effect on the microbial diversity of fresh apple juice. Food Chem 2025; 469:142536. [PMID: 39729667 DOI: 10.1016/j.foodchem.2024.142536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/30/2024] [Accepted: 12/14/2024] [Indexed: 12/29/2024]
Abstract
This study developed antimicrobial peptides (AMPs) from quinoa with high antibacterial activity and stability by mixed-bacteria fermentation. Furthermore, among 9 peptide fractions purified by membrane separation and chromatography, F1 could effectively inhibit the growth and propagation of bacterial microorganisms in apple juice. Subsequently, F1 identified LC-MS/MS as 95 peptides, molecular weights 494.25 Da to 1253.55 Da, notably, AGAAPE peptide (556.25 Da), negatively charged (-1), highly hydrophobic (50 %), with significant inhibitory effects on both Escherichia coli and Staphylococcus aureus (MIC 5 mg/mL). The antimicrobial mechanism of AGAAPE was determined to damage membrane through hydrogen-bond and hydrophobic interactions, resulting in leakage of intramembrane substances and inhibition of intracellular ATPase activity. Moreover, AGAAPE was pH resistant (pH 4-12), thermally stable (121 °C, 30 min), resistant to salt ion interference (Na+, Ca2+), and protease hydrolysis resistant (neutral protease, pepsin, trypsin). Overall, identifying AMPs from quinoa provides a promising new approach for fresh juice preservation.
Collapse
Affiliation(s)
- Xiaoyu Zhu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Mengyao Ren
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Zhiwei Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Fanxing Meng
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Zongda Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Yanan Qin
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Yan Fang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China.
| | - Minwei Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China.
| |
Collapse
|
6
|
Zhang K, Zhao S, Wang Z, Cheng M, Wang W, Yang Q. Construction of an Efficient Engineered Strain for Chaetoglobosin A Bioresource Production from Potato Starch Industrial Waste. Foods 2025; 14:842. [PMID: 40077545 PMCID: PMC11898925 DOI: 10.3390/foods14050842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/23/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Chaetoglobosin A (CheA), a typical structure of the cytochalasin family, exhibits outstanding efficacy against a variety of tumor cells and plant pathogens. However, its low yield and high production cost are major obstacles limiting its wide application. In order to increase CheA yield, an engineered strain was established by overexpressing CgMfs, the gene encoding the MFS family's efflux pump, on chassis cells lacking CgXpp1, which have been shown to act as a negative regulator of CheA biosynthesis. As expected, the engineered strain significantly boosted CheA production from 63.19 to 265.93 mg/L after incubation in PDA medium for 10 d, whereas the yield of the engineered strain was remarkably enhanced 2.93-fold compared with the wild type, following 10 d of cultivation utilizing potato starch industrial waste. The addition of metal ions had a positive effect on CheA production, with Cu2+ being the most effective and improving production to 176.92 mg/L. The optimal fermentation conditions were determined by response surface optimization, and under the optimal conditions, the engineered strain could stably produce CheA with a yield of 197.58 mg/L. This study provided the conditions for reducing production costs while increasing CheA production, as well as new strategies and insights for the production of the target compound.
Collapse
Affiliation(s)
- Kai Zhang
- Donghai Laboratory, Zhoushan 316021, China;
- School of Life Science, Ludong University, 186 Hongqi Road, Yantai 264025, China
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China; (M.C.); (W.W.)
| | - Shanshan Zhao
- Donghai Laboratory, Zhoushan 316021, China;
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China; (M.C.); (W.W.)
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, China;
| | - Zhengran Wang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, China;
| | - Ming Cheng
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China; (M.C.); (W.W.)
| | - Wan Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China; (M.C.); (W.W.)
| | - Qian Yang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China; (M.C.); (W.W.)
| |
Collapse
|
7
|
Ren X, Yuan S, Ren J, Ma L, Liu J, Wang G. Effect of caffeic acid grafted chitosan loaded quercetin lyophilized powder formulation on avian colibacillosis and tissue distribution. Front Vet Sci 2024; 11:1470781. [PMID: 39512917 PMCID: PMC11540789 DOI: 10.3389/fvets.2024.1470781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/18/2024] [Indexed: 11/15/2024] Open
Abstract
Quercetin (QR), recognized as a natural antibacterial ingredient, has found widespread application in the poultry industry. This study investigated the bacteriostatic mechanism and evaluated the in vivo inhibitory impact of caffeic acid-grafted chitosan self-assembled micelles loaded quercetin (CA-g-CS/QR) on avian Escherichia coli (E. coli). The findings indicate that the bactericidal mechanism of CA-g-CS/QR exhibits enhanced efficacy compared to QR alone, disrupting bacterial cell walls, disassembling biofilm structures, and impeding essential components necessary for bacterial growth. Following an avian E. coli attack in broilers, CA-g-CS/QR demonstrated the capacity to enhance the population of beneficial bacteria while concurrently decreasing harmful bacteria within the intestinal tract. Moreover, within 3 days of oral administration of CA-g-CS/QR, a significant decrease in Escherichia spp. count was evident, resulting in the restoration of broilers to a healthy state. CA-g-CS/QR proved to be a significant and more efficacious solution than QR alone for avian E. coli disease. Furthermore, CA-g-CS/QR displayed a broader distribution range and higher concentration within the body. Ten metabolites have been identified in the liver for both QR and CA-g-CS/QR. In conclusion, CA-g-CS/QR has demonstrated a notable capacity to enhance in vitro and in vivo bacterial inhibitory effects, providing foundation for the clinical application of QR in combating avian E. coli infections in broilers.
Collapse
Affiliation(s)
- Xin Ren
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Sikun Yuan
- School of Quality and Technical Supervision, Hebei University, Baoding, China
- Baoding Institute for Food and Drug Control, Baoding, China
| | - Juan Ren
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Leying Ma
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Juxiang Liu
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Gengnan Wang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| |
Collapse
|
8
|
Jamei S, Dehghan G, Rashtbari S, Dadakhani S, Marefat A. Bioinspired construction of ATP/Co-Al-Zn LDH nanozyme with enhanced peroxidase-mimic performance for efficient bactericidal activity through membrane disruption. Int J Biol Macromol 2024; 278:134968. [PMID: 39181364 DOI: 10.1016/j.ijbiomac.2024.134968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/07/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
In recent years, overuse of antibiotics has led to emerging antibiotic-resistant strains of bacteria. Consequently, creating new, highly productive antibacterial agents is crucial. In this work, we synthesized copper-aluminum-zinc layered double hydroxide (Co-Al-Zn LDH) and modified it using adenosine triphosphate. After characterization, the enzyme-like activity of the prepared particles was evaluated. The results indicated peroxidase-mimic performance of ATP/Co-Al-Zn LDH with Km values of 0.38 mM and 1.69 mM for TMB (3,3',5,5'-tetramethylbenzidine) and hydrogen peroxide (H2O2), respectively, which were lower than that of horseradish peroxidase. The highest peroxidase-like activity of ATP/Co-Al-Zn LDH was achieved at 20 °C, pH 4, with a 1.02 mg/mL catalyst, 231 μM TMB, and 1.9 mM H2O2. The bactericidal activity of the developed nanozyme was studied against E. coli and S. aureus. The peroxidase-mimic nanozyme decomposes H2O2 and generates free radicals to kill bacteria in vitro. The minimum inhibitory concentration (MIC) of ATP/Co-Al-Zn LDH was 15 μg/mL and 20 μg/mL for S. aureus and E. coli, respectively. The morphological characteristics of the nanozyme-treated bacterial cells showed dramatic changes in bacterial morphology. Our results revealed higher antibacterial activity of ATP/Co-Al-Zn LDH against S. aureus. Therefore, the developed nanozyme could serve as a substitute for conventional antibiotics.
Collapse
Affiliation(s)
- Sina Jamei
- Laboratory of Biochemistry and Molecular Biology, Department of Biology, Faculty of Natural Sciences, University of Tabriz, 51666-16471 Tabriz, Iran
| | - Gholamreza Dehghan
- Laboratory of Biochemistry and Molecular Biology, Department of Biology, Faculty of Natural Sciences, University of Tabriz, 51666-16471 Tabriz, Iran.
| | - Samaneh Rashtbari
- Laboratory of Biochemistry and Molecular Biology, Department of Biology, Faculty of Natural Sciences, University of Tabriz, 51666-16471 Tabriz, Iran
| | - Sonya Dadakhani
- Laboratory of Biochemistry and Molecular Biology, Department of Biology, Faculty of Natural Sciences, University of Tabriz, 51666-16471 Tabriz, Iran
| | - Arezu Marefat
- Laboratory of Biochemistry and Molecular Biology, Department of Biology, Faculty of Natural Sciences, University of Tabriz, 51666-16471 Tabriz, Iran
| |
Collapse
|
9
|
Wang Z, Zheng Y, Hu Y, Yang L, Liu X, Zhao R, Gao M, Li Z, Feng Y, Xu Y, Li N, Yang J, Wang Q, An L. Improvement of antibacterial activity of polysaccharides via chemical modification: A review. Int J Biol Macromol 2024; 269:132163. [PMID: 38729490 DOI: 10.1016/j.ijbiomac.2024.132163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/16/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
Antibiotic residue and bacterial resistance induced by antibiotic abuse have seriously threatened food safety and human healthiness. Thus, the development and application of safe, high-efficiency, and environmentally friendly antibiotic alternatives are urgently necessary. Apart from antitumor, antivirus, anti-inflammatory, gut microbiota regulation, immunity improvement, and growth promotion activities, polysaccharides also have antibacterial activity, but such activity is relatively low, which cannot satisfy the requirements of food preservation, clinical sterilization, livestock feeding, and agricultural cultivation. Chemical modification not only provides polysaccharides with better antibacterial activity, but also promotes easy operation and large-scale production. Herein, the enhancement of the antibacterial activity of polysaccharides via acetylation, sulfation, phosphorylation, carboxymethylation, selenation, amination, acid graft, and other chemical modifications is reviewed. Meanwhile, a new trend on the application of loading chemically modified polysaccharides into nanostructures is discussed. Furthermore, possible limitations and future recommendations for the development and application of chemically modified polysaccharides with better antibacterial activity are suggested.
Collapse
Affiliation(s)
- Zichao Wang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yi Zheng
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yiwei Hu
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Libo Yang
- School of Landscape and Ecological Engineering, Hebei University of Engineering, 19 Taiji Road, Handan, Hebei 056038, China.
| | - Xirui Liu
- School of Foreign Languages, Henan University of Technology, Zhengzhou 450001, China
| | - Renyong Zhao
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Minjie Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Zhitao Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yingjie Feng
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou 450000, China
| | - Yongming Xu
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou 450000, China
| | - Na Li
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jinchu Yang
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou 450000, China.
| | - Qi Wang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Lemei An
- Department of Rheumatology and Clinical Immunology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China.
| |
Collapse
|
10
|
He Z, Zhu B, Deng L, You L. Effects of UV/H 2O 2 Degradation on the Physicochemical and Antibacterial Properties of Fucoidan. Mar Drugs 2024; 22:209. [PMID: 38786600 PMCID: PMC11123097 DOI: 10.3390/md22050209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/26/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024] Open
Abstract
The applications of fucoidan in the food industry were limited due to its high molecular weight and low solubility. Moderate degradation was required to depolymerize fucoidan. A few studies have reported that fucoidan has potential antibacterial activity, but its antibacterial mechanism needs further investigation. In this study, the degraded fucoidans were obtained after ultraviolet/hydrogen peroxide treatment (UV/H2O2) at different times. Their physicochemical properties and antibacterial activities against Staphylococcus aureus and Escherichia coli were investigated. The results showed that the average molecular weights of degraded fucoidans were significantly decreased (up to 22.04 times). They were mainly composed of fucose, galactose, and some glucuronic acid. Fucoidan degraded for 90 min (DFuc-90) showed the strongest antibacterial activities against Staphylococcus aureus and Escherichia coli, with inhibition zones of 27.70 + 0.84 mm and 9.25 + 0.61 mm, respectively. The minimum inhibitory concentrations (MIC) were 8 mg/mL and 4 mg/mL, respectively. DFuc-90 could inhibit the bacteria by damaging the cell wall, accumulating intracellular reactive oxygen species, reducing adenosine triphosphate synthesis, and inhibiting bacterial metabolic activity. Therefore, UV/H2O2 treatment could effectively degrade fucoidan and enhance its antibacterial activity.
Collapse
Affiliation(s)
| | | | | | - Lijun You
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (Z.H.); (B.Z.); (L.D.)
| |
Collapse
|
11
|
Qiao Z, Zhang K, Liu H, Roh Y, Kim MG, Lee HJ, Koo B, Lee EY, Lee M, Park CO, Shin Y. CSMP: A Self-Assembled Plant Polysaccharide-Based Hydrofilm for Enhanced Wound Healing. Adv Healthc Mater 2024; 13:e2303244. [PMID: 37934913 DOI: 10.1002/adhm.202303244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Indexed: 11/09/2023]
Abstract
Wound management remains a critical healthcare issue due to the rising incidence of chronic diseases leading to persistent wounds. Traditional dressings have their limitations, such as potential for further damage during changing and suboptimal healing conditions. Recently, hydrogel-based dressings have gained attention due to their biocompatibility, biodegradability, and ability to fill wounds. Particularly, polysaccharide-based hydrogels have shown potential in various medical applications. This study focuses on the development of a novel hydrofilm wound dressing produced from a blend of chia seed mucilage (CSM) and polyvinyl alcohol (PVA), termed CSMP. While the individual properties of CSM and PVA are well-documented, their combined potential in wound management is largely unexplored. CSMP, coupled with sorbitol and glycerin, and cross-linked using ultraviolet light, results in a flexible, adhesive, and biocompatible hydrofilm demonstrating superior water absorption, moisturizing, and antibacterial properties. This hydrofilm promotes epithelial cell migration, enhanced collagen production, and outperforms existing commercial dressings in animal tests. The innovative CSMP hydrofilm offers a promising, cost-effective approach for improved wound care, bridging existing gaps in dressing performance and preparation simplicity. Future research can unlock further applications of such polysaccharide-based hydrofilm dressings.
Collapse
Affiliation(s)
- Zhen Qiao
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - KeLun Zhang
- Department of Dermatology, Severance, Hospital, Cutaneous Biology, Research Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Huifang Liu
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Yeonjeong Roh
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Myoung Gyu Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hyo Joo Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Bonhan Koo
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Eun Yeong Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Minju Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Chang Ook Park
- Department of Dermatology, Severance, Hospital, Cutaneous Biology, Research Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Yong Shin
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
12
|
Wang Z, Zheng Y, Lai Z, Hu X, Wang L, Wang X, Li Z, Gao M, Yang Y, Wang Q, Li N. Effect of monosaccharide composition and proportion on the bioactivity of polysaccharides: A review. Int J Biol Macromol 2024; 254:127955. [PMID: 37944714 DOI: 10.1016/j.ijbiomac.2023.127955] [Citation(s) in RCA: 90] [Impact Index Per Article: 90.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/16/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
Polysaccharides have been widely used in pharmaceutical and food industries due to their diverse bioactivity, high safety, and few or no side effects. However, inability to quickly produce, screen, and synthesize bioactive polysaccharides is the limiting factor for their development and application. Structural features determine and influence the bioactivity of polysaccharides. Among them, monosaccharide is the basic unit of polysaccharide, which not only affects electrification, functional group, and bioactivity of polysaccharide but also is one of the simplest polysaccharide indexes to be detected. At present, effects of monosaccharide composition and proportion on anti-inflammatory, antioxidant, antitumor, immunomodulatory, antibacterial, and prebiotic activities of polysaccharides are reviewed. Further problems need to be considered during regulation and analysis of monosaccharide composition and proportion of polysaccharides. Overall, present work will provide help and reference for production, development, and structure-function investigation of polysaccharides based on their monosaccharide.
Collapse
Affiliation(s)
- Zichao Wang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yi Zheng
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Ziru Lai
- School of International Education, Henan University of Technology, Zhengzhou 450001, China
| | - Xilei Hu
- School of International Education, Henan University of Technology, Zhengzhou 450001, China
| | - Lu Wang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xueqin Wang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Zhitao Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Minjie Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yahui Yang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Qi Wang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Na Li
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Provincial Key Laboratory of Ultrasound Imaging and Artificial Intelligence, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
13
|
Wang Q, Zhou X, Gou H, Chang H, Lan J, Li J, Li Z, Gao M, Wang Z, Yi Y, Li N. Antibacterial activity of a polysaccharide isolated from Artemisia argyi leaf against Staphylococcus aureus and mechanism investigation. Int J Biol Macromol 2023; 253:126636. [PMID: 37657565 DOI: 10.1016/j.ijbiomac.2023.126636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
Abuse of antibiotics has led to excessive amounts of antibiotic residues in food and environment, thus enhancing pathogenic bacterium resistance and threatening human health. Therefore, searching and developing safe and green antibiotic alternatives are necessary. In this study, an Artemisia argyi leaf polysaccharide (AALP) fraction was extracted and analyzed. Chemical composition analysis showed that the carbohydrate, uronic acid, protein, and polyphenol content in AALP were 68.3 % ± 4.13 %, 9.4 % ± 0.86 %, 1.79 % ± 0.27 %, and 0.16 % ± 0.035 %, respectively. Chromatographic results suggested that AALP contained rhamnose, arabinose, glucosamine, galactose, glucose, xylose, mannose, galacturonic acid, and glucuronic acid in a molar ratio of 9.26, 1.35, 1.18, 3.04, 48.51, 2.33, 31.26, 3.93, and 9.08; the weight average molecular weight, number average molecular weight, and polydispersity of AALP were 5.41 kDa, 4.63 kDa, and 1.168, respectively. Fourier transform infrared spectroscopy indicated that AALP constituted the polysaccharide-specific groups of CH, CO, and OH. Meanwhile, AALP showed a dose-dependent inhibitory effect on Staphylococcus aureus in the inhibition zone assay, and the minimal inhibitory concentration was 1.25 mg/mL. Furthermore, AALP disrupted the cell wall, depolarized the inner membrane potential, and inhibited the activities of succinate dehydrogenase and malate dehydrogenase in S. aureus.
Collapse
Affiliation(s)
- Qi Wang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xueyan Zhou
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Haiqin Gou
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - He Chang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Junyi Lan
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Jia Li
- School of International Education, Henan University of Technology, Zhengzhou 450001, China
| | - Zhitao Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Minjie Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Zichao Wang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Yanjie Yi
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Na Li
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Provincial Key Laboratory of Ultrasound Imaging and Artificial Intelligence, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
14
|
Coronado-Contreras A, Ruelas-Chacón X, Reyes-Acosta YK, Dávila-Medina MD, Ascacio-Valdés JA, Sepúlveda L. Valorization of Prickly Pear Peel Residues ( Opuntia ficus-indica) Using Solid-State Fermentation. Foods 2023; 12:4213. [PMID: 38231671 DOI: 10.3390/foods12234213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/03/2023] [Accepted: 11/16/2023] [Indexed: 01/19/2024] Open
Abstract
Prickly pear peel (Opuntia ficus-indica) residues can be used as a substrate in solid-state fermentation to obtain bioactive compounds. The kinetic growth of some Aspergillus strains was evaluated. A Box-Hunter and Hunter design to evaluate the independent factors was used. These factors were temperature (°C), inoculum (spores/g), humidity (%), pH, NaNO3 (g/L), MgSO4 (g/L), KCl (g/L), and KH2PO4 (g/L). The response factors were the amount of hydrolyzable and condensed tannins. The antioxidant and antimicrobial activity of fermentation extracts was evaluated. Aspergillus niger strains GH1 and HT3 were the best for accumulating tannins. The humidity, inoculum, and temperature affect the release of hydrolyzable and condensed tannins. Treatment 13 (low values for temperature, inoculum, NaNO3, MgSO4; and high values for humidity, pH, KCl, KH2PO4) resulted in 32.9 mg/g of condensed tannins being obtained; while treatment 16 (high values for all the factors evaluated) resulted in 3.5 mg/g of hydrolyzable tannins being obtained. In addition, the fermented extracts showed higher antioxidant activity compared to the unfermented extracts. Treatments 13 and 16 showed low inhibition of E. coli, Alternaria sp., and Botrytis spp. The solid-state fermentation process involving prickly pear peel residues favors the accumulation of condensed and hydrolyzable tannins, with antioxidant and antifungal activity.
Collapse
Affiliation(s)
| | - Xochitl Ruelas-Chacón
- Food Science and Technology Department, Autonomous Agrarian University Antonio Narro, Saltillo 25315, Coahuila, Mexico
| | - Yadira K Reyes-Acosta
- School of Chemistry, Autonomous University of Coahuila, Saltillo 25280, Coahuila, Mexico
| | | | - Juan A Ascacio-Valdés
- School of Chemistry, Autonomous University of Coahuila, Saltillo 25280, Coahuila, Mexico
| | - Leonardo Sepúlveda
- School of Chemistry, Autonomous University of Coahuila, Saltillo 25280, Coahuila, Mexico
| |
Collapse
|
15
|
Kumar V, Nautiyal CS. Endophytes Modulate Plant Genes: Present Status and Future Perspectives. Curr Microbiol 2023; 80:353. [PMID: 37740026 DOI: 10.1007/s00284-023-03466-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/31/2023] [Indexed: 09/24/2023]
Abstract
Interactions among endophytes and plants are widespread and can vary from neutral or positive or negative. Plants are continually in a functionally dynamic state due to interactions with diverse endophytic microorganisms, which produce various metabolic substances. Through quorum sensing, these substances not only help endophytes to outcompete other host-associated pathogens or microbes but also allow them to overcome the plant immune system. Manifold interactions between endophytic microbiota cause a reflective impact on the host plant functioning and the development of 'endobiomes,' by synthesizing chemicals that fill the gap between host and endophytes. Despite the advances in the field, specific mechanisms for the endophytes' precise methods to modulate plant genome and their effects on host plants remain poorly understood. Deeper genomic exploration can provide a locked away understanding of the competencies of endophytes and their conceivable function in host growth and health. Endophytes also can modify host metabolites, which could manipulate plants' growth, adaptation, and proliferation, and can be a more exciting and puzzling topic that must be properly investigated. The consequence of the interaction of endophytes on the host genome was analyzed as it can help unravel the gray areas of endophytes about which very little or no knowledge exists. This review discusses the recent advances in understanding the future challenges in the emerging research investigating how endosymbionts affect the host's metabolism and gene expression as an effective strategy for imparting resistance to biotic and abiotic challenges.
Collapse
Affiliation(s)
- Vivek Kumar
- Himalayan School of Biosciences, Swami Rama Himalayan University, Jollygrant, Dehradun-248016, Uttrakhand, India.
| | - Chandra S Nautiyal
- Himalayan School of Biosciences, Swami Rama Himalayan University, Jollygrant, Dehradun-248016, Uttrakhand, India
| |
Collapse
|
16
|
Liao Z, Lin K, Liao W, Xie Y, Yu G, Shao Y, Dai M, Sun F. Transcriptomic analyses reveal the potential antibacterial mechanism of citral against Staphylococcus aureus. Front Microbiol 2023; 14:1171339. [PMID: 37250032 PMCID: PMC10213633 DOI: 10.3389/fmicb.2023.1171339] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/13/2023] [Indexed: 05/31/2023] Open
Abstract
Background The emergence of multi-drug resistant Staphylococcus aureus (S. aureus) has posed a challenging clinical problem for treating its infection. The development of novel or new antibacterial agents becomes one of the useful methods to solve this problem, and has received more attention over the past decade. Citral is reported to have antibacterial activity against S. aureus, but its mechanism is yet entirely clear. Methods To reveal the antibacterial mechanism of citral against S. aureus, comparative transcriptomic analysis was carried out to analyze the gene expression differences between the citral-treated and untreated groups. The changes of protein, adenosine triphosphate (ATP) and reactive oxygen species (ROS) content in S. aureus caused by citral were also examined. Results Six hundred and fifty-nine differentially expressed genes were obtained according to the comparative transcriptomic analysis, including 287 up-regulated genes and 372 down-regulated genes. The oxidoreductase activity and fatty acid degradation pathway were enriched in up-regulated genes, and ribosome and S. aureus infection pathway were enriched in down-regulated genes. Meanwhile, physiological trials revealed a decline in ATP and protein levels, but an increase in ROS content within the citral-treated group. Thus, it can be inferred that the antibacterial effects of citral against S. aureus were likely due to its ability to decrease ATP content by down-regulating ATP synthase genes (atpD and atpG), reduce protein content, induce cell membrane and cell wall damages, accumulate ROS, and down-regulate virulence factor genes to reduce pathogenicity. Conclusion These findings revealed the antibacterial mechanism of citral was likely a type of multi-target mode that affected multiple molecular processes in S. aureus, which lays the groundwork for further exploitation of citral as a therapeutic candidate against S. aureus infections.
Collapse
Affiliation(s)
- Zedong Liao
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan, China
- Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu, Sichuan, China
| | - Keshan Lin
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan, China
- Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu, Sichuan, China
| | - Weijiang Liao
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan, China
| | - Ying Xie
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan, China
- Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu, Sichuan, China
| | - Guoqing Yu
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan, China
- Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu, Sichuan, China
| | - Yan Shao
- The Second People’s Hospital of Pinghu, Pinghu, Zhejiang, China
| | - Min Dai
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan, China
- Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu, Sichuan, China
| | - Fenghui Sun
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan, China
- Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu, Sichuan, China
| |
Collapse
|
17
|
A New Approach in Meat Bio-Preservation through the Incorporation of a Heteropolysaccharide Isolated from Lobularia maritima L. Foods 2022; 11:foods11233935. [PMID: 36496743 PMCID: PMC9741361 DOI: 10.3390/foods11233935] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
In this study, a new heteropolysaccharide extracted from Lobularia maritima (L.) Desv. (LmPS), a halophyte harvested in Tunisia, was evaluated as an antioxidant and antibacterial additive in the bio-preservation of raw minced meat. For antibacterial testing, Gram-positive bacteria such as Staphylococcus aureus ATCC and Listeria monocytogenes ATCC 19,117 and Gram-negative bacteria such as Salmonella enterica ATCC 43,972 and Escherichia coli ATCC 25,922 were used. The results indicate that this polymer had a significant antibacterial activity against foodborne pathogens. Additionally, the effects of LmPS at 0.15, 0.3 and 0.6% on refrigerated raw ground beef were investigated from a microbiological, chemical, and sensory perspective. Microbiological analysis of the meat showed that treatment with LmPS significantly (p < 0.05) improved its shelf life, while the biochemical analysis evidenced a significant (p < 0.05) decrease in lipid oxidation. LmPS at 0.6% significantly reduced by 61% and 48% metmyoglobin accumulation at the end of the storage period when compared to BHT and control samples, respectively. The chemometric approach highlighted the relationships among the different meat quality parameters. LmPS can be introduced in the food industry as a powerful natural additive and could be an alternative to synthetic antioxidant compounds.
Collapse
|
18
|
Li BB, Zhang W, Wei S, Lv YY, Shang JX, Hu YS. Comprehensive proteome and lysine acetylome analysis after artificial aging reveals the key acetylated proteins involved in wheat seed oxidative stress response and energy production. J Food Biochem 2022; 46:e14495. [PMID: 36322387 DOI: 10.1111/jfbc.14495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/07/2022]
Abstract
Lysine acetylation is a common post-translational modification of proteins within all organisms. However, quantitative acetylome characterization in wheat seed during aging in storage has not been reported. This study reports the first large-scale acetylome analysis of wheat seeds after artificial aging treatment, using the quantitative proteomic approach. In total, 11,002 acetylation sites, corresponding to 4262 acetylated proteins were identified, of which 1207 acetylated sites, representing 783 acetylated proteins, were significantly more or less acetylated after artificial aging. Functional analysis demonstrated that the majority of the acetylated proteins are closely involved with cellular and metabolic functions. In particular, key enzymes in the oxidative stress response and energy metabolism were significantly differentially acetylated and appear to be heavily involved in wheat seed aging. The acetylome analysis was verified by quantitative real-time PCR and enzyme activity determination. Lysine-acetylation results in a weaker oxidative stress response and lower energy production efficiency, resulting in the apoptosis of wheat seed cells, insufficient energy supply at the germination stage, and consequently, marked loss of seed vigor. PRACTICAL APPLICATIONS: It is known that the loss of protein function is an important reason for the decrease of seed vigor. Therefore, the change of protein function in the process of wheat seed aging was studied by proteome and lysine acetylome analysis technology. The results showed that the oxidation-reduction imbalance and the decrease of energy production efficiency of seeds were the important reasons for the decrease of their vigor. This will provide a new idea for green and safe storage of grain.
Collapse
Affiliation(s)
- Bang-Bang Li
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Wei Zhang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Shan Wei
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Yang-Yong Lv
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Ji-Xu Shang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Yuan-Sen Hu
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
19
|
Xie L, Wang G, Xie J, Chen X, Xie J, Shi X, Huang Z. Enhancement of functional activity and biosynthesis of exopolysaccharides in Monascus purpureus by genistein treatments. Curr Res Food Sci 2022; 5:2228-2242. [PMID: 36425595 PMCID: PMC9678808 DOI: 10.1016/j.crfs.2022.11.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/07/2022] [Accepted: 11/12/2022] [Indexed: 11/16/2022] Open
Abstract
The exopolysaccharides (EPS) produced by the edible medicinal fungus Monascus purpureus (EMP) become the center of growing interest due to their techno-functional properties and their numerous applications in the food industries; however, the low EPS yields limit its application. In this study, the effect of genistein supplementation on the production, rheological and antioxidant properties of EPS by M. purpureus and its biosynthesis mechanism were explored. The results indicated that the addition of genistein (3 g/L) generated a 110% and 59% increase in the maximum mycelial biomass and EPS yield, respectively. The genistein supplementation group (G-EMP) had higher molar percentages of Xyl and Man, and significantly decreased molecule weight and particle size of EPS, which resulted in stronger antioxidant effect and cell growth promotion. Rheological analysis showed that both EMP and G-EMP demonstrated pseudoplastic fluid behavior and G-EMP exhibited strong gel-like elastic behavior (G' > G"). Furthermore, genistein not only facilitated the production of EPS by regulating cell membrane permeability, enhancing cellular respiratory metabolism and monosaccharide precursor synthesis pathways, and enhancing antioxidant enzyme activity to reduce oxidative stress damage, but also affected the composition of the monosaccharides by increasing enzyme activity in the underlying synthesis pathways. These findings expand the application of M. purpureus resources and provide a paradigm for future study of the structural and functional characteristics of EPS. Genistein (3 g/L) significantly stimulate yield of biomass and exopolysaccharides (EPS) from M. purpureus. The physicochemical and rheological properties of EPS were significantly changed. Their antioxidant and cytoprotective effect were compared. A possible mechanism for the response of genistein to increase EPS yield is proposed.
Collapse
|
20
|
Xie L, Xie J, Chen X, Tao X, Xie J, Shi X, Huang Z. Comparative transcriptome analysis of Monascus purpureus at different fermentation times revealed candidate genes involved in exopolysaccharide biosynthesis. Food Res Int 2022; 160:111700. [PMID: 36076402 DOI: 10.1016/j.foodres.2022.111700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/27/2022] [Accepted: 07/15/2022] [Indexed: 11/26/2022]
Abstract
Exopolysaccharides (EPS), metabolites of the medicinal edible fungus Monascus purpureus, have antioxidant, immunomodulatory, and anti-inflammatory effects. However, the biosynthetic mechanism of EPS from M. purpureus is still unclear, which hinders its utilization. In this study, the fermentation conditions of M. purpureus were optimized and comparative transcriptomic analysis was performed to understand the mechanisms and effects of fermentation on EPS synthesis. The optimal medium composition was 40 g/L mannose, 4 g/L yeast powder, 1 g/L MgSO4·7H2O, 0.8 g/L KH2PO4, 1.6 g/L K2HPO4·3H2O, and 2 mL/L Tween 80, and the optimal cultivation conditions were an inoculum of 7 %, culture temperature 30 °C, initial pH 6.0, and 180 rpm for 4 d. A total of 8095 unigenes were obtained, and 17 key enzymes for EPS synthesis were identified. Interestingly, 12 carbohydrate metabolism subcategories were enriched in the group with 4 days of fermentation compared to 2 days, with most of the differentially expressed genes (DEGs) being upregulated, but only nine carbohydrate metabolism subcategories were enriched with longer fermentation time, with all DEGs being downregulated. This study provides a theoretical basis for enhancing the EPS content and reveals the dynamics of EPS synthesis in M. purpureus, providing important targets for future EPS molecular modifications and gene knockdown studies.
Collapse
Affiliation(s)
- Liuming Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China; Sino-German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China.
| | - XianXiang Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Xin Tao
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Jiayan Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Xiaoyi Shi
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China; Sino-German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Zhibing Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China; Sino-German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China.
| |
Collapse
|
21
|
Weng M, You S, Luo J, Lin Z, Chen T, Peng X, Qiu B. Antibacterial mechanism of polysaccharides from the leaves of Lindera aggregata (Sims) Kosterm. by metabolomics based on HPLC/MS. Int J Biol Macromol 2022; 221:303-313. [PMID: 36075303 DOI: 10.1016/j.ijbiomac.2022.09.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/27/2022] [Accepted: 09/02/2022] [Indexed: 11/29/2022]
Abstract
Lindera aggregata (Sims) Kosterm. is a traditional Chinese herb, which has been proven to have excellent antibacterial activity. In this work, we firstly extracted the polysaccharides from the leaves of Lindera aggregata (Sims) Kosterm. (LLPs), and explored their antibacterial activity and related mechanisms. The experimental results show that LLPs are a good antibacterial agent, which can damage the cell structure of bacteria and lead to the leakage of intracellular lysates. Compared with Escherichia coli (E. coli), LLPs showed better inhibitory activity against Staphylococcus aureus (S. aureus). Furthermore, the administration of LLPs not only led to the upregulation of the levels of fructose-1,6-bisphosphate (F-1,6-P) and citric acid in the glycolysis and tricarboxylic acid cycle pathways in bacteria, but also resulted in the down-regulation of the levels of oxaloacetate (OAA) and 1,3-diphosphoglycerate (1,3-BPG). This study confirmed that LLPs have good antibacterial activity, and broaden the application of the leaves of Lindera aggregata (Sims) Kosterm. in the antibacterial field. It provides ideas for exploring the antibacterial mechanism of active ingredients of Chinese herbal medicine through metabolomics.
Collapse
Affiliation(s)
- Mingfeng Weng
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology (Fuzhou University), Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Fuzhou, Fujian 350108, China
| | - Shumin You
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology (Fuzhou University), Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Fuzhou, Fujian 350108, China
| | - Jiewei Luo
- Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350001, China
| | - Zhenyu Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology (Fuzhou University), Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Fuzhou, Fujian 350108, China
| | - Ting Chen
- Department of Traditional Chinese Medicine, Fujian Provincial Hospital, Fuzhou 350001, China.
| | - Xin Peng
- Ningbo Municipal Hospital of TCM,Affiliated Hospital of Zhejiang Chinese Medical University, China.
| | - Bin Qiu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology (Fuzhou University), Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Fuzhou, Fujian 350108, China.
| |
Collapse
|
22
|
Ming Q, Huang X, Guo L, Liu D, Qin L, He Y, Tang Y, Liu Y, Liu J, Li P. Diversity of endophytic fungi in Coptis chinensis Franch. and their activity against methicillin-resistant Staphylococcus aureus. Folia Microbiol (Praha) 2022; 67:965-974. [PMID: 35907122 DOI: 10.1007/s12223-022-00994-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/21/2022] [Indexed: 11/04/2022]
Abstract
This study aimed at investigating the diversity of endophytic fungi from Coptis chinensis and their activity against methicillin-resistant Staphylococcus aureus (MRSA). Seventy-nine fungal isolates obtained from C. chinensis were identified to belong to 27 species based on morphological features and internal transcript spacer (ITS) gene sequencing analysis. Comparing relative frequency values, the most frequent genera were Colletotrichum and Fusarium, while most frequent species were C. gloeosporioides and F. avenaceum. Analysis of diversity indices indicated that C. chinensis harbored abundant fungal resources. Methanol extracts of fungal endophyte cultures were evaluated for antibacterial activity against S. aureus ATCC 25923 and two other MRSA clinical strains. Nine of 27 endophytic fungi exhibited inhibitory activities against S. aureus ATCC 25923. Among them, Paraboeremia litseae HL-17, Fusarium sp. HL-23, and Fusarium sp. HL-27 exhibited obvious inhibition against the three S. aureus strains. Our findings suggest that the endophytic fungi in C. chinensis have a high diversity and an obvious tissue specificity, and could be of potential interest in screening anti-MRSA agents. To the best of our knowledge, this is the first report on the diversity and anti-MRSA activity of fungal endophytes from C. chinensis.
Collapse
Affiliation(s)
- Qianliang Ming
- Department of Pharmacognosy, College of Pharmacy, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Xiuning Huang
- Department of Pharmacognosy, College of Pharmacy, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Linming Guo
- Department of Pharmacognosy, College of Pharmacy, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Dong Liu
- Department of Pharmacognosy, College of Pharmacy, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Lingyue Qin
- Department of Pharmacognosy, College of Pharmacy, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Yimo He
- Department of Pharmacognosy, College of Pharmacy, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Yu Tang
- Department of Pharmacognosy, College of Pharmacy, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Yanxia Liu
- Department of Pharmacognosy, College of Pharmacy, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Junkang Liu
- Department of Pharmacognosy, College of Pharmacy, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Peng Li
- Department of Pharmacognosy, College of Pharmacy, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.
| |
Collapse
|
23
|
Tao R, Lu Y, Xia W, Zhang C, Wang C. Characterization and antibacterial activity of ruthenium-based shikimate cross-linked chitosan composites. Int J Biol Macromol 2022; 217:890-901. [PMID: 35907455 DOI: 10.1016/j.ijbiomac.2022.07.205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 11/25/2022]
Abstract
The unsustainable antibacterial activity of ruthenium antibacterial agents is an important factor limiting their applications. This present work attempts to prepare ruthenium (Ru) coordination polymer composites with chitosan quaternary ammonium polymers (CQ) and shikimic acid (SA) through the interaction of ionic bonds and covalent bonds by microwave-assisted high-pressure homogenization methods. The prepared CQ@Ru-SA was characterized by size distribution, zeta potential, TEM, UV-vis, FTIR, XPS and XRD analyses. The coordination structure and morphology of Bridge-CQ-NH-Ru-SA were verified. The CQ@Ru-SA was well-dispersed in both the aqueous or anhydrous states. MIC and MBC, time-killing curves, biofilm formation inhibition assay, mature biofilm disruption assay, SEM, Ca2+ mobilization assay and Ca2+-Mg2+-ATPase activity studies revealed that CQ@Ru-SA had a stronger inhibitory effect against S. aureus than CQ and showed sustained antibacterial properties in the dynamic time-killing curves. Meanwhile, CQ@Ru-SA had good antibacterial effects against S. aureus and inhibited their biofilm forming ability in a dose-dependent manner. Further studies on antibacterial mechanisms revealed that CQ@Ru-SA influenced cell membrane integrity, Ca2+-Mg2+-ATPase activity on the cell membrane and intracellular Ca2+ levels of S. aureus. This study will provide the necessary data for the further design and development of ruthenium-based photosensitive antibacterial agents.
Collapse
Affiliation(s)
- Ran Tao
- Institute of Chemical Industry of Forest Products, CAF, Nanjing 210042, Jiangsu Province, China; Research Institute of Forestry New Technology, CAF, Beijing 100091, China.
| | - Yin Lu
- General Hospital of Eastern Theater Command, Nanjing 210002, Jiangsu Province, China
| | - Wubing Xia
- Jiangsu Honghui Pharmaceutical Company Limited, China
| | - Changwei Zhang
- Institute of Chemical Industry of Forest Products, CAF, Nanjing 210042, Jiangsu Province, China; Research Institute of Forestry New Technology, CAF, Beijing 100091, China
| | - Chengzhang Wang
- Institute of Chemical Industry of Forest Products, CAF, Nanjing 210042, Jiangsu Province, China; Research Institute of Forestry New Technology, CAF, Beijing 100091, China.
| |
Collapse
|
24
|
Li S, Wang Y, Dun W, Han W, Xu C, Sun Q, Wang Z. Effect of ultrasonic degradation on the physicochemical property and bioactivity of polysaccharide produced by Chaetomium globosum CGMCC 6882. Front Nutr 2022; 9:941524. [PMID: 35928848 PMCID: PMC9344072 DOI: 10.3389/fnut.2022.941524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/24/2022] [Indexed: 11/24/2022] Open
Abstract
Similar to the enzymatic process, there might also be an active fragment in polysaccharides, how to obtain is important for investigating the bioactivity and pharmacological mechanism of polysaccharides. Presently, a Gynostemma pentaphyllum endophytic fungus Chaetomium globosum CGMCC 6882 polysaccharide [Genistein Combined Polysaccharide (GCP)] was degraded by ultrasonic treatment, two polysaccharide fragments of GCP-F1 and GCP-F2 were obtained. Physicochemical results showed that GCP-F1 and GCP-F2 had the same monosaccharide composition of arabinose, galactose, glucose, xylose, mannose, and glucuronic acid as compared to GCP with slightly different molar ratios. However, weight-average molecular weights of GCP-F1 and GCP-F2 decreased from 8.093 × 104 Da (GCP) to 3.158 × 104 Da and 1.027 × 104 Da, respectively. In vitro scavenging assays illustrated that GCP-F1 and GCP-F2 had higher antioxidant activity against 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical, superoxide anions, and hydroxyl radical than GCP, the order was GCP < GCP-F1 < GCP-F2. Meanwhile, antibacterial tests showed that ultrasonic degradation increased the antibacterial activity of GCP-F1 as compared to GCP, but GCP-F2 almost lost its antibacterial activity with further ultrasound treatment. Changes in the antioxidant and antibacterial activities of GCP-F1 and GCP-F2 might be related to the variation of their molecular weights.
Collapse
Affiliation(s)
- Shiwei Li
- College of Life Sciences and Agronomy, Zhoukou Normal University, Zhoukou, China
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Yingna Wang
- College of Life Sciences and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Weipeng Dun
- College of Life Sciences and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Wanqing Han
- College of Life Sciences and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Chunping Xu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Qi Sun
- College of Life Sciences, Chongqing Normal University, Chongqing, China
- *Correspondence: Qi Sun,
| | - Zichao Wang
- School of Biological Engineering, Henan University of Technology, Zhengzhou, China
- Zichao Wang,
| |
Collapse
|
25
|
Li Z, Wen W, Qin M, He Y, Xu D, Li L. Biosynthetic Mechanisms of Secondary Metabolites Promoted by the Interaction Between Endophytes and Plant Hosts. Front Microbiol 2022; 13:928967. [PMID: 35898919 PMCID: PMC9309545 DOI: 10.3389/fmicb.2022.928967] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/21/2022] [Indexed: 12/28/2022] Open
Abstract
Endophytes is a kind of microorganism resource with great potential medicinal value. The interactions between endophytes and host not only promote the growth and development of each other but also drive the biosynthesis of many new medicinal active substances. In this review, we summarized recent reports related to the interactions between endophytes and hosts, mainly regarding the research progress of endophytes affecting the growth and development of host plants, physiological stress and the synthesis of new compounds. Then, we also discussed the positive effects of multiomics analysis on the interactions between endophytes and their hosts, as well as the application and development prospects of metabolites synthesized by symbiotic interactions. This review may provide a reference for the further development and utilization of endophytes and the study of their interactions with their hosts.
Collapse
Affiliation(s)
- Zhaogao Li
- Department of Cell Biology, Zunyi Medical University, Zunyi, China
| | - Weie Wen
- Department of Cell Biology, Zunyi Medical University, Zunyi, China
| | - Ming Qin
- Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Yuqi He
- Engineering Research Center of Key Technology Development for Gui Zhou Provincial Dendrobium Nobile Industry, Zunyi Medical University, Zunyi, China
- *Correspondence: Yuqi He,
| | - Delin Xu
- Department of Cell Biology, Zunyi Medical University, Zunyi, China
- Delin Xu,
| | - Lin Li
- Department of Cell Biology, Zunyi Medical University, Zunyi, China
- Lin Li,
| |
Collapse
|
26
|
Zhang K, Huang Y, Wu Q, Guo W, Chen H, Zhang W, Li Y, Lu Y, Wu Q, Pan W, Chen L, Chen Y. Antibacterial effect and mechanism against Escherichia coli of polysaccharides from Armillariella tabescens mycelia. Int J Biol Macromol 2022; 207:750-759. [PMID: 35318079 DOI: 10.1016/j.ijbiomac.2022.03.086] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/06/2022] [Accepted: 03/15/2022] [Indexed: 12/27/2022]
Abstract
The objectives of this study were (1) to prepare Armillariella tabescens mycelia polysaccharides (PAT) with remarkably growth inhibitory effect on typical food-borne pathogenic bacteria using a green and efficient polyamide method and (2) to explore the antibacterial mechanism of PAT for use as a natural antibacterial agent. The sugar and uronic acid contents of PAT were 93.41% and 12.24%, respectively. PAT could inhibit the growth of Escherichia coli, Proteus vulgaris, Bacillus subtilis, and Staphylococcus aureus cells, with minimum inhibitory concentrations of 0.5, 1.0, 4.0, and 4.0 mg/mL, respectively. Ultra-high-resolution field emission scanning electron microscopy and high-resolution transmission electron microscopy analysis revealed cell wall and membrane rupture of E. coli treated with PAT. Further, 0.5-4.0 mg/mL PAT was found to significantly (P < 0.01) and concentration-dependently increase the conductivity of the broth, exudation of the intracellular protein, and alkaline phosphatase and β-galactosidase activities. Confocal laser scanning microscopy revealed morphological changes in E. coli DNA after PAT treatment and intracellular reactive oxygen species accumulation; flow cytometry revealed E. coli cell apoptosis. Our findings provide a theoretical basis and technical support for the development of PAT as a natural antibacterial product.
Collapse
Affiliation(s)
- Kunfeng Zhang
- School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Yuzhe Huang
- School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Qianzhen Wu
- School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Wenhua Guo
- School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Hao Chen
- School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Wenna Zhang
- School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Yong Li
- School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Yongming Lu
- School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Qingxi Wu
- School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Wenjuan Pan
- School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Lei Chen
- School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Yan Chen
- School of Life Sciences, Anhui University, Hefei, Anhui, China; Key Laboratory of Ecological Engineering and Biotechnology of Anhui Province and Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui, China.
| |
Collapse
|
27
|
Xing M, Liu S, Yu Y, Guo L, Wang Y, Feng Y, Fei P, Kang H, Ali MA. Antibacterial Mode of Eucommia ulmoides Male Flower Extract Against Staphylococcus aureus and Its Application as a Natural Preservative in Cooked Beef. Front Microbiol 2022; 13:846622. [PMID: 35350615 PMCID: PMC8957902 DOI: 10.3389/fmicb.2022.846622] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/10/2022] [Indexed: 12/05/2022] Open
Abstract
The research was conducted to elucidate the antibacterial performance and mode of action of Eucommia ulmoides male flower extract (EUMFE) against Staphylococcus aureus and its application as a natural preservative in cooked beef. The antibacterial activity was evaluated by determining the diameter of inhibition zone (DIZ), minimum inhibitory concentration (MIC), and minimum bactericide concentration (MBC). The changes in membrane potential, contents of bacterial DNA and protein, integrity and permeability of the cell membrane, and cell morphology were analyzed to reveal the possible mode of action. The effect of EUMFE on the counts of S. aureus, pH, color, total volatile basic nitrogen (TVB-N), and thiobarbituric acid reactive substances (TBARS) of the cooked beef stored at 4°C for 9 days were studied. The results showed that the DIZ, MIC, and MBC of EUMFE against S. aureus were 12.58 ± 0.23 mm, 40 mg/mL, and 80 mg/mL, respectively. The mode of action of EUMFE against S. aureus included hyperpolarization of cell membrane, decrease in bacterial DNA and protein contents, destruction of cell membrane integrity, increase in cell membrane permeability, and damage of cell morphology. After treatments with EUMFE, the growth of S. aureus and lipid oxidation in cooked beef were significantly inhibited (P < 0.05). The pH and TVB-N values of cooked beef treated with EUMFE were significantly reduced as compared to control group (P < 0.05). The color of cooked beef samples containing EUMFE showed decreased L* and b* values, and increased a* and ΔE* values. Therefore, our findings showed that EUMFE had a good antibacterial effect on S. aureus, and provided a theoretical basis for the application of EUMFE as a natural preservative in the preservation of cooked beef.
Collapse
Affiliation(s)
- Min Xing
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China.,Henan International Joint Laboratory of Food Green Processing and Quality Safety Control, Henan University of Science and Technology, Luoyang, China
| | - Shun Liu
- School of Zhang Zhongjing Health Care and Food, Nanyang Institute of Technology, Nanyang, China
| | - Yaping Yu
- Key Lab of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Ling Guo
- Key Lab of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Yao Wang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China.,Henan International Joint Laboratory of Food Green Processing and Quality Safety Control, Henan University of Science and Technology, Luoyang, China
| | - Yage Feng
- School of Zhang Zhongjing Health Care and Food, Nanyang Institute of Technology, Nanyang, China
| | - Peng Fei
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China.,Henan International Joint Laboratory of Food Green Processing and Quality Safety Control, Henan University of Science and Technology, Luoyang, China.,School of Zhang Zhongjing Health Care and Food, Nanyang Institute of Technology, Nanyang, China
| | - Huaibing Kang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China.,Henan International Joint Laboratory of Food Green Processing and Quality Safety Control, Henan University of Science and Technology, Luoyang, China
| | - Md Aslam Ali
- Department of Agro-Processing, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| |
Collapse
|
28
|
Li K, Zeng Z, Liu J, Pei L, Wang Y, Li A, Kulyar MFEA, Shahzad M, Mehmood K, Li J, Qi D. Effects of Short-Chain Fatty Acid Modulation on Potentially Diarrhea-Causing Pathogens in Yaks Through Metagenomic Sequencing. Front Cell Infect Microbiol 2022; 12:805481. [PMID: 35402298 PMCID: PMC8983862 DOI: 10.3389/fcimb.2022.805481] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 02/25/2022] [Indexed: 12/30/2022] Open
Abstract
Short-chain fatty acids (SCFA) are principal nutrient substrates of intestinal epithelial cells that regulate the epithelial barrier in yaks. Until now, metagenomics sequencing has not been reported in diarrheal yaks. Scarce information is available regarding the levels of fecal SCFA and diarrhea in yaks. So, our study aims to identify the potential pathogens that cause the emerging diarrhea and explore the potential relationship of short-chain fatty acids in this issue. We estimated diarrhea rate in yaks after collecting an equal number of fecal samples from affected animals. Metagenomics sequencing and quantitative analysis of SCFA were performed, which revealed 15%–25% and 5%–10% prevalence of diarrhea in yak’s calves and adults, respectively. Violin box plot also showed a higher degree of dispersion in gene abundance distribution of diarrheal yaks, as compared to normal yaks. We found 366,163 significant differential abundance genes in diarrheal yaks, with 141,305 upregulated and 224,858 downregulated genes compared with normal yaks via DESeq analysis. Metagenomics binning analysis indicated the higher significance of bin 33 (Bacteroidales) (p < 0.05) in diarrheal animals, while bin 10 (p < 0.0001), bin 30 (Clostridiales) (p < 0.05), bin 51 (Lactobacillales) (p < 0.05), bin 8 (Lachnospiraceae) (p < 0.05), and bin 47 (Bacteria) (p < 0.05) were significantly higher in normal yaks. At different levels, a significant difference in phylum (n = 4), class (n = 8), oder (n = 8), family (n = 16), genus (n = 17), and species (n = 30) was noticed, respectively. Compared with healthy yaks, acetic acid (p < 0.01), propionic acid (p < 0.01), butyric acid (p < 0.01), isobutyric acid (p < 0.01), isovaleric acid (p < 0.05), and caproic acid (p < 0.01) were all observed significantly at a lower rate in diarrheal yaks. In conclusion, besides the increased Staphylococcus aureus, Babesia ovata, Anaplasma phagocytophilum, Bacteroides fluxus, viruses, Klebsiella pneumonia, and inflammation-related bacteria, the decrease of SCFA caused by the imbalance of intestinal microbiota was potentially observed in diarrheal yaks.
Collapse
Affiliation(s)
- Kun Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Kun Li, ; Jiakui Li, ; Desheng Qi,
| | - Zhibo Zeng
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Juanjuan Liu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Lulu Pei
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yaping Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Aoyun Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | | | - Muhammad Shahzad
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Khalid Mehmood
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Kun Li, ; Jiakui Li, ; Desheng Qi,
| | - Desheng Qi
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Kun Li, ; Jiakui Li, ; Desheng Qi,
| |
Collapse
|
29
|
Ning Y, Hou L, Ma M, Li M, Zhao Z, Zhang D, Wang Z, Jia Y. Synergistic antibacterial mechanism of sucrose laurate combined with nisin against Staphylococcus aureus and its application in milk beverage. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Qi Z, Xue X, Zhou H, Yuan H, Li W, Yang G, Xie P, Wang C. The aqueous assembly preparation of OPs-AgNPs with phenols from olive mill wastewater and its mechanism on antimicrobial function study. Food Chem 2021; 376:131924. [PMID: 34968917 DOI: 10.1016/j.foodchem.2021.131924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 12/16/2021] [Accepted: 12/19/2021] [Indexed: 11/16/2022]
Abstract
To valorise olive mill wastewater phenols (OPs) potentially applied in food preservation, a novel stable and regularly spherical OPs-AgNPs (Davg = 78 nm) were successfully assembled in aqueous solution under the optimized conditions (pH 8.0, 5 mM AgNO3, 35C and 30 min). The results of antimicrobial zone diameters indicated that 50 μg/mL of promising OPs-AgNPs presented excellent antimicrobial effects. Especially, the cell wall damages of E. coli ATCC 23,815 were caused when OPs-AgNPs concentration was exceeded its MIC (8.58 μg/mL). Also, a significant down-regulating of the Ca2+-ATPase activity in E. coli was revealed, and the intracellular Ca2+ concentrations were thus decreased from 12.5 to 1.35 µg/mL after a treatment for 3 h. The apoptosis level of E. coli was significantly increased more than the control (55.13% of OPs-AgNPs vs 9.90% of control). In sum, OPs exerts enhanced antimicrobial function via penetrating cell membrane and targeting Ca2+-ATPase after chelated with AgNPs.
Collapse
Affiliation(s)
- Zhiwen Qi
- National Engineering Lab. for Biomass Chemical Utilization, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, Jiangsu, People's Republic of China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing 210042, Jiangsu, People's Republic of China
| | - Xingying Xue
- National Engineering Lab. for Biomass Chemical Utilization, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, Jiangsu, People's Republic of China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing 210042, Jiangsu, People's Republic of China
| | - Hao Zhou
- National Engineering Lab. for Biomass Chemical Utilization, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, Jiangsu, People's Republic of China
| | - Hua Yuan
- National Engineering Lab. for Biomass Chemical Utilization, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, Jiangsu, People's Republic of China
| | - Wenjun Li
- National Engineering Lab. for Biomass Chemical Utilization, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, Jiangsu, People's Republic of China
| | - Guliang Yang
- National Engineering Laboratory for Rice and By-products Processing, Food Science and Engineering College, Central South University of Forestry and Technology, Changsha 410004, Hunan, People's Republic of China.
| | - Pujun Xie
- National Engineering Lab. for Biomass Chemical Utilization, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, Jiangsu, People's Republic of China.
| | - Chengzhang Wang
- National Engineering Lab. for Biomass Chemical Utilization, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, Jiangsu, People's Republic of China
| |
Collapse
|
31
|
Wang Z, Sun Q, Zhang H, Wang J, Fu Q, Qiao H, Wang Q. Insight into antibacterial mechanism of polysaccharides: A review. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111929] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
32
|
Zhang L, Ma L, Pan Y, Zheng X, Sun Q, Wang Z, Wang Q, Qiao H. Effect of molecular weight on the antibacterial activity of polysaccharides produced by Chaetomium globosum CGMCC 6882. Int J Biol Macromol 2021; 188:863-869. [PMID: 34400231 DOI: 10.1016/j.ijbiomac.2021.08.059] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 02/02/2023]
Abstract
This study investigated the effect of molecular weight on antibacterial activity of polysaccharides. Results showed that low molecular weight (3.105 × 104 Da) polysaccharide (GCP-2) had higher inhibitory effects against Escherichia coli and Staphylococcus aureus than high molecular weight (5.340 × 104 Da) polysaccharide (GCP-1). Meanwhile, antibacterial activities of GCP-2 and GCP-1 against S. aureus were higher than those of E. coli. Minimum inhibitory concentrations (MICs) of GCP-1 against E. coli and S. aureus were 2.0 mg/mL and 1.2 mg/mL, and MICs of GCP-2 against E. coli and S. aureus were 1.75 mg/mL and 0.85 mg/mL, respectively. Antibacterial mechanisms investigation revealed that GCP-2 and GCP-1 influenced cell membrane integrity, Ca2+-Mg2+-ATPase activity on cell membrane and calcium ions in cytoplasm of E. coli and S. aureus, but not cell wall. Present work provided important implications for future studies on development of antibacterial polysaccharides based on molecular weight feature.
Collapse
Affiliation(s)
- Li Zhang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Li Ma
- Henan Provincial Key university Laboratory for Plant-Microbe Interactions, Shangqiu Normal University, Shangqiu 476000, China
| | - Yaping Pan
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xinxin Zheng
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Qi Sun
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China.
| | - Zichao Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, Zhengzhou 450001, China.
| | - Qi Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Hanzhen Qiao
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
33
|
Han Y, Chen W, Sun Z. Antimicrobial activity and mechanism of limonene against
Staphylococcus aureus. J Food Saf 2021. [DOI: 10.1111/jfs.12918] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Yingjie Han
- College of Food Sciences & Engineering, Hainan University Haikou China
| | - Wenxue Chen
- College of Food Sciences & Engineering, Hainan University Haikou China
| | - Zhichang Sun
- College of Food Sciences & Engineering, Hainan University Haikou China
| |
Collapse
|
34
|
Antibacterial effect of Blumea balsamifera (L.) DC. essential oil against Staphylococcus aureus. Arch Microbiol 2021; 203:3981-3988. [PMID: 34032873 DOI: 10.1007/s00203-021-02384-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 10/21/2022]
Abstract
Staphylococcus aureus (S. aureus) is a common pathogenic bacteria in clinical environment, which can cause various diseases. Blumea balsamifera (L.) DC. as a traditional Chinese herb, its essential oil shows excellent bacteriostatic effect against S. aureus. To study the antibacterial effect of B. balsamifera (L.) DC. essential oil (BBO) against S. aureus, this study evaluated the effect of BBO on the permeability and integrity of cell membranes and on the total protein and nucleic acid content in S. aureus. Furthermore, proteomics was used to study the effect of BBO on the proteome of S. aureus. The results showed that BBO can destroy the permeability of the cell membrane, and inhibit the synthesis of bacterial nucleic acid and protein. Proteomics shows that BBO affects disorder of amino acid metabolism and affects the activity of various enzymes and the transport of substances. Taken together, these results indicated a substantial antibacterial effect of BBO on S. aureus.
Collapse
|
35
|
Sun X, Wang Z, Hu X, Zhao C, Zhang X, Zhang H. Effect of an Antibacterial Polysaccharide Produced by Chaetomium globosum CGMCC 6882 on the Gut Microbiota of Mice. Foods 2021; 10:foods10051084. [PMID: 34068357 PMCID: PMC8153350 DOI: 10.3390/foods10051084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 12/19/2022] Open
Abstract
Previously, a polysaccharide produced by Chaetomiumglobosum CGMCC 6882 was found to have antibacterial activity, but its toxic effects on body health and gut microbiota were concealed. Recent results showed that this polysaccharide was safe to Caco-2 cells and mice, while it reduced the body weight gain of mice from 10.5 ± 1.21 g to 8.4 ± 1.17 g after 28 days administration. Acetate, propionate, butyrate and total short-chain fatty acids concentrations increased from 23.85 ± 1.37 μmol/g, 10.23 ± 0.78 μmol/g, 7.15 ± 0.35 μmol/g and 41.23 ± 0.86 μmol/g to 42.77 ± 1.29 μmol/g, 20.03 ± 1.44 μmol/g, 12.06 ± 0.51 μmol/g and 74.86 ± 2.07 μmol/g, respectively. Furthermore, this polysaccharide enriched the abundance of gut microbiota and the Firmicutes/Bacteroidetes ratio was increased from 0.5172 to 0.7238. Overall, this study provides good guidance for the promising application of polysaccharides as preservatives in foods and in other fields in the future.
Collapse
Affiliation(s)
- Xincheng Sun
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou 450001, China; (X.S.); (X.H.); (C.Z.); (X.Z.)
- Collaborative Innovation Center of Food Production and Safety, Zhengzhou 450001, China
| | - Zichao Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China;
- Correspondence:
| | - Xuyang Hu
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou 450001, China; (X.S.); (X.H.); (C.Z.); (X.Z.)
- Collaborative Innovation Center of Food Production and Safety, Zhengzhou 450001, China
| | - Chengxin Zhao
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou 450001, China; (X.S.); (X.H.); (C.Z.); (X.Z.)
- Collaborative Innovation Center of Food Production and Safety, Zhengzhou 450001, China
| | - Xiaogen Zhang
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou 450001, China; (X.S.); (X.H.); (C.Z.); (X.Z.)
- Collaborative Innovation Center of Food Production and Safety, Zhengzhou 450001, China
| | - Huiru Zhang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China;
| |
Collapse
|
36
|
Biologically active secondary metabolites and biotechnological applications of species of the family Chaetomiaceae (Sordariales): an updated review from 2016 to 2021. Mycol Prog 2021. [DOI: 10.1007/s11557-021-01704-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|