1
|
Mansour M, Khoder RM, Xiang L, Zhang LL, Taha A, Yahya A, Wu T, Barakat H, Khalifa I, Xiaoyun X. Effect of ultrasonic degradation on the physicochemical property, structure characterization, and bioactivity of Houttuynia cordata polysaccharide. ULTRASONICS SONOCHEMISTRY 2025; 116:107331. [PMID: 40179599 PMCID: PMC11999643 DOI: 10.1016/j.ultsonch.2025.107331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/08/2025] [Accepted: 03/25/2025] [Indexed: 04/05/2025]
Abstract
This study aimed to evaluate the influence of ultrasonic degradation on Houttuynia cordata polysaccharide (HCP) physicochemical properties, structure characterization, and bioactivities. The results indicated that the ultrasonic degradation could significantly decrease HCP's molecular weight (MW). Total polysaccharide, uronic acid content, solubility, and thermal stability of HCP increased gradually with the increase in ultrasonication power. Fourier transform infrared (FTIR) and Nuclear magnetic resonance spectroscopy (NMR) spectra proved that the primary structure of HCP had not been changed via ultrasonic degradation. Antioxidant and hypoglycemic activity results confirmed that ultrasonication enhanced the ability to scavenge free radicals (DPPH, ABTS, and OH) and improved α-glycosidase and α-amylase inhibition with the increase of ultrasonic power, which was increased in order HCP
Collapse
Affiliation(s)
- Mohammed Mansour
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Food Science (Huazhong Agricultural University), Ministry of Education, China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan, 430070, China; Desert Research Center (DRC), Matariya, Cairo, Egypt
| | - Ramy M Khoder
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lin Xiang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Food Science (Huazhong Agricultural University), Ministry of Education, China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lan Lan Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Food Science (Huazhong Agricultural University), Ministry of Education, China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ahmed Taha
- Department of Food Science, Faculty of Agricultural, (Saba Basha), Alexandria University, Alexandria 21531, Egypt
| | - Alsadig Yahya
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Food Science (Huazhong Agricultural University), Ministry of Education, China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ting Wu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Food Science (Huazhong Agricultural University), Ministry of Education, China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hassan Barakat
- Department of Food Science and Human Nutrition, College of Agriculture and Food, Qassim University, Buraydah 51452, Saudi Arabia
| | - Ibrahim Khalifa
- Food Technology Department, Faculty of Agriculture, Benha University, Moshtohor, Toukh 13736, Egypt
| | - Xu Xiaoyun
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Food Science (Huazhong Agricultural University), Ministry of Education, China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
2
|
He H, Liu Y, Li Q, Chen F, Zhou L. Ultrasound-assisted H 2O 2 degradation enhances the bioactivity of Schizophyllan for wound healing and tissue regeneration. Front Pharmacol 2025; 16:1562839. [PMID: 40183104 PMCID: PMC11966060 DOI: 10.3389/fphar.2025.1562839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 03/04/2025] [Indexed: 04/05/2025] Open
Abstract
Background Schizophyllan (SPG), a bioactive polysaccharide from Schizophyllum commune, possesses significant anti-inflammatory, antioxidant, and immunomodulatory properties. The molecular weight of polysaccharides significantly impacts their structural properties and biological functions. However, the functional characteristics of low molecular weight polysaccharides derived from Schizophyllum commune remain inadequately explored. Methods This study developed an ultrasound-assisted hydrogen peroxide (H2O2) degradation method to produce low-molecular-weight SPG with enhanced bioactivity. The process was optimized using response surface methodology, focusing on ultrasound duration, ultrasonic power, and H2O2 concentration. This approach effectively reduced the molecular weight of SPG from 4,409,608 Da to 257,500 Da, yielding three distinct variants: SPG-a (257,500 Da), SPG-b (429,300 Da), and SPG-c (364,800 Da). The bioactivity of these variants was assessed through in vitro cell proliferation and migration assays using BJ and HaCaT cells, as well as an in vivo zebrafish larval caudal fin regeneration model. Results In vitro, SPG-b significantly promoted cell proliferation, increasing BJ and HaCaT cells growth by 53.69% and 14.59%, respectively, at a concentration of 300 μg/mL (p < 0.05), compared to undegraded SPG. Additionally, scratch assays revealed that SPG-a enhanced BJ cells migration by 24.13% (p < 0.05), while SPG-b exhibited most pronounced effect on HaCaT cells migration (17.12%, p < 0.05), compared to the undegraded SPG. In vivo, SPG-c (3.125 mg/mL) significantly improved fin regeneration rates by 6.97% (p < 0.05) in zebrafish larvae, compared to the undegraded SPG. Conclusion This study demonstrates that ultrasound-assisted H2O2 degradation effectively reduces SPG molecular weight while enhancing its functional properties. These findings provide a foundation for the further development of SPG in pharmaceutical and cosmetic applications, highlighting its potential for broader utilization.
Collapse
Affiliation(s)
- Hui He
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Yu Liu
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Qingpeng Li
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Fenrou Chen
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Lin Zhou
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
3
|
Yu X, Peng M, Liu X, Shang Y, Wang D, Jin W, Li F. Physicochemical Properties and Biological Activities of Polysaccharides from Panax Notoginseng Separated by Fractional Precipitation. Chem Biodivers 2025; 22:e202402002. [PMID: 39363708 DOI: 10.1002/cbdv.202402002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/05/2024]
Abstract
The dried root of Panax notoginseng is a medicinal and food ingredient. P. notoginseng polysaccharides (PNPs) have physicochemical properties, which have not been fully elucidated. This study aimed to identify a method to separate the PNP fractions and investigate their activities. PNPs were prepared from roots by hot water extraction, deproteinization, and decolorization. PNP20, PNP40, and PNP60 fractions were isolated through stepwise ethanol precipitation at 20 %, 40 %, and 60 % concentrations, respectively. The three polysaccharide fractions were characterized using chromatography, spectroscopy, and thermogravimetric analysis, and their moisture retention, antioxidant, and tyrosinase-inhibition properties were evaluated. Monosaccharide composition analysis showed that the three PNPs contained mannose (Man), galacturonic acid (GalA), glucose (Glc), galactose (Gal), and arabinose (Ara) in different molar ratios. HPGPC analysis demonstrated that the polysaccharides precipitated with higher ethanol concentrations had lower molecular weights (Mw). Furthermore, all PNPs had distinct moisturizing and hygroscopic properties and antioxidant activities, with PNP60 showing better antioxidant properties and a competitive mixture of hygroscopic properties and tyrosinase inhibition. The chemical composition and structural characteristics of PNPs could affect their functional attributes. PNP60 has the potential to be a moisturizer and antioxidant and could be used in the development of cosmetic ingredients.
Collapse
Affiliation(s)
- Xiaohong Yu
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Mengli Peng
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Xiaocheng Liu
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Yueling Shang
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Dujun Wang
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Wenbin Jin
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Fengwei Li
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, 224051, China
| |
Collapse
|
4
|
Li J, Zhang X, Lian H, Zhang C, Zheng H, Han D, Dou H. Asymmetrical flow field-flow fractionation coupled with multi-detector: A robust method for evaluating the degradation of jujube polysaccharides with ultrasound-assisted H 2O 2 and subsequent conjugation with soybean 7S globulin. Food Chem 2025; 464:141609. [PMID: 39406136 DOI: 10.1016/j.foodchem.2024.141609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 11/21/2024]
Abstract
Soybean 7S globulin (7S) is a main allergen in soybean. In this study, 7S was modified with jujube polysaccharide (JP) via the Maillard reaction. The effects of ultrasound-assisted hydrogen peroxide (US/H2O2) treatment on the degradation degree of JP were investigated by size exclusion chromatography (SEC) and asymmetrical flow field-flow fractionation (AF4) coupled online with ultraviolet-visible (UV), multiangle light scattering (MALS), and differential refractive index (dRI) detectors. The effects of the degradation degree of JP on the antigenicity of 7S were investigated by a direct competitive ELISA method. The results demonstrated that the degradation degree of JP treated with 2.0 % H2O2 was the largest, which promoted the extent of the Maillard reaction with 7S, and eventually formed a compact JP-7S conjugate, which might be conducive to reducing the antigenicity of 7S. AF4-UV-MALS-dRI proved to be a useful method for evaluating the degradation degree of JP and the formation of JP-7S conjugates.
Collapse
Affiliation(s)
- Jiaqi Li
- Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-Autoimmune Disease of Hebei Province, School of Basic Medical Sciences, Hebei University, Baoding 071000, China
| | - Xirui Zhang
- Key Laboratory of Public Health Safety of Hebei Province, College of Public Health, Hebei University, Baoding 071000, China
| | - Haichen Lian
- Medical Comprehensive Experimental Center, Hebei University, Baoding 071000, China
| | - Chenjing Zhang
- Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-Autoimmune Disease of Hebei Province, School of Basic Medical Sciences, Hebei University, Baoding 071000, China
| | - Hailiang Zheng
- Clinical Laboratory, Affiliated Hospital of Hebei University, Baoding 071000, China.
| | - Dandan Han
- Key Laboratory of Public Health Safety of Hebei Province, College of Public Health, Hebei University, Baoding 071000, China.
| | - Haiyang Dou
- Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-Autoimmune Disease of Hebei Province, School of Basic Medical Sciences, Hebei University, Baoding 071000, China; State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, Baoding 071002, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, China.
| |
Collapse
|
5
|
Liu Y, Meng Y, Ji H, Guo J, Shi M, Lai F, Ji X. Structural characteristics and antioxidant activity of a low-molecular-weight jujube polysaccharide by ultrasound assisted metal-free Fenton reaction. Food Chem X 2024; 24:101908. [PMID: 39507930 PMCID: PMC11539519 DOI: 10.1016/j.fochx.2024.101908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/12/2024] [Accepted: 10/16/2024] [Indexed: 11/08/2024] Open
Abstract
This study used an ultrasonically accelerated metal-free Fenton (H2O2-Vc system) reaction to promote water-extracted degrading polysaccharides from Ziziphus Jujuba cv. Muzao (DZMP). A novel jujube polysaccharide (DPZMP3) was obtained by degradation using DEAE-Sepharose Fast Flow and Sephacryl S-100 column chromatography. Methylation analysis, HPGPC, ion chromatography, FT-IR, and NMR spectroscopies were used to clarify the chemical structures of DPZMP3. Monosaccharide compositional analysis of DPZMP3 revealed the presence of Rha, Ara, Gal, and GalA at a molar ratio of 1.00:1.49:1.60:7.68, and the HPGPC data demonstrated the average Mw of 34.3 kDa. Based on the structural and linkage research using NMR spectroscopy and GC-MS, it was determined that DPZMP3 was a homogalacturonan pectic polysaccharide with a (1 → 4)-Galp branch at C-6 and a small amount of Araf and Rhap residues. The ultrasonic-aided Fenton treatment did not significantly alter the structure of DPZMP3. It may also be useful for DZMP and enhancing their antioxidant activity in vitro. The current study's findings could pave the way for the food sector to use jujube polysaccharides obtained by degradation as a functional food component.
Collapse
Affiliation(s)
- Yingying Liu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- National & Local Joint Engineering Research Center of Cereal-Based Foods (Henan), Zhengzhou 450001, China
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Yan Meng
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Haozhen Ji
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- National & Local Joint Engineering Research Center of Cereal-Based Foods (Henan), Zhengzhou 450001, China
| | - Jianhang Guo
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- National & Local Joint Engineering Research Center of Cereal-Based Foods (Henan), Zhengzhou 450001, China
| | - Miaomiao Shi
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- National & Local Joint Engineering Research Center of Cereal-Based Foods (Henan), Zhengzhou 450001, China
| | - Feiliao Lai
- Department of Physics, School of Science, Tianjin University, Tianjin 300072, China
| | - Xiaolong Ji
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- National & Local Joint Engineering Research Center of Cereal-Based Foods (Henan), Zhengzhou 450001, China
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| |
Collapse
|
6
|
Lee Q, Xue Z, Luo Y, Lin Y, Lai M, Xu H, Liu B, Zheng M, Lv F, Zeng F. Low molecular weight polysaccharide of Tremella fuciformis exhibits stronger antioxidant and immunomodulatory activities than high molecular weight polysaccharide. Int J Biol Macromol 2024; 281:136097. [PMID: 39353518 DOI: 10.1016/j.ijbiomac.2024.136097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 09/05/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
Low molecular weight polysaccharides had higher bio-activity and bioavailability compared to ultra-high molecular weight polysaccharides, this study aimed to obtain low molecular weight polysaccharides from Tremella fuciformis (TFLP) by using high-temperature and high-pressure assisted hydrochloric acid method to degrade Tremella fuciformis polysaccharides (TFP), and the structural characteristics, in vivo antioxidant and immune enhancing activities of TFP and TFLP was explored through Caenorhabditis elegans (C. elegans) and mice model. It was found that TFP and TFLP were acidic polysaccharides with molecular weights of 2238 kDa and 3 kDa, respectively. The glycosidic bonding of TFP and TFLP was mainly composed of different configurations of mannopyranose. TFP and TFLP had excellent in vivo antioxidant activity and stress resistance by regulating the mRNA transcription level and metabolites in C. elegans. Results also showed that TFP and TFLP could enhance the antioxidant capacity and immunity of serum, spleen and small intestine tissues in normal mice and cyclophosphamide-induced immunosuppressive mice through regulating the relative transcription and expression levels of anti-inflammatory related signaling factors, and it has found that TFLP showed better immune enhancement and antioxidant activity than TFP. In addition, Akkermansia, Bacteroides and Alloprevotella were characteristic bacteria at the genus level in immunosuppressed mice intervened with TFLP, with a significant increase in relative abundance. The content of SCFAs significantly increased in immunosuppressed mice by TFLP. These results indicated that TFP and TFLP had potential in vivo antioxidant and immune enhancing activities.
Collapse
Affiliation(s)
- Quancen Lee
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Engineering Research Center of Fujian Subtropical Fruit and Vegetable Processing, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhixiang Xue
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yijuan Luo
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yanpeng Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Engineering Research Center of Fujian Subtropical Fruit and Vegetable Processing, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Meiying Lai
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Engineering Research Center of Fujian Subtropical Fruit and Vegetable Processing, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huanyi Xu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Engineering Research Center of Fujian Subtropical Fruit and Vegetable Processing, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Bin Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Engineering Research Center of Fujian Subtropical Fruit and Vegetable Processing, Fujian Agriculture and Forestry University, Fuzhou 350002, China; National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mingfeng Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Engineering Research Center of Fujian Subtropical Fruit and Vegetable Processing, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Feng Lv
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Engineering Research Center of Fujian Subtropical Fruit and Vegetable Processing, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Feng Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Engineering Research Center of Fujian Subtropical Fruit and Vegetable Processing, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
7
|
Yao Q, Pu L, Dong B, Zhu D, Wu W, Yang Q. Effects of ultrasonic degradation on physicochemical and antioxidant properties of Gleditsia sinensis seed polysaccharides. Carbohydr Res 2024; 545:109272. [PMID: 39293243 DOI: 10.1016/j.carres.2024.109272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/26/2024] [Accepted: 09/08/2024] [Indexed: 09/20/2024]
Abstract
In this study, two degraded polysaccharides from Gleditsia sinensis seed were obtained under ultrasonic power treatments of 300 and 450 W. The physicochemical properties, structural characteristics, and antioxidant activities of the degraded and undegraded polysaccharides were studied and compared. Ion exchange chromatography and methylation analysis showed that the polysaccharides had similar basic structural features and were composed of the same monosaccharide units before and after degradation, but the ultrasonic treatment increased the total monosaccharide content and changed the Mannose/Galactose value. Furthermore, with the increase in the ultrasonic power, the molecular weight and intrinsic viscosity of polysaccharides decreased, and the micromorphology became looser. The scavenging capacities for 1,1-diphenyl-2-picrylhydrazyl and hydroxyl free radicals and the reducing ability were significantly increased by the ultrasonic treatment. In conclusion, ultrasonic treatment may be an effective way to improve the antioxidant activities of polysaccharides from G. sinensis seed, and further studies on its antioxidant mechanism are still needed.
Collapse
Affiliation(s)
- Qiuping Yao
- Schoolof Chinese Ethnic Medicine, Guizhou Minzu University, Guiyang, Guizhou, 50025, China; Key Laboratory of the Development and Utilization of Guizhou Minority Medical, Resources (Guizhou Minzu University), State Ethnic Affairs Commission, Guiyang, Guizhou, 50025, China.
| | - Longlin Pu
- Schoolof Chinese Ethnic Medicine, Guizhou Minzu University, Guiyang, Guizhou, 50025, China
| | - Boyu Dong
- Schoolof Chinese Ethnic Medicine, Guizhou Minzu University, Guiyang, Guizhou, 50025, China; Key Laboratory of the Development and Utilization of Guizhou Minority Medical, Resources (Guizhou Minzu University), State Ethnic Affairs Commission, Guiyang, Guizhou, 50025, China
| | - Dequan Zhu
- Schoolof Chinese Ethnic Medicine, Guizhou Minzu University, Guiyang, Guizhou, 50025, China; Key Laboratory of the Development and Utilization of Guizhou Minority Medical, Resources (Guizhou Minzu University), State Ethnic Affairs Commission, Guiyang, Guizhou, 50025, China
| | - Wenwen Wu
- Schoolof Chinese Ethnic Medicine, Guizhou Minzu University, Guiyang, Guizhou, 50025, China
| | - Qiong Yang
- Schoolof Chinese Ethnic Medicine, Guizhou Minzu University, Guiyang, Guizhou, 50025, China; Key Laboratory of the Development and Utilization of Guizhou Minority Medical, Resources (Guizhou Minzu University), State Ethnic Affairs Commission, Guiyang, Guizhou, 50025, China
| |
Collapse
|
8
|
Zheng M, Ouyang H, Li Z, Hong T, Zhu Y, Yang Y, Guo X, Ni H, Jiang Z. Ultra-high pressure assisted extraction of polysaccharide from Bangia fusco-purpurea: Structure and in vitro hypolipidemic activity. Int J Biol Macromol 2024; 280:135687. [PMID: 39343280 DOI: 10.1016/j.ijbiomac.2024.135687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/31/2024] [Accepted: 09/13/2024] [Indexed: 10/01/2024]
Abstract
The structure and in vitro hypolipidemic activity of Bangia fusco-purpurea polysaccharide (BFP) assisted extracted with ultra-high pressure (UHP) at 100-600 MPa were studied. Compared to native BFP, UHP assisted extracted BFP had a more loose network structure with higher total sugar and uronic acid contents while less molecular weight (p < 0.05). Moreover, UHP assisted extraction significantly improved the in vitro hypolipidemic and antioxidant activity of BFP. Especially at 400 MPa UHP, the cholesterol adsorption and antioxidant capacities of BFP were increased by approximately 38.02 % and 11.69 %-32.29 %, respectively. BFP with UHP assisted extraction could alleviate oleic acid-induced lipid accumulation and lipid oxidation in HepG2 cells more effectively by activating the AMPK signaling pathway as well as inhibiting PPARγ expression, which was much related with its reduced molecular weight and loose network structure. The findings indicated that UHP assisted extracted BFP has better potential to develop natural hypolipidemic agent.
Collapse
Affiliation(s)
- Mingjing Zheng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian 361021, China
| | - Huan Ouyang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China
| | - Zhipeng Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian 361021, China
| | - Tao Hong
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian 361021, China
| | - Yanbing Zhu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian 361021, China
| | - Yuanfan Yang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian 361021, China.
| | - Xiaoming Guo
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Hui Ni
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian 361021, China; Xiamen Ocean Vocational College, Xiamen 361021, Fujian, China
| | - Zedong Jiang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian 361021, China.
| |
Collapse
|
9
|
Wang J, Xu X, Zou X, Zhang R, Jia X, Dong L, Deng M, Zhang M, Huang F. Effect of ultrasound assisted H 2O 2 degradation on longan polysaccharide: degradation kinetics, physicochemical properties and prebiotic activity. Int J Biol Macromol 2024; 282:136902. [PMID: 39471915 DOI: 10.1016/j.ijbiomac.2024.136902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/23/2024] [Accepted: 10/23/2024] [Indexed: 11/01/2024]
Abstract
This study aimed to investigate the effect of ultrasound-assisted H2O2 (US/H2O2) reaction on degradation parameters and kinetics, physicochemical properties and prebiotic activity of longan polysaccharide (LP). Results showed that US/H2O2 had a synergistic effect on the degradation of LP, and its kinetic equation followed to the fist - order model. US/H2O2 degradation did not change the chemical and monosaccharide composition of LP but altered their ratio. Compared with LP, three degraded polysaccharides (DLPs) displayed lower molecular weight, particle size and viscosity, but higher solubility. SEM and AFM revealed that US/H2O2 degradation led to significant differences in the microstructure and solution conformation of LP. Moreover, LP and DLPs showed different proliferation effects on four lactobacilli and bifidobacteria strains, among which DLP-8 (degraded for 8 h) exhibited the strongest prebiotic activity. US/H2O2 could be effectively applied to the degradation of LP to improve its physicochemical properties and bioactivities.
Collapse
Affiliation(s)
- Jidongtian Wang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Xiang Xu
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Xiaoqin Zou
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Ruifen Zhang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Xuchao Jia
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Lihong Dong
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Mei Deng
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Mingwei Zhang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China; Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Fei Huang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China.
| |
Collapse
|
10
|
Du S, Wang Y, Tao W, Lu S. Differential effects of enzymatically modified Ougan (Citrus Suavissima Hort. ex Tanaka) peel pectins extracted with different methods on inhibiting the proliferation of Hela cells. Int J Biol Macromol 2024; 278:134463. [PMID: 39102920 DOI: 10.1016/j.ijbiomac.2024.134463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/24/2024] [Accepted: 08/01/2024] [Indexed: 08/07/2024]
Abstract
Previous studies have shown that modified citrus pectin (MCP) is an anti-tumor material of food grade. In this study, two enzymatically modified Ougan (Citrus Suavissima Hort. ex Tanaka) peel pectins (EMP1 and EMP2, the ones extracted by alkali and enzymatic methods) were used to investigate their differential effects on viability and physiology of Hela cells. The results showed that EMP1 and EMP2 had 88.00 % and 81.01 % galacturonic acid, 21.31 % and 20.25 % esterification degree, 10,417 g/mol and 6416 g/mol molecular weight (Mw), 82.86 % and 50.62 % RG-I, and 8.91 % and 15.70 % HG, respectively. EMP2 had higher intensities of absorption peaks than EMP1. They were irregularly shaped, with more holes on EMP1 but more wrinkles on EMP2. Both could inhibit the growth, proliferation, migration, and invasion of HeLa cells in a concentration-dependent manner, with better efficiency in EMP2. Meanwhile, EMP2 was more efficient than EMP1 in blocking the cell cycle in S phase, resulting in apoptosis. In conclusion, the variations caused by extraction resulted in differences in anti-tumor activity of MCP and EMP2 with lower Mw and higher HG exhibited better anti-tumor effects. This study would provide an experimental basis and reference for the research and development of anti-tumor supplements from citrus pectin.
Collapse
Affiliation(s)
- Shuangning Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Ministry of Agriculture and Rural Affairs Key Laboratory of Post-Harvest Handling of Fruits, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yangguang Wang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Wenyang Tao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Ministry of Agriculture and Rural Affairs Key Laboratory of Post-Harvest Handling of Fruits, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Shengmin Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Ministry of Agriculture and Rural Affairs Key Laboratory of Post-Harvest Handling of Fruits, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| |
Collapse
|
11
|
Xu Z, Chen Z, Wang W, Meng X, Wang X, Xia Y, Meng Q, Li Y, Song R, Chen G. Cuttlefish ink-derived melanin nanoparticle-embedded tremella fuciformis polysaccharide hydrogels for the treatment of MRSA-infected diabetic wounds. Int J Biol Macromol 2024; 277:134342. [PMID: 39111486 DOI: 10.1016/j.ijbiomac.2024.134342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 05/04/2024] [Accepted: 07/29/2024] [Indexed: 08/13/2024]
Abstract
Diabetic wounds arise great attention as they are difficult to heal and easily suffer from serious bacterial infection. However, the overuse of antibiotics increases the resistance of bacteria and makes common drugs ineffective. Here, we developed a photothermal hydrogel (TFP/NP) composed of tremella fuciformis polysaccharides (TFPs) and cuttlefish ink-derived melanin nanoparticles (NPs). The NPs can produce reliable photothermal effects under near-infrared laser (NIR) irradiation and help to remove the bacteria in the wounds, while TFPs were able to form hydrogel frameworks which possessed anti-inflammatory effects and could be applied to promote wound healing. The TFP/NP hydrogels produced stable thermal effects under NIR irradiation and could continuously kill bacteria. The experiment on a full-layer skin wound sMRSA activity and could improve the healing efficiency. The wounds of the mice could be repaired within 14 days after reasonable treatment. In addition, the hydrogels play significant roles in promoting collagen deposition, anti-inflammation, angiogenesis, and cell proliferation during the therapeutic process. This research provides a simple and effective method for the therapy of bacterial infection wounds through the synergistic effect of TFPs and NPs.
Collapse
Affiliation(s)
- Zhou Xu
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China; Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266024, PR China; Qingdao Central Hospital, University of Health and Rehabilitation Sciences (QingdaoCentral Medical Group), Qingdao 266024, PR China
| | - Zhiling Chen
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China; Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266024, PR China; Qingdao Central Hospital, University of Health and Rehabilitation Sciences (QingdaoCentral Medical Group), Qingdao 266024, PR China
| | - Weijie Wang
- Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266024, PR China; Qingdao Central Hospital, University of Health and Rehabilitation Sciences (QingdaoCentral Medical Group), Qingdao 266024, PR China.
| | - Xiangjun Meng
- Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266024, PR China; Qingdao Central Hospital, University of Health and Rehabilitation Sciences (QingdaoCentral Medical Group), Qingdao 266024, PR China
| | - Xuewen Wang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China; Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266024, PR China; Qingdao Central Hospital, University of Health and Rehabilitation Sciences (QingdaoCentral Medical Group), Qingdao 266024, PR China
| | - Yinhe Xia
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China; Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266024, PR China; Qingdao Central Hospital, University of Health and Rehabilitation Sciences (QingdaoCentral Medical Group), Qingdao 266024, PR China
| | - Qingye Meng
- Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266024, PR China; Qingdao Central Hospital, University of Health and Rehabilitation Sciences (QingdaoCentral Medical Group), Qingdao 266024, PR China
| | - Yuli Li
- Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266024, PR China; Qingdao Central Hospital, University of Health and Rehabilitation Sciences (QingdaoCentral Medical Group), Qingdao 266024, PR China
| | - Ruilong Song
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China.
| | - Gang Chen
- Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266024, PR China; Qingdao Central Hospital, University of Health and Rehabilitation Sciences (QingdaoCentral Medical Group), Qingdao 266024, PR China.
| |
Collapse
|
12
|
Li WB, Wang J, Qu Mo MM, Li J, Li M, Liu Y, Wang S, Hu YC, Zou L, Wu DT. Pectic polysaccharides from Tartary buckwheat sprouts: Effects of ultrasound-assisted Fenton treatment and mild alkali treatment on their physicochemical characteristics and biological functions. ULTRASONICS SONOCHEMISTRY 2024; 109:107014. [PMID: 39111249 DOI: 10.1016/j.ultsonch.2024.107014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/27/2024] [Accepted: 08/01/2024] [Indexed: 08/25/2024]
Abstract
Buckwheat sprouts are rich in pectic polysaccharides, which possess numerous health-improving benefits. However, the precise structure-activity relationship of pectic polysaccharides from Tartary buckwheat sprouts (TP) is still scant, which ultimately restricts their applications in the food industry. Hence, both ultrasound-assisted Fenton treatment (UAFT) and mild alkali treatment (MATT) were utilized for the modification of TP, and then the effects of physicochemical characteristics of original and modified TPs on their bioactivities were assessed. Our findings reveled that the UAFT treatment could precisely reduce TP's molecular weight, with the levels decreased from 8.191 × 104 Da to 0.957 × 104 Da. Meanwhile, the MATT treatment could precisely reduce TP's esterification degree, with the values decreased from 28.04 % to 4.72 %. Nevertheless, both UAFT and MATT treatments had limited effects on the backbone and branched chain of TP. Moreover, our findings unveiled that the UAFT treatment could notably promote TP's antioxidant, antiglycation, and immunostimulatory effects, while remarkedly reduce TP's anti-hyperlipidemic effect, which were probably owing to that the UAFT treatment obviously reduced TP's molecular weight. Additionally, the MATT treatment could also promote TP's immunostimulatory effect, which was probably attributed to that the MATT treatment significantly decreased TP's esterification degree. Interestingly, the MATT treatment could regulate TP's antioxidant and antiglycation effects, which was probably attributed to that the MATT treatment simultaneously reduced its esterification degree and bound phenolics. Our findings are conducive to understanding TP's structure-activity relationship, and can afford a scientific theoretical basis for the development of functional or healthy products based on TPs. Besides, the UAFT treatment can be a promising approach for the modification of TP to improve its biological functions.
Collapse
Affiliation(s)
- Wen-Bing Li
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People's Republic of China, Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology Engineering Laboratory, Southwest Minzu University, Chengdu 610225, Sichuan, China
| | - Jin Wang
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China; Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, China
| | - Mei-Mei Qu Mo
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People's Republic of China, Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology Engineering Laboratory, Southwest Minzu University, Chengdu 610225, Sichuan, China; Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China
| | - Jie Li
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China; Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, China
| | - Min Li
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People's Republic of China, Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology Engineering Laboratory, Southwest Minzu University, Chengdu 610225, Sichuan, China
| | - Yuan Liu
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People's Republic of China, Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology Engineering Laboratory, Southwest Minzu University, Chengdu 610225, Sichuan, China
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao
| | - Yi-Chen Hu
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China; Chengdu Agricultural College, Chengdu 611130, Sichuan, China
| | - Ding-Tao Wu
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China; Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, China.
| |
Collapse
|
13
|
Yan ZX, Li M, Wei HY, Peng SY, Xu DJ, Zhang B, Cheng X. Characterization and Antioxidant Activity of the Polysaccharide Hydrolysate from Lactobacillus plantarum LPC-1 and Their Effect on Spinach (Spinach oleracea L.) Growth. Appl Biochem Biotechnol 2024; 196:6151-6173. [PMID: 38194184 DOI: 10.1007/s12010-023-04843-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 01/10/2024]
Abstract
This study presents a comparison between two hydrolysis systems (MnO2/H2O2 and ascorbic acid (VC)/H2O2) for the depolymerization of exopolysaccharide (EPS) from Lactobacillus plantarum LPC-1. Response surface methodology (RSM) was used to optimize these two degradation systems, resulting in two H2O2-free degradation products, MEPS (MnO2/H2O2-treated EPS) and VEPS (VC/H2O2-treated EPS), where H2O2 residues in the final products and their antioxidant activity were considered vital points. The relationship between the structural variations of two degraded polysaccharides and their antioxidant activity was characterized. Physicochemical tests showed that H2O2 had a notable impact on determining the total and reducing sugars in the polysaccharides, and both degradation systems efficiently eliminated this effect. After optimization, the average molecular weight of EPS was reduced from 265.75 kDa to 135.41 kDa (MEPS) and 113.11 kDa (VEPS), improving its antioxidant properties. Characterization results showed that the two hydrolysis products had similar major functional groups and monosaccharide composition as EPS. The crystal structure, main chain length, and branched chain number were crucial factors affecting the biological activity of polysaccharides. In pot testing, two degraded polysaccharides improved spinach quality more than EPS due to their lower molecular weights, suggesting the advantages of low-molecular-weight polysaccharides. In summary, these two degradation techniques offer valuable insights for further expanding the utilization of microbial resources.
Collapse
Affiliation(s)
- Zu-Xuan Yan
- Institute of Applied Microbiology, College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Min Li
- Institute of Applied Microbiology, College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Hong-Yu Wei
- Institute of Applied Microbiology, College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Shuai-Ying Peng
- Institute of Applied Microbiology, College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Duan-Jun Xu
- Institute of Applied Microbiology, College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Bao Zhang
- Institute of Applied Microbiology, College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xin Cheng
- Institute of Applied Microbiology, College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
14
|
Cai W, Luo Y, Xue J, Guo R, Huang Q. Effect of ultrasound assisted H 2O 2/Vc treatment on the hyperbranched Lignosus rhinocerotis polysaccharide: Structures, hydrophobic microdomains, and antitumor activity. Food Chem 2024; 450:139338. [PMID: 38631210 DOI: 10.1016/j.foodchem.2024.139338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/31/2024] [Accepted: 04/09/2024] [Indexed: 04/19/2024]
Abstract
The effect of ultrasonic intensity (28.14, 70.35, and 112.56 W/cm2) on Lignosus rhinocerotis polysaccharide (LRP) degraded by ultrasound assisted H2O2/Vc system (U-H/V) was investigated. U-H/V broke the molecular chain of LRP and improved the conformational flexibility, decreasing the molecular weight, intrinsic viscosity ([η]) and particle size. The functional groups and hyperbranched structure of LRP were almost stable after U-H/V treatment, however, the triple helix structure of LRP was partially disrupted. With increasing ultrasonic intensity, the critical aggregation concentration increased from 0.59 mg/mL to 1.57 mg/mL, and the hydrophobic microdomains reduced. Furthermore, the LRP treated with U-H/V significantly inhibited HepG2 cell proliferation by inducing apoptosis. The increase in antitumor activity of LRP was closely associated with the reduction of molecular weight, [η], particle size and hydrophobic microdomains. These results revealed that U-H/V treatment facilitates the degradation of LRP and provides a better insight into the structure-antitumor activity relationship of LRP.
Collapse
Affiliation(s)
- Wudan Cai
- College of Food Science and Technology, and MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yangchao Luo
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, United States of America
| | - Jingyi Xue
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, United States of America
| | - Ruotong Guo
- College of Food Science and Technology, and MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qilin Huang
- College of Food Science and Technology, and MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
15
|
Qi H, Tang S, Bian B, Lai C, Chen Y, Ling Z, Yong Q. Effect of H 2O 2-V C degradation on structural characteristics and immunomodulatory activity of larch arabinogalactan. Front Bioeng Biotechnol 2024; 12:1461343. [PMID: 39170060 PMCID: PMC11335654 DOI: 10.3389/fbioe.2024.1461343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024] Open
Abstract
The arabinogalactan in the representative softwood biomass of larch was degraded using an environmentally friendly hydrogen peroxide and vitamin C (H2O2-VC) system to improve its immunomodulatory activity. Through the H2O2-VC degradation mechanism, hydroxyl radicals are generated, which then target the hydrogen atoms within polysaccharides, resulting in the breaking of glycosidic bonds. Given the impact of oxidative degradation on polysaccharides, we identified three specific arabinogalactan degradation products distinguished by their arabinosyl side chain compositions. The primary structures of the degradation products were investigated using Fourier-transform infrared spectroscopy and nuclear magnetic resonance spectroscopy. Congo red staining showed that the degradation products were absent in the triple-helix structure. The results of the in vitro immunological experiments indicated that an appropriate reduction in the molar ratio of arabinose to galactose enhanced the immunostimulatory effects on RAW 264.7 cells. In addition, the immunostimulatory pathway mediated by arabinogalactan was explored by toll-like receptor 4 (TLR4) inhibitor (TAK-242) These findings provide novel insights into the understanding of the relationship between the structure of arabinogalactan and its biological activity.
Collapse
Affiliation(s)
- Huimin Qi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilisation of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Shuo Tang
- Nanjing Institute of Comprehensive Utilization of Wild Plants, Nanjing, China
| | - Bin Bian
- Jiangsu Co-Innovation Center of Efficient Processing and Utilisation of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Chenhuan Lai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilisation of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Yanan Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilisation of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Zhe Ling
- Jiangsu Co-Innovation Center of Efficient Processing and Utilisation of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Qiang Yong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilisation of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
16
|
Dong B, Shen L, Yang M, Yang K, Cheng F. Structure and Bioactivity of Intracellular and Extracellular Polysaccharides of Trametes lactinea Mycelium. Microorganisms 2024; 12:1431. [PMID: 39065199 PMCID: PMC11278701 DOI: 10.3390/microorganisms12071431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Trametes lactinea polysaccharides have a high medicinal value; however, we still know little about the structure and bioactivity of intracellular and extracellular polysaccharides in the mycelial liquid fermentation of T. lactinea. This study analyzed the structures of intracellular (IP-1, IP-2, and IP-3) and extracellular (EP-1 and EP-2) polysaccharide components isolated from T. lactinea liquid fermentation, as well as investigated their antioxidant, antibacterial, and immunomodulatory properties. The results showed that IP-3 was the only component with a triple-helix structure, while the other four components did not possess this structure. IP3 has a higher molecular weight, flavonoid, and total phenolic content compared to other components. Both intracellular and extracellular polysaccharide components exhibited strong scavenging abilities against ABTS and DPPH radicals. The components showed limited antibacterial effects against four types of bacteria (Staphylococcus aureus, Bacillus subtilis, Erwinia carotovora, and Escherichia coli), and were found to be non-toxic to RAW264.7 cells, even promoting cell proliferation. Furthermore, within a specific concentration range, all components enhanced the phagocytic activity of RAW264.7 cells, increased the secretion of NO, TNF-α, and IL-6, and demonstrated concentration-dependent effects, with IP-3 displaying the most potent immunomodulatory activity. This study shows a high potential for the development and utilization of polysaccharides derived from the liquid fermentation of T. lactinea mycelium.
Collapse
Affiliation(s)
- Bowen Dong
- Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, College of Forestry, Guangxi University, Nanning 530004, China; (B.D.); (L.S.); (M.Y.)
| | - Lu Shen
- Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, College of Forestry, Guangxi University, Nanning 530004, China; (B.D.); (L.S.); (M.Y.)
| | - Mei Yang
- Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, College of Forestry, Guangxi University, Nanning 530004, China; (B.D.); (L.S.); (M.Y.)
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| | - Kaitai Yang
- Guangxi Forestry Science Research Institute, Nanning 530002, China;
| | - Fei Cheng
- Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, College of Forestry, Guangxi University, Nanning 530004, China; (B.D.); (L.S.); (M.Y.)
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| |
Collapse
|
17
|
Dnyaneshwar Patil N, Bains A, Kaur S, Yadav R, Ali N, Patil S, Goksen G, Chawla P. Influence of dual succinylation and ultrasonication modification on the amino acid content, structural and functional properties of Chickpea (Cicer arietinum L.) protein concentrate. Food Chem 2024; 445:138671. [PMID: 38367556 DOI: 10.1016/j.foodchem.2024.138671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/28/2024] [Accepted: 02/02/2024] [Indexed: 02/19/2024]
Abstract
Chickpea protein, a valuable plant-based source, offers versatile applications, yet the impact of modifications like succinylation and ultrasonication on its properties remains unclear. This study explored dual succinylation and ultrasonication modification to enhance its functionality and application. Modified chickpea protein with a degree of succinylation of 96.75 %, showed enhanced water holding capacity 39.83 %, oil holding capacity 54.02 %, solubility 7.20 %, and emulsifying capacity 23.17 %, compared to native protein. Despite reduced amino acid content (64.50 %), particularly lysine, succinylation increased sulfhydryl by 1.74 %, reducing hydrophobicity (Ho) by 41.87 % and causing structural changes. Ultrasonication further reduced particle size by 82.57 % and increased zeta potential and amino acid content (57.47 %). The dual-modified protein exhibited a non-significant increase in antimicrobial activity against Staphylococcus aureus (25.93 ± 1.36 mm) compared to the native protein (25.28 ± 1.05 mm). In conclusion, succinylation combined with ultrasonication offers a promising strategy to enhance chickpea protein's physicochemical properties for diverse applications.
Collapse
Affiliation(s)
- Nikhil Dnyaneshwar Patil
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara Punjab 144411, India
| | - Aarti Bains
- Department of Microbiology, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Sawinder Kaur
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara Punjab 144411, India
| | - Rahul Yadav
- Shoolini Life Sciences Pvt. Ltd., Shoolini University, Solan 173229, Himachal Pradesh India
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sandip Patil
- Department of Haematology and Oncology, Shenzhen Children's Hospital, 7019 Yi Tian Road, Shenzhen 510038, China
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100 Mersin, Turkey.
| | - Prince Chawla
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara Punjab 144411, India.
| |
Collapse
|
18
|
Huang H, Wang Q, Ning Z, Ma Y, Huang Y, Wu Y, Yang Y, Xiao M, Ye J. Preparation, antibacterial activity, and structure-activity relationship of low molecular weight κ-carrageenan. Int J Biol Macromol 2024; 266:131021. [PMID: 38522689 DOI: 10.1016/j.ijbiomac.2024.131021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/29/2024] [Accepted: 03/18/2024] [Indexed: 03/26/2024]
Abstract
κ-Carrageenan (KC) is a polysaccharide widely used in food industry. It has been widely studied for its excellent physicochemical and beneficial properties. However, the high molecular weight and high viscosity of KC make it difficult to be absorbed and to exert its' biological activities, thus limit its extensive industrial application. In order to solve this problem, five low molecular weight κ-carrageenans (DCPs) were prepared by the degradation of KC using hydrogen peroxide (H2O2) and ascorbic acid (AH2). The chemical compositions and structure characteristics of the DCPs were then determined. The results showed that H2O2 and AH2 could effectively degrade KC to DCPs, and DCPs remained the basic skeletal structure of KC. DCPs showed good antibacterial activities against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Bacillus subtilis. The Minimum Inhibitory Concentration (MIC) of DCPs with the highest antibacterial effects were 5.25, 4.5, 5.25, and 4.5 mg/mL, respectively. This is due to the underlying mechanism of DCPs that bind to the bacterial membrane proteins and change the membrane permeability, thus exerting antibacterial activity. In addition, Spearman's rank correlation and Ridge regression analysis revealed that the molecular weight and the contents of 3,6-anhydro-D-galactose, aldehyde group, carboxyl, and sulfate were the main structural characteristics affecting the antibacterial activity. Our findings reveal that the H2O2-AH2 degradation treatment could significantly improve the antibacterial activity of KC and provide insights into the quantitative structure-activity relationships of the antibacterial activity of DCPs.
Collapse
Affiliation(s)
- Haibing Huang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Qing Wang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Zichen Ning
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Yake Ma
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Yayan Huang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; Xiamen Engineering and Technological Research Center for Comprehensive Utilization of Marine Biological Resources, Xiamen 361021, China
| | - Yaqing Wu
- Instrumental Analysis Center of Huaqiao University, Xiamen 361021, China
| | - Yucheng Yang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; Xiamen Engineering and Technological Research Center for Comprehensive Utilization of Marine Biological Resources, Xiamen 361021, China
| | - Meitian Xiao
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; Xiamen Engineering and Technological Research Center for Comprehensive Utilization of Marine Biological Resources, Xiamen 361021, China
| | - Jing Ye
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; Xiamen Engineering and Technological Research Center for Comprehensive Utilization of Marine Biological Resources, Xiamen 361021, China.
| |
Collapse
|
19
|
Wang H, Huang G. Extraction, purification, structural modification, activities and application of polysaccharides from different parts of mulberry. Food Funct 2024; 15:3939-3958. [PMID: 38536669 DOI: 10.1039/d3fo05747j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The mulberry plant is a member of the Moraceae family and belongs to the Morus genus. Its entire body is a treasure, with mulberries, mulberry leaves, and mulberry branches all suitable for medicinal use. The main active ingredient in mulberries is mulberry polysaccharide. Studies have shown that polysaccharides from different parts of mulberry exhibit antioxidant, antidiabetic, antibacterial, anti-inflammatory, and blood pressure-lowering properties. There are more studies on the biological activities, extraction methods, and structural characterization of polysaccharides from different parts of mulberry. However, the structural characterization of mulberry polysaccharides is mostly confined to the types and proportions of monosaccharides and the molecular weights of polysaccharides, and there are fewer systematic studies on polysaccharides from different parts of mulberry. In order to better understand the bioactive structure of mulberry polysaccharides, this article discusses the recent research progress in the extraction, separation, purification, bioactivity, structural modification, and application of polysaccharides from different parts of mulberry (mulberry leaves, mulberry fruits, and mulberry branches). It also delves into the pharmacological mechanisms of action of mulberry polysaccharides to provide a theoretical basis for further research on mulberry polysaccharides with a view to their deeper application in the fields of feed and nutraceuticals.
Collapse
Affiliation(s)
- Huilin Wang
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Key Laboratory of Inorganic Functional Materials, Chongqing Normal University, Chongqing 401331, China.
| | - Gangliang Huang
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Key Laboratory of Inorganic Functional Materials, Chongqing Normal University, Chongqing 401331, China.
| |
Collapse
|
20
|
Du H, Olawuyi IF, Said NS, Lee WY. Comparative Analysis of Physicochemical and Functional Properties of Pectin from Extracted Dragon Fruit Waste by Different Techniques. Polymers (Basel) 2024; 16:1097. [PMID: 38675016 PMCID: PMC11054079 DOI: 10.3390/polym16081097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Dragon fruit peel, often discarded, is a valuable source of commercial pectin. This study investigates different extraction methods, including cold-water (CW), hot-water (HW), ultrasound (US), and novel enzyme extraction (xylanase: EZX), to extract pectins from dragon fruit peel and compare their characteristics. The pectin yield ranged from 10.93% to 20.22%, with significant variations in physicochemical properties across methods (p < 0.05). FTIR analysis revealed that extraction methods did not alter the primary structural configuration of the pectins. However, molecular weights (Mws) varied significantly, from 0.84 to 1.21 × 103 kDa, and the degree of esterification varied from 46.82% to 51.79% (p < 0.05). Monosaccharide analysis identified both homogalacturonan (HG) and rhamnogalacturonan-I (RG-I) pectic configurations in all pectins, predominantly comprising galacturonic acid (77.21-83.12 %mol) and rhamnose (8.11-9.51 %mol), alongside minor side-chain sugars. These properties significantly influenced pectin functionalities. In the aqueous state, a higher Mw impacted viscosity and emulsification performance, while a lower Mw enhanced antioxidant activities and promoted the prebiotic function of pectin (Lactis brevies growth). This study highlights the impact of extraction methods on dragon fruit peel pectin functionalities and their structure-function relationship, providing valuable insights into predicting dragon fruit peel's potential as a food-grade ingredient in various products.
Collapse
Affiliation(s)
- Huimin Du
- School of Food Science and Technology, Kyungpook National University, Daegu 41566, Republic of Korea; (H.D.); (I.F.O.); (N.S.S.)
| | - Ibukunoluwa Fola Olawuyi
- School of Food Science and Technology, Kyungpook National University, Daegu 41566, Republic of Korea; (H.D.); (I.F.O.); (N.S.S.)
- Research Institute of Tailored Food Technology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Nurul Saadah Said
- School of Food Science and Technology, Kyungpook National University, Daegu 41566, Republic of Korea; (H.D.); (I.F.O.); (N.S.S.)
| | - Won-Young Lee
- School of Food Science and Technology, Kyungpook National University, Daegu 41566, Republic of Korea; (H.D.); (I.F.O.); (N.S.S.)
- Research Institute of Tailored Food Technology, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
21
|
Zhang X, Zhang X, Wang Z, Quan B, Bai X, Wu Z, Meng Y, Wei Z, Xia T, Zheng Y, Wang M. Melanoidin-like carbohydrate-containing macromolecules from Shanxi aged vinegar exert immunoenhancing effects on macrophage RAW264.7 cells. Int J Biol Macromol 2024; 264:130088. [PMID: 38354936 DOI: 10.1016/j.ijbiomac.2024.130088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 01/30/2024] [Accepted: 02/08/2024] [Indexed: 02/16/2024]
Abstract
Bioactive macromolecule mining is important for the functional chemome analysis of traditional Chinese vinegar. In this study, we isolated and characterized carbohydrate-containing macromolecules from Shanxi aged vinegar (CCMSAV) and evaluated their immunomodulatory activity. The isolation process involved ethanol precipitation, deproteinization, decolorization, and DEAE-650 M column chromatography, resulting in the acquisition of four sub-fractions. All sub-fractions exhibited a molecular weight range of 6.92 to 16.71 kDa and were composed of 10 types of monosaccharides. Comparative analysis of these sub-fractions with two melanoidins exhibited similarities in elemental composition, spectral signature, and pyrolytic characteristics. Immunological assays confirmed the significantly enhanced cell viability, phagocytic activity, and secretion of nitric oxide, tumor necrosis factor (TNF)-α and interleukin (IL)-6 in RAW264.7 cells by all four sub-fractions. Further investigation of the immunomodulatory mechanism revealed that SAV-RP70-X, the most potent purified sub-fraction, enhanced aerobic glycolysis in macrophages and activated Toll-like receptor 2 (TLR2), TLR4, mannose receptor (MR), scavenger receptor (SR), and the dendritic cell-associated C-type lectin-1 receptor (Dectin-1). Furthermore, the activation of macrophages was associated with the MyD88/PI3K/Akt/NF-κB signaling pathway. Methylation analysis revealed that 1,4-Xylp was the most abundant glycosidic linkage in SAV-RP70-X.
Collapse
Affiliation(s)
- Xianglong Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Xiaodong Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Zhisong Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Bingyan Quan
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Xiaoli Bai
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Zihang Wu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yuan Meng
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Zixiang Wei
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Ting Xia
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yu Zheng
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Min Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|
22
|
Kiran NS, Yashaswini C, Singh S, Prajapati BG. Revisiting microbial exopolysaccharides: a biocompatible and sustainable polymeric material for multifaceted biomedical applications. 3 Biotech 2024; 14:95. [PMID: 38449708 PMCID: PMC10912413 DOI: 10.1007/s13205-024-03946-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/28/2024] [Indexed: 03/08/2024] Open
Abstract
Microbial exopolysaccharides (EPS) have gained significant attention as versatile biomolecules with multifarious applications across various sectors. This review explores the valorisation of EPS and its potential impact on diverse sectors, including food, pharmaceuticals, cosmetics, and biotechnology. EPS, secreted by microorganisms, possess unique physicochemical properties, such as high molecular weight, water solubility, and biocompatibility, making them attractive for numerous functional roles. Additionally, EPS exhibit significant bioactivity, contributing to their potential use in pharmaceuticals for drug delivery and tissue engineering applications. Moreover, the eco-friendly and sustainable nature of microbial EPS production aligns with the growing demand for environmentally conscious processes. However, challenges still exist in large-scale production, purification, and regulatory approval for commercial use. Advances in bioprocessing and microbial engineering offer promising solutions to overcome these hurdles. Stringent investigations have concluded EPS as novel sources for sustainable applications that are likely to emerge and develop, further reinforcing the significance of these biopolymers in addressing contemporary societal needs and driving innovation in various industrial sectors. Overall, the microbial EPS represents a thriving field with immense potential for meeting diverse industrial demands and advancing sustainable technologies.
Collapse
Affiliation(s)
| | - Chandrashekar Yashaswini
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru, Karnataka India
| | - Sudarshan Singh
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
- Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
| | | |
Collapse
|
23
|
Zhu B, Ma C, You L. Degradation Mechanisms of Six Typical Glucosidic Bonds of Disaccharides Induced by Free Radicals. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5439-5451. [PMID: 38412221 DOI: 10.1021/acs.jafc.3c09344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Increasing hydrogen peroxide (H2O2)-based systems have been developed to degrade various polysaccharides due to the presence of highly reactive free radicals, but published degradation mechanisms are still limited. Therefore, this study aimed to clarify the degradation mechanism of six typical glucosidic bonds from different disaccharides in an ultraviolet (UV)/H2O2 system. The results showed that the H2O2 concentration, disaccharide concentration, and radiation intensity were important factors affecting pseudo-first-order kinetic constants. Hydroxyl radical, superoxide radical, and UV alone contributed 58.37, 18.52, and 19.17% to degradation, respectively. The apparent degradation rates ranked in the order of cellobiose ≈ lactose > trehalose ≈ isomaltose > turanose > sucrose ≈ maltose. The reaction pathways were then deduced after identifying their degradation products. According to quantum chemical calculations, the cleavage of α-glycosidic bonds was more kinetically unfavorable than that of β-glycosidic bonds. Additionally, the order of apparent degradation rates depended on the energy barriers for the formation of disaccharide-based alkoxyl radicals. Moreover, energy barriers for homolytic scissions of glucosidic C1-O or C7-O sites of these alkoxyl radicals ranked in the sequence: α-(1 → 2) ≈ α-(1 → 3) < α-(1 → 4) < β-(1 → 4) < α-(1 → 6) < α-(1 → 1) glucosidic bonds. This study helps to explain the mechanisms of carbohydrate degradation by free radicals.
Collapse
Affiliation(s)
- Biyang Zhu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Cong Ma
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Lijun You
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| |
Collapse
|
24
|
Zhang J, Chen X, Wang Y, Zhan Q, Hu Q, Zhao L. Study on the physicochemical properties and antioxidant activities of Flammulina velutipes polysaccharide under controllable ultrasonic degradation based on artificial neural network. Int J Biol Macromol 2024; 261:129382. [PMID: 38272430 DOI: 10.1016/j.ijbiomac.2024.129382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/18/2023] [Accepted: 12/27/2023] [Indexed: 01/27/2024]
Abstract
The polysaccharide fraction (FVP2) with molecular weight of 1525.09 kDa and intrinsic viscosity of 3.43 dL/g was isolated and purified from Flammulina velutipes (F. velutipes), and the ultrasonic degradation model of FVP2 was established to predict the molecular weight and intrinsic viscosity at the same time based on artificial neural network. FVP2U1 (1149.11 kDa, 1.78 dL/g), FVP2U2 (618.91 kDa, 1.19 dL/g) and FVP2U3 (597.35 kDa, 0.48 dL/g) with different molecular weights or viscosity were produced by this model to explore the effect of ultrasound on the physicochemical properties and antioxidant activity of FVP2. The results showed that ultrasonic treatment did not change the types of characteristic functional groups, monosaccharide composition and glycosidic bond of FVP2, but changed the chemical composition ratio and the degree of polymerization. Under ultrasonic treatment, the intrinsic viscosity of FVP2 still decreased significantly when the molecular weight did not decrease. Compared to other components subjected to ultrasonic degradation, FVP2U1 demonstrated higher molecular weight and viscoelasticity, while exhibiting lower antioxidant activity. In the case of no significant difference in molecular weight and monosaccharide composition, FVP2U3 with lower intrinsic viscosity has stronger hydration ability, higher crystallization index, lower viscoelasticity and stronger antioxidant capacity than FVP2U2.
Collapse
Affiliation(s)
- Jingsi Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xin Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yifan Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Qiping Zhan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Qiuhui Hu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China; College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Liyan Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
25
|
Zhong W, Yu Y, Zhang B, Tao D, Fang J, Ma F. Effect of H 2O 2-assisted ultrasonic bath on the degradation and physicochemical properties of pectin. Int J Biol Macromol 2024; 258:128863. [PMID: 38143060 DOI: 10.1016/j.ijbiomac.2023.128863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/02/2023] [Accepted: 12/15/2023] [Indexed: 12/26/2023]
Abstract
The effects of H2O2-assisted ultrasonic bath degradation technology on pectin were investigated. The degradation efficiency with different pectin concentrations, H2O2 concentrations, ultrasonic power, and ultrasonic time was analyzed. The results showed that pectin concentration was negatively correlated with the degradation efficiency of pectin, while, H2O2 concentration, ultrasonic power, and ultrasonic time were positive correlated with the degradation efficiency. Besides, the apparent viscosity and viscoelasticity of the degraded pectin decreased significantly. The antioxidant activity increased after the H2O2-assisted ultrasonic bath treatment. The results of FTIR, NMR, laser particle size, SEM, XRD, and AFM analysis indicated that the degradation treatment did not destroy the main structure of pectin. The average particle size and crystallinity of pectin decreased. The degree of aggregation and the height of the molecular chain decreased significantly. In conclusion, the H2O2-assisted ultrasonic bath degradation technique could effectively degrade pectin. This study provided a comprehensive analysis of the degradation of pectin under H2O2-assisted ultrasonic bath, which will be beneficial to further develop H2O2-assisted ultrasonic bath techniques for pectin degradation.
Collapse
Affiliation(s)
- Weitian Zhong
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Yang Yu
- China Certification & Inspection Group Liaoning Co., Ltd., Shenyang 110866, China
| | - Baiqing Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Dongbing Tao
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Jun Fang
- Tianjin Agricultural Development Service Center, Tianjin 300202, China
| | - Fengming Ma
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; Chongqing Research Institute of HIT, Harbin Institute of Technology, Harbin 150001, China.
| |
Collapse
|
26
|
Xu Y, Yang J, Liu J, Tang Y, Li X, Ye D, He J, Tang H, Zhang Y. Effects of synergistic Fenton-microwave treatment on the antioxidant stress of soluble polysaccharides and the physicochemical properties of insoluble polysaccharides from Gelidium amansii. Int J Biol Macromol 2024; 254:128366. [PMID: 37995786 DOI: 10.1016/j.ijbiomac.2023.128366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/14/2023] [Accepted: 11/21/2023] [Indexed: 11/25/2023]
Abstract
In this study, we individually obtained crude Gelidium amansii water-soluble polysaccharides and water-insoluble polysaccharides (GAIPs) using an improved Fenton-microwave synergistic treatment. The former were purified by alcohol precipitation and deproteinization to obtain Gelidium amansii water-soluble polysaccharides (GASPs), and their effects on the oxidative stress resistance of Caenorhabditis elegans were investigated. GAIPs were studied for their physicochemical properties, including hydration characteristics, adsorption, and cation-exchange capacity. The results showed that compared with the negative control, 1.0 mg/mL GASPs significantly upregulated (>1.70-fold) the expression of antioxidant-related genes, such as daf-16, sir-2.1, and skn-1 (p < 0.05), which prolonged the mean survival time and increased the mean number of head bobbing (p < 0.05). The hydration characteristics and oil-holding capacity of GAIPs were lower than those of G. amansii powder (GAP) and G. amansii filtrate residue (GADP). However, the adsorption capacity of GAIPs for cholesterol (pH 7.0) and sodium cholate and the cation-exchange capacity were significantly better than those of GAP (5.17, 13.16 & 1.63 times, p < 0.05) and GADP (8.42, 6.39, & 2.05 times, p < 0.05). To conclude, the synergistic Fenton-microwave treatment contributed to the increase in the oxidative stress resistance of GASPs and improved the adsorption capacity and cation-exchange capacity of GAIPs.
Collapse
Affiliation(s)
- Yuting Xu
- College of Life Sciences, Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang Province 310018, PR China
| | - Jun Yang
- College of Life Sciences, Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang Province 310018, PR China
| | - Jiaqi Liu
- College of Life Sciences, Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang Province 310018, PR China
| | - Yuxuan Tang
- College of Life Sciences, Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang Province 310018, PR China
| | - Xiangyu Li
- College of Life Sciences, Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang Province 310018, PR China
| | - Deting Ye
- College of Life Sciences, Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang Province 310018, PR China
| | - Jiyuan He
- Liang Xin College, China Jiliang University, Hangzhou, Zhejiang Province 310018, PR China
| | - Huinan Tang
- College of Life Sciences, Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang Province 310018, PR China
| | - Yongjun Zhang
- College of Life Sciences, Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang Province 310018, PR China.
| |
Collapse
|
27
|
Liang Z, Li K, Huang W, Li Z, Xu X, Xu H, Li S. Production, structural and functional characteristics of soluble dietary fiber from fermented okara by Penicillium expansum. Int J Biol Macromol 2023; 253:126621. [PMID: 37657574 DOI: 10.1016/j.ijbiomac.2023.126621] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/14/2023] [Accepted: 08/28/2023] [Indexed: 09/03/2023]
Abstract
Soluble dietary fiber (SDF), an important prebiotic, has attracted growing attention, due to its great health effects and wide application. This study focused on the preparation of SDF from fermented okara. The yield of SDF obtained through Penicillium expansum fermentation (FSDF) reached 45.63 % (w/w) under the optimal conditions (pH 6.7, inoculum size 9.5 %, and time 29 h) by response surface methodology, which were 1.92 and 4.43 times higher than those of phosphate-citric acid treatment and untreated okara. Infrared spectra and X-ray diffraction indicated that three SDFs had similar spectral distribution and crystalline region. Moreover, FSDF displayed looser and more porous microstructures. Meanwhile, the composition ratio of monosaccharides has changed. FSDF exhibited higher water solubility (97.46 %), glucose adsorption capacity (203.73 mg/g), sodium cholate adsorption capacity (13.07 mg/g), cholesterol adsorption capacity (6.69- 7.62 mg/g) and radical (ABTS+, hydroxyl and DPPH) scavenging capacity. Additionally, three SDFs didn't degrade by upper gastrointestinal tract and could improve the proportion of beneficial intestinal flora in vitro, such as Lactobacillus and Bifidobacterium. Overall, the FSDF prepared in this study was a functional ingredient with great potential in foods.
Collapse
Affiliation(s)
- Zhong Liang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Kecheng Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Weiwei Huang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Zhaoxia Li
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Xiaoqi Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Hong Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Sha Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
28
|
Yao J, Zeng J, Tang H, Shi Q, Li X, Tan J, Cheng Y, Li T, He J, Zhang Y. Preparation of Auricularia auricula polysaccharides and their protective effect on acute oxidative stress injury of Caenorhabditis elegans. Int J Biol Macromol 2023; 253:127427. [PMID: 37838122 DOI: 10.1016/j.ijbiomac.2023.127427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 09/30/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
This research enhanced the extraction procedure for Auricularia auricula crude polysaccharides by utilizing a modified Fenton reagent as a solvent, and obtained A. auricula polysaccharides (AAPs-VH) via alcohol precipitation and deproteinization. The HPLC profile revealed that the purified AAPs-VH using Sepharose 6FF was mainly a heteropolysaccharide, consisting primarily of mannose, glucuronic acid, glucose, and xylose. The Mw and Mn of the purified AAPs-VH were 87.646 kDa and 48.854 kDa, respectively. The FT-IR and NMR spectra revealed that the purified AAPs-VH belonged to pyranose and were mainly formed by (1 → 3)-linked-β-D glucan formation. In vivo experiments conducted with Caenorhabditis elegans, AAPs-VH was found to notably influence the lifespan, improve the antioxidant system, and decrease the level of cell apoptosis. This might be achieved by up-regulating the expression of genes in the IIS and TOR pathways. The study concludes that the modified Fenton reagent can increase Auricularia auricula polysaccharide solubleness and active sites, which may be an essential prompt for future studies.
Collapse
Affiliation(s)
- Jing Yao
- Liang Xin College, China Jiliang University, Hangzhou, Zhejiang Province 310018, China
| | - Jiangying Zeng
- College of Life Sciences, Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang Province 310018, China
| | - Huinan Tang
- College of Life Sciences, Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang Province 310018, China
| | - Qianwen Shi
- College of Life Sciences, Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang Province 310018, China
| | - Xiangyu Li
- College of Life Sciences, Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang Province 310018, China
| | - Jingjing Tan
- Liang Xin College, China Jiliang University, Hangzhou, Zhejiang Province 310018, China
| | - Yirui Cheng
- College of Life Sciences, Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang Province 310018, China
| | - Tianyuan Li
- Liang Xin College, China Jiliang University, Hangzhou, Zhejiang Province 310018, China
| | - Jiyuan He
- Liang Xin College, China Jiliang University, Hangzhou, Zhejiang Province 310018, China
| | - Yongjun Zhang
- College of Life Sciences, Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang Province 310018, China.
| |
Collapse
|
29
|
Shi R, Mu Z, Hu J, Jiang Z, Hou J. Non-thermal techniques as an approach to modify the structure of milk proteins and improve their functionalities: a review of novel preparation. Crit Rev Food Sci Nutr 2023; 65:1-29. [PMID: 37811663 DOI: 10.1080/10408398.2023.2263571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
BACKGROUND Milk proteins (MPs) have been widely used in the food industry due to their excellent functionalities. However, MPs are thermal-unstable substances and their functional properties are easily affected by heat treatment. Emerging non-thermal approaches (i.e., high-pressure homogenization (HPH), ultrasound (US), pulsed electric field (PEF)) have been increasingly popular. A detailed understanding of these approaches' impacts on the structure and functionalities of MPs can provide theoretical guidance for further development to accelerate their industrialization. SCOPE AND APPROACH This review assesses the mechanisms of HPH, US and PEF technologies on the structure and functionalities of MPs from molecular, mesoscopic and macroscopic levels, elucidates the modifications of MPs by these theologies combined with other methods, and further discusses their existing issues and the development in the food filed. KEY FINDINGS AND CONCLUSIONS The structure of MPs changed after HPH, US and PEF treatment, affecting their functionalities. The changes in these properties of MPs are related to treated-parameters of used-technologies, the concentration of MPs, as well as molecular properties. Additionally, these technologies combined with other methods could obtain some outstanding functional properties for MPs. If properly managed, these theologies can be tailored for manufacturing superior functional MPs for various processing fields.
Collapse
Affiliation(s)
- Ruijie Shi
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, PR China
- Institute of BioPharmceutical Research, Liaocheng University, Liaocheng, PR China
- National Enterprise Technology Center, Inner Mongolia Mengniu Dairy (Group) Co., Ltd, Huhhot, PR China
| | - Zhishen Mu
- National Enterprise Technology Center, Inner Mongolia Mengniu Dairy (Group) Co., Ltd, Huhhot, PR China
| | - Jialun Hu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, PR China
| | - Zhanmei Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, PR China
| | - Juncai Hou
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, PR China
| |
Collapse
|
30
|
Lee Q, Han X, Zheng M, Lv F, Liu B, Zeng F. Preparation of low molecular weight polysaccharides from Tremella fuciformis by ultrasonic-assisted H 2O 2-Vc method: Structural characteristics, in vivo antioxidant activity and stress resistance. ULTRASONICS SONOCHEMISTRY 2023; 99:106555. [PMID: 37582309 PMCID: PMC10448212 DOI: 10.1016/j.ultsonch.2023.106555] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/27/2023] [Accepted: 08/05/2023] [Indexed: 08/17/2023]
Abstract
Different methods were used to degrade Tremella fuciformis polysaccharides (TFP) and prepare low molecular weight polysaccharides of Tremella fuciformis (TFLP) to improve their bioavailability. It was found that the TFLP prepared by ultrasonic-assisted H2O2-Vc method showed the highest level of antioxidant activity and stress resistance in C. elegans. The structural characteristics, in vivo antioxidant and stress resistance of TFLP-1 were evaluated after isolation and purification of TFLP, it was found that TFLP-1 was an acid polysaccharide with a molecular weight of 75770 Da, which mainly composed of mannose. Meanwhile, it could regulate the antioxidant activity and stress resistance in C. elegans by upregulating the transcription of fat-5, fat-7, acs-2, glp-1, hsf-1, hsp-1, mtl-1, nhr-49, skn-1 and sod-3 mRNA. The improvement effects were closely related to the significant regulation of galactose metabolism, alpha linolenic acid metabolism, and pantothenate and CoA biosynthesis metabolic pathways. These results provided insights into the high value application of Tremella fuciformis in the food industry and the development of antioxidant related functional foods.
Collapse
Affiliation(s)
- Quancen Lee
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xianjing Han
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mingfeng Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Engineering Research Center of Fujian Subtropical Fruit and Vegetable Processing, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Feng Lv
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Engineering Research Center of Fujian Subtropical Fruit and Vegetable Processing, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Bin Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Engineering Research Center of Fujian Subtropical Fruit and Vegetable Processing, Fujian Agriculture and Forestry University, Fuzhou 350002, China; National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Feng Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Engineering Research Center of Fujian Subtropical Fruit and Vegetable Processing, Fujian Agriculture and Forestry University, Fuzhou 350002, China; National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
31
|
Zhu B, Sun-Waterhouse D, You L. Insights into the mechanisms underlying the degradation of xylooligosaccharides in UV/H 2O 2 system. Carbohydr Polym 2023; 317:121091. [PMID: 37364944 DOI: 10.1016/j.carbpol.2023.121091] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/24/2023] [Accepted: 06/02/2023] [Indexed: 06/28/2023]
Abstract
UV/H2O2 process is increasingly used to degrade carbohydrates, though the underlying mechanisms remain unclear. This study aimed to fill this knowledge gap, focusing on mechanisms and energy consumption involved in hydroxyl radical (•OH)-mediated degradation of xylooligosaccharides (XOSs) in UV/H2O2 system. Results showed that UV photolysis of H2O2 generated large amounts of •OH radicals, and degradation kinetics of XOSs fitted with a pseudo-first-order model. Xylobiose (X2) and xylotriose (X3), main oligomers in XOSs, were attacked easier by •OH radicals. Their hydroxyl groups were largely converted to carbonyl groups and then carboxy groups. The cleavage rate of glucosidic bonds was slightly higher than that of pyranose ring, and exo-site glucosidic bonds were more easily cleaved than endo-site bonds. The terminal hydroxyl groups of xylitol were more efficiently oxidized than other hydroxyl groups of it, causing an initial accumulation of xylose. Oxidation products from xylitol and xylose included ketoses, aldoses, hydroxy acids and aldonic acids, indicating the complexity of •OH radical-induced XOSs degradation. Quantum chemistry calculations revealed 18 energetically viable reaction mechanisms, with the conversion of hydroxy-alkoxyl radicals to hydroxy acids being the most energetically favorable (energy barriers <0.90 kcal/mol). This study will provide more understanding of •OH radicals-mediated degradation of carbohydrates.
Collapse
Affiliation(s)
- Biyang Zhu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China; Research Institute for Food Nutrition and Human Health (111 Center), Guangzhou, Guangdong 510640, China
| | - Dongxiao Sun-Waterhouse
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China; School of Chemical Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Lijun You
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China; Research Institute for Food Nutrition and Human Health (111 Center), Guangzhou, Guangdong 510640, China.
| |
Collapse
|
32
|
Xie Y, Xu H, Xu S, Ge S, Chang X, Xu Y, Luo Z, Shan Y, Ding S. How to effectively and greenly prepare multi-scale structural starch nanoparticles for strengthening gelatin film (ultrasound-Fenton system). Int J Biol Macromol 2023; 247:125848. [PMID: 37455003 DOI: 10.1016/j.ijbiomac.2023.125848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/01/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
Ultrasound (US) assisted with Fenton (US-Fenton) reaction was developed to efficiently and greenly prepare starch nanoparticles (SNPs) that were employed as nanofillers to enhance gelatin (G) film properties. Compared to Fenton reaction alone, US-Fenton reaction significantly improved preparation efficiency and dispersion of SNPs (p < 0.05). An optimal US-Fenton reaction parameter (300 mM H2O2, ascorbic acid 55 mM, US 45 min) was found to prepare SNPs with uniform sizes (50-90 nm) and low molecular weight (Mn 7.91 × 105 Da). The XRD, FT-IR, and SAXS analysis revealed that the US-Fenton reaction degraded the amorphous and crystalline zones of starch from top to down, leading to the collapse of the original layered structure starch and the progressive formation of SNPs. The different sizes of SNPs were selected to prepare the composite films. The G-SNP3 film (with 50-90 nm SNPs) showed the most outstanding UV blocking, tensile, and barrier properties. Especially, the tensile strength of G-5%SNP3 film (containing 5 % SNPs) increased by 156 % and 6 % over that of G film and G-5%SNP2 film (containing 5%SNPs with 100-180 nm), respectively. Therefore, the nanomaterial was promisingly prepared by the US-Fenton system and provided a strategy for designing and producing nanocomposite films.
Collapse
Affiliation(s)
- Ying Xie
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, DongTing Laboratory, Changsha 410125, China
| | - Haishan Xu
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, DongTing Laboratory, Changsha 410125, China
| | - Saiqing Xu
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, DongTing Laboratory, Changsha 410125, China
| | - Shuai Ge
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, DongTing Laboratory, Changsha 410125, China
| | - Xia Chang
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, DongTing Laboratory, Changsha 410125, China
| | - Yanqun Xu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310000, China
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310000, China
| | - Yang Shan
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, DongTing Laboratory, Changsha 410125, China.
| | - Shenghua Ding
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, DongTing Laboratory, Changsha 410125, China.
| |
Collapse
|
33
|
Wang Z, Zhou X, Shu Z, Zheng Y, Hu X, Zhang P, Huang H, Sheng L, Zhang P, Wang Q, Wang X, Li N. Regulation strategy, bioactivity, and physical property of plant and microbial polysaccharides based on molecular weight. Int J Biol Macromol 2023; 244:125360. [PMID: 37321440 DOI: 10.1016/j.ijbiomac.2023.125360] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/06/2023] [Accepted: 06/10/2023] [Indexed: 06/17/2023]
Abstract
Structural features affect the bioactivity, physical property, and application of plant and microbial polysaccharides. However, an indistinct structure-function relationship limits the production, preparation, and utilization of plant and microbial polysaccharides. Molecular weight is an easily regulated structural feature that affects the bioactivity and physical property of plant and microbial polysaccharides, and plant and microbial polysaccharides with a specific molecular weight are important for exerting their bioactivity and physical property. Therefore, this review summarized the regulation strategies of molecular weight via metabolic regulation; physical, chemical, and enzymic degradations; and the influence of molecular weight on the bioactivity and physical property of plant and microbial polysaccharides. Moreover, further problems and suggestions must be paid attention to during regulation, and the molecular weight of plant and microbial polysaccharides must be analyzed. The present work will promote the production, preparation, utilization, and investigation of the structure-function relationship of plant and microbial polysaccharides based on their molecular weight.
Collapse
Affiliation(s)
- Zichao Wang
- National Engineering Laboratory/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou 450001, China; School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xueyan Zhou
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Zhihan Shu
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yi Zheng
- School of International Education, Henan University of Technology, Zhengzhou 450001,China
| | - Xilei Hu
- School of International Education, Henan University of Technology, Zhengzhou 450001,China
| | - Peiyao Zhang
- School of International Education, Henan University of Technology, Zhengzhou 450001,China
| | - Hongtao Huang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Lili Sheng
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Pengshuai Zhang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Qi Wang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Xueqin Wang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Na Li
- Henan Provincial Key Laboratory of Ultrasound Imaging and Artificial Intelligence, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou University, Zhengzhou 450001, China; Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
34
|
Zheng Z, Wu L, Li Y, Deng W, Chen S, Song H. Effects of Different Blanching Methods on the Quality of Tremella fuciformis and Its Moisture Migration Characteristics. Foods 2023; 12:foods12081669. [PMID: 37107464 PMCID: PMC10137464 DOI: 10.3390/foods12081669] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Blanching is a critical step in the processing of Tremella fuciformis (T. fuciformis). The effects of different blanching methods (boiling water blanching (BWB), ultrasonic-low temperature blanching (ULTB), and high-temperature steam (HTS)) on the quality and moisture migration characteristics of T. fuciformis were investigated. The results showed that the T. fuciformis blanched by ULTB (70 °C, 2 min, 40 kHz, 300 W) had the best quality, including a brighter appearance, superior texture, and good sensory features, with a polysaccharide content of 3.90 ± 0.02%. The moisture migration characteristics of T. fuciformis after blanching exhibited four peaks, displayed strong and weak chemically bound water, immobilized water, and free water, whereas ULTB had a weak effect on the freedom of water in T. fuciformis. The study will provide the foundation for the factory processing of T. fuciformis.
Collapse
Affiliation(s)
- Zhipeng Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou 350003, China
| | - Li Wu
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou 350003, China
- Fujian Province Key Laboratory of Agricultural Products (Food) Processing Technology, Fuzhou 350003, China
| | - Yibin Li
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou 350003, China
- Fujian Province Key Laboratory of Agricultural Products (Food) Processing Technology, Fuzhou 350003, China
| | - Wei Deng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shouhui Chen
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou 350003, China
| | - Hongbo Song
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
35
|
Wang Z, Zhou X, Sheng L, Zhang D, Zheng X, Pan Y, Yu X, Liang X, Wang Q, Wang B, Li N. Effect of ultrasonic degradation on the structural feature, physicochemical property and bioactivity of plant and microbial polysaccharides: A review. Int J Biol Macromol 2023; 236:123924. [PMID: 36871679 DOI: 10.1016/j.ijbiomac.2023.123924] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 02/22/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023]
Abstract
With the bioactivities of antioxidant, anti-bacteria, anti-inflammation, immune regulation, antitumor and anti-coagulation, plant and microbial polysaccharides have been widely used in foods, medicine and cosmetics. However, how structure features affect the physicochemical property and bioactivity of plant and microbial polysaccharides is still unclear. Ultrasonic degradation usually degrades or modifies plant and microbial polysaccharides with different physicochemical properties and bioactivities by affecting their chemical or spatial structures via mechanical bond breaking and cavitation effects. Therefore, ultrasonic degradation might be an effective strategy for producing bioactive plant and microbial polysaccharides and analyzing their structure-function relationship. Present review summarized the influence of ultrasonic degradation on structural feature, physicochemical property and bioactivity of plant and microbial polysaccharides. Moreover, further problems need to be paid attention to during the application of ultrasonication for plant and microbial polysaccharides degradation are also recommended. Overall, present review will provide an efficient method for producing enhanced bioactive plant and microbial polysaccharides and analyzing their structure-activity relationship based on ultrasonic degradation.
Collapse
Affiliation(s)
- Zichao Wang
- National Engineering Laboratory/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou 450001, China; School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xueyan Zhou
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Lili Sheng
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Di Zhang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xinxin Zheng
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yaping Pan
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xiaoxue Yu
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xiaona Liang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Qi Wang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Baoshi Wang
- School of Life Science and Technology, Henan Collaborative Innovation Center in Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang 453003, China.
| | - Na Li
- Henan Provincial Key Laboratory of Ultrasound Imaging and Artificial Intelligence, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou University, Zhengzhou 450001, China; Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
36
|
Zhang S, Xu X, Cao X, Liu T. The structural characteristics of dietary fibers from Tremella fuciformis and their hypolipidemic effects in mice. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.07.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
37
|
Han X, Zhao X, Zeng T, Yang Y, Yu H, Zhang C, Wang B, Liu X, Zhang T, Sun J, Li X, Zhao T, Zhang M, Ni Y, Tong Y, Tang Q, Liu Y. Multimodal-Synergistic-Modulation Neuromorphic Imaging Systems for Simulating Dry Eye Imaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206181. [PMID: 36504477 DOI: 10.1002/smll.202206181] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/18/2022] [Indexed: 06/17/2023]
Abstract
Inspired by human eyes, the neuromorphic visual system employs a highly efficient imaging and recognition process, which offers tremendous advantages in image acquisition, data pre-processing, and dynamic storage. However, it is still an enormous challenge to simultaneously simulate the structure, function, and environmental adaptive behavior of the human eye based on one device. Here, a multimodal-synergistic-modulation neuromorphic imaging system based on ultraflexible synaptic transistors is successfully presented and firstly simulates the dry eye imaging behavior at the device level. Moreover, important functions of the human visual system in relation to optoelectronic synaptic plasticity, image erasure and enhancement, real-time preprocessing, and dynamic storage are simulated by versatile devices. This work not only simplifies the complexity of traditional neuromorphic visual systems, but also plays a positive role in the publicity of biomedical eye care.
Collapse
Affiliation(s)
- Xu Han
- Center for Advanced Optoelectronic Functional Materials Research, and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, China
| | - Xiaoli Zhao
- Center for Advanced Optoelectronic Functional Materials Research, and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, China
| | - Tao Zeng
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117575, Singapore
| | - Yahan Yang
- Center for Advanced Optoelectronic Functional Materials Research, and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, China
| | - Hongyan Yu
- Center for Advanced Optoelectronic Functional Materials Research, and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, China
| | - Cong Zhang
- Center for Advanced Optoelectronic Functional Materials Research, and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, China
| | - Bin Wang
- Center for Advanced Optoelectronic Functional Materials Research, and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, China
| | - Xiaoqian Liu
- Center for Advanced Optoelectronic Functional Materials Research, and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, China
| | - Tao Zhang
- Center for Advanced Optoelectronic Functional Materials Research, and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, China
| | - Jing Sun
- Center for Advanced Optoelectronic Functional Materials Research, and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, China
| | - Xinyuan Li
- Center for Advanced Optoelectronic Functional Materials Research, and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, China
| | - Tuo Zhao
- Center for Advanced Optoelectronic Functional Materials Research, and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, China
| | - Mingxin Zhang
- Center for Advanced Optoelectronic Functional Materials Research, and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, China
| | - Yanping Ni
- Center for Advanced Optoelectronic Functional Materials Research, and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, China
| | - Yanhong Tong
- Center for Advanced Optoelectronic Functional Materials Research, and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, China
| | - Qingxin Tang
- Center for Advanced Optoelectronic Functional Materials Research, and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, China
| | - Yichun Liu
- Center for Advanced Optoelectronic Functional Materials Research, and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, China
| |
Collapse
|
38
|
Shi X, Feng J, Wang S, Huang J, Yu M. Primary structure, physicochemical properties, and digestive properties of four sequentially extracted polysaccharides from Tremella fuciformis. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2022.105005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
39
|
Zhu B, Chen Y, Chang S, Qiu H, You L. Degradation kinetic models and mechanism of isomaltooligosaccharides by hydroxyl radicals in UV/H2O2 system. Carbohydr Polym 2023; 300:120240. [DOI: 10.1016/j.carbpol.2022.120240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/09/2022] [Accepted: 10/14/2022] [Indexed: 11/02/2022]
|
40
|
Preparation and Antioxidant Activity In Vitro of Fermented Tremella fuciformis Extracellular Polysaccharides. FERMENTATION 2022. [DOI: 10.3390/fermentation8110616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
This study was aimed at increasing the capacity of fermented Tremella fuciformis extracellular polysaccharides (TEPS) for possible functional food applications. Thus, strain varieties, fermentation parameters and purification conditions, and the in vitro antioxidant activities of purified EPS fractions were investigated. An EPS high-yield strain Tf526 was selected, and the effects of seven independent fermentation factors (time, temperature, initial pH, inoculum size, shaking speed, carbon, and nitrogen source) on the EPS yield were evaluated. By single factor optimization test, yeast extract and glucose were chosen as nitrogen sources and carbon sources, respectively, and with initial pH of 6.0, inoculum size of 8%, shaking speed of 150 rpm, and culture at 25 °C for 72 h, the optimal yield of TEPS reached 0.76 ± 0.03 mg/mL. Additionally, A-722MP resin showed the most efficient decoloration ratio compared to six other tested resins. Furthermore, optimal decoloration parameters of A-722MP resin were obtained as follows: decoloration time of 2 h, resins dosage of 2 g, and temperature of 30 °C. Decoloration ratio, deproteinization ratio, and polysaccharide retention ratio were 62.14 ± 2.3%, 81.21 ± 2.13%, and 73.42 ± 1.96%, respectively. Furthermore, the crude TEPS was extracted and four polysaccharide fractions were isolated and purified as Tf1-a, Tf1-b, Tf2, and Tf3 by the DEAE-Sepharose FF column and the Sephasryl S100 column. In general, the antioxidant activities of the Lf1-a and Lf1-b were lower compared with Vc at the concentration of 0.1 to 3 mg/mL, but the FRAP assay, DPPH scavenging activity, and hydroxyl radical scavenging activity analysis still revealed that Tf1-a and Tf1-b possess significant antioxidant activities in vitro. At the concentration of 3 mg/mL, the reducing power of Lf1-a and Lf1-b reached 0.86 and 0.70, the maximum DPPH radical were 54.23 ± 1.68% and 61.62 ± 2.73%, and the maximum hydroxyl radicals scavenging rates were 58.76 ± 2.58% and 45.81 ± 1.79%, respectively. Moreover, there were significant correlations (r > 0.8) among the selected concentrations and antioxidant activities of TEPS major fractions Tf1-a and Tf1-b. Therefore, it is expected that Tf1-a and Tf1-b polysaccharide fractions from fermented TEPS may serve as active ingredients in functional foods.
Collapse
|
41
|
Li M, Zhang H, Hu X, Liu Y, Liu Y, Song M, Wu R, Wu J. Isolation of a New Polysaccharide from Dandelion Leaves and Evaluation of Its Antioxidant, Antibacterial, and Anticancer Activities. Molecules 2022; 27:7641. [PMID: 36364468 PMCID: PMC9658512 DOI: 10.3390/molecules27217641] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/24/2022] [Accepted: 10/29/2022] [Indexed: 07/25/2023] Open
Abstract
Dandelion, in China, has a long history as a medicinal and edible plant, and possesses high nutritional and medical value. The present study aimed to isolate a new polysaccharide (DLP-3) from dandelion leaves and to evaluate its antioxidant, antibacterial, and anticancer activities. The structure of DLP-3 was analyzed using HPLC, FT-IR, SEM, GC-MS, and NMR spectroscopy. DLP-3 mainly consisted of Man, Rha, GlcA, Glc, Gal, and Ara with molar ratios of 2.32, 0.87, 1.21, 3.84, 1.00, and 1.05, respectively, with a molecular weight of 43.2 kDa. The main linkages of DLP-3 contained (1→4)-α-d-Glc, (1→4,6)-α-d-Glc, (1→6)-α-d-Gal, (1→2)-α-d-Man, (1→4)-α-d-Man, β-l-Ara-(1→, and α-l-Rha-(1→. DLP-3 exhibited a smooth surface, purely flake-like structure, and a triple helix conformation. Moreover, DLP-3 presented obvious antioxidant and antibacterial activities in a concentration-dependent manner. DLP-3 showed significant anticancer activities by inhibiting tumor cell proliferation. These findings provide a theoretical basis for the application of DLP-3 as a natural functional active substance in functional foods.
Collapse
Affiliation(s)
- Mo Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
- College of Criminal Science and Technology, Criminal Investigation Police University of China, Shenyang 110035, China
| | - Henan Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang 110866, China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, China
| | - Xinyu Hu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang 110866, China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, China
| | - Yumeng Liu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang 110866, China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, China
| | - Yanfeng Liu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang 110866, China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, China
| | - Meijun Song
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang 110866, China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, China
| | - Rina Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang 110866, China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, China
| | - Junrui Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang 110866, China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, China
| |
Collapse
|
42
|
Golovchenko V, Popov S, Smirnov V, Khlopin V, Vityazev F, Naranmandakh S, Dmitrenok AS, Shashkov AS. Polysaccharides of Salsola passerina: Extraction, Structural Characterization and Antioxidant Activity. Int J Mol Sci 2022; 23:13175. [PMID: 36361966 PMCID: PMC9657462 DOI: 10.3390/ijms232113175] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 11/19/2023] Open
Abstract
The above-ground part of the Salsola passerine was found to contain ~13% (w/w) of polysaccharides extractable with water and aqueous solutions of ammonium oxalate and sodium carbonate. The fractions extracted with aqueous sodium carbonate solutions had the highest yield. The polysaccharides of majority fractions are characterized by similar monosaccharide composition; namely, galacturonic acid and arabinose residues are the principal components of their carbohydrate chains. The present study focused on the determination of antioxidant activity of the extracted polysaccharide fractions and elucidation of the structure of polysaccharides using nuclear magnetic resonance (NMR) spectroscopy. Homogalacturonan (HG), consisting of 1,4-linked residues of α-D-galactopyranosyluronic acid (GalpA), rhamnogalacturonan-I (RG-I), which contains a diglycosyl repeating unit with a strictly alternating sequence of 1,4-linked D-GalpA and 1,2-linked L-rhamnopyranose (Rhap) residues in the backbone, and arabinan, were identified as the structural units of the obtained polysaccharides. HMBC spectra showed that arabinan consisted of alternating regions formed by 3,5-substituted and 1,5-linked arabinofuranose residues, but there was no alternation of these residues in the arabinan structure. Polysaccharide fractions scavenged the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical at 0.2-1.8 mg/mL. The correlation analysis showed that the DPPH scavenging activity of polysaccharide fractions was associated with the content of phenolic compounds (PCs).
Collapse
Affiliation(s)
- Victoria Golovchenko
- Institute of Physiology of Federal Research Centre “Komi Science Centre of the Urals Branch of the Russian Academy of Sciences”, 167982 Syktyvkar, Russia
| | - Sergey Popov
- Institute of Physiology of Federal Research Centre “Komi Science Centre of the Urals Branch of the Russian Academy of Sciences”, 167982 Syktyvkar, Russia
| | - Vasily Smirnov
- Institute of Physiology of Federal Research Centre “Komi Science Centre of the Urals Branch of the Russian Academy of Sciences”, 167982 Syktyvkar, Russia
| | - Victor Khlopin
- Institute of Physiology of Federal Research Centre “Komi Science Centre of the Urals Branch of the Russian Academy of Sciences”, 167982 Syktyvkar, Russia
| | - Fedor Vityazev
- Institute of Physiology of Federal Research Centre “Komi Science Centre of the Urals Branch of the Russian Academy of Sciences”, 167982 Syktyvkar, Russia
| | - Shinen Naranmandakh
- School of Arts and Sciences, National University of Mongolia, Ulaanbaatar 14201, Mongolia
| | - Andrey S. Dmitrenok
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexander S. Shashkov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
43
|
Effects of ultrasound-assisted Fenton treatment on structure and hypolipidemic activity of apricot polysaccharides. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
44
|
Guo Y, Sun Y, Chen X, Ye H, Dou H. Investigation on the effects of drying methods on the structure and antioxidant activity of
Tremella fuciformis
polysaccharides using asymmetrical flow field‐flow fractionation. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yuxi Guo
- Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory‐Autoimmune Disease of Hebei Province, School of Basic Medical Sciences Hebei University Baoding China
| | - Yushan Sun
- Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory‐Autoimmune Disease of Hebei Province, School of Basic Medical Sciences Hebei University Baoding China
| | - Xue Chen
- Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory‐Autoimmune Disease of Hebei Province, School of Basic Medical Sciences Hebei University Baoding China
| | - Hong Ye
- Health Science Center Hebei University Baoding China
| | - Haiyang Dou
- Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory‐Autoimmune Disease of Hebei Province, School of Basic Medical Sciences Hebei University Baoding China
- Affiliated Hospital of Hebei University Baoding China
| |
Collapse
|
45
|
Li M, Liu Y, Zhang H, Liu Y, Wang W, You S, Hu X, Song M, Wu R, Wu J. Anti-cancer Potential of Polysaccharide Extracted From Polygonatum sibiricum on HepG2 Cells via Cell Cycle Arrest and Apoptosis. Front Nutr 2022; 9:938290. [PMID: 35903453 PMCID: PMC9320318 DOI: 10.3389/fnut.2022.938290] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 05/23/2022] [Indexed: 01/20/2023] Open
Abstract
Polygonatum sibiricum is one of the most widely used traditional Chinese medicine in China. Polygonatum sibiricum polysaccharide (PSP) is the main functional component of Polygonatum sibiricum. In this study, a water-soluble polysaccharide (PSP-1) was first isolated from Polygonatum sibiricum with a molecular weight of 38.65 kDa. Structural analysis was performed via methylation and FT-IR spectroscopy analyses, which in combination with NMR spectroscopy, revealed that PSP-1 has a → 4-α-D-Glcp-1 → backbone with the substitution at O-6 with the β-D-Glcp-1 → residues. Furthermore, PSP-1 exhibited potent and concentration-dependent anticancer effects, inducing HepG2 cell apoptosis and arresting the cell cycle at the G1 phase. Moreover, PSP-1 also decreased the mitochondrial membrane potential, damaged the nucleus of HepG2 cells, and increased the activity of caspase-9 and−3 in the intrinsic apoptotic pathways to induce HepG2 cell apoptosis. To conclude, PSP-1 might be a good candidate for the treatment of liver cancer, and this work provides important information for understanding the relationship between structure and antitumor activity of PSP-1, which is relevant for the treatment of hepatocellular carcinoma in clinic.
Collapse
Affiliation(s)
- Mo Li
- College of Food Science, Shenyang Agricultural University, Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, China
- College of Criminal Science and Technology, Criminal Investigation Police University of China, Shenyang, China
| | - Yumeng Liu
- College of Food Science, Shenyang Agricultural University, Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, China
| | - Henan Zhang
- College of Food Science, Shenyang Agricultural University, Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, China
| | - Yanfeng Liu
- College of Food Science, Shenyang Agricultural University, Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, China
| | - Weiming Wang
- Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| | - Shengbo You
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xinyu Hu
- College of Food Science, Shenyang Agricultural University, Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, China
| | - Meijun Song
- College of Food Science, Shenyang Agricultural University, Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, China
| | - Rina Wu
- College of Food Science, Shenyang Agricultural University, Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, China
- *Correspondence: Rina Wu
| | - Junrui Wu
- College of Food Science, Shenyang Agricultural University, Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, China
- Junrui Wu
| |
Collapse
|
46
|
Yuan H, Dong L, Zhang Z, He Y, Ma X. Production, structure, and bioactivity of polysaccharide isolated from Tremella fuciformis. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.03.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
47
|
Yu C, Fang Y, Huang W, Lei P, Xu X, Sun D, Wu L, Xu H, Li S. Effect of surfactants on the production and biofunction of Tremella fuciformis polysaccharide through submerged fermentation. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
48
|
Structure characterization, antioxidant and emulsifying capacities of exopolysaccharide derived from Tetragenococcus halophilus SNTH-8. Int J Biol Macromol 2022; 208:288-298. [PMID: 35248612 DOI: 10.1016/j.ijbiomac.2022.02.186] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/20/2022] [Accepted: 02/27/2022] [Indexed: 01/14/2023]
Abstract
Tetragenococcus halophilus exopolysaccharides (THPS) are metabolites released by T. halophilus SNTH-8 to resist a high-salt environment. Although many studies have investigated the mechanisms underlying salt tolerance shown by T. halophilus, structural characteristics as well as antioxidant and emulsifying capacities of THPS remain unclear. In this study, we isolated and purified two components, THPS-1 and THPS-2, from T. halophilus SNTH-8. Purified THPS-1 and THPS-2 were composed of arabinose, xylose, fucose, galactose, glucose, and glucuronic acid at a molar ratio of 1.66:38.95:2.11:26.12:29.73:1.43 and 0.46:40.3:0.54:30.8:1.36:25.54, respectively. The average molecular weights of THPS-1 and THPS-2 were 14.98 kDa and 21.03 kDa, respectively. Moreover, the structures of THPS-1 and THPS-2 were investigated via fourier-transform infrared spectroscopy(FT-IR), nuclear magnetic resonance spectroscopy(NMR), scanning electron microscopy(SEM), and methylation analysis. THPS-1 was a highly branched polysaccharide with a backbone of α-D-(1,4)-Xyl, α-D-(1,6)-Glc and α-D-Xyl as the terminal, while THPS-2 was a highly branched polysaccharide with a backbone of α-D-(1,4)-Xyl and β-D-GlcA as the terminal. The branches were identified as β-D-(1,4,6)-Gal and β-D-(1,6)-Gal. Both THPS-1 and THPS-2 exhibited high antioxidant and emulsifying capacities. Overall, our structural analysis of THPS may further enhance research on natural emulsifiers and antioxidants.
Collapse
|
49
|
Enzyme-assisted extraction of apricot polysaccharides: process optimization, structural characterization, rheological properties and hypolipidemic activity. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01372-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
50
|
Advances, Applications, and Comparison of Thermal (Pasteurization, Sterilization, and Aseptic Packaging) against Non-Thermal (Ultrasounds, UV Radiation, Ozonation, High Hydrostatic Pressure) Technologies in Food Processing. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12042202] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Nowadays, food treatment technologies are constantly evolving due to an increasing demand for healthier and tastier food with longer shelf lives. In this review, our aim is to highlight the advantages and disadvantages of some of the most exploited industrial techniques for food processing and microorganism deactivation, dividing them into those that exploit high temperatures (pasteurization, sterilization, aseptic packaging) and those that operate thanks to their inherent chemical–physical principles (ultrasound, ultraviolet radiation, ozonation, high hydrostatic pressure). The traditional thermal methods can reduce the number of pathogenic microorganisms to safe levels, but non-thermal technologies can also reduce or remove the adverse effects that occur using high temperatures. In the case of ultrasound, which inactivates pathogens, recent advances in food treatment are reported. Throughout the text, novel discoveries of the last decade are presented, and non-thermal methods have been demonstrated to be more attractive for processing a huge variety of foods. Preserving the quality and nutritional values of the product itself and at the same time reducing bacteria and extending shelf life are the primary targets of conscious producers, and with non-thermal technologies, they are increasingly possible.
Collapse
|