1
|
Adamczyk P, Komaniecka I, Siwulski M, Wlizło K, Junka A, Nowak A, Kowalczyk D, Waśko A, Lisiecka J, Grzymajło M, Wiater A. (1→3)-α-d-Glucan from the Pink Oyster Mushroom ( Pleurotus djamor): Structural Features. Foods 2025; 14:1272. [PMID: 40238547 PMCID: PMC11988363 DOI: 10.3390/foods14071272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/29/2025] [Accepted: 04/03/2025] [Indexed: 04/18/2025] Open
Abstract
(1→3)-α-d-Glucan is an important component of the cell wall of most fungi. The polymer has many applications, including as a therapeutic agent in the prevention or treatment of various diseases, as well as a heavy metal sorbent and a component of new materials used in the plastics industry. The presence of (1→3)-α-d-glucan (water-insoluble, alkali-soluble polysaccharide) in the cell wall of Pleurotus djamor (pink oyster mushroom) was confirmed using specific fluorophore-labeled antibodies. Therefore, the water-insoluble fraction (WI-ASF) of P. djamor B123 fruiting bodies was isolated by alkaline extraction and used for further analyses. The structural features of the WI-ASF were determined by composition analysis, linkage analysis, Fourier transform infrared and Raman spectroscopy, 1H and 13C nuclear magnetic resonance spectroscopy, scanning electron microscopy, as well as viscosity, specific rotation, and gel permeation chromatography. These studies revealed the presence of glucose units linked by α-glycosidic bonds and scanty amounts of mannose and xylose. Furthermore, methylation analysis of WI-ASF demonstrated that the (1→3)-linked glucopyranose (Glcp) is the primary moiety (86.4%) of the polymer, while the 3,4- and 3,6-substituted hexoses are the branching residues of the glucan. The results of chemical and spectroscopic investigations indicated that the analyzed WI-ASF is a (1→3)-linked α-d-glucan type with a molecular weight of 552 kDa.
Collapse
Affiliation(s)
- Paulina Adamczyk
- Department of Industrial and Environmental Microbiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland; (P.A.); (K.W.); (A.N.)
| | - Iwona Komaniecka
- Department of Genetics and Microbiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland;
| | - Marek Siwulski
- Department of Vegetable Crops, Faculty of Agriculture, Horticulture and Biotechnology, Poznań University of Life Sciences, Dąbrowskiego 159, 60-594 Poznań, Poland; (M.S.); (J.L.)
| | - Kamila Wlizło
- Department of Industrial and Environmental Microbiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland; (P.A.); (K.W.); (A.N.)
| | - Adam Junka
- “P.U.M.A.”, Platform for Unique Model Application, Department of Pharmacy, Wroclaw Medical University, Borowska 211, 50-534 Wroclaw, Poland;
| | - Artur Nowak
- Department of Industrial and Environmental Microbiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland; (P.A.); (K.W.); (A.N.)
| | - Dariusz Kowalczyk
- Department of Biochemistry and Food Chemistry, Faculty of Food Sciences and Biotechnology, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland;
| | - Adam Waśko
- Department of Biotechnology, Microbiology and Human Nutrition, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland
| | - Jolanta Lisiecka
- Department of Vegetable Crops, Faculty of Agriculture, Horticulture and Biotechnology, Poznań University of Life Sciences, Dąbrowskiego 159, 60-594 Poznań, Poland; (M.S.); (J.L.)
| | - Michał Grzymajło
- Department of Polymer Engineering and Technology, Faculty of Chemistry, Wrocław University of Science and Technology (WUST); Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland;
| | - Adrian Wiater
- Department of Industrial and Environmental Microbiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland; (P.A.); (K.W.); (A.N.)
| |
Collapse
|
2
|
Jiang H, Gao L, Hu X, Fu J, Zhang J. Identification and Nutrient Composition of a Wild Pleurotus pulmonarius Strain from Tibet, and the Antioxidant and Cytotoxic Activities of Polysaccharides from This Fungus. Foods 2025; 14:1198. [PMID: 40238420 PMCID: PMC11989227 DOI: 10.3390/foods14071198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/21/2025] [Accepted: 03/25/2025] [Indexed: 04/18/2025] Open
Abstract
The selection and breeding of high-quality wild edible fungal strains can bring significant economic and social benefits. A wild fungal strain (X21185) from the Tibetan Plateau was isolated and identified as a novel Pleurotus pulmonarius (P. pulmonarius) based on its morphological and molecular characteristics. The appropriate culture conditions for P. pulmonarius were determined. The nutrient contents of P. pulmonarius fruiting bodies were analyzed. Compared with the conventional nutritional contents of the representative edible fungi (Pleurotus ostreatu and Pleurotus eryngii) and egg, the protein, ash, and dietary fiber contents of P. pulmonarius were higher. Four types of essential amino acids, seven types of nonessential amino acids, the total essential and nonessential amino acids of P. pulmonarius were present in considerably higher quantities than those of representative edible fungi (Pleurotus ostreatus and Pleurotus citrinopileatus) and egg, respectively. P. pulmonarius polysaccharides (PPPs) had strong ABTS+, DPPH, and hydroxyl free radical scavenging activities (EC50: 0.051, 3.322, and 2.87 mg/mL, respectively), and the cytotoxicity was higher against HepG2 hepatocellular carcinoma cells (IC50: 1.501 mg/mL) than against MDA-MB-468 triple-negative breast cancer cells (IC50: 2.183 mg/mL). This study provides a foundation for the development of the novel wild P. pulmonarius strain.
Collapse
Affiliation(s)
- Hao Jiang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.J.); (X.H.); (J.F.)
| | - Lei Gao
- Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850000, China;
| | - Xin Hu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.J.); (X.H.); (J.F.)
| | - Junsheng Fu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.J.); (X.H.); (J.F.)
| | - Junli Zhang
- Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850000, China;
| |
Collapse
|
3
|
Li JX, Xu DQ, Cui DX, Fu RJ, Niu ZC, Liu WJ, Tang YP. Exploring the structure-activity relationship of Safflower polysaccharides: From the structural characteristics to biological function and therapeutic applications. JOURNAL OF ETHNOPHARMACOLOGY 2025; 339:119131. [PMID: 39577676 DOI: 10.1016/j.jep.2024.119131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/19/2024] [Accepted: 11/17/2024] [Indexed: 11/24/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Safflower, the florets of Carthamus tinctorius L., is a widely used traditional Chinese medicine for promoting circulation and improving dysmenorrhea. Polysaccharides is one of the principal water-soluble components in Safflower, which recently endowed with a variety of biological activities, thus making them have important research significance in the field of ethnopharmacology. AIM OF THE STUDY This review summarized the latest research progress on the preparation technology, structural characteristics, and pharmacological effects of Safflower polysaccharides. Moreover, by comparing the structural characteristic of Safflower polysaccharides, the potential structure-activity relationship of Safflower polysaccharides was also discussed. MATERIALS AND METHODS This article used keywords including Safflower polysaccharide, Carthamus tinctorius L polysaccharide, Safflower polysaccharide extraction and separation, Safflower polysaccharide structure, and Safflower polysaccharide anti-tumor effects to search for all relevant literature in PubMed, Web of Science, Google Scholar, ScienceDirect, CNKI and other databases from the establishment of the database to July 2024. RESULTS Summarizing current research findings, seventeen homogeneous Safflower polysaccharides have been obtained. Their structural characteristics, including molecular weights, monosaccharide composition, sugar residue types, glycosidic bond configuration, and the linkage sequence, were initially researched. In terms of pharmacological activity, Safflower polysaccharides exhibit a wide range of biological activities, including immune regulation, anti-tumor effects, and antioxidant properties. Furthermore, the structural characteristics of Safflower polysaccharides significantly influence its biological activities, encompassing factors such as molecular weight, monosaccharide composition, and degree of branching. CONCLUSION Safflower polysaccharides have seen significant advancements in recent years regarding preparation methods, structural characterization, and pharmacological studies. These achievements would provide a theoretical basis for the application of Safflower polysaccharide in the field of ethnopharmacology. While Safflower polysaccharides exhibit diverse biological activities and significant potential for development and utilization, further in-depth research is needed to enhance our understanding of their mechanisms of action and optimize their clinical applications.
Collapse
Affiliation(s)
- Jia-Xin Li
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Ding-Qiao Xu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Dong-Xiao Cui
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Rui-Jia Fu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Ze-Chen Niu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Wen-Juan Liu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xianyang, 712046, China.
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xianyang, 712046, China.
| |
Collapse
|
4
|
Sang J, Zhao G, Koidis A, Wei X, Huang W, Guo Z, Wu S, Huang R, Lei H. Isolation, structural, biological activity and application of Gleditsia species seeds galactomannans. Carbohydr Polym 2024; 334:122019. [PMID: 38553218 DOI: 10.1016/j.carbpol.2024.122019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 04/02/2024]
Abstract
Gleditsia fruits have been known as a valuable traditional Chinese herb for tens of centuries. Previous studies showed that the galactomannans are considered as one of the major bioactive components in Gleditsia fruits seeds (GSGs). Here, we systematically review the major studies of GSGs in recent years to promote their better understanding. The extraction methods of GSGs mainly include hot water extraction, microwave-assisted extraction, ultrasonic extraction, acid extraction, and alkali extraction. The analysis revealed that GGSs exhibited in the form of semi-flexible coils, and its molecular weight ranged from 0.018 × 103 to 2.778 × 103 KDa. GSGs are composed of various monosaccharide constituents such as mannose, galactose, glucose, and arabinose. In terms of pharmacological effects, GSGs exhibit excellent activity in antioxidation, hypoglycemic, hypolipidemic, anti-inflammation. Moreover, GSGs have excellent bioavailability, biocompatibility, and biodegradability, which make them used in food additives, food packaging, pharmaceutical field, industry and agriculture. Of cause, the shortcomings of the current research and the potential development and future research are also highlighted. We believe our work provides comprehensive knowledge and underpinnings for further research and development of GSGs.
Collapse
Affiliation(s)
- Jiaqi Sang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Nation-Local Joint Engineering Research Center for Precision Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Gang Zhao
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Nation-Local Joint Engineering Research Center for Precision Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China
| | - Anastasios Koidis
- Institute for Global Food Security, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DJ, UK
| | - Xiaoqun Wei
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Nation-Local Joint Engineering Research Center for Precision Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China
| | - Weijuan Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Nation-Local Joint Engineering Research Center for Precision Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China
| | - Zonglin Guo
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Nation-Local Joint Engineering Research Center for Precision Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China
| | - Shaozong Wu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Nation-Local Joint Engineering Research Center for Precision Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China
| | - Riming Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Nation-Local Joint Engineering Research Center for Precision Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China.
| | - Hongtao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Nation-Local Joint Engineering Research Center for Precision Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| |
Collapse
|
5
|
Zhang L, Khoo CS, Koyyalamudi SR, Reddy N. Immunomodulatory activities of polysaccharides isolated from Amauroderma rugosum (Blume and T. Nees) Torrend and their structural characterization. Heliyon 2024; 10:e31672. [PMID: 38868030 PMCID: PMC11167292 DOI: 10.1016/j.heliyon.2024.e31672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 05/20/2024] [Accepted: 05/20/2024] [Indexed: 06/14/2024] Open
Abstract
Amauroderma rugosum (Blume and T. Nees) Torrend is a traditionally well-known mushroom that is used for the treatment of cancer. In order to evaluate the pharmacological activities of A. rugosum polysaccharides, the mushroom powder was subjected to hot water extraction and pure polysaccharides (ARPs) were isolated by gel-filtration method. Three important APRs called ARP-1, ARP-2 and ARP-5 were identified with average molecular weights of 1494, 450, and 7 kDa respectively. Their antioxidant abilities were estimated by examining free radical scavenging potential against 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid radical (ABTS●+), 2,2-diphenyl-1-picrylhydrazyl radical (DPPH●), and hydroxyl radical. Immunomodulatory potentials of these ARPs were determined using murine macrophage cells. These polysaccharides exhibited high antioxidant abilities and stimulated mouse macrophages leading to the generation of tumour necrosis factor-α (TNF-α) and interleukin-6 (IL-6). Excellent activities were displayed by ARP-1 and APR-2. Gas chromatography and spectroscopic (FT-IR and NMR) methods were employed in order to carry out their structural characterisation. The two high molecular weight ARPs (ARP-1 and ARP-2) displayed β-(1 → 3)-D-glucan backbone structure with branching of β-(1 → 6)-d-glucopyranosyl. These observations suggest high potential of ARPs for immunotherapeutic applications.
Collapse
Affiliation(s)
- Lin Zhang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, 100010, China
- Beijing Institute of Chinese Medicine, Beijing, 100010, China
| | - Cheang Soo Khoo
- Wentworth Institute of Higher Education, 302-306 Elizabeth Street, Surry Hills, NSW, 2010, Australia
| | - Sundar Rao Koyyalamudi
- Institute of Endocrinology and Diabetes, The Children's Hospital at Westmead, Sydney, NSW, 2145, Australia
- Discipline of Pediatrics and Child Health, The Children's Hospital at Westmead, University of Sydney, NSW, 2145, Australia
| | - Narsimha Reddy
- School of Science, Parramatta Campus, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| |
Collapse
|
6
|
Ji M, Sun L, Zhang M, Liu Y, Zhang Z, Wang P. RN0D, a galactoglucan from Panax notoginseng flower induces cancer cell death via PINK1/Parkin mitophagy. Carbohydr Polym 2024; 332:121889. [PMID: 38431406 DOI: 10.1016/j.carbpol.2024.121889] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/15/2024] [Accepted: 01/28/2024] [Indexed: 03/05/2024]
Abstract
Metabolic alterations within mitochondria, encompassing processes such as autophagy and energy metabolism, play a pivotal role in facilitating the swift proliferation, invasion, and metastasis of cancer cells. Despite this, there is a scarcity of currently available medications with proven anticancer efficacy through the modulation of mitochondrial dysfunction in a clinical setting. Here, we introduce the structural characteristics of RN0D, a galactoglucan isolated and purified from Panax notoginseng flowers, mainly composed of β-1,4-galactan and β-1,3/1,6-glucan. RN0D demonstrates the capacity to induce mitochondrial impairment in cancer cells, leading to the accumulation of reactive oxygen species, initiation of mitophagy, and reduction in both mitochondrial number and size. This sequence of events ultimately results in the inhibition of mitochondrial and glycolytic bioenergetics, culminating in the demise of cancer cells due to adenosine triphosphate (ATP) deprivation. Notably, the observed bioactivity is attributed to RN0D's direct targeting of Galectin-3, as affirmed by surface plasmon resonance studies. Furthermore, RN0D is identified as an activator of the PTEN-induced kinase 1 (PINK1)/Parkin pathway, ultimately instigating cytotoxic mitophagy in tumor cells. This comprehensive study substantiates the rationale for advancing RN0D as a potentially efficacious anticancer therapeutic.
Collapse
Affiliation(s)
- Meng Ji
- Department of Pancreatic-biliary Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai 200011, China
| | - Long Sun
- Department of Marine Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Minghui Zhang
- Department of Marine Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yulin Liu
- Department of Marine Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Zhenqing Zhang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215021, China
| | - Peipei Wang
- Department of Marine Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Marine Biomedical Science and Technology Innovation Platform of Lin-Gang Special Area, Shanghai 201306, China.
| |
Collapse
|
7
|
Elnahas MO, Elkhateeb WA, Daba GM. Nutritive profile, pharmaceutical potentials, and structural analysis of multifunctional bioactive fungal polysaccharides-A review. Int J Biol Macromol 2024; 266:130893. [PMID: 38493817 DOI: 10.1016/j.ijbiomac.2024.130893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 02/05/2024] [Accepted: 03/12/2024] [Indexed: 03/19/2024]
Abstract
Asian nations have long used edible fungi as food and medicine. Polysaccharides are among the main building units of the cell walls of fungi. Fungal polysaccharides have been documented in the medicinal and industrial sectors as products with a vast array of various biological activities and applications such as antitumor, antioxidant, anticancer, immunomodulation, and antiviral activities, etc. The goal of this review is to give insights into the various biological activities of mushroom polysaccharides and their potential as a medicine for human health. The extraction, purity, and structural analysis of fungal polysaccharides were also reviewed in this work. Also, future prospective, and challenges for fungal polysaccharides in pharmaceutical applications can be found in this review. Overall, this review serves as a valuable resource in exploring the therapeutic potential and applications of fungal polysaccharides. By building upon the existing knowledge base and addressing critical research gaps, researchers can find new opportunities for utilizing fungal polysaccharides as valuable therapeutic agents and functional ingredients in pharmaceuticals, nutraceuticals, and biotechnology.
Collapse
Affiliation(s)
- Marwa O Elnahas
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Giza 12622, Egypt.
| | - Waill A Elkhateeb
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Giza 12622, Egypt
| | - Ghoson M Daba
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Giza 12622, Egypt
| |
Collapse
|
8
|
Liu JJ, Hou YK, Wang X, Zhou XT, Yin JY, Nie SP. Recent advances in the biosynthesis of fungal glucan structural diversity. Carbohydr Polym 2024; 329:121782. [PMID: 38286552 DOI: 10.1016/j.carbpol.2024.121782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/31/2023] [Accepted: 01/02/2024] [Indexed: 01/31/2024]
Abstract
Glucans are the most abundant class of macromolecule polymers in fungi, which are commonly found in Ascomycota and Basidiomycota. Fungal glucans are not only essential for cell integrity and function but also crucial for the immense industrial interest in high value applications. They present a variety of structural characteristics at the nanoscale due to the high regulation of genes and the involvement of stochastic processes in synthesis. However, although recent findings have demonstrated the genes of glucans synthesis are relatively conserved across diverse fungi, the formation and organization of diverse glucan structures is still unclear in fungi. Here, we summarize the structural features of fungal glucans and the recent developments in the mechanisms of glucans biosynthesis. Furthermore, we propose the engineering strategies of targeted glucan synthesis and point out the remaining challenges in the synthetic process. Understanding the synthesis process of diverse glucans is necessary for tailoring high value glucan towards specific applications. This engineering strategy contributes to enable the sustainable and efficient production of glucan diversity.
Collapse
Affiliation(s)
- Jin-Jin Liu
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China
| | - Yu-Ke Hou
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China
| | - Xin Wang
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China
| | - Xing-Tao Zhou
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China
| | - Jun-Yi Yin
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China.
| | - Shao-Ping Nie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China; Food Laboratory of Zhongyuan, Luo he 462300, Henan, China.
| |
Collapse
|
9
|
Zhang Q, Xu Y, Xie L, Shu X, Zhang S, Wang Y, Wang H, Dong Q, Peng W. The function and application of edible fungal polysaccharides. ADVANCES IN APPLIED MICROBIOLOGY 2024; 127:45-142. [PMID: 38763529 DOI: 10.1016/bs.aambs.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Edible fungi, commonly known as mushrooms, are precious medicinal and edible homologous gifts from nature to us. Edible fungal polysaccharides (EFPs) are a variety of bioactive macromolecular which isolated from fruiting bodies, mycelia or fermentation broths of edible or medicinal fungus. Increasing researches have confirmed that EFPs possess multiple biological activities both in vitro and in vivo settings, including antioxidant, antiviral, anti-inflammatory, immunomodulatory, anti-tumor, hypoglycemic, hypolipidemic, and regulating intestinal flora activities. As a result, they have emerged as a prominent focus in the healthcare, pharmaceutical, and cosmetic industries. Fungal EFPs have safe, non-toxic, biodegradable, and biocompatible properties with low immunogenicity, bioadhesion ability, and antibacterial activities, presenting diverse potential applications in the food industries, cosmetic, biomedical, packaging, and new materials. Moreover, varying raw materials, extraction, purification, chemical modification methods, and culture conditions can result in variances in the structure and biological activities of EFPs. The purpose of this review is to provide comprehensively and systematically organized information on the structure, modification, biological activities, and potential applications of EFPs to support their therapeutic effects and health functions. This review provides new insights and a theoretical basis for prospective investigations and advancements in EFPs in fields such as medicine, food, and new materials.
Collapse
Affiliation(s)
- Qian Zhang
- Sichuan Institute of Edible Fungi, Chengdu, P.R. China; National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, P.R. China; Scientifc Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, P.R. China.
| | - Yingyin Xu
- Sichuan Institute of Edible Fungi, Chengdu, P.R. China; National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, P.R. China; Scientifc Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, P.R. China.
| | - Liyuan Xie
- Sichuan Institute of Edible Fungi, Chengdu, P.R. China; National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, P.R. China; Scientifc Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, P.R. China.
| | - Xueqin Shu
- Sichuan Institute of Edible Fungi, Chengdu, P.R. China; National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, P.R. China; Scientifc Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, P.R. China.
| | - Shilin Zhang
- Sichuan Institute of Edible Fungi, Chengdu, P.R. China; National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, P.R. China; Scientifc Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, P.R. China.
| | - Yong Wang
- Sichuan Institute of Edible Fungi, Chengdu, P.R. China; National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, P.R. China; Scientifc Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, P.R. China.
| | - Haixia Wang
- Horticulture Institute of Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, P.R. China.
| | - Qian Dong
- Sichuan Institute of Edible Fungi, Chengdu, P.R. China; National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, P.R. China; Scientifc Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, P.R. China.
| | - Weihong Peng
- Sichuan Institute of Edible Fungi, Chengdu, P.R. China; National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, P.R. China; Scientifc Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, P.R. China.
| |
Collapse
|
10
|
Wang Q, Zhao M, Wang Y, Xie Z, Zhao S, You S, Chen Q, Zhang W, Qin Y, Zhang G. Microbial Inoculation during the Short-Term Composting Process Enhances the Nutritional and Functional Properties of Oyster Mushrooms ( Pleurotus ostreatus). Life (Basel) 2024; 14:201. [PMID: 38398710 PMCID: PMC10890702 DOI: 10.3390/life14020201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/21/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
In recent years, short-term composting techniques have been widely applied in oyster mushroom cultivation, but there is still a lack of systematic research on their impact on the nutritional and functional properties of fruiting bodies. In this study, the microbial inoculant Streptomyces thermoviolaceus BUA-FM01 (ST) was applied in the short-term composting process for oyster mushroom cultivation. The agronomic traits, nutritional composition, flavor compounds, and antioxidant activity of fruiting bodies from the first three flushes were evaluated. The results show that microbial inoculation significantly (p < 0.05) reduced the total carbon content and C/N ratio of the composted substrates and, furthermore, increased the total yield of the fruiting bodies. Moreover, microbial inoculation significantly (p < 0.05) increased the crude protein, crude polysaccharide, total amino acid, and essential amino acid contents of the fruiting bodies. The fruiting bodies of the first flush of ST treatment possessed the highest umami amino acid content and equivalent umami concentration value. Furthermore, microbial inoculation significantly (p < 0.05) enhanced the scavenging ability of crude polysaccharides toward free radicals. The results indicate that microbial inoculation has many benefits for the composting cultivating process of oyster mushrooms and good application prospects.
Collapse
Affiliation(s)
- Qiuying Wang
- College of Horticulture, Xinjiang Agricultural University, Urumqi 830052, China; (Q.W.); (Y.W.)
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (M.Z.); (Z.X.); (S.Z.); (S.Y.); (Q.C.); (W.Z.)
| | - Minrui Zhao
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (M.Z.); (Z.X.); (S.Z.); (S.Y.); (Q.C.); (W.Z.)
| | - Yiyang Wang
- College of Horticulture, Xinjiang Agricultural University, Urumqi 830052, China; (Q.W.); (Y.W.)
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (M.Z.); (Z.X.); (S.Z.); (S.Y.); (Q.C.); (W.Z.)
| | - Zhenfei Xie
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (M.Z.); (Z.X.); (S.Z.); (S.Y.); (Q.C.); (W.Z.)
| | - Shunyin Zhao
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (M.Z.); (Z.X.); (S.Z.); (S.Y.); (Q.C.); (W.Z.)
| | - Shuning You
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (M.Z.); (Z.X.); (S.Z.); (S.Y.); (Q.C.); (W.Z.)
| | - Qingjun Chen
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (M.Z.); (Z.X.); (S.Z.); (S.Y.); (Q.C.); (W.Z.)
| | - Weiwei Zhang
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (M.Z.); (Z.X.); (S.Z.); (S.Y.); (Q.C.); (W.Z.)
| | - Yong Qin
- College of Horticulture, Xinjiang Agricultural University, Urumqi 830052, China; (Q.W.); (Y.W.)
| | - Guoqing Zhang
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (M.Z.); (Z.X.); (S.Z.); (S.Y.); (Q.C.); (W.Z.)
| |
Collapse
|
11
|
Khatua S, Acharya K. Cold Alkali-Extractable Antioxidative Polysaccharide from Russula pseudocyanoxantha (Agaricomycetes), a Novel Mushroom, Stimulates Immune Responses in RAW264.7 Cells by Regulating the TLR/NF-κB Pathway. Int J Med Mushrooms 2024; 26:27-40. [PMID: 38505901 DOI: 10.1615/intjmedmushrooms.2024052488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
In our previous study, we have established Russula pseudocyanoxantha as a unique species, playing a crucial role in indigenous diets through ages. The research also brought attention to bioactive potential of polysaccharide fraction extracted from the unexplored food using hot water. However, residue of the conventional process still contains therapeutic biopolymers that could further be utilized for pharmacological purposes instead of being discarded. Therefore, the current study aims to valorize the solid remnants, contributing to a deeper understanding of the novel taxon. Subsequently, the leftover was treated with cold alkali, leading to the preparation of a high-yield fraction (RP-CAP). Chemical characterization through FT-IR, GC-MS, HPTLC, and spectroscopy demonstrated presence of several monomers in the carbohydrate backbone, predominantly composed of β-glucan. Furthermore, GPC chromatogram indicated presence of a homogeneous polymer with molecular weight of ~ 129.28 kDa. Subsequently, potent antioxidant activity was noted in terms of radical scavenging (O2·-, OH·, DPPH· and ABTS·+), chelating ability, reducing power and total antioxidant activity where EC50 values ranged from 472-3600 μg/mL. Strong immune-boosting effect was also evident, as the biopolymers stimulated murine macrophage cell proliferation, phagocytic activity, pseudopod formation, and NO as well as ROS synthesis particularly at the concentration of 100 μg/mL. In-depth analysis through RT-PCR revealed that the fraction stimulated synthesis of several inflammatory mediators, elucidating the mode of action through TLR/ NF-κB pathway. Therefore, the findings collectively suggest that RP-CAP possesses great potential to serve as a healthimproving component in functional food and pharmaceutical sectors.
Collapse
Affiliation(s)
- Somanjana Khatua
- Molecular and Applied Mycology and Plant Pathology Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, Kolkata 700019, West Bengal, India; Department of Botany, Krishnagar Government College, Krishnagar 741101, West Bengal, India; Department of Botany, Faculty of Science, University of Allahabad, Prayagraj 211002, Uttar Pradesh, India
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata 700019, West Bengal, India
| |
Collapse
|
12
|
Yuan Z, Yang T, Xiong Q, Shi Y, Han X, Lin Y, Wambui NH, Liu Z, Wang Y, Liu H. PCAP-1a, an exopolysaccharide from Pectobacterium actinidiae, exerts the dual role of immunogenicity and virulence in plants. Carbohydr Polym 2024; 323:121390. [PMID: 37940244 DOI: 10.1016/j.carbpol.2023.121390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 11/10/2023]
Abstract
Plant defense mechanisms begin with the recognition of microbe-associated molecular patterns or pathogen-associated molecular patterns (MAMPs/PAMPs). Several carbohydrates, such as chitin, were reported to induce plant defenses, acting as elicitors. Regrettably, the structures of polysaccharide elicitors have rarely been characterized, and their recognition receptors in plants remain unknown. In the present study, PCAP-1a, an exopolysaccharide (PCAP-1a) purified from Pectobacterium actinidiae, was characterized and found to induce rapid cell death of dicotyledons, acting as a polysaccharide elicitor to induce plant immunity. A series of pattern-triggered immunity (PTI) responses were triggered, including reactive oxygen species production, phosphorylation of mitogen-activated protein kinases and gene transcriptional reprogramming. Moreover, we confirmed that CERK1 is probably one of the immune coreceptors for plants to recognize PCAP-1a. Notably, PCAP-1a also promotes the infection caused by P. actinidiae. In conclusion, our study supports the potential of PCAP-1a as a toxin that plays a dual role of virulence and immune induction in pathogen-plant interactions.
Collapse
Affiliation(s)
- Zhixiang Yuan
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, China
| | - Tingmi Yang
- Guangxi Academy of Specialty Crops/Guangxi Key Laboratory of Germplasm Innovation and Utilization of Specialty Commercial Crops in North Guangxi, Guilin 541004, Guangxi, China
| | - Qingping Xiong
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, College of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Yuqi Shi
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, China
| | - Xixi Han
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, China
| | - Yuqing Lin
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, China
| | - Njoroge Hellen Wambui
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, China
| | - Zhuang Liu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, China
| | - Yunpeng Wang
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, College of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Hongxia Liu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, China.
| |
Collapse
|
13
|
Arslan NP, Dawar P, Albayrak S, Doymus M, Azad F, Esim N, Taskin M. Fungi-derived natural antioxidants. Crit Rev Food Sci Nutr 2023; 65:1593-1616. [PMID: 38156661 DOI: 10.1080/10408398.2023.2298770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
In humans, exogenous antioxidants aid the endogenous antioxidant system to detoxify excess ROS generated during oxidative stress, thereby protecting the body against various diseases and stressful conditions. The majority of natural antioxidants available on the consumer market are plant-based; however, fungi are being recognized as alternative sources of various natural antioxidants such as polysaccharides, pigments, peptides, sterols, phenolics, alkaloids, and flavonoids. In addition, some exogenous antioxidants are exclusively found in fungi. Fungi-derived antioxidants exhibit scavenging activities against DPPH, ABTS, hydroxyl, superoxide, hydrogen peroxide, and nitric oxide radicals in vitro. Furthermore, in vivo models, application of fungal-derived antioxidants increase the level of various antioxidant enzymes, such as catalases, superoxide dismutases, and glutathione peroxidases, and reduce the level of malondialdehyde. Therefore, fungi-derived antioxidants have potential to be used in the food, cosmetic, and pharmaceutical industries. This review summarizes the antioxidant potential of different fungi (mushrooms, yeasts, and molds)-derived natural compounds such as polysaccharides, pigments, peptides, ergothioneine, ergosterol, phenolics, alkaloids, etc.
Collapse
Affiliation(s)
| | - Pranav Dawar
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Seyda Albayrak
- Department of Molecular Biology and Genetics, Science Faculty, Ataturk University, Erzurum, Turkey
| | - Meryem Doymus
- Vocational School of Health Services of Hinis, Ataturk University, Erzurum, Turkey
| | - Fakhrul Azad
- Department of Biochemistry and Cell Biology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, USA
| | - Nevzat Esim
- Department of Molecular Biology and Genetics, Science and Art Faculty, Bingol University, Bingol, Turkey
| | - Mesut Taskin
- Department of Molecular Biology and Genetics, Science Faculty, Ataturk University, Erzurum, Turkey
| |
Collapse
|
14
|
Shin SB, Lee JK, Ko MJ. Enhanced extraction of bioactive compounds from propolis (Apis mellifera L.) using subcritical water. Sci Rep 2023; 13:15038. [PMID: 37700092 PMCID: PMC10497595 DOI: 10.1038/s41598-023-42418-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/10/2023] [Indexed: 09/14/2023] Open
Abstract
The bioactive compounds and antioxidant activities of propolis extracts were investigated using subcritical water extraction (SWE). SWE was performed by varying temperature (110-200 °C) and time (10-30 min). SWE using only water as solvent successfully to extracted bioactive compounds from propolis using high-purity glass thimbles. The concentrations of galangin (16.37 ± 0.61 mg/g), and chrysin (7.66 ± 0.64 mg/g) were maximal at 200 °C for 20 min, and 170 °C for 20 min, respectively. The antioxidative properties from propolis increased with the increasing extraction temperature and extraction time on SWE. The maximum yields of the total phenolics (226.37 ± 4.37 mg/g), flavonoids (70.28 ± 1.33 mg/g), and antioxidant activities (88.73 ± 0.58%, 98.86 ± 0.69%, and 858.89 ± 11.48 mg/g) were obtained at 200 °C for 20 min. Compared with using ethanol extraction (at 25 °C for 24 h, total phenolics = 176.28 ± 0.35, flavonoids = 56.41 ± 0.65, antioxidant activities = 72.74 ± 0.41%, 95.18 ± 0.11%, 619.51 ± 8.17 mg/g), all yields of SWE extracts obtained at 200 °C for 20 min were higher. SWE is suitable for a much faster and more efficient method extracting bioactive compounds from propolis compared to traditional extraction method.
Collapse
Affiliation(s)
- Su-Bin Shin
- Department of Food Science and Biotechnology, Global K-Food Research Center, Hankyong National University, Anseong-si, 17579, South Korea
| | | | - Min-Jung Ko
- Department of Food Science and Biotechnology, Global K-Food Research Center, Hankyong National University, Anseong-si, 17579, South Korea.
| |
Collapse
|
15
|
Fornal M, Osińska-Jaroszuk M, Jaszek M, Stefaniuk D, Wiater A, Komaniecka I, Matuszewski Ł, Matuszewska A. A New Exopolysaccharide from a Wood-Decaying Fungus Spongipellis borealis for a Wide Range of Biotechnological Applications. Molecules 2023; 28:6120. [PMID: 37630373 PMCID: PMC10459776 DOI: 10.3390/molecules28166120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/02/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Fungi are a unique natural resource rich in polysaccharides, proteins, and other components. Polysaccharides are considered one of the most important bioactive components in fungi. Increasing numbers of studies have confirmed that fungal polysaccharides have various biological activities. Given these facts, the main aim of this investigation was to carry out isolation, identification, and structural characterisation of a new polysaccharide (EPS) derived from laboratory-cultured vegetative mycelium of a new Spongipellis borealis strain isolated from the environment. The examination of monosaccharides in the EPS demonstrated that the isolated biopolymer was composed mainly of glucose, galactose, and mannose monomers. The analysis of the methylation of the studied polymer indicated that it contained mainly terminal, →3)-linked, →4)-linked, and →2,4)-linked hexoses. The effect of fungal polysaccharides on S. borealis proteolytic enzymes (pepsin, trypsin, and pycnoporopepsin) and laccase activity was determined for the first time. Incubation of the enzyme preparation and EPS showed an influence of EPS on the stability of these enzymes, compared to the control values (without EPS).
Collapse
Affiliation(s)
- Michał Fornal
- Department of Biochemistry and Biotechnology, Medical University of Lublin, 20-059 Lublin, Poland;
| | - Monika Osińska-Jaroszuk
- Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Maria Curie-Sklodowska University, 20-031 Lublin, Poland; (M.O.-J.); (M.J.); (D.S.)
| | - Magdalena Jaszek
- Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Maria Curie-Sklodowska University, 20-031 Lublin, Poland; (M.O.-J.); (M.J.); (D.S.)
| | - Dawid Stefaniuk
- Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Maria Curie-Sklodowska University, 20-031 Lublin, Poland; (M.O.-J.); (M.J.); (D.S.)
| | - Adrian Wiater
- Department of Industrial and Environmental Microbiology, Institute of Biological Sciences, Maria Curie-Sklodowska University, 20-031 Lublin, Poland;
| | - Iwona Komaniecka
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Sklodowska University, 20-031 Lublin, Poland;
| | - Łukasz Matuszewski
- Pediatric Orthopedic and Rehabilitation Clinic, Medical University of Lublin, 20-059 Lublin, Poland;
| | - Anna Matuszewska
- Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Maria Curie-Sklodowska University, 20-031 Lublin, Poland; (M.O.-J.); (M.J.); (D.S.)
| |
Collapse
|
16
|
Bensam M, Rechreche H, Abdelwahab AE, Abu-Serie MM, Ali SM. The role of Algerian Ephedra alata ethanolic extract in inhibiting the growth of breast cancer cells by inducing apoptosis in a p53- dependent pathway. Saudi J Biol Sci 2023; 30:103650. [PMID: 37152301 PMCID: PMC10160583 DOI: 10.1016/j.sjbs.2023.103650] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/17/2023] [Accepted: 04/09/2023] [Indexed: 05/09/2023] Open
Abstract
Background Ephedra alata, a member of the Ephedraceae family, was used to treat different diseases and it might be shown a strong efficacy to inhibit cancer cell lines. Methods Due to the limited research available about this plant, the objective of this research was to evaluate the antioxidant, cytotoxic and apoptotic effects of Ephedra alata ethanolic extract (EAEE), against different human cancer cell lines. Results EAEE inhibited the growth of the liver (HepG2), breast (MCF-7), and colon cancer cells (Caco-2). MCF-7 cells with an IC50 of 153 µg/ml, were the most sensitive to the extract. Furthermore, exploration using flow cytometry using Annexin V-FITC/PI assay demonstrated that EAEE caused death for all human cancer cells mainly through apoptosis. Very interestingly, qRT-PCR analysis using the ΔΔCt method revealed that four genes, Bax, p21, RB1, and TP53 were up-regulated in MCF-7 cells treated either with EAEE or S-FU drug. These findings let us believe that the mechanism by which EAEE kills breast cancer cells seems to be apoptosis via a P53-dependent manner, which involved intrinsic pathways through the induction of Bax, p21, and RB1. Conclusions EAEE exhibits good biological properties in contradiction of HepG-2, MCF-7, and Caco-2 cell lines. This study appoints for the first time that EAEE increases the expression in MCF-7 cells of p53 and three more genetic traits that control cellular proliferation and apoptosis. Therefore, this plant could serve as a potential source to find new pro-apoptotic drugs for cancer treatment.
Collapse
Affiliation(s)
- Moufida Bensam
- Laboratory of molecular and cellular biology, Faculty of Nature and life science, University of Jijel, Algeria
| | - Hocine Rechreche
- Laboratory of molecular and cellular biology, Faculty of Nature and life science, University of Jijel, Algeria
| | - Abeer E. Abdelwahab
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Application, Alexandria, Egypt
| | - Marwa M. Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Application, Alexandria, Egypt
| | - Safaa M. Ali
- Nucleic acid department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Application, Alexandria, Egypt
- Corresponding author at.
| |
Collapse
|
17
|
Rosdan Bushra SM, Nurul AA. Bioactive mushroom polysaccharides: The structure, characterization and biological functions. J LIQ CHROMATOGR R T 2023. [DOI: 10.1080/10826076.2023.2182317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Affiliation(s)
| | - Asma Abdullah Nurul
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
18
|
Inci Ş, Akyüz M, Kirbag S. Antimicrobial, Antioxidant, Cytotoxicity and DNA Protective Properties of the Pink Oyster Mushroom, Pleurotus djamor (Agaricomycetes). Int J Med Mushrooms 2023; 25:55-66. [PMID: 36749057 DOI: 10.1615/intjmedmushrooms.2022046706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In this study, pink oyster mushroom Pleurotus djamor was cultivated using wheat straw (WS), quinoa stalk (QS), and their mixtures (WS-QS (1:1)) as substrate and evaluated in terms of antimicrobial, antioxidant, cytotoxicity, and DNA protective effects. Gram-positive and Gram-negative pathogen bacteria (Bacillus subtilis, Proteus vulgaris, Streptococcus mutans, Salmonella typhi, Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli), dermatophyte (Trichophyton sp.) and yeast (Candida tropicalis) were used in the study. It was found to be very active against all bacteria (except S. mutans and S. typhi), and dermatophyte when compared to the control groups (8.7-33.3 mm), but low against C. tropicalis. It was seen that the best total antioxidant assay (TAS) value was 2.05 mmol/L on WS-QS (1:1). Depend on, it was determined that the total oxidant assay (TOS) value (5.26 μmol/L) in the same compost was lower than the others, and also the scavenging effect of 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) was higher on WS at 25 mg/mL (84.20%). The methanol extract on WS at a concentration of 400 μg/mL, significantly reduced the percentage of viability in the human breast cancer (MDA-MB-231) cell line (2.2%). The methanol extracts on WS and QS medium were found to inhibit DNA damage induced by UV radiation and H2O2 at a concentration of 25 mg/mL. These results showed that pink oyster mushroom has benefits such as antimicrobial, antioxidant, cytotoxic, and DNA protective effects.
Collapse
Affiliation(s)
- Şule Inci
- Fırat University, Science Faculty, Department of Biology, TR 23119, Elazığ-Turkey
| | - Mehmet Akyüz
- Bitlis Eren University, Science & Arts Faculty, Department of Biology, TR 13000, Bitlis-Turkey
| | - Sevda Kirbag
- Fırat University, Science Faculty, Department of Biology, TR 23119, Elazığ-Turkey
| |
Collapse
|
19
|
Tuteja M, Nagpal K. Recent Advances and Prospects for Plant Gum-Based Drug Delivery Systems: A Comprehensive Review. Crit Rev Ther Drug Carrier Syst 2023; 40:83-124. [PMID: 36734914 DOI: 10.1615/critrevtherdrugcarriersyst.2022042252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This work is an effort to first introduce plant-based gums and discussing their drug delivery applications. The composition of these plant gums and their major characteristics, which make them suitable as pharmaceutical excipients are also described in detail. The various modifications methods such as physical and chemical modifications of gums and polysaccharides have been discussed along with their applications in different fields. Consequently, plant-based gums modification such as etherification and grafting is attracting much scientific attention to satisfy industrial demand. The evaluation tests to characterize gum-based drug delivery systems have been summarized. The release behavior of drug from plant-gum-based drug delivery is being discussed. Thus, this review is an attempt to critically summarize different aspect of plant-gum-based polysaccharides to be utilized in drug delivery systems having potential industrial applications.
Collapse
Affiliation(s)
- Minkal Tuteja
- Gurugram Global College of Pharmacy, Farrukhnagar, Gurugram, Haryana, 122506, India
| | - Kalpana Nagpal
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, UP-201303, India
| |
Collapse
|
20
|
Xia Y, Wang D, Li J, Chen M, Wang D, Jiang Z, Liu B. Corrigendum: Compounds purified from edible fungi fight against chronic inflammation through oxidative stress regulation. Front Pharmacol 2023; 13:1081523. [PMID: 36686659 PMCID: PMC9849929 DOI: 10.3389/fphar.2022.1081523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/28/2022] [Indexed: 01/07/2023] Open
Abstract
[This corrects the article DOI: 10.3389/fphar.2022.974794.].
Collapse
Affiliation(s)
- Yidan Xia
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Jiaqi Li
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Minqi Chen
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Duo Wang
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Ziping Jiang
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China,*Correspondence: Ziping Jiang, ; Bin Liu,
| | - Bin Liu
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China,*Correspondence: Ziping Jiang, ; Bin Liu,
| |
Collapse
|
21
|
Yang G, Su F, Hu D, Ruan C, Che P, Zhang Y, Wang J. Optimization of the Extraction Process and Antioxidant Activity of Polysaccharide Extracted from Centipeda minima. Chem Biodivers 2023; 20:e202200626. [PMID: 36448941 DOI: 10.1002/cbdv.202200626] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/09/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022]
Abstract
The purpose of this study is to optimize the extraction process and study antioxidant activity of Polysaccharide extracted from Centipeda minima. The Box-Behnken design-response surface methodology was adopted to optimize the extraction process of polysaccharides from Centipeda minima. We purified the crude polysaccharides from Centipeda minima, as well as determined the purity, monosaccharide composition, and molecular weight of the purified fraction. Fourier transform infrared spectrometer (FT-IR) and scanning electron microscopy (SEM) were used to analyze the structural features of the polysaccharides. Further, we investigated the antioxidant activities of different fractions of polysaccharides. Consequently, the results showed that the optimum extraction conditions for polysaccharides were: a liquid-solid ratio of 26 mL/g, extraction temperature of 85.5 °C, and extraction time of 2.4 h. Moreover, the yield of polysaccharides measured under these conditions was close to the predicted value. After purification, we obtained four components of Centipeda minima polysaccharides (CMP). The purity, monosaccharide composition, molecular weight, and structural characteristics of CMP were different, but with similar infrared absorption spectra. CMP exhibited a typical infrared absorption characteristic of a polysaccharide. Besides, CMP displayed good antioxidant activity, with potential to scavenge DPPH radical, hydroxyl radical, and superoxide radical. Therefore, this study provides a reference for future research on the structure and biological activity of CMP, and lays a theoretical foundation for food processing and medicinal development of CMP.
Collapse
Affiliation(s)
- Gan Yang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, P. R. China
| | - Fan Su
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, P. R. China
| | - Datong Hu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, P. R. China
| | - Chen Ruan
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, P. R. China
| | - Ping Che
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, P. R. China
| | - Yingying Zhang
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, P. R. China
| | - Jing Wang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, P. R. China
| |
Collapse
|
22
|
Süfer Ö, Çelik ZD, Bozok F. Influences of Some Aromatic Plants on Volatile Compounds and Bioactivity of Cultivated Pleurotus citrinopileatus and Pleurotus djamor. Chem Biodivers 2022; 19:e202200462. [PMID: 36322054 DOI: 10.1002/cbdv.202200462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022]
Abstract
Two edible Pleurotus species, namely, Pleurotus citrinopileatus and Pleurotus djamor grown in the media of mulberry shavings which were substituted with myrtle, bay laurel, and rosemary leaves were studied. According to volatile profiles, 13 aldehydes, 8 ketones, 7 alcohols, 5 aromatic compounds and 4 terpenes were totally identified. Rosemary leaves were very effective for decreasing the concentrations of some oxidation products in Pleurotus citrinopileatus, but the same impact was not seen in Pleurotus djamor. The high amount of benzaldehyde (41.80 %) detected in bay laurel medium might have played a role in preventing bioactivity. Control Pleurotus citrinopileatus and Pleurotus djamor had a total phenolic content of 4284.89 and 3080.04 mg GAE per kg DM, respectively, and the enrichment of composts with aromatic plant leaves caused significant differences in Pleurotus djamor (p<0.05). Myrtle addition increased total phenolic content and antioxidant activities (by DPPH and FRAP assays) of Pleurotus djamor mushroom as 342.29 mg GAE/kg DM, 0.43 μmol TE/g DM and 2.07 μmol TE/g DM, respectively, when compared to intact one.
Collapse
Affiliation(s)
- Özge Süfer
- Department of Food Engineering, Faculty of Engineering, Osmaniye Korkut Ata University, 80000, Osmaniye, Türkiye
| | - Zeynep Dilan Çelik
- Department of Food Engineering, Faculty of Agriculture, Cukurova University, 01330, Adana, Türkiye
| | - Fuat Bozok
- Department of Biology, Faculty of Arts and Science, Osmaniye Korkut Ata University, 80000, Osmaniye, Türkiye
| |
Collapse
|
23
|
Anticancer and Antioxidant Activity of Water-Soluble Polysaccharides from Ganoderma aff. australe against Human Osteosarcoma Cells. Int J Mol Sci 2022; 23:ijms232314807. [PMID: 36499132 PMCID: PMC9737215 DOI: 10.3390/ijms232314807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 12/05/2022] Open
Abstract
Wild mushrooms have gained great importance for being a source of biologically active compounds. In this work, we evaluate the anticancer and antioxidant activity of a water-soluble crude polysaccharide extract isolated from the fruiting bodies of the Ganoderma aff. australe (GACP). This mushroom was collected in San Mateo (Boyacá, Colombia) and identified based on macroscopic and microscopic characterization. GACP was characterized by UV-Vis spectroscopy, Fourier-transform infrared spectroscopy, high-performance liquid chromatography-diode array detector, and nuclear magnetic resonance. The antiradical and antioxidant activity were evaluated by different methods and its anticancer activity was verified in the osteosarcoma MG-63 human cell line. Chemical and spectroscopic analysis indicated that GACP consisted of β-D-Glcp-(1→, →3)-β-D-Glcp-(1→ and α-D-Glcp-(1→ residues. The results of the biological activity showed that GACP exhibited high antioxidant activity in the different methods and models studied. Moreover, the results showed that GACP impaired cell viability (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay) and cell proliferation (clonogenic assay) in a dose-response manner on MG-63 cells. The findings of this work promote the use of mushroom-derived compounds as anticancer and antioxidant agents for potential use in the pharmaceutical and food industries.
Collapse
|
24
|
Sevindik M, Bal C. Chemical Characterization, Antibacterial, Antifungal, Antioxidant and Oxidant Activities of Wild Mushrooms Rhizopogon luteolus and Rhizopogon roseolus. BIOL BULL+ 2022. [DOI: 10.1134/s1062359022130180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
25
|
Wang W, Tan J, Nima L, Sang Y, Cai X, Xue H. Polysaccharides from fungi: A review on their extraction, purification, structural features, and biological activities. Food Chem X 2022; 15:100414. [PMID: 36211789 PMCID: PMC9532758 DOI: 10.1016/j.fochx.2022.100414] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 07/11/2022] [Accepted: 08/04/2022] [Indexed: 11/11/2022] Open
Abstract
Fungi, as the unique natural resource, are rich in polysaccharides, proteins, fats, vitamins, and other components. Therefore, they have good medical and nutritional values. Polysaccharides are considered one of the most important bioactive components in fungi. Increasing researches have confirmed that fungal polysaccharides have various biological activities, such as antioxidant, immunomodulatory, anti-tumor, hepatoprotective, anti-aging, anti-inflammatory, and radioprotective activities. Consequently, the research progresses and future prospects of fungal polysaccharides must be systematically reviewed to promote their better understanding. This paper reviewed the extraction, purification, structure, biological activity, and underlying molecular mechanisms of fungal polysaccharides. Moreover, the structure-activity relationships of fungal polysaccharides were emphasized and discussed. This review can provide scientific basis for the research and industrial utilization of fungal polysaccharides.
Collapse
Affiliation(s)
- Wenli Wang
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Jiaqi Tan
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Lamu Nima
- College of Physical Education, Jimei University, No.185 Yinjiang Road, Jimei District, Xiamen 361021, China
| | - Yumei Sang
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Xu Cai
- Key Laboratory of Particle & Radiation Imaging, Ministry of Education, Department of Engineering Physics, Tsinghua University, No. 30 Shuangqing Road, Haidian District, Beijing 100084, China
| | - Hongkun Xue
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| |
Collapse
|
26
|
Sun Y, He H, Wang Q, Yang X, Jiang S, Wang D. A Review of Development and Utilization for Edible Fungal Polysaccharides: Extraction, Chemical Characteristics, and Bioactivities. Polymers (Basel) 2022; 14:polym14204454. [PMID: 36298031 PMCID: PMC9609814 DOI: 10.3390/polym14204454] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/18/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2022] Open
Abstract
Edible fungi, commonly known as mushrooms, are precious medicinal and edible homologous gifts from nature to us. Because of their distinctive flavor and exceptional nutritional and medicinal value, they have been a frequent visitor to people’s dining tables and have become a hot star in the healthcare, pharmaceutical, and cosmetics industries. Edible fungal polysaccharides (EFPs) are an essential nutrient for edible fungi to exert bioactivity. They have attracted much attention because of their antioxidant, immunomodulatory, antitumor, hypoglycemic, and hypolipidemic bioactivities. As a result, EFPs have demonstrated outstanding potential over the past few decades in various disciplines, including molecular biology, immunology, biotechnology, and pharmaceutical chemistry. However, the complexity of EFPs and the significant impact of mushroom variety and extraction techniques on their bioactivities prevents a complete investigation of their biological features. Therefore, the authors of this paper thoroughly reviewed the comparison of different extraction methods of EFPs and their advantages and disadvantages. In addition, the molecular weight, monosaccharide composition, and glycosidic bond type and backbone structure of EFPs are described in detail. Moreover, the in vitro and in vivo bioactivities of EFPs extracted by different methods and their potential regulatory mechanisms are summarized. These provide a valuable reference for improving the extraction process of EFPs and their production and development in the pharmaceutical field.
Collapse
Affiliation(s)
- Yujun Sun
- College of Life and Health Sciences, Anhui Science and Technology University, Fengyang 233100, China
- Correspondence:
| | - Huaqi He
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China
| | - Qian Wang
- College of Life and Health Sciences, Anhui Science and Technology University, Fengyang 233100, China
| | - Xiaoyan Yang
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China
| | - Shengjuan Jiang
- College of Life and Health Sciences, Anhui Science and Technology University, Fengyang 233100, China
| | - Daobing Wang
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China
| |
Collapse
|
27
|
Chen Y, Lin Q, Wang J, Mu J, Liang Y. Proteins, polysaccharides and their derivatives as macromolecular antioxidant supplements: A review of in vitro screening methods and strategies. Int J Biol Macromol 2022; 224:958-971. [DOI: 10.1016/j.ijbiomac.2022.10.181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/16/2022] [Accepted: 10/20/2022] [Indexed: 11/05/2022]
|
28
|
Lentinula edodes, a Novel Source of Polysaccharides with Antioxidant Power. Antioxidants (Basel) 2022; 11:antiox11091770. [PMID: 36139844 PMCID: PMC9495869 DOI: 10.3390/antiox11091770] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
The fruiting bodies of edible mushrooms represent an important source of biologically active polysaccharides. In this study, Lentinula edodes crude polysaccharides (LECP) were extracted in hot water, and their antioxidant and antiradical activities were investigated. The antioxidant activity of LECP was investigated against reactive species such as 1,1’-diphenyl-2-picrylhydrazyl, 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid, hydroxyl and superoxide anion radicals, reducing power with EC50 values of 0.51, 0.52, 2.19, 3.59 and 1.73 mg/mL, respectively. Likewise, LECP inhibited the lipid peroxidation induced in methyl linoleate through the formation of conjugated diene hydroperoxide and malondialdehyde. The main sugar composition of LECP includes mannose, galactose, glucose, fucose and glucuronic acid. Characterization by Fourier transform infrared spectroscopy and nuclear magnetic resonance determined that LECP was made up of α and β glycosidic bonds with a backbone of α-D-Glc, →6)-β-D-Glcp-(1→, →6)-α-D-Galp-(1→ and β-D-Manp-(1→ residues. The results showed that LECP can scavenge all reactive species tested in a concentration-dependent manner and with a protective effect in the initial and final stages of lipid peroxidation. The natural antioxidant activity of the LECP that was investigated strengthens the high medicinal and nutritional value of this mushroom.
Collapse
|
29
|
Kang JY, Lee B, Kim CH, Choi JH, Kim MS. Enhancing the prebiotic and antioxidant effects of exopolysaccharides derived from Cordyceps militaris by enzyme-digestion. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Wang XY, Wang M, Yin JY, Song YH, Wang YX, Nie SP, Xie MY. Gastroprotective activity of polysaccharide from the fruiting body of Hericium erinaceus against acetic acid-induced gastric ulcer in rats and structure of one bioactive fraction. Int J Biol Macromol 2022; 210:455-464. [PMID: 35483513 DOI: 10.1016/j.ijbiomac.2022.04.153] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 04/16/2022] [Accepted: 04/20/2022] [Indexed: 01/08/2023]
Abstract
This study aimed at investigating gastroprotective activity of Hericium erinaceus polysaccharide (HEP) and characterizing one of its bioactive fractions. Acetic acid-induced gastric ulcer (GU) rat model was used to evaluate the gastroprotective activity of HEP, while H2O2-induced injury GES-1 cell model was conducted to screen the bioactive fractions from HEP. Moreover, one of the bioactive fractions was characterized using methylation and 1D/2D NMR analysis. Results indicated HEP treatment could ameliorate acetic acid-induced GU in rats. HEP supplement decreased levels of interleukin-6, tumor necrosis factor-α and malondialdehyde and myeloperoxidase activity, and increased releases of nitric oxide, prostaglandin E2, epidermal growth factor, vascular endothelial growth factor and basic fibroblast growth factor and superoxide dismutase activity in gastric tissues of ulcerated rats. Five purified polysaccharides from HEP were screened to be bioactive fractions with cytoprotection on H2O2-induced injury in GES-1 cells. Among them, RP-S was characterized to be a (1 → 6)-β-D-glucan, whose backbone was composed of →6)-β-D-Glcp-(1 → residue and branched with T-β-D-Glcp-(1 → residue at O-3 position. In conclusion, HEP possessed gastroprotection against acetic acid-induced GU in rats and one of its bioactive fractions was a β-D-glucan. This study supports the utilization of HEP in anti-GU and provides evidences for the structure of gastroprotective HEP.
Collapse
Affiliation(s)
- Xiao-Yin Wang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China; School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China.
| | - Miao Wang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China.
| | - Jun-Yi Yin
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China.
| | - Ye-Hao Song
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China.
| | - Yu-Xiao Wang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China.
| | - Shao-Ping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China.
| | - Ming-Yong Xie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China.
| |
Collapse
|
31
|
Zhang Z, Shah AM, Mohamed H, Zhang Y, Sadaqat B, Tsiklauri N, Sadunishvili T, Song Y. Improved laccase production in Pleurotus djamor RP by atmospheric and room temperature plasma (ARTP) mutagenesis. ELECTRON J BIOTECHN 2022. [DOI: 10.1016/j.ejbt.2022.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
32
|
Zhang H, Jiang F, Zhang J, Wang W, Li L, Yan J. Modulatory effects of polysaccharides from plants, marine algae and edible mushrooms on gut microbiota and related health benefits: A review. Int J Biol Macromol 2022; 204:169-192. [PMID: 35122806 DOI: 10.1016/j.ijbiomac.2022.01.166] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 01/21/2022] [Accepted: 01/28/2022] [Indexed: 02/07/2023]
Abstract
Naturally occurring carbohydrate polymers containing non-starch polysaccharides (NPs) are a class of biomacromolecules isolated from plants, marine algae, and edible mushrooms, and their biological activities has shown potential uses in the prevention and treatment of human diseases. Importantly, NPs serve as prebiotics to provide health benefits to the host through stimulating the proliferation of beneficial gut microbiota (GM) and enhancing the production of short-chain fatty acids (SCFAs). The composition and diversity of GM play a critical role in regulating host health and have been extensively studied in recent years. In this review, the extraction, isolation, purification, and structural characterization of NPs derived from plants, marine algae, and edible mushrooms are outlined. Importantly, the degradation and metabolism of these NPs in the intestinal tract, the effects of NPs on the microbial community and SCFAs generation, and the beneficial effects of NPs on host health by modulating GM are systematically highlighted. Overall, we hope that this review can provide some theoretical references and a new perspective for applications of NPs as prebiotics in functional food and drug development.
Collapse
Affiliation(s)
- Henan Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, China.
| | - Fuchun Jiang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, China
| | - Jinsong Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, China
| | - Wenhan Wang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, China
| | - Lin Li
- Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry, School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China.
| | - Jingkun Yan
- Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry, School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China.
| |
Collapse
|
33
|
Tian R, Liang ZQ, Wang Y, Zeng NK. Analysis of aromatic components of two edible mushrooms, Phlebopus portentosus and Cantharellus yunnanensis using HS-SPME/GC-MS. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
34
|
Yadav D, Negi PS. Bioactive components of mushrooms: Processing effects and health benefits. Food Res Int 2021; 148:110599. [PMID: 34507744 DOI: 10.1016/j.foodres.2021.110599] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/04/2021] [Accepted: 07/07/2021] [Indexed: 02/07/2023]
Abstract
Mushrooms have been recognized for their culinary attributes for long and were relished in the most influential civilizations in history. Currently, they are the focus of renewed research because of their therapeutic abilities. Nutritional benefits from mushrooms are in the form of a significant source of essential proteins, dietary non-digestible carbohydrates, unsaturated fats, minerals, as well as various vitamins, which have enhanced its consumption, and also resulted in the development of various processed mushroom products. Mushrooms are also a crucial ingredient in traditional medicine for their healing potential and curative properties. The literature on the nutritional, nutraceutical, and therapeutic potential of mushrooms, and their use as functional foods for the maintenance of health was reviewed, and the available literature indicates the enormous potential of the bioactive compounds present in mushrooms. Future research should be focused on the development of processes to retain the mushroom bioactive components, and valorization of waste generated during processing. Further, the mechanisms of action of mushroom bioactive components should be studied in detail to delineate their diverse roles and functions in the prevention and treatment of several diseases.
Collapse
Affiliation(s)
- Divya Yadav
- Department of Fruit and Vegetables Technology, CSIR-Central Food Technological Research Institute, Mysuru 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Pradeep Singh Negi
- Department of Fruit and Vegetables Technology, CSIR-Central Food Technological Research Institute, Mysuru 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India.
| |
Collapse
|
35
|
Zięba P, Sękara A, Bernaś E, Krakowska A, Sułkowska-Ziaja K, Kunicki E, Suchanek M, Muszyńska B. Supplementation with Magnesium Salts-A Strategy to Increase Nutraceutical Value of Pleurotus djamor Fruiting Bodies. Molecules 2021; 26:molecules26113273. [PMID: 34071646 PMCID: PMC8198667 DOI: 10.3390/molecules26113273] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/21/2021] [Accepted: 05/26/2021] [Indexed: 12/05/2022] Open
Abstract
The use of substrates supplemented with minerals is a promising strategy for increasing the nutraceutical value of Pleurotus spp. The current research was performed to analyze the effect of substrate supplementation with magnesium (Mg) salts on the Mg content, biomass, and chemical composition of pink oyster mushroom (Pleurotus djamor) fruiting bodies. Before inoculation, substrate was supplemented with MgCl2 × 6 H2O and MgSO4, both salts were applied at three concentrations: 210, 420, and 4200 mg of Mg per 2 kg of substrate. The harvest period included three flushes. Substrate supplementation with 4200 mg of Mg caused the most significant decrease in mushroom productivity, of about 28% for both Mg salts. The dry matter content in fruiting bodies was significantly lower in the treatment in which 210 mg of Mg was applied as MgSO4 in comparison to the control. Supplementation effectively increased the Mg content in fruiting bodies of P. djamor by 19–85% depending on the treatment, and significantly affected the level of remaining bioelements and anions. One hundred grams of pink oyster fruiting bodies, supplemented with Mg salts, provides more than 20% of the Mg dietary value recommended by the Food and Drug Administration (FDA); thus, supplementation can be an effective technique for producing mushrooms that are rich in dietary Mg. Although P. djamor grown in supplemented substrate showed lower productivity, this was evident only in the fresh weight because the differences in dry weight were negligible. Mg supplementation increased the antioxidant activity of the fruiting bodies, phenolic compounds, and some amino acids, including L-tryptophan, and vitamins (thiamine and l-ascorbic acid).
Collapse
Affiliation(s)
- Piotr Zięba
- Department of Horticulture, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, 29 Listopada 54, 31-425 Kraków, Poland; (P.Z.); (E.K.)
| | - Agnieszka Sękara
- Department of Horticulture, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, 29 Listopada 54, 31-425 Kraków, Poland; (P.Z.); (E.K.)
- Correspondence:
| | - Emilia Bernaś
- Department of Plant Product Technology and Nutrition Hygiene, Faculty of Food Technology, University of Agriculture in Krakow, 122 Balicka Street, 30-149 Kraków, Poland;
| | - Agata Krakowska
- Department of Inorganic and Analytical Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland;
| | - Katarzyna Sułkowska-Ziaja
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland; (K.S.-Z.); (B.M.)
| | - Edward Kunicki
- Department of Horticulture, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, 29 Listopada 54, 31-425 Kraków, Poland; (P.Z.); (E.K.)
| | - Małgorzata Suchanek
- Department of Analytical Chemistry and Biochemistry, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland;
| | - Bożena Muszyńska
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland; (K.S.-Z.); (B.M.)
| |
Collapse
|