1
|
Wang Y, Cao K, Zhang X, Li C, Wang X, Liu X, Ren J, Chen L. Physicochemical and microstructural characteristics of canola meal fermented by autonomously screened Bacillus licheniformis DY145 and its immunomodulatory effects on gut microbiota. Food Chem 2025; 484:144291. [PMID: 40318252 DOI: 10.1016/j.foodchem.2025.144291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 03/31/2025] [Accepted: 04/08/2025] [Indexed: 05/07/2025]
Abstract
Canola meal (CM), a variety of double-low rapeseed meal (RSM), is a valuable protein source due to its reduced glucosinolate (<20 μmol/L) and erucic acid (<2 %) content. In this study, bioactive small peptides were derived from CM through fermentation with an autonomously screened Bacillus licheniformis DY145 strain. Strain mutagenesis and fermentation condition optimization further enhanced peptide activity. The physicochemical and microstructural changes in fermented canola meal (FCM) were analyzed, and the immunomodulatory effects of active peptides on lipopolysaccharide (LPS)-induced inflammatory mice were investigated. Fermentation significantly increased the soluble peptide concentration and DPPH radical scavenging capacity of CM (P < 0.05), while reducing protein molecular weight and glucosinolate content (P < 0.05). Scanning electron microscopy revealed a loose structure in CM after fermentation, and canola peptides (CPs) from fermented CM exhibited higher zeta potential, a reduced α-helix ratio, and lower fluorescence intensity compared to those from unfermented CM. Structural characterization of CPs was performed using LC-MS/MS, followed by bioactivity analysis. CPs significantly downregulated serum levels of TNF-α, IL-6, and IL-1β in LPS-induced mice (P < 0.05), while upregulating IgA and IgG levels (P < 0.05). Moreover, CP supplementation restored the gut microbial composition, normalizing dominant flora and increasing Lactobacillus abundance (P < 0.05). This study demonstrates the potential of CPs as functional food ingredients to mitigate gut inflammation and enhance the high-value utilization of CM. Additionally, it introduces a novel strain and fermentation method for bioactive peptide production, providing a theoretical foundation for the development of gut health-promoting functional foods. Furthermore, the preliminary structure-activity relationship analysis of CPs lays the groundwork for designing peptides with gut microbiota-modulating properties.
Collapse
Affiliation(s)
- Yan Wang
- Qiqihar University, College of Food and Biological Engineering, Qiqihar 161006, China; Engineering Research Center of Plant Food Processing Technology, Ministry of Education, Qiqihar 161006, China.
| | - Kaining Cao
- Qiqihar University, College of Food and Biological Engineering, Qiqihar 161006, China
| | - Xuanyi Zhang
- Qiqihar University, College of Food and Biological Engineering, Qiqihar 161006, China
| | - Chong Li
- Qiqihar University, College of Food and Biological Engineering, Qiqihar 161006, China
| | - Xiuna Wang
- Jilin University, Agricultural Experiment Base, 130015, China
| | - Xiaolan Liu
- Qiqihar University, College of Food and Biological Engineering, Qiqihar 161006, China; Engineering Research Center of Plant Food Processing Technology, Ministry of Education, Qiqihar 161006, China.
| | - Jian Ren
- Qiqihar University, College of Food and Biological Engineering, Qiqihar 161006, China; Engineering Research Center of Plant Food Processing Technology, Ministry of Education, Qiqihar 161006, China
| | - Lingyun Chen
- University of Alberta, Agricultural, Life and Environmental Sciences, Edmonton T6G 2R3, Canada
| |
Collapse
|
2
|
Tao Y, Shen L, Luo W, Wang P. Structural characterization and chondroprotective activity evaluation of four novel polysaccharides purified from Anoectochilus zhejiangensis on transgenic fluorescent zebrafish. Carbohydr Polym 2025; 354:123319. [PMID: 39978921 DOI: 10.1016/j.carbpol.2025.123319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/15/2025] [Accepted: 01/24/2025] [Indexed: 02/22/2025]
Abstract
Anoectochilus zhejiangensis (AZJ) exhibits notable anti-inflammatory and anti-swelling properties, making it a potential therapeutic agent for osteoarthritis. However, the specific component responsible for its anti-osteoarthritis effects remains unidentified. In this study, four novel polysaccharides were purified from Anoectochilus zhejiangensis (i.e., AZJP-1a, AZJP-2a, AZJP-2b, and AZJP-2c) through DEAE-cellulose 52 and Sephadex G-200 column chromatographic separation. Their structural and conformational characteristics were comprehensively analyzed. AZJP-1a and AZJP-2a owned high molecular weights of 387 kDa and 947 kDa, while AZJP-2b and AZJP-2c were comparatively lower at 3.989 kDa and 3.045 kDa. The polysaccharides contained predominantly β-glycosidic linkages over α-glycosidic linkages. AZJP-1a primarily consists of mannose, while AZJP-2a and AZJP-2b are rich in glucose, galactose, and arabinose, and AZJP-2c is mainly composed of glucose. Chondroprotective effects of these polysaccharides were evaluated using fluorescence imaging in transgenic fluorescent zebrafish (Tg Col2a1a: eGFP), with all four polysaccharides demonstrating significant cartilage repair activity, surpassing that of the positive control drug alendronate. Among them, AZJP-2c exhibited the most potent effect. The observed variations in their biological activities are likely attributed to differences in their structural compositions.
Collapse
Affiliation(s)
- Yi Tao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, PR China; Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products, China.
| | - Lisha Shen
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, PR China; Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products, China.
| | - Wei Luo
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, PR China; Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products, China.
| | - Ping Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, PR China; Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products, China.
| |
Collapse
|
3
|
He X, Wang H, Zhang M, Hou Y, Sheng J, Wu Y, Huang B, Zheng C. Identification and Functional Characterization of Two UDP-Glycosyltransferases Involved in Narcissoside Biosynthesis in Anoectochilus roxburghii. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:7888-7905. [PMID: 40105789 DOI: 10.1021/acs.jafc.4c12187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Flavonoid rutinosides, a group of bioactive compounds in Anoectochilus roxburghii, contribute greatly to the plant's beneficial effects on human health. However, the glycosylation mechanism of flavonoid rutinosides in A. roxburghii remains unclear. In this study, two efficient and selective glycosyltransferases, AUTG25 and AUTG23, involved in the biosynthesis of narcissoside, a major flavonoid rutinoside in A. roxburghii, were identified through transcriptome analysis and functional validation. AUTG25 could regioselectively catalyze 3-O-glucosylation of isorhamnetin to produce isorhamnetin 3-O-glucoside, while AUTG23 could further catalyze 6"-O-rhamnosylation to generate narcissoside. Both AUTG25 and AUTG23 exhibited high positional and sugar donor selectivities in the catalytic reaction. Homology modeling and site-directed mutagenesis showed that H20, E83, E385, and F143 in AUTG25 and E280, E89, D188, W327, D369, and Y191 in AUTG23 may be critical for their catalytic functions. Transient expression in Nicotiana benthamiana finally confirmed that AUTG25 possesses flavonol-3-O-glucosyltransferase activity and AUTG23 has flavonol-3-O-glucoside (1→6) rhamnosyltransferase activity. This study clarified and provided candidate UDP-dependent glycosyltransferase genes for narcissoside biosynthesis in A. roxburghii.
Collapse
Affiliation(s)
- Xuhui He
- Department of Chinese Medicine Authentication, Faculty of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai 200433, China
- Department of Pharmacognosy, Faculty of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Hongrui Wang
- Department of Chinese Medicine Authentication, Faculty of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Mingyue Zhang
- Department of Chinese Medicine Authentication, Faculty of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Yuxin Hou
- Department of Chinese Medicine Authentication, Faculty of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Jiaqi Sheng
- Department of Chinese Medicine Authentication, Faculty of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Yanbin Wu
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou 350122, China
| | - Baokang Huang
- Department of Pharmacognosy, Faculty of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Chengjian Zheng
- Department of Chinese Medicine Authentication, Faculty of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai 200433, China
- State Key Laboratory of Dao-di Herbs, Beijng 100700, China
| |
Collapse
|
4
|
Salehi M, Rashidinejad A. Multifaceted roles of plant-derived bioactive polysaccharides: A review of their biological functions, delivery, bioavailability, and applications within the food and pharmaceutical sectors. Int J Biol Macromol 2025; 290:138855. [PMID: 39701227 DOI: 10.1016/j.ijbiomac.2024.138855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 11/25/2024] [Accepted: 12/15/2024] [Indexed: 12/21/2024]
Abstract
Plant-derived bioactive polysaccharides (PDBPs), versatile polymers originating from various botanical sources, exhibit a spectrum of biological functionalities crucial for human health. This review delves into the multifaceted roles of these bioactive compounds, elucidating their immune-boosting properties, antioxidant prowess, anti-inflammatory capabilities, and contributions to gut health. Amidst their pivotal roles, the efficiency of PDBPs delivery and bioavailability in the human system stands as a central determinant of their efficacy and utilization. This review paper extensively and systematically examines the diverse biological activities, such as immunomodulatory effects, delivery mechanisms like microencapsulation, and promising applications of PDBPs within the realms of both food (functional foods and nutraceuticals) and pharmaceutical (antimicrobial agents and anti-inflammatory drugs) sectors. Additionally, it offers a comprehensive overview of the classification, sources, and structural diversity of these polysaccharides, highlighting various identification techniques and rheological considerations. Moreover, the review addresses critical safety and regulatory concerns alongside global legislation about plant bioactive polysaccharides, envisaging a broader landscape for their utilization. Through this synthesis, we aim to underscore the holistic significance of PDBPs and their potential to revolutionize nutritional and therapeutic paradigms.
Collapse
Affiliation(s)
- Mohammad Salehi
- Department of Food Sciences, Khazar Institute of Higher Education, Mahmoud Abad, Iran
| | - Ali Rashidinejad
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand.
| |
Collapse
|
5
|
Zou X, Zhang K, Li X, Zhang Y, Chen L, Li H. Current advances on the phytochemistry, pharmacology, quality control and applications of Anoectochilus roxburghii. Front Pharmacol 2025; 15:1527341. [PMID: 39830330 PMCID: PMC11739135 DOI: 10.3389/fphar.2024.1527341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 12/09/2024] [Indexed: 01/22/2025] Open
Abstract
Anoectochilus roxburghii (Wall.) Lindl. (AR) is a perennial herb that has long been used as medicinal and edible plant. In Traditional Chinese Medicine (TCM), AR is utilized to treat various diseases including hyperuricemia, type 2 diabetes mellitus, cancers and inflammatory diseases. Recent advances in the discovery and isolation of bio-active compounds have unveils the main medicinal ingredients, such as quercetin, kinsenoside and rhamnazin. Pharmacological studies further demonstrated its activities, containing anti-inflammation, anti-oxidation, and antihyperlipidemia effects. The processed AR products have various commercial applications in functional foods and cosmetics. AR has been used to prepare soup, drinkbeverage, jelly, face masks, soap, etc. However, despite the abundant medicinal value, it hasn't been included in the 2020 Chinese Pharmacopoeia up to now. There is also no consistent evaluation standard across provinces. This seriously affects the safety and the efficacy of TCM prescriptions, not to mention the development question. This review summarizes recent research on AR in phytochemistry, pharmacology, quality control and applications, raises the corresponding solutions to provide references and potential directions for further studies.
Collapse
Affiliation(s)
- Xiaoxue Zou
- Fujian Key Laboratory of Chinese Materia Medica, College of Pharmacy, Institute of Structural Pharmacology and TCM Chemical Biology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Kexin Zhang
- Fujian Key Laboratory of Chinese Materia Medica, College of Pharmacy, Institute of Structural Pharmacology and TCM Chemical Biology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xuezhen Li
- Fujian Key Laboratory of Chinese Materia Medica, College of Pharmacy, Institute of Structural Pharmacology and TCM Chemical Biology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yuqin Zhang
- Fujian Key Laboratory of Chinese Materia Medica, College of Pharmacy, Institute of Structural Pharmacology and TCM Chemical Biology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Lixia Chen
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Wuya College of Innovation, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Hua Li
- Fujian Key Laboratory of Chinese Materia Medica, College of Pharmacy, Institute of Structural Pharmacology and TCM Chemical Biology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Wuya College of Innovation, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| |
Collapse
|
6
|
Bo S, Dan M, Li W, Chen C. The regulatory mechanism of natural polysaccharides in type 2 diabetes mellitus treatment. Drug Discov Today 2024; 29:104182. [PMID: 39284523 DOI: 10.1016/j.drudis.2024.104182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/25/2024] [Accepted: 09/11/2024] [Indexed: 09/27/2024]
Abstract
Diabetes is a complex, multifactorial disease that is caused by a pathological combination of insulin resistance and pancreatic islet dysfunction. Polysaccharides are extensively dispersed in nature and have a very complicated structure with various biological properties. Natural polysaccharides have potentially extraordinary beneficial health effects on managing metabolic diseases such as diabetes, obesity and cardiovascular disease. Thus, a systematic review of the latest research into and possible regulatory mechanisms of natural polysaccharides for type 2 diabetes mellitus treatment is of great significance for a better understanding of their pharmaceutical value. We discuss the regulatory mechanisms of natural polysaccharides for the treatment of diabetes, and especially their role in reshaping dysfunctional gut microbiota. Natural polysaccharides could be developed as new and safe antidiabetic drugs, and detailed mechanistic studies could further clarify the molecular targets of polysaccharides in the treatment of diabetes.
Collapse
Affiliation(s)
- Surina Bo
- College of Pharmacy, Inner Mongolia Medical University, Inner Mongolia Jinshan Development Zone, Hohhot, Inner Mongolian Province 010110, China; School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Mu Dan
- College of Pharmacy, Inner Mongolia Medical University, Inner Mongolia Jinshan Development Zone, Hohhot, Inner Mongolian Province 010110, China
| | - Wei Li
- Jilin Agricultural University, Changchun, Jilin Province 130118, China
| | - Chen Chen
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
7
|
Wu Y, He X, Chen H, Lin Y, Zheng C, Zheng B. Extraction and characterization of hepatoprotective polysaccharides from Anoectochilus roxburghii against CCl 4-induced liver injury via regulating lipid metabolism and the gut microbiota. Int J Biol Macromol 2024; 277:134305. [PMID: 39094884 DOI: 10.1016/j.ijbiomac.2024.134305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/11/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024]
Abstract
Anoectochilus roxburghii polysaccharides exhibit notable hepatoprotective effects, but the underlying substance basis and mechanisms remain unknown. In this study, four new polysaccharides named ARP-1a, ARP-1b, ARP-2a and ARP-2b, were isolated from A. roxburghii. Their structural characteristics were systematically analyzed using HPGPC, HPLC, GC-MS, IR and NMR analysis. ARP-1a, the leading polysaccharide isolated from A. roxburghii, was further evaluated for its hepatoprotective effects on acute liver injury mice induced by CCl4. ARP-1a significantly reduced the serum ALT, AST, TNF-α, IL-1β and IL-6 levels, liver MDA content, and increased the SOD and CAT activities and GSH level in liver. H&E staining revealed that ARP-1a pretreatment could markedly relieve liver injury. Further mechanism exploration indicated that ARP-1a could relieve CCl4-induced oxidative damage through activating the Nrf2 signaling. In addition, metabolomics, lipidomics and 16S rRNA amplicon sequencing were used to elucidate the underlying mechanisms of ARP-1a. Multi-omics analysis indicated that ARP-1a exerted hepatoprotective effect against CCl4-induced acute liver injury by regulating lipid metabolism and modulating the gut microbiota. In conclusion, the above results suggest that ARP-1a can be considered a promising and safe candidate for hepatoprotective drug, as well as a potential prebiotic for maintaining intestinal homeostasis and promoting human intestinal health.
Collapse
Affiliation(s)
- Yanbin Wu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Xuhui He
- Department of Chinese Medicine Authentication, School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Huiling Chen
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Yan Lin
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Chengjian Zheng
- Department of Chinese Medicine Authentication, School of Pharmacy, Naval Medical University, Shanghai 200433, China.
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
8
|
Yan Y, Ye X, Huang C, Wu J, Liu Y, Zheng P, Shen C, Bai Z, Tingming S. Anoectochilus roxburghii polysaccharide reduces D-GalN/LPS-induced acute liver injury by regulating the activation of multiple inflammasomes. J Pharm Pharmacol 2024; 76:1212-1224. [PMID: 38985664 DOI: 10.1093/jpp/rgae077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 06/02/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND Acute liver injury (ALI) is a serious syndrome with a high mortality rate due to viral infection, toxic exposure, and autoimmunity, and its severity can range from mildly elevated liver enzymes to severe liver failure. Activation of the nod-like receptor pyrin domain-containing 3 (NLRP3) inflammasome is closely associated with the development of ALI, and the search for an inhibitor targeting this pathway may be a novel therapeutic option. Anoectochilus roxburghii polysaccharide (ARP) is a biologically active ingredient extracted from Anoectochilus roxburghii with immunomodulatory, antioxidant, and anti-inflammatory bioactivities and pharmacological effects. In this study, we focused on D-galactosamine (D-GalN)/lipopolysaccharide (LPS)-induced acute liver injury by ARP through inhibition of NLRP3 inflammasome. METHODS An inflammasome activation model was established in bone marrow-derived macrophages (BMDMs) to investigate the effects of ARP on caspase-1 cleavage, IL-1β secretion, and ASC oligomerization in inflammasomes under different agonists. We used the D-GalN/LPS-induced acute liver injury model in mice, intraperitoneally injected ARP or MCC950, and collected liver tissues, serum, and intraperitoneal lavage fluid for pathological and biochemical indexes. RESULTS ARP effectively inhibited the activation of the NLRP3 inflammasome and had an inhibitory effect on non-classical NLRP3, AIM2, and NLRC4 inflammasomes. It also effectively inhibited the oligomerization of apoptosis-associated speck-like protein (ASC) from a variety of inflammatory vesicles. Meanwhile, ARP has good therapeutic effects on acute liver injury induced by D-GaIN/LPS. CONCLUSION The inhibitory effect of ARP on a wide range of inflammasomes, as well as its excellent protection against acute liver injury, suggests that ARP may be a candidate for acute liver injury.
Collapse
Affiliation(s)
- Yulu Yan
- Ningde Hospital of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fujian, 352100, China
| | - Xiqi Ye
- Ningde Hospital of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fujian, 352100, China
| | - Chunqing Huang
- Ningde Hospital of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fujian, 352100, China
| | - Junjun Wu
- Ningde Hospital of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fujian, 352100, China
| | - Yunbiao Liu
- Pingnan County Hospital of Traditional Chinese Medicine, Ningde City, Fujian Province, 352300, China
| | - Pingping Zheng
- Shouning County Hospital of Traditional Chinese Medicine, Ningde City, Fujian Province, 355500, China
| | - Congqi Shen
- Shanxi University of Traditional Chinese Medicine, 030619,China
| | - Zhaofang Bai
- China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Shen Tingming
- Ningde Hospital of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fujian, 352100, China
| |
Collapse
|
9
|
Jia Y, Liu Y, Wu Y, Feng C, Zhang H, Ren F, Liu H. The regulation of glucose and lipid metabolism through the interaction of dietary polyphenols and polysaccharides via the gut microbiota pathway. Food Funct 2024; 15:8200-8216. [PMID: 39039938 DOI: 10.1039/d4fo00585f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
The interaction of polyphenols-polysaccharides-gut microbiota to promote health benefits has become a hotspot and direction for precise dietary intervention strategies and foundational research in biomedicine. Both dietary polyphenols and polysaccharides possess biological activities that regulate body health. Single components, due to their inherent structure and physicochemical properties, have a low bioavailability, thus are unable to exert their optimal effects. The compound structure formed by the interaction of polyphenols and polysaccharides can enhance their functional properties, thereby more effectively promoting health benefits and preventing diseases. This review primarily focuses on the roles played by polyphenols and polysaccharides in regulating glucose and lipid metabolism, the improvement of glucose and lipid metabolism through the gut microbial pathway by polyphenols and polysaccharides, and the mechanisms by which polyphenols and polysaccharides interact to regulate glucose and lipid metabolism. A considerable amount of preliminary research has confirmed the regulatory effects of plant polyphenols and polysaccharides on glucose and lipid metabolism. However, studies on the combined effects and mechanisms of these two components are still very limited. This review aims to provide a reference for subsequent research on their interactions and changes in functional properties.
Collapse
Affiliation(s)
- Yuanqiang Jia
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Yanan Liu
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Yingying Wu
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Chaohui Feng
- School of Regional Innovation and Social Design Engineering, Faculty of Engineering, Kitami Institute of Technology, 165 Koen-cho, Kitami 090-8507, Hokkaido, Japan
| | - Huijuan Zhang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Feiyue Ren
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Hongzhi Liu
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| |
Collapse
|
10
|
Wang M, Li Y, Yang S, Wei P. The Primary Mechanisms of Drug-Food Homologous Traditional Chinese Medicine Polysaccharides in the Prevention and Treatment of Diabetes. J Med Food 2024; 27:693-703. [PMID: 38775161 DOI: 10.1089/jmf.2023.k.0093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2024] Open
Abstract
Diabetes mellitus is a metabolic disease associated with hyperglycemia caused by insufficient insulin secretion or insulin resistance. Early symptoms are related to an abnormal increase in water intake, food intake, and urination. In Chinese medicine, diabetes mellitus is categorized as a "thirst-quenching" condition. Currently, the clinical treatment of diabetes mellitus relies mainly on Western medications, which often target the symptoms rather than alter the cause of the disease, and can cause certain side effects and drug resistance. In comparison, the polysaccharides of Chinese medicines from the same source of food and medicine have become an emerging choice for the prevention and treatment of diabetes due to their wide sources, high safety, and low side effects. To reveal the mechanisms of the polysaccharides of traditional Chinese medicine (TCM) in the prevention and treatment of diabetes mellitus, the CiteSpace visualization software was used to conduct extensive literature searches through Chinese and international databases, such as PubMed, Medline, and China National Knowledge Infrastructure. Through literature volume analysis, keyword co-occurrence, cluster analysis, and trend highlighting, we found that the main mechanisms of TCM polysaccharides in the prevention and treatment of diabetes include regulating intestinal flora, improving insulin resistance, alleviating oxidative stress, adjusting lipid metabolism imbalance, and inhibiting inflammatory responses. Furthermore, this study systematically summarizes the mechanism of "using sugar to reduce sugar" to provide innovative ideas for the development of health products for the treatment of diabetes using the polysaccharides of Chinese medicinal herbs.
Collapse
Affiliation(s)
- Mengjie Wang
- Sichuan Academy of Chinese Medicine Sciences, Chengdu, China
- School of Food and Bioengineering, Chengdu University, Chengdu, China
| | - Yudong Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Siye Yang
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Chengdu, China
- Sichuan Institute for Translational Chinese Medicine, Chengdu, China
| | - Ping Wei
- Sichuan Academy of Chinese Medicine Sciences, Chengdu, China
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Chengdu, China
- Sichuan Institute for Translational Chinese Medicine, Chengdu, China
| |
Collapse
|
11
|
Xie A, Wan H, Feng L, Yang B, Wan Y. Protective Effect of Anoectochilus formosanus Polysaccharide against Cyclophosphamide-Induced Immunosuppression in BALB/c Mice. Foods 2023; 12:foods12091910. [PMID: 37174447 PMCID: PMC10178248 DOI: 10.3390/foods12091910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
In this study, Anoectochilus formosanus polysaccharide (AFP) was acquired a via water extraction and alcohol precipitation method. The immunoregulatory activity of AFP was first evaluated on cyclophosphamide (Cy)-treated mice. Galacturonic acid, glucose and galactose were confirmed to be the main components of AFP. AFP demonstrated the ability to stimulate the production of TNF-α and IL-6 in RAW 264.7 macrophages. Not surprisingly, the activation of the NF-κB signaling pathway by AFP was validated via Western blot analysis. Furthermore, AFP could alleviate Cy-induced immunosuppression, and significantly enhance the immunity of mice via increasing the thymus index and body weight, stimulating the production of cytokines (IgA, IgG, SIgA, IL-2, IL-6 and IFN-γ). The improvement in the intestinal morphology of immunosuppressed mice showed that AFP could alleviate Cy-induced immune toxicity. These results have raised the possibility that AFP may act as a natural immunomodulator. Overall, the study of AFP was innovative and of great significance for AFP's further application and utilization.
Collapse
Affiliation(s)
- Anqi Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Hao Wan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Lei Feng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Boyun Yang
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Yiqun Wan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Modern Analytical Science, Nanchang University, Nanchang 330031, China
| |
Collapse
|
12
|
Shao Z, Tian Y, Liu S, Chu X, Mao W. Anti-Diabetic Activity of a Novel Exopolysaccharide Produced by the Mangrove Endophytic Fungus Penicillium janthinellum N29. Mar Drugs 2023; 21:md21050270. [PMID: 37233464 DOI: 10.3390/md21050270] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/27/2023] Open
Abstract
Marine microorganisms often produce exopolysaccharides with novel structures and diverse biological activities due to their specific marine environment. The novel active exopolysaccharides from marine microorganisms have become an important research area in new drug discovery, and show enormous development prospects. In the present study, a homogeneous exopolysaccharide from the fermented broth of the mangrove endophytic fungus Penicillium janthinellum N29, designated as PJ1-1, was obtained. The results of chemical and spectroscopic analyses showed that PJ1-1 was a novel galactomannan with a molecular weight of about 10.24 kDa. The backbone of PJ1-1 was composed of →2)-α-d-Manp-(1→, →4)-α-d-Manp-(1→, →3)-β-d-Galf-(1→ and →2)-β-d-Galf-(1→ units with partial glycosylation at C-3 of →2)-β-d-Galf-(1→ unit. PJ1-1 had a strong hypoglycemic activity in vitro, evaluated using the assay of α-glucosidase inhibition. The anti-diabetic effect of PJ1-1 in vivo was further investigated using mice with type 2 diabetes mellitus induced by a high-fat diet and streptozotocin. The results indicated that PJ1-1 markedly reduced blood glucose level and improved glucose tolerance. Notably, PJ1-1 increased insulin sensitivity and ameliorated insulin resistance. Moreover, PJ1-1 significantly decreased the levels of serum total cholesterol, triglyceride and low-density lipoprotein cholesterol, enhanced the level of serum high-density lipoprotein cholesterol and alleviated dyslipidemia. These results revealed that PJ1-1 could be a potential source of anti-diabetic agent.
Collapse
Affiliation(s)
- Zhuling Shao
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Yingying Tian
- Marine Biomedical Research Institute of Qingdao, Qingdao 266237, China
| | - Shan Liu
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Xiao Chu
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Wenjun Mao
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| |
Collapse
|
13
|
Tang C, Zhou R, Cao K, Liu J, Kan J, Qian C, Jin C. Current progress in the hypoglycemic mechanisms of natural polysaccharides. Food Funct 2023; 14:4490-4506. [PMID: 37083079 DOI: 10.1039/d3fo00991b] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Unhealthy dietary pattern-induced type 2 diabetes mellitus poses a great threat to human health all over the world. Accumulating evidence has revealed that the pathophysiology of type 2 diabetes mellitus is closely associated with the dysregulation of glucose metabolism and energy metabolism, serious oxidative stress, prolonged endoplasmic reticulum stress, metabolic inflammation and intestinal microbial dysbiosis. Most important of all, insulin resistance and insulin deficiency are two key factors inducing type 2 diabetes mellitus. Nowadays, natural polysaccharides have gained increasing attention owing to their numerous health-promoting functions, such as hypoglycemic, energy-regulating, antioxidant, anti-inflammatory and prebiotic activities. Therefore, natural polysaccharides have been used to alleviate diet-induced type 2 diabetes mellitus. Specifically, this review comprehensively summarizes the underlying hypoglycemic mechanisms of natural polysaccharides and provides a theoretical basis for the development of functional foods. For the first time, this review elucidates hypoglycemic mechanisms of natural polysaccharides from the perspectives of their regulatory effects on glucose metabolism, insulin resistance and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Chao Tang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China.
| | - Ruizheng Zhou
- Dongguan Institutes For Food and Drug Control, Dongguan 523808, Guangdong, China
| | - Kexin Cao
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China.
| | - Jun Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China.
| | - Juan Kan
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China.
| | - Chunlu Qian
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China.
| | - Changhai Jin
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China.
| |
Collapse
|
14
|
Shi Y, He X, Bai B, Wang H, Liu C, Xue L, Wu J, Wu Y, Zheng C. Structural characterization and antinociceptive activity of polysaccharides from Anoectochilus elatus. Int J Biol Macromol 2023; 233:123542. [PMID: 36740119 DOI: 10.1016/j.ijbiomac.2023.123542] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/06/2022] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
Anoectochilus elatus is a new record species from Yunnan province in China discovered by our group in 2018, used in folk as the most popular Anoectochilus species A. roxburghii for medicinal and culinary purposes. The crude polysaccharide of Anoectochilus elatus (AEP) exhibited significant antinociceptive effects against both chemical and thermal nociception in vivo. Bio-guided isolation identified GJXL-1 as the leading analgesic polysaccharide in AEP. Detailed structural analyses rationalized GJXL-1 (molecular weight: 10.3 kDa) as an α-D-1,4-linked glucan unexpectedly branched at O-3, and O-6 position. GJXL-1 dose-dependently suppressed acetic acid-induced writhing in mice and decreased the serum levels of NO, IL-6 and TNF-α, which also repressed the licking times in both the first and second phases in formalin test. Furthermore, only L-nitroarginine partly reversed the analgesic activity of GJXL-1, indicating that GJXL-1's efficacy was partially mediated by NO regulation, possibly through inhibiting IRAK4/TAK1/NF-κB signaling pathway, and modulating gut microbiota and short-chain fatty acids production. In addition, the motor impairment and hypnotic effects of GJXL-1 were excluded. Our study suggests that GJXL-1 can be regarded as a promising and safe drug candidate for diverse pain disorders, and also a promising prebiotic candidate to maintain intestinal homeostasis and promote human gut health.
Collapse
Affiliation(s)
- Yi Shi
- Department of Chinese Medicine Authentication, Faculty of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Xuhui He
- Department of Chinese Medicine Authentication, Faculty of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Bingke Bai
- Department of Chinese Medicine Authentication, Faculty of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Hongrui Wang
- Department of Chinese Medicine Authentication, Faculty of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Chang Liu
- Department of Chinese Medicine Authentication, Faculty of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Liming Xue
- Institution of Chemical and Toxicity Assessment, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Jinzhong Wu
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou 350122, China
| | - Yanbin Wu
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou 350122, China.
| | - Chengjian Zheng
- Department of Chinese Medicine Authentication, Faculty of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai 200433, China.
| |
Collapse
|
15
|
Qiu Y, Song W, Yang Y, Zhou G, Bai Y, Akihisa T, Ye F, Feng F, Zhang W, Zhang J. Isolation, structural and bioactivities of polysaccharides from Anoectochilus roxburghii (Wall.) Lindl.: A review. Int J Biol Macromol 2023; 236:123883. [PMID: 36889614 DOI: 10.1016/j.ijbiomac.2023.123883] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/11/2023] [Accepted: 02/26/2023] [Indexed: 03/08/2023]
Abstract
Anoectochilus roxburghii (Wall.) Lindl. (A. roxburghii), a valuable herbal medicine in China, has great medicinal and edible value. Polysaccharides, as one of the main active components of A. roxburghii, comprise glucose, arabinose, xylose, galactose, rhamnose, and mannose in different molar ratios and glycosidic bond types. By varying the sources and extraction methods of A. roxburghii polysaccharides (ARPS), different structural characteristics and pharmacological activities can be elucidated. ARPS has been reported to exhibit antidiabetic, hepatoprotective, anti-inflammatory, antioxidant, antitumor, and immune regulation activities. This review summarizes the available literature on the extraction and purification methods, structural features, biological activities, and applications of ARPS. The shortcomings of the current research and potential focus in future studies are also highlighted. This review provides systematic and current information on ARPS to promote their further exploitation and application.
Collapse
Affiliation(s)
- Yi Qiu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Wenbo Song
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Ying Yang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Guojie Zhou
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Yidan Bai
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Toshihiro Akihisa
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China; Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Feng Ye
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Feng Feng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Wangshu Zhang
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China.
| | - Jie Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China.
| |
Collapse
|
16
|
Gan L, Wang J, Guo Y. Polysaccharides influence human health via microbiota-dependent and -independent pathways. Front Nutr 2022; 9:1030063. [PMID: 36438731 PMCID: PMC9682087 DOI: 10.3389/fnut.2022.1030063] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/20/2022] [Indexed: 08/13/2023] Open
Abstract
Polysaccharides are the most diverse molecules and can be extracted from abundant edible materials. Increasing research has been conducted to clarify the structure and composition of polysaccharides obtained from different materials and their effects on human health. Humans can only directly assimilate very limited polysaccharides, most of which are conveyed to the distal gut and fermented by intestinal microbiota. Therefore, the main mechanism underlying the bioactive effects of polysaccharides on human health involves the interaction between polysaccharides and microbiota. Recently, interest in the role of polysaccharides in gut health, obesity, and related disorders has increased due to the wide range of valuable biological activities of polysaccharides. The known roles include mechanisms that are microbiota-dependent and involve microbiota-derived metabolites and mechanisms that are microbiota-independent. In this review, we discuss the role of polysaccharides in gut health and metabolic diseases and the underlying mechanisms. The findings in this review provide information on functional polysaccharides in edible materials and facilitate dietary recommendations for people with health issues. To uncover the effects of polysaccharides on human health, more clinical trials should be conducted to confirm the therapeutic effects on gut and metabolic disease. Greater attention should be directed toward polysaccharide extraction from by-products or metabolites derived from food processing that are unsuitable for direct consumption, rather than extracting them from edible materials. In this review, we advanced the understanding of the structure and composition of polysaccharides, the mutualistic role of gut microbes, the metabolites from microbiota-fermenting polysaccharides, and the subsequent outcomes in human health and disease. The findings provide insight into the proper application of polysaccharides in improving human health.
Collapse
Affiliation(s)
- Liping Gan
- School of Bioengineering, Henan University of Technology, Zhengzhou, China
| | - Jinrong Wang
- School of Bioengineering, Henan University of Technology, Zhengzhou, China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
17
|
Huang X, Ouyang K, Luo Y, Xie G, Yang Y, Zhang J. A comparative study of characteristics in diploid and tetraploid Anoectochilus roxburghii. Front Nutr 2022; 9:1034751. [PMID: 36419553 PMCID: PMC9676492 DOI: 10.3389/fnut.2022.1034751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/24/2022] [Indexed: 01/18/2024] Open
Abstract
Artificial induction of polyploidy is an efficient technique for improving biological properties and developing new varieties of many plants. In this study, we analyzed and compared differences in characteristics (morphological and biological) of diploid and tetraploid Anoectochilus roxburghii plants. We found significant differences between tetraploid plants and their diploid counterparts. The tetraploid plants exhibited dwarfing and stockiness. They were also bigger and had more voluminous roots and larger stomata than the diploid plants. Moreover, the biochemical analyses showed that the contents of some amino acids and minerals elements were significantly higher in tetraploid plants. The chlorophyll content of the leaves exhibited no definitive changes, but the photosynthetic performance was higher in the tetraploid plants. In addition, contents of major bioactive compounds, such as kinsenoside and some flavonoids, were enhanced in tetraploids. This is the first detailed analysis of characteristics in diploid and tetraploid A. roxburghii plants. The results may facilitate breeding programs with the species.
Collapse
Affiliation(s)
- Xiaoling Huang
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, Guangzhou, China
- Guangdong Province Research Center of Woody Forage Engineering Technology, Guangzhou, China
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Kunxi Ouyang
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, Guangzhou, China
- Guangdong Province Research Center of Woody Forage Engineering Technology, Guangzhou, China
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | | | - Guohong Xie
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Yuesheng Yang
- Southern Medicine Research Institute of Yunfu, Yunfu, China
| | - Junjie Zhang
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, Guangzhou, China
- Guangdong Province Research Center of Woody Forage Engineering Technology, Guangzhou, China
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
18
|
Zeng Z, Chen C, SiTu Y, Shen Z, Chen Y, Zhang Z, Tang C, Jiang T. Anoectochilus roxburghii flavonoids extract ameliorated the memory decline and reduced neuron apoptosis via modulating SIRT1 signaling pathway in senescent mice. JOURNAL OF ETHNOPHARMACOLOGY 2022; 296:115361. [PMID: 35609756 DOI: 10.1016/j.jep.2022.115361] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 05/01/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Anoectochilus roxburghii (A. roxburghii) is a precious herb and folk medicine in many Asian countries. It has been used traditionally to treat diabetes, etc., and also used as a dietary therapy to delay senescence. AIM OF THE STUDY This study was to evaluate the neuroprotective effects of A. roxburghii flavonoids extract (ARF) and whether its effects were due to the regulation of SIRT1 signaling pathway in senescent mice and in D-galactose (D-gal) induced aging in SH-SY5Y cells. MATERIALS AND METHODS 18-month-old mice were randomly divided into senescent model, low-dose ARF, high-dose ARF and vitamin E group. 2-Month-old mice were as a control group. After 8 weeks treatment, Morris water maze (MWM) was performed. The levels of reactive oxygen species (ROS), malondialdehyde (MDA), superoxide dismutase (SOD), monoamine oxidase (MAO) and acetylcholinesterase (ACh-E) in the cortex were determined. Hippocampus morphologic changes were observed with haematoxylin and eosin (H&E), Nissl, senescence-associated-galactosidase (SA-β-gal) and terminal deoxynucleotidyl transferase nick-end labeling (TUNEL) staining. Apoptosis-related molecular expressions in the hippocampus were performed by western blotting. Furthermore, after stimulated by EX527 (a SIRT1 inhibitor), the SIRT1-dependent neuroprotective effects of ARF were determined by measuring SRIT1 and p53 expression in SH-SY5Y aging cells induced by D-gal. RESULTS ARF could significantly ameliorate memory decline in senescent mice and reduce the generations of ROS, MDA and the activities of MAO and ACh-E, while increasing SOD activities in the cortex of aging mice. ARF obviously improved hippocampus pathological alterations, increased the number of Nissl bodies, while reducing senescent and apoptotic cells in senescent mice hippocampus. Further, ARF positively regulated SIRT1 expression, and reduced apoptosis-related molecules p53, p21 and Caspase-3 expression, while increasing the ratio of Bcl-2/Bax. In D-gal-induced SH-SY5Y cells, the effects of ARF on SIRT1 and p53, and the ability of scavenging ROS were mostly abolished after incubation with the EX527. CONCLUSIONS ARF, in a SIRT1-dependent manner, exerted neuroprotection via modulating SIRT1/p53 signaling pathway against memory decline and apoptosis due to age-induced oxidative stress damage in senescent mice.
Collapse
Affiliation(s)
- Zhijun Zeng
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Cong Chen
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Ying SiTu
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Zhibin Shen
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Yanfen Chen
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Zhisi Zhang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Chunping Tang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China.
| | - Tao Jiang
- Laboratory Animal Center, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangzhou, 510006, China.
| |
Collapse
|
19
|
Zhang Z, Zhang Q, Huang X, Luo K. Intestinal microbiology and metabolomics of streptozotocin-induced type 2 diabetes mice by polysaccharide from Cardamine violifolia. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
20
|
Xiao M, Jia X, Wang N, Kang J, Hu X, Goff HD, Cui SW, Ding H, Guo Q. Therapeutic potential of non-starch polysaccharides on type 2 diabetes: from hypoglycemic mechanism to clinical trials. Crit Rev Food Sci Nutr 2022; 64:1177-1210. [PMID: 36036965 DOI: 10.1080/10408398.2022.2113366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Non-starch polysaccharides (NSPs) have been reported to exert therapeutic potential on managing type 2 diabetes mellitus (T2DM). Various mechanisms have been proposed; however, several studies have not considered the correlations between the anti-T2DM activity of NSPs and their molecular structure. Moreover, the current understanding of the role of NSPs in T2DM treatment is mainly based on in vitro and in vivo data, and more human clinical trials are required to verify the actual efficacy in treating T2DM. The related anti-T2DM mechanisms of NSPs, including regulating insulin action, promoting glucose metabolism and regulating postprandial blood glucose level, anti-inflammatory and regulating gut microbiota (GM), are reviewed. The structure-function relationships are summarized, and the relationships between NSPs structure and anti-T2DM activity from clinical trials are highlighted. The development of anti-T2DM medication or dietary supplements of NSPs could be promoted with an in-depth understanding of the multiple regulatory effects in the treatment/intervention of T2DM.
Collapse
Affiliation(s)
- Meng Xiao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Xing Jia
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Nifei Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Ji Kang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Xinzhong Hu
- College of Food Engineering & Nutrition Science, Shaanxi Normal University, Shaanxi, China
| | | | - Steve W Cui
- Guelph Research and Development Centre, AAFC, Guelph, Ontario, Canada
| | | | - Qingbin Guo
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
21
|
Tian D, Zhong X, Fu L, Zhu W, Liu X, Wu Z, Li Y, Li X, Li X, Tao X, Wei Q, Yang X, Huang Y. Therapeutic effect and mechanism of polysaccharides from Anoectochilus Roxburghii (Wall.) Lindl. in diet-induced obesity. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 99:154031. [PMID: 35272243 DOI: 10.1016/j.phymed.2022.154031] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Recent studies have shown that polysaccharides from Anoectochilus roxburghii (Wall.) Lindl. (ARPs) can reduce blood glucose levels, ameliorate oxidative stress and inflammation. However, whether ARPs have a beneficial effect on diet-induced obesity remain to be determined. PURPOSE This study aims to investigate the effect and mechanism of ARPs in improving obesity and metabolic disorders induced by high-fat diet (HFD). METHODS In this study, 6-week-old male mice were fed with HFD or chow diet for 13 weeks, and a dietary supplementation with ARPs was carried out. Glucose tolerance test and insulin tolerance test were performed to measure the glucose tolerance and insulin sensitivity. Adipose tissue and liver were isolated for analysis by qRT-PCR, Western blotting, hematoxylin-eosin staining and immunostaining. RESULTS At week 13, body weight and fat mass were significantly increased by HFD, but ARPs supplementation abolished these phenotypes. Compared with HFD group, thermogenic genes including Ucp-1, Pgc-1α, Prdm16 and Dio2 in adipose tissue were up-regulated in ARPs-treated mice. In addition, ARPs decreased liver lipid accumulation by reducing lipid synthesis and increasing oxidation. Meanwhile, dyslipidemia and insulin resistance induced by HFD were improved by ARPs. Mechanistically, ARPs can promote fat thermogenesis via AMPK/SIRT1/PGC-1α signaling pathway. CONCLUSION Dietary supplementation of ARPs can protect mice against diet-induced obesity, fatty liver and insulin resistance. Our study reveals a potential therapeutic effect for ARPs in regulating energy homeostasis.
Collapse
Affiliation(s)
- Dongmei Tian
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Xiaoyan Zhong
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Liya Fu
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Wanlong Zhu
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Xin Liu
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Zhigui Wu
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Yue Li
- Department of Ophthalmic Optics, North Sichuan Medical College, Nanchong 637000, China
| | - Xue Li
- Institute of Cancer Research, Southwest Medical University, Luzhou 646000, China
| | - Xuesen Li
- Institute of Cancer Research, Southwest Medical University, Luzhou 646000, China
| | - Xuemei Tao
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Qiming Wei
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Xuping Yang
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| | - Yilan Huang
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
22
|
Xiang M, Liu T, Tian C, Ma K, Gou J, Huang R, Li S, Li Q, Xu C, Li L, Lee CH, Zhang Y. Kinsenoside attenuates liver fibro-inflammation by suppressing dendritic cells via the PI3K-AKT-FoxO1 pathway. Pharmacol Res 2022; 177:106092. [PMID: 35066108 PMCID: PMC8776354 DOI: 10.1016/j.phrs.2022.106092] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 12/25/2022]
Abstract
Kinsenoside (KD) exhibits anti-inflammatory and immunosuppressive effects. Dendritic cells (DCs) are critical regulators of the pathologic inflammatory milieu in liver fibrosis (LF). Herein, we explored whether and how KD repressed development of LF via DC regulation and verified the pathway involved in the process. Given our analysis, both KD and adoptive transfer of KD-conditioned DCs conspicuously reduced hepatic histopathological damage, proinflammatory cytokine release and extracellular matrix deposition in CCl4-induced LF mice. Of note, KD restrained the LF-driven rise in CD86, MHC-II, and CCR7 levels and, simultaneously, upregulated PD-L1 expression on DCs specifically, which blocked CD8+T cell activation. Additionally, KD reduced DC glycolysis, maintained DCs immature, accompanied by IL-12 decrease in DCs. Inhibiting DC function by KD disturbed the communication of DCs and HSCs with the expression or secretion of α-SMA and Col-I declined in the liver. Mechanistically, KD suppressed the phosphorylation of PI3K-AKT driven by LF or PI3K agonist, followed by enhanced nuclear transport of FoxO1 and upregulated interaction of FoxO1 with the PD-L1 promoter in DCs. PI3K inhibitor or si-IL-12 acting on DC could relieve LF, HSC activation and diminish the effect of KD. In conclusion, KD suppressed DC maturation with promoted PD-L1 expression via PI3K-AKT-FoxO1 and decreased IL-12 secretion, which blocked activation of CD8+T cells and HSCs, thereby alleviating liver injury and fibro-inflammation in LF.
Collapse
Affiliation(s)
- Ming Xiang
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tingting Liu
- Department of Pharmacy, the First Affiliated Hospital of Anhui Medical University, the Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, Anhui, China
| | - Cheng Tian
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kun Ma
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jing Gou
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Rongrong Huang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Senlin Li
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qing Li
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chuanrui Xu
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lei Li
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chih-Hao Lee
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA, USA
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
23
|
Wu Y, Liu C, Jiang Y, Bai B, He X, Wang H, Wu J, Zheng C. Structural characterization and hepatoprotective effects of polysaccharides from Anoectochilus zhejiangensis. Int J Biol Macromol 2022; 198:111-118. [PMID: 34968535 DOI: 10.1016/j.ijbiomac.2021.12.128] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/16/2021] [Accepted: 12/19/2021] [Indexed: 01/03/2023]
Abstract
Two new polysaccharides, AZP-1a and AZP-1d, with molecular weights of 3.41 × 104 and 4568 Da, respectively, were extracted from Anoectochilus zhejiangensis and purified by column chromatography. Their structural characteristics were systematically explored and results indicated AZP-1a and AZP-1d shared a similar backbone consisted of→4)-Galp-(1→, →4)-Glcp-(1→, and →4,6)-Glcp-(1→, with a different terminal residue of Manp-(1 → and Glcp-(1→, respectively. In vivo experiments showed that the crude polysaccharide of A. zhejiangensis (AZP) exhibited significant hepatoprotective effects, decreasing the serum levels of ALT, AST and LDH in CCl4-treated mice, reducing MDA content, promoting SOD and CAT activities, and increasing GSH level in liver. Further in vitro investigation exhibited that AZP, AZP-1a and AZP-1d effectively protected liver cells against CCl4-stimulated oxidative damage, while AZP-1a and AZP-1d functioned mainly through the activation of Nrf2 signaling pathway. Our results suggest that A. zhejiangensis polysaccharides can be applied as a potential resource for the development of hepatoprotective drugs.
Collapse
Affiliation(s)
- Yanbin Wu
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou 350122, China
| | - Chang Liu
- Department of Chinese Medicine Authentication, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Yingqian Jiang
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou 350122, China
| | - Bingke Bai
- Department of Chinese Medicine Authentication, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Xuhui He
- Department of Chinese Medicine Authentication, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Hongrui Wang
- Department of Chinese Medicine Authentication, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Jinzhong Wu
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou 350122, China.
| | - Chengjian Zheng
- Department of Chinese Medicine Authentication, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China.
| |
Collapse
|