1
|
Tan X, Liu Y, Shang B, Geng M, Teng F. Layer-by-layer self-assembled liposomes fabricated using sodium alginate and chitosan: Investigation of co-encapsulation of folic acid and vitamin E. Int J Biol Macromol 2024; 281:136464. [PMID: 39396588 DOI: 10.1016/j.ijbiomac.2024.136464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/24/2024] [Accepted: 10/07/2024] [Indexed: 10/15/2024]
Abstract
In this study, we constructed layer-by-layer self-assembled liposomes were prepared using sodium alginate (SA) and chitosan (CS) to co-encapsulate folic acid (FA) and vitamin E (VE). We investigated the morphology structure, stability mechanism and digestive behavior of the liposomes with varying addition mass ratios of FA and VE (3:7, 4:6, 1:1, 6:4, and 7:3). The results showed that the particle size of FA and VE co-encapsulated liposomes (L-FA-VE) increased from 424.54 to 464.27 nm. Compared to liposomes without encapsulated FA and VE (L), L-FA-VE were uniformly distributed and with a clear fingerprint structure. Among the L-FA-VE with different addition mass ratios, L-FA-VE 3:7 exhibited the highest encapsulation efficiency (EE) of 79.54 % and 81.57 % for FA and VE, respectively. Layer-by-layer self-assembled liposomes effectively retarded the degradation of FA and VE under strong acid, alkali, high salt environments and ultraviolet radiation. Additionally, L-FA-VE enhanced the extent of FA and VE release in the simulated gastrointestinal environment (FA: 69.26 %; VE: 83.98 %). These findings are valuable for developing of multi-component nutrient delivery systems using layer-by-layer self-assembled liposomes.
Collapse
Affiliation(s)
- Xiangyun Tan
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yue Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baiyu Shang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Mengjie Geng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Fei Teng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
2
|
Shishir MRI, Suo H, Taip FS, Ahmed M, Xiao J, Wang M, Chen F, Cheng KW. Seed mucilage-based advanced carrier systems for food and nutraceuticals: fabrication, formulation efficiency, recent advancement, challenges, and perspectives. Crit Rev Food Sci Nutr 2024; 64:7609-7631. [PMID: 36919601 DOI: 10.1080/10408398.2023.2188564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Seed mucilages are potential sources of natural polysaccharides. They are biodegradable, biocompatible, sustainable, renewable, and safe for human consumption. Due to the desirable physicochemical and functional properties (e.g. gelling, thickening, stabilizing, and emulsifying), seed mucilages have attracted extensive attention from researchers for utilization as a promising material for the development of advanced carrier systems. Seed mucilages have been utilized as natural polymers to improve the properties of various carrier systems (e.g. complex coacervates, beads, nanofibers, and gels) and for the delivery of diverse hydrophilic and lipophilic compounds (e.g. vitamins, essential oils, antioxidants, probiotics, and antimicrobial agents) to achieve enhanced stability, bioavailability, bioactivity of the encapsulated molecules, and improved quality attributes of food products. This review highlights the recent progress in seed mucilage-based carrier systems for food and nutraceutical applications. The main contents include (1) sources, extraction methods, and physicochemical and functional characteristics of seed mucilages, (2) application of seed mucilages for the development of advanced carrier systems, (3) major issues associated with carrier fabrication, and (4) mechanisms of carrier development, latest improvements in carrier formulation, carrier efficiency in the delivery of bioactive agents, and application in food and nutraceuticals. Furthermore, major challenges and future perspectives of seed mucilage-based carriers for a commercial application are discussed.
Collapse
Affiliation(s)
- Mohammad Rezaul Islam Shishir
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, China
| | - Hao Suo
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Farah Saleena Taip
- Department of Process and Food Engineering, Universiti Putra Malaysia, Serdang, Malaysia
| | - Maruf Ahmed
- Department of Food Processing and Preservation, Hajee Mohammad Danesh Science & Technology University, Dinajpur, Bangladesh
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo, Vigo, Spain
| | - Mingfu Wang
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Feng Chen
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Ka-Wing Cheng
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| |
Collapse
|
3
|
Huang H, Xv Z, Yang J, Wu J, Li Y, Li Q, Sun T. Preparation, characterization of basil essential oil liposomes unidirectional single-conducting water sustained-release pads and their preservation properties to Lateolabrax japonicus fillets. Food Chem 2024; 440:137825. [PMID: 38159321 DOI: 10.1016/j.foodchem.2023.137825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/02/2023] [Accepted: 10/18/2023] [Indexed: 01/03/2024]
Abstract
The juice exudation of aquatic products oozes out during storage can influence storage quality. Herein, a novel basil essential oil liposome unidirectional water-conducting sustained-release preservation pads (BEOL/UCSP) were prepared with nylon mesh as water-conducting layer, basil essential oil liposome (BEOL) as sustained-release preservation layer, and diatomite and absorbent-cotton as water-absorbing layer. EL/UCSP, β-CL/UCSP, and BEO/UCSP were prepared after BEOL was replaced by eugenol liposome, β-caryophyllene liposome, and BEO. BEOL are microspheres with bilayer structure, had good storage stability, centrifugal stability, thermal stability, embedding capacity, sustained-release, and oxidation resistance, and the main components of preservatives had a synergistic effect on antibacterial properties. The pads without preservative can initially slow down quality deterioration. BEOL/UCSP can directionally absorb exudate and realize long-term sustained-release of preservative, has excellent antibacterial and antioxidant effect, and extended shelf life of Lateolabrax japonicus fillets from 6.0 days to 12.8 days. The BEOL/UCSP can provide technical theoretical support for preservation materials.
Collapse
Affiliation(s)
- Haitao Huang
- College of Food Science and Engineering, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Key Laboratory of Food Safety of Liaoning Province, Jinzhou 121013, China
| | - Zhaomeng Xv
- College of Food Science and Engineering, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Key Laboratory of Food Safety of Liaoning Province, Jinzhou 121013, China; Wuxi Pharmatech (Cayman) Inc., Shanghai 200131, China
| | - Junyi Yang
- College of Food Science and Engineering, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Key Laboratory of Food Safety of Liaoning Province, Jinzhou 121013, China
| | - Jiaqing Wu
- College of Food Science and Engineering, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Key Laboratory of Food Safety of Liaoning Province, Jinzhou 121013, China
| | - Yingchang Li
- College of Food Science and Engineering, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Key Laboratory of Food Safety of Liaoning Province, Jinzhou 121013, China
| | - Qiuying Li
- College of Food Science and Engineering, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Key Laboratory of Food Safety of Liaoning Province, Jinzhou 121013, China.
| | - Tong Sun
- College of Food Science and Engineering, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Key Laboratory of Food Safety of Liaoning Province, Jinzhou 121013, China.
| |
Collapse
|
4
|
Huang L, Huang XH, Yang X, Hu JQ, Zhu YZ, Yan PY, Xie Y. Novel nano-drug delivery system for natural products and their application. Pharmacol Res 2024; 201:107100. [PMID: 38341055 DOI: 10.1016/j.phrs.2024.107100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/28/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
The development of natural products for potential new drugs faces obstacles such as unknown mechanisms, poor solubility, and limited bioavailability, which limit the broadened applicability of natural products. Therefore, there is a need for advanced pharmaceutical formulations of active compounds or natural products. In recent years, novel nano-drug delivery systems (NDDS) for natural products, including nanosuspensions, nanoliposomes, micelle, microemulsions/self-microemulsions, nanocapsules, and solid lipid nanoparticles, have been developed to improve solubility, bioavailability, and tissue distribution as well as for prolonged retention and enhanced permeation. Here, we updated the NDDS delivery systems used for natural products with the potential enhancement in therapeutic efficiency observed with nano-delivery systems.
Collapse
Affiliation(s)
- Li Huang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Xue-Hua Huang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Xi Yang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Jia-Qin Hu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Yi-Zhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Pei-Yu Yan
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China.
| | - Ying Xie
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| |
Collapse
|
5
|
Li J, Bai J, Song Z, Ji Y, Chen Z, Yang Y, Wu Z. Dietary pectin attenuates Salmonella typhimurium-induced colitis by modulating the TLR2-NF-κB pathway and intestinal microbiota in mice. Food Chem Toxicol 2023; 182:114100. [PMID: 37838214 DOI: 10.1016/j.fct.2023.114100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 09/28/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
The role of dietary pectin on microbial-induced colitis, oxidative status, barrier function, and microbial composition, as well as the underlying mechanisms, is scarce. In this study, we aimed to investigate whether dietary pectin alleviates Salmonella typhimurium-induced colitis in mice. Male C57BL/6J mice fed an isocaloric and isofibrous diet with 7% pectin or cellulose were administered sterile water or Salmonella typhimurium to induce colitis, which is equal to a human food dose of 0.57% (5.68 g/kg). Dietary pectin alleviated Salmonella typhimurium-induced colitis and oxidative stress as shown by the reduced disease activity index score, decreased colon shortening and histological damage score, colonic hydrogen peroxide, malondialdehyde concentrations, and relative mRNA expressions of coenzyme Q-binding protein COQ10 homologue B (Coq10b), Ccl-2, Ccl-3, Ccl-8, Tnf-α, Il-1β, Ifn-γ, Ifn-β, and serum TNF-α protein level. Moreover, pectin administration ameliorated the downregulated colonic abundances of occludin, zonula occludens-1, zonula occludens-2, and the upregulated abundances of TLR2 and p-NF-κB in Salmonella-infected mice. Additionally, 16S rRNA analysis demonstrated that pectin altered the microbial beta-diversity and reduced Salmonella levels. Collectively, pectin ameliorated Salmonella typhimurium-induced colitis, oxidative stress, and tight junction, which may be related to the inactivation of TLR2-NF-κB signalling and reduced abundance of Salmonella.
Collapse
Affiliation(s)
- Jun Li
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, Nutrition and Feed Science, China Agricultural University, Beijing, 100193, PR China
| | - Jun Bai
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, Nutrition and Feed Science, China Agricultural University, Beijing, 100193, PR China
| | - Zhuan Song
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, Nutrition and Feed Science, China Agricultural University, Beijing, 100193, PR China
| | - Yun Ji
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, Nutrition and Feed Science, China Agricultural University, Beijing, 100193, PR China
| | - Zhaohui Chen
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, Nutrition and Feed Science, China Agricultural University, Beijing, 100193, PR China
| | - Ying Yang
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, Nutrition and Feed Science, China Agricultural University, Beijing, 100193, PR China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, Nutrition and Feed Science, China Agricultural University, Beijing, 100193, PR China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, 100193, PR China.
| |
Collapse
|
6
|
Karim N, Liu S, Rashwan AK, Xie J, Mo J, Osman AI, Rooney DW, Chen W. Green synthesis of nanolipo-fibersomes using Nutriose® FB 06 for delphinidin-3-O-sambubioside delivery: Characterization, physicochemical properties, and application. Int J Biol Macromol 2023; 247:125839. [PMID: 37454997 DOI: 10.1016/j.ijbiomac.2023.125839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/27/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
Anthocyanins are potential bioactive compounds with less bioavailability due to instability in physicochemical and physiological harsh environments. This study synthesized a "nanolipo-fibersomes (NLFS)" using Lipoid® S75 and Nutriose® FB 06 (dextrinization of wheat starch) through a self-assembly technique with probe sonication. We aimed to encapsulate delphinidin-3-O-sambubioside (D3S) successfully and evaluate physicochemical and controlled release properties with improved antioxidant activity on palmitic acid (PA)-induced colonic cells (Caco-2 cells). D3S-loaded nanolipo-fibersomes (D3S-NLFS) were nanosized (<150 nm), spherical shaped, and homogenously dispersed in solution with promising encapsulation efficiency (~ 89.31 to 97.31 %). Particles formation was further verified by FTIR. NLFS were well-stable in thermal, storage, and gastrointestinal mimic environments. NLFS exhibited better-controlled release and mucoadhesive properties compared to nanoliposomes (NL). The NLFS showed better cellular uptake than NL, which was correlated to higher mucoadhesive properties. Furthermore, D3S-NLFS exhibited promising protective effects against PA-induced cytotoxicity, O2•- radicals generation, mitochondrial dysfunctions, and GSH depletion, while the free D3S was ineffective. Among D3S-loaded nanoparticles, D3S-NLFS 3 was the most efficient nanocarrier followed by D3S-NLFS 2, D3S-NLFS 1, and D3S-NL, respectively. The above data suggest that nanolipo-fibersomes can be considered as promising nanovesicles for improving colonic delivery of hydrophilic compounds with controlled release properties and greater antioxidant activity.
Collapse
Affiliation(s)
- Naymul Karim
- Department of Traditional Chinese Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Shiyu Liu
- Department of Traditional Chinese Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Ahmed K Rashwan
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Department of Food and Dairy Sciences, Faculty of Agriculture, South Valley University, Qena 83523, Egypt
| | - Jiahong Xie
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Jianling Mo
- Department of Traditional Chinese Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Ahmed I Osman
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast BT9 5AG, Northern Ireland, UK.
| | - David W Rooney
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast BT9 5AG, Northern Ireland, UK
| | - Wei Chen
- Department of Traditional Chinese Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China.
| |
Collapse
|
7
|
Xian L, Tian J, Long Y, Ma H, Tian M, Liu X, Yin G, Wang L. Metabolomics and transcriptomics analyses provide new insights into the nutritional quality during the endosperm development of different ploidy rice. FRONTIERS IN PLANT SCIENCE 2023; 14:1210134. [PMID: 37409294 PMCID: PMC10319422 DOI: 10.3389/fpls.2023.1210134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/30/2023] [Indexed: 07/07/2023]
Abstract
Autotetraploid rice is developed from diploid rice by doubling the chromosomes, leading to higher nutritional quality. Nevertheless, there is little information about the abundances of different metabolites and their changes during endosperm development in autotetraploid rice. In this research, two different kinds of rice, autotetraploid rice (AJNT-4x) and diploid rice (AJNT-2x), were subjected to experiments at various time points during endosperm development. A total of 422 differential metabolites, were identified by applying a widely used metabolomics technique based on LC-MS/MS. KEGG classification and enrichment analysis showed the differences in metabolites were primarily related to biosynthesis of secondary metabolites, microbial metabolism in diverse environments, biosynthesis of cofactors, and so on. Twenty common differential metabolites were found at three developmental stages of 10, 15 and 20 DAFs, which were considered the key metabolites. To identify the regulatory genes of metabolites, the experimental material was subjected to transcriptome sequencing. The DEGs were mainly enriched in starch and sucrose metabolism at 10 DAF, and in ribosome and biosynthesis of amino acids at 15 DAF, and in biosynthesis of secondary metabolites at 20 DAF. The numbers of enriched pathways and the DEGs gradually increased with endosperm development of rice. The related metabolic pathways of rice nutritional quality are cysteine and methionine metabolism, tryptophan metabolism, lysine biosynthesis and histidine metabolism, and so on. The expression level of the genes regulating lysine content was higher in AJNT-4x than in AJNT-2x. By applying CRISPR/Cas9 gene-editing technology, we identified two novel genes, OsLC4 and OsLC3, negatively regulated lysine content. These findings offer novel insight into dynamic metabolites and genes expression variations during endosperm development of different ploidy rice, which will aid in the creation of rice varieties with better grain nutritional quality.
Collapse
Affiliation(s)
- Lin Xian
- College of Agriculture, South China Agricultural University, Guangzhou, China
- Guizhou Academy of Tobacco Science, Guiyang, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Jiaqi Tian
- College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Yanxi Long
- College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Huijin Ma
- College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Min Tian
- College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Xiangdong Liu
- College of Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Guoying Yin
- College of Agriculture, South China Agricultural University, Guangzhou, China
- Guizhou Academy of Tobacco Science, Guiyang, China
| | - Lan Wang
- College of Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
8
|
Zuo Y, He Z, Yang W, Sun C, Ye X, Tian J, Kong X. Preparation of Neohesperidin-Taro Starch Complex as a Novel Approach to Modulate the Physicochemical Properties, Structure and In Vitro Digestibility. Molecules 2023; 28:molecules28093901. [PMID: 37175311 PMCID: PMC10179776 DOI: 10.3390/molecules28093901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 04/30/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
Neohesperidin (NH), a natural flavonoid, exerts multiple actions, such as antioxidant, antiviral, antiallergic, vasoprotective, anticarcinogenic and anti-inflammatory effects, as well as inhibition of tumor progression. In this study, the NH-taro starch complex is prepared, and the effects of NH complexation on the physicochemical properties, structure and in vitro digestibility of taro starch (TS) are investigated. Results showed that NH complexation significantly affected starch gelatinization temperatures and reduced its enthalpy value (ΔH). The addition of NH increased the viscosity and thickening of taro starch, facilitating shearing and thinning. NH binds to TS via hydrogen bonds and promotes the formation of certain crystalline regions in taro starch. SEM images revealed that the surface of NH-TS complexes became looser with the increasing addition of NH. The digestibility results demonstrated that the increase in NH (from 0.1% to 1.1%, weight based on starch) could raise RS (resistant starch) from 21.66% to 27.75% and reduce RDS (rapidly digestible starch) from 33.51% to 26.76% in taro starch. Our work provided a theoretical reference for the NH-taro starch complex's modification of physicochemical properties and in vitro digestibility with potential in food and non-food applications.
Collapse
Affiliation(s)
- Youming Zuo
- Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zirui He
- Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Weidong Yang
- Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Chongde Sun
- Institute of Fruit Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xingqian Ye
- Institute of Food Processing Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Jinhu Tian
- Institute of Food Processing Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xiangli Kong
- Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
9
|
Peng P, Chen Z, Wang M, Wen B, Deng X. Polysaccharide-modified liposomes and their application in cancer research. Chem Biol Drug Des 2023; 101:998-1011. [PMID: 36597375 DOI: 10.1111/cbdd.14201] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/25/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023]
Abstract
Nanodrug delivery systems have been widely used in cancer treatment. Among these, liposomal drug carriers have gained considerable attention due to their biocompatibility, biodegradability, and low toxicity. However, conventional liposomes have several shortcomings, such as poor stability, rapid clearance, aggregation, fusion, degradation, hydrolysis, and oxidation of phospholipids. Polysaccharides are natural polymers of biological origin that exhibit structural stability, excellent biocompatibility and biodegradability, flexibility, non-immunogenicity, low toxicity, and targetability. Therefore, they represent a promising class of polymers for the modification of the surface properties of liposomes to overcome their shortcomings. In addition, polysaccharides can be readily combined with other materials to develop new composite materials. Hence, they represent the optimal choice for liposomal modification to improve pharmacokinetics and clinical utility. Polysaccharide-coated liposomes exhibit better stability, drug release kinetics, and cellular uptake than conventional liposomes. The oncologic application of polysaccharide-coated liposomes has become a research hotspot. We summarize the preparation, physicochemical properties, and antineoplastic effects of polysaccharide-coated liposomes to facilitate antitumor drug development.
Collapse
Affiliation(s)
- Peichun Peng
- International Zhuang Medical Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Zeshan Chen
- Department of Traditional Chinese Medicine, Guangxi Academy of Medical Sciences, Nanning, China
| | - Miaodong Wang
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Bin Wen
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Xin Deng
- Department of Basic Medical Science College, Guangxi University of Chinese Medicine, Nanning, China
| |
Collapse
|
10
|
Safaeian Laein S, Katouzian I, Mozafari MR, Farnudiyan-Habibi A, Akbarbaglu Z, Shadan MR, Sarabandi K. Biological and thermodynamic stabilization of lipid-based delivery systems through natural biopolymers; controlled release and molecular dynamics simulations. Crit Rev Food Sci Nutr 2023; 64:7728-7747. [PMID: 36950963 DOI: 10.1080/10408398.2023.2191281] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Nowadays, the use of lipid-based nanocarriers for the targeted and controlled delivery of a variety of hydrophobic and hydrophilic bioactive-compounds and drugs has increased significantly. However, challenges such as thermodynamic instability, oxidation, and degradation of lipid membranes, as well as the unintended release of loaded compounds, have limited the use of these systems in the food and pharmaceutical industries. Therefore, the present study reviews the latest achievements in evaluating the characteristics, production methods, challenges, functional, and biological stabilization strategies of lipid-based carriers (including changes in formulation composition, structural modification, membrane-rigidity, and finally monolayer or multilayer coating with biopolymers) in different conditions, as well as molecular dynamics simulations. The scientists' findings indicate the effect of natural biopolymers (such as chitosan, calcium alginate, pectin, dextran, xanthan, caseins, gelatin, whey-proteins, zein, and etc.) in modifying the external structure of lipid-based carriers, improving thermodynamic stability and resistance of membranes to physicochemical and mechanical tensions. However, depending on the type of bioactive compound as well as the design and production goals of the delivery-system, selecting the appropriate biopolymer has a significant impact on the stability of vesicles and maintaining the bioaccessibility of the loaded-compounds due to the stresses caused by the storage-conditions, formulation, processing and gastrointestinal tract.
Collapse
Affiliation(s)
- Sara Safaeian Laein
- Department of Food Hygiene and Aquaculture, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Iman Katouzian
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Clayton, Victoria, Australia
| | - M R Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Clayton, Victoria, Australia
| | - Amir Farnudiyan-Habibi
- Department of Pharmaceutical Biomaterials, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Nano-Encapsulation in the Food, Nutraceutical, and Pharmaceutical Industries Group (NFNPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Zahra Akbarbaglu
- Department of Food Science, College of Agriculture, University of Tabriz, Tabriz, Iran
| | - Mohammad Reza Shadan
- Clinical Immunology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
- Department of Food science and technology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Khashayar Sarabandi
- Department of Food science and technology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
11
|
High skin permeation, deposition and whitening activity achieved by xanthan gum string vitamin c flexible liposomes for external application. Int J Pharm 2022; 628:122290. [DOI: 10.1016/j.ijpharm.2022.122290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/03/2022] [Accepted: 10/09/2022] [Indexed: 11/17/2022]
|
12
|
Li J, Nan J, Wu H, Park HJ, Zhao Q, Yang L. Middle purity soy lecithin is appropriate for food grade nanoliposome: Preparation, characterization, antioxidant and anti-inflammatory ability. Food Chem 2022; 389:132931. [PMID: 35500405 DOI: 10.1016/j.foodchem.2022.132931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/31/2022] [Accepted: 04/07/2022] [Indexed: 11/16/2022]
Abstract
The purity of soy lecithin exerts significant impact on nanoliposome (NL) properties for food applications. In this study, three soy lecithin of different purity were used to prepare NL. LC-MS analysis confirmed soy lecithin of relatively low purify (50% and 70%) contains multiple natural phospholipids. NL produced by soy lecithin of middle purity (70%) is smaller and more stable than other counterparts. Ultimately, soy lecithin of 70% purity was selected to develop NL encapsulated crocetin (CR) as model payload and further coated by chitosan (CS). The structure characteristic, physicochemical properties, antioxidant activity and anti-inflammatory activity of crocetin nanoliposome (CR-NL) and chitosan coated crocetin nanoliposome (CS-CR-NL) were evaluated. NL encapsulation and CS coating significantly improve antioxidant and anti-inflammatory ability of CR, and prolong storage period of CR (p < 0.05). For food applications, soy lecithin of middle purity (70%) is cheaper and more appropriate than soy lecithin of high purity.
Collapse
Affiliation(s)
- Jinglei Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, China
| | - Jian Nan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Haishan Wu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Hyun Jin Park
- School of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Qingsheng Zhao
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Liu Yang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, China.
| |
Collapse
|
13
|
Submerged fermentation with Lactobacillus brevis significantly improved the physiological activities of Citrus aurantium flower extract. Heliyon 2022; 8:e10498. [PMID: 36097484 PMCID: PMC9463378 DOI: 10.1016/j.heliyon.2022.e10498] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/10/2022] [Accepted: 08/25/2022] [Indexed: 11/23/2022] Open
|
14
|
Du Z, Lin L, Li Y, Sun M, Liang Q, Sun Z, Duan J. Combined exposure to PM 2.5 and high-fat diet facilitates the hepatic lipid metabolism disorders via ROS/miR-155/PPARγ pathway. Free Radic Biol Med 2022; 190:16-27. [PMID: 35940515 DOI: 10.1016/j.freeradbiomed.2022.07.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/27/2022] [Accepted: 07/31/2022] [Indexed: 12/18/2022]
Abstract
Environmental fine particulate matter (PM2.5), which has attracted worldwide attention, is associated with the progression of metabolic-associated fatty liver disease (MAFLD). However, it is unclear whether dietary habit exacerbate liver damage caused by PM2.5. The current study aimed to investigate the combined negative effects of PM2.5 and high-fat diet (HFD) on liver lipid metabolism in C57BL/6J mice. Histopathological and Oil-Red O staining analysis illustrated that PM2.5 exposure resulted in increased liver fat content in HFD-fed C57BL/6J mice, but not in standard chow diet (STD)-fed mice. And there was a synergistic effect between PM2.5 and HFD on hepatic lipotoxicity. The increased ROS levels and augmented oxidative damage were evaluated in liver tissue of mice treated with PM2.5 and HFD together. In addition, excessive ROS production could activate the miR-155/peroxisome proliferator-activated receptor gamma (PPARγ) pathway, including up-regulation of lipid accumulation-related protein expressions of recombinant liver X receptor alpha (LXRα), sterol regulatory element binding protein-1 (SREBP-1), stearoyl-CoA desaturase-1 (SCD1), fatty acid synthase (FAS) and acetyl-CoA carboxylase 1 (ACC1).The use of miR-155 inhibitors demonstrated the indispensable role of miR-155 in the activation of lipid-regulated proteins by PM2.5 and palmitic acid (PA). Collectively, altering high-fat dietary habits could protect against MAFLD motivated by air pollution, and miR-155 might be an effective preventive and therapeutic target for this process.
Collapse
Affiliation(s)
- Zhou Du
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Lisen Lin
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Yang Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Mengqi Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Qingqing Liang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China.
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China.
| |
Collapse
|
15
|
Vlăsceanu GM, Ioniță M, Popescu CC, Giol ED, Ionescu I, Dumitrașcu AM, Floarea M, Boerasu I, Necolau MI, Olăreț E, Ghițman J, Iovu H. Chitosan-Based Materials Featuring Multiscale Anisotropy for Wider Tissue Engineering Applications. Int J Mol Sci 2022; 23:ijms23105336. [PMID: 35628150 PMCID: PMC9140409 DOI: 10.3390/ijms23105336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/05/2022] [Accepted: 05/07/2022] [Indexed: 12/10/2022] Open
Abstract
We designed graphene oxide composites with increased morphological and structural variability using fatty acid-coupled polysaccharide co-polymer as the continuous phase. The matrix was synthesized by N, O-acylation of chitosan with palmitic and lauric acid. The obtained co-polymer was crosslinked with genipin and composited with graphene oxide. FTIR spectra highlighted the modification and multi-components interaction. DLS, SEM, and contact angle tests demonstrated that the conjugation of hydrophobic molecules to chitosan increased surface roughness and hydrophilicity, since it triggered a core-shell macromolecular structuration. Nanoindentation revealed a notable durotaxis gradient due to chitosan/fatty acid self-organization and graphene sheet embedment. The composited building blocks with graphene oxide were more stable during in vitro enzymatic degradation tests and swelled less. In vitro viability, cytotoxicity, and inflammatory response tests yielded promising results, and the protein adsorption test demonstrated potential antifouling efficacy. The robust and stable substrates with heterogeneous architecture we developed show promise in biomedical applications.
Collapse
Affiliation(s)
- George Mihail Vlăsceanu
- Faculty of Medical Engineering, University Politehnica of Bucharest, 011061 Bucharest, Romania; (G.M.V.); (C.C.P.)
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 011061 Bucharest, Romania; (E.D.G.); (M.I.N.); (E.O.); (J.G.); (H.I.)
| | - Mariana Ioniță
- Faculty of Medical Engineering, University Politehnica of Bucharest, 011061 Bucharest, Romania; (G.M.V.); (C.C.P.)
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 011061 Bucharest, Romania; (E.D.G.); (M.I.N.); (E.O.); (J.G.); (H.I.)
- Correspondence: ; Tel.: +40-214-022-709
| | - Corina Cristiana Popescu
- Faculty of Medical Engineering, University Politehnica of Bucharest, 011061 Bucharest, Romania; (G.M.V.); (C.C.P.)
| | - Elena Diana Giol
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 011061 Bucharest, Romania; (E.D.G.); (M.I.N.); (E.O.); (J.G.); (H.I.)
- Cantacuzino National Medico-Military Institute for Research and Development, 050096 Bucharest, Romania; (I.I.); (A.-M.D.); (M.F.)
| | - Irina Ionescu
- Cantacuzino National Medico-Military Institute for Research and Development, 050096 Bucharest, Romania; (I.I.); (A.-M.D.); (M.F.)
| | - Andrei-Mihai Dumitrașcu
- Cantacuzino National Medico-Military Institute for Research and Development, 050096 Bucharest, Romania; (I.I.); (A.-M.D.); (M.F.)
| | - Mădălina Floarea
- Cantacuzino National Medico-Military Institute for Research and Development, 050096 Bucharest, Romania; (I.I.); (A.-M.D.); (M.F.)
| | - Iulian Boerasu
- Department of Lasers, National Institute for Lasers, Plasma and Radiation Physics, 077125 Magurele, Romania;
| | - Mădălina Ioana Necolau
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 011061 Bucharest, Romania; (E.D.G.); (M.I.N.); (E.O.); (J.G.); (H.I.)
| | - Elena Olăreț
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 011061 Bucharest, Romania; (E.D.G.); (M.I.N.); (E.O.); (J.G.); (H.I.)
| | - Jana Ghițman
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 011061 Bucharest, Romania; (E.D.G.); (M.I.N.); (E.O.); (J.G.); (H.I.)
| | - Horia Iovu
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 011061 Bucharest, Romania; (E.D.G.); (M.I.N.); (E.O.); (J.G.); (H.I.)
- Academy of Romanian Scientists, 54 Splaiul Independentei, 050094 Bucharest, Romania
| |
Collapse
|
16
|
Pelargonidin-3-O-Glucoside Encapsulated Pectin-Chitosan-Nanoliposomes Recovers Palmitic Acid-Induced Hepatocytes Injury. Antioxidants (Basel) 2022; 11:antiox11040623. [PMID: 35453309 PMCID: PMC9025254 DOI: 10.3390/antiox11040623] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 02/04/2023] Open
Abstract
Pelargonidin-3-O-glucoside (Pg) is a well-known anthocyanin derivative possessing potential biological activity. Nonetheless, the bioactivity of Pg is limited due to instability in the physiological environment. Functionalized nanoliposomes using chitosan and/or pectin coating is an excellent carrier system for nanoencapsulation of food bioactive compounds such as Pg. Therefore, this study aimed to investigate the protective effect of Pg-loaded pectin–chitosan coated nanoliposomes against palmitic acid (PA)-induced hepatocytes injury in L02 cells. Firstly, Pg-loaded pectin–chitosan coated nanoliposomes were characterized using the DLS, HPLC, TEM, and cellular uptake study in L02 cells. Thereafter, we assayed the protective effect against PA-induced lipotoxicity, ROS and O2•− generation, mitochondrial dysfunction (MMP), and GSH depletion. Results showed that Pg-loaded nanoliposomes significantly reduced the PA-induced L02 cells toxicity via suppressing ROS production, O2•− generation, MMP collapse, and GSH reduction, whereas the free-Pg samples were not effective. On the contrary, the chitosan and/or pectin coated nanoliposomes showed higher results compared to coating-free nanoliposomes. Altogether, the results of our study ensured that Pg-loaded pectin–chitosan coated nanoliposomes was capable of reducing PA-induced hepatocytes injury. Thus, pectin–chitosan coated nanoliposomes can be useful for hepatocellular delivery of hydrophilic compounds with greater biological activity.
Collapse
|
17
|
Du S, Zhu X, Zhou N, Zheng W, Zhou W, Li X. Curcumin alleviates hepatic steatosis by improving mitochondrial function in postnatal overfed rats and fatty L02 cells through the SIRT3 pathway. Food Funct 2022; 13:2155-2171. [PMID: 35113098 DOI: 10.1039/d1fo03752h] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Postnatal overfeeding could increase the risk of non-alcoholic fatty liver disease (NAFLD) in adulthood. This study investigated the effects of curcumin (CUR) on hepatic steatosis in postnatal overfed rats and elucidated potential mechanisms in mitochondrial functions. Male rats were adjusted to ten (normal litter, NL) or three (small litter, SL) at postnatal day 3. After weaning, NL rats were fed with normal diet (NL) or a high-fat diet (NH) for 10 weeks. SL rats were fed with normal diet (SL), a high-fat diet (SH), a normal diet supplemented with 2% CUR (SL-CUR) or a high-fat diet supplemented with 2% CUR (SH-CUR). At week 13, compared with NL rats, SL and NH rats showed increased body weight, glucose intolerance, dyslipidemia and hepatic lipid accumulation, and these changes were more obvious in SH rats. The opposite trends were observed in SL-CUR and SH-CUR rats. Moreover, CUR could preserve mitochondrial biogenesis and antioxidant response in postnatal overfed rats, and upregulated the mRNA and protein levels of SIRT3. In vitro, L02 cells were exposed to free fatty acids and/or CUR. CUR decreased the levels of cellular lipids and mitochondrial reactive oxygen species, and increased the mitochondrial DNA copy number and superoxide dismutase activity in fatty L02 cells. However, these effects were blocked after SIRT3 silencing. It was concluded that postnatal overfeeding damaged mitochondrial biogenesis and antioxidant response, and increased hepatic lipids and the severity of high-fat-induced NAFLD, while CUR alleviated hepatic steatosis, at least partially, by enhancing mitochondrial function through SIRT3.
Collapse
Affiliation(s)
- Susu Du
- Department of Child Health Care, Children's Hospital of Nanjing Medical University, Nanjing, 210008, Jiangsu Province, China.
| | - Xiaolei Zhu
- Department of Child Health Care, Children's Hospital of Nanjing Medical University, Nanjing, 210008, Jiangsu Province, China.
| | - Nan Zhou
- Department of Child Health Care, Children's Hospital of Nanjing Medical University, Nanjing, 210008, Jiangsu Province, China.
| | - Wen Zheng
- Department of Child Health Care, Children's Hospital of Nanjing Medical University, Nanjing, 210008, Jiangsu Province, China.
| | - Wei Zhou
- Department of Child Health Care, Children's Hospital of Nanjing Medical University, Nanjing, 210008, Jiangsu Province, China.
| | - Xiaonan Li
- Department of Child Health Care, Children's Hospital of Nanjing Medical University, Nanjing, 210008, Jiangsu Province, China. .,Institute of Pediatric Research, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| |
Collapse
|
18
|
Shishir MRI, Gowd V, Suo H, Wang M, Wang Q, Chen F, Cheng KW. Advances in smart delivery of food bioactive compounds using stimuli-responsive carriers: Responsive mechanism, contemporary challenges, and prospects. Compr Rev Food Sci Food Saf 2021; 20:5449-5488. [PMID: 34668321 DOI: 10.1111/1541-4337.12851] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 07/12/2021] [Accepted: 09/03/2021] [Indexed: 12/19/2022]
Abstract
Many important food bioactive compounds are plant secondary metabolites that have traditional applications for health promotion and disease prevention. However, the chemical instability and poor bioavailability of these compounds represent major challenges to researchers. In the last decade, therefore, major impetus has been given for the research and development of advanced carrier systems for the delivery of natural bioactive molecules. Among them, stimuli-responsive carriers hold great promise for simultaneously improving stability, bioavailability, and more importantly delivery and on-demand release of intact bioactive phytochemicals to target sites in response to certain stimuli or combination of them (e.g., pH, temperature, oxidant, enzyme, and irradiation) that would eventually enhance therapeutic outcomes and reduce side effects. Hybrid formulations (e.g., inorganic-organic complexes) and multi-stimuli-responsive formulations have demonstrated great potential for future studies. Therefore, this review systematically compiles and assesses the recent advances on the smart delivery of food bioactive compounds, particularly quercetin, curcumin, and resveratrol through stimuli-responsive carriers, and critically reviews their functionality, underlying triggered-release mechanism, and therapeutic potential. Finally, major limitations, contemporary challenges, and possible solutions/future research directions are highlighted. Much more research is needed to optimize the processing parameters of existing formulations and to develop novel ones for lead food bioactive compounds to facilitate their food and nutraceutical applications.
Collapse
Affiliation(s)
- Mohammad Rezaul Islam Shishir
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, China.,Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China.,Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
| | - Vemana Gowd
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China.,Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
| | - Hao Suo
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China.,Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
| | - Mingfu Wang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China.,School of Biological Sciences, The University of Hong Kong, Hong Kong, P. R. China
| | - Qiang Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, China
| | - Feng Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China.,Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
| | - Ka-Wing Cheng
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China.,Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
| |
Collapse
|
19
|
Shishir MRI, Suo H, Liu X, Kang Q, Xiao J, Wang M, Chen F, Cheng KW. Development and evaluation of a novel nanofibersolosome for enhancing the stability, in vitro bioaccessibility, and colonic delivery of cyanidin-3-O-glucoside. Food Res Int 2021; 149:110712. [PMID: 34600700 DOI: 10.1016/j.foodres.2021.110712] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/31/2021] [Accepted: 09/08/2021] [Indexed: 02/05/2023]
Abstract
The development of colon-specific carrier systems using polysaccharides for oral delivery of nutraceuticals is of great importance for the treatment and/or prevention of inflammatory bowel diseases. In this study, self-assembly with the assistance of vortexing and pulsed-ultrasonication was employed to develop a Fibersol®-2 (a digestion-resistant polysaccharide) and lipoid S75 based novel nanocarrier (denoted as nanofibersolosome) for the colonic delivery of cyanidin-3-O-glucoside (C3G). A series of nanofibersolosome formulations (CFS-0.5-4, 0.5-4 represent the ratios of Fibersol®-2:lipoid S75) were developed and their performance was compared with Fibersol®-2-free reference lipid formulation (CFS-0). The nanofibersolosomes (<150 nm) were spherical and unilamellar with high negative surface charge (-38 to -51 mV) and good encapsulation efficiency (EE > 90%). They performed much better than CFS-0 in retaining their physical properties during freeze drying, preventing particle aggregation, and retaining C3G during storage (4 and 25 ℃) and thermal treatments (40, 60, and 80 ℃). They also exhibited significantly higher stability during simulated gastrointestinal digestion than CFS-0. These desirable features of the nanofibersolosomes (especially CFS-0.5 and CFS-1) led to the efficient delivery of higher concentrations of C3G to the colon than CFS-0. Moreover, gastrointestinal-digested and colonic-fermented nanofibersolosome samples exhibited significantly higher DPPH radical scavenging activity and stronger promoting effect on short-chain fatty acid generation than CFS-0. These in vitro findings indicate that the novel nanofibersolosome possesses great potential for the colonic delivery of C3G and likely other hydrophilic labile phytochemicals that merits further evaluation in in vivo models.
Collapse
Affiliation(s)
- Mohammad Rezaul Islam Shishir
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Hao Suo
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Xiaobing Liu
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Qingzheng Kang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Jianbo Xiao
- Institute of Food Safety and Nutrition, Jiangsu University, Zhenjiang 212013, China; Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo, Vigo, Spain
| | - Mingfu Wang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Feng Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Ka-Wing Cheng
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|