1
|
El-Saadony MT, Saad AM, Alkafaas SS, Dladla M, Ghosh S, Elkafas SS, Hafez W, Ezzat SM, Khedr SA, Hussien AM, Fahmy MA, Elesawi IE, Salem HM, Mohammed DM, Abd El-Mageed TA, Ahmed AE, Mosa WFA, El-Tarabily MK, AbuQamar SF, El-Tarabily KA. Chitosan, derivatives, and its nanoparticles: Preparation, physicochemical properties, biological activities, and biomedical applications - A comprehensive review. Int J Biol Macromol 2025; 313:142832. [PMID: 40187443 DOI: 10.1016/j.ijbiomac.2025.142832] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 03/17/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
Chitosan, derived from the deacetylation of chitin, is the second most widely used natural polymer, valued for its nontoxic, biocompatible, and biodegradable properties. These attributes have driven extensive research into diverse applications of chitosan and various derivatives. The key characteristics of chitosan muco-adhesion, permeability enhancement, drug release modulation, and antimicrobial activity are primarily due to its amino and hydroxyl groups. However, the limited solubility of raw chitosan in water and most organic solvents has posed challenges for broader application. Numerous chemically modified derivatives have been developed to address these inadequacies with improved physical and chemical properties. Among these derivatives, chitosan nanoparticles have emerged as versatile drug carriers with precise release kinetics and the capacity for targeted delivery, greatly enhancing drug efficacy and safety profiles for therapeutic applications. Due to these unique physicochemical properties, chitosan and chitosan nanoparticles are promising for improved drug delivery, vaccine administration, transplantation, gene therapy, and diagnostics. This review examines the physicochemical properties and bioactivities of chitosan and chitosan nanoparticles, emphasizing their broad-ranging biomedical applications.
Collapse
Affiliation(s)
- Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Ahmed M Saad
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Samar Sami Alkafaas
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Mthokozisi Dladla
- Human Molecular Biology Unit (School of Biomedical Sciences), Faculty of Health Sciences, University of the Free State, Bloemfontein, 9300, South Africa
| | - Soumya Ghosh
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Sara Samy Elkafas
- Production Engineering and Mechanical Design Department, Faculty of Engineering, Menofia University, Menofia 32511, Egypt; Faculty of Control System and Robotics, Information Technologies, Mechanics and Optics (ITMO) University, Saint-Petersburg 191002, Russia
| | - Wael Hafez
- Medical Research Division, Department of Internal Medicine, The National Research Centre, Dokki 12622, Egypt
| | - Salma Mohamed Ezzat
- Department of Chemistry, Division of Biochemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Sohila A Khedr
- Industrial Biotechnology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Aya Misbah Hussien
- Biotechnology Department at Institute of Graduate Studies and Research, Alexandria University, Alexandria 21531, Egypt
| | - Mohamed A Fahmy
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Ibrahim Eid Elesawi
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Heba M Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt; Department of Diseases of Birds, Rabbits, Fish & Their Care & Wildlife, School of Veterinary Medicine, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Dina Mostafa Mohammed
- Nutrition and Food Sciences Department, National Research Centre, Dokki, Giza 12622, Egypt
| | - Taia A Abd El-Mageed
- Department of Soils and Water, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
| | - Ahmed Ezzat Ahmed
- Department of Biology, College of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Walid F A Mosa
- Plant Production Department (Horticulture-Pomology), Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria 21531, Egypt
| | | | - Synan F AbuQamar
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates.
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates.
| |
Collapse
|
2
|
Bhowmik M, A J R, S B S, R S C, E K G, M P, Omar EA, R R. Cyanocobalamin-loaded dissolving microneedles for enhanced transdermal delivery: development, characterization, and pharmacokinetic evaluation. Biomed Microdevices 2025; 27:20. [PMID: 40310523 DOI: 10.1007/s10544-025-00747-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2025] [Indexed: 05/02/2025]
Abstract
This study demonstrates cyanocobalamin-loaded dissolving microneedles (CNBL-MNs) as a minimally invasive transdermal solution for managing cyanocobalamin (CNBL) deficiency, offering an alternative to intramuscular injections and oral supplements. The CNBL-MNs were developed using biodegradable, water-soluble polymers such as polyvinylpyrrolidone K25, Dextran K40, and chitosan to ensure controlled and gradual release of the CNBL. The formulation's stability and integrity were assessed through FTIR and XRD analyses. SEM imaging revealed well-formed microneedles with a height of 800 μm, a 200 μm base diameter, and a 500 μm pitch. EDS confirmed the successful incorporation of CNBL in the microneedle array. The Parafilm® membrane insertion test revealed that the microneedles had strong mechanical properties and achieved 100% penetration efficiency. The microneedle array also demonstrated excellent (P > 0.05) flexibility and structural stability. Ex-vivo release studies showed that 88.51% of the CNBL was released over 48 h, following a first-order kinetic model. The n value of 0.51 for Korsmeyer-Peppas model indicate an anomalous transport mechanism, suggesting a combination of diffusion and erosion. The in-vivo pharmacokinetic evaluation in Wistar rats demonstrates that CNBL-MNs-2 exhibited a larger area under the curve (AUC₀-t) (61.57 ± 4.23 ng·h/mL) than the IP injection (37.04 ± 5.83 ng·h/mL), indicating significant (p > 0.05) increase in systemic availability and sustained release. The Cmax of CNBL-MNs-2 (6.10 ± 0.533 ng/mL) was comparable to that of the IP injection (6.20 ± 1.5 ng/mL), confirming efficient systemic absorption via the microneedle system. Additionally, Tmax was significantly (p > 0.05) prolonged with CNBL-MNs-2 (8 h) compared to the IP injection (2 h), suggesting a slower, more controlled CNBL release.
Collapse
Affiliation(s)
- Mousam Bhowmik
- Department of Pharmaceutics, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, India
| | - Rajamma A J
- Department of Pharmacognosy, KLE College of Pharmacy, Bengaluru, 560010, India
| | - Sateesha S B
- Department of Pharmaceutics, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, India.
| | - Chandan R S
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, 570015, India
| | - Girija E K
- Department of Physics, Periyar University, Salem, 636 011, India
| | - Punith M
- Department of Pharmaceutics, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, India
| | - Ebna Azizal Omar
- Department of Analysis, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, India
| | - Rajesh R
- Department of Analysis, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, India
| |
Collapse
|
3
|
Nemakhavhani L, Abrahamse H, Dhilip Kumar SS. Microneedles for Melanoma Therapy: Exploring Opportunities and Challenges. Pharmaceutics 2025; 17:579. [PMID: 40430871 PMCID: PMC12114660 DOI: 10.3390/pharmaceutics17050579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/22/2025] [Accepted: 04/23/2025] [Indexed: 05/29/2025] Open
Abstract
Melanoma is a type of skin cancer that originates in the melanocytes, the epidermis' basal layer. The skin has traditionally been an attractive administration location for drug delivery in tumor therapy, and it is composed of three layers: the outermost stratum corneum (SC), the middle epidermis, and the deepest layer, the dermis. Melanoma can be treated using a variety of methods, such as chemotherapy, surgery, radiotherapy, and biological therapy, but all are expensive and have side effects. Furthermore, the SC is the primary barrier that contributes to the impermeability of the skin, which is a limitation in epidermal drug transport and can aid in achieving effective drug concentration with minimal side effects at the target location. Microneedles (MNs) are tiny needles that are easy to use, inexpensive, and non-toxic. In recent years, MNs have been significantly studied for the treatment of melanoma due to their excellent biocompatibility, minimal invasion, high patient compliance, simple penetration process, and high SC penetration rate. Most notably, MNs can provide efficient and seldom unpleasant delivery carriers and synergistic effectiveness by combining multi-model techniques with immunotherapy, gene therapy, photodynamic therapy (PDT), and photothermal treatment (PTT). This review will focus on biocompatibility, biodegradability, limitations, fabrication materials, release mechanisms, and delivery of the therapeutics of MNs for melanoma treatment.
Collapse
|
4
|
Gautam K, Singh H, Sinha AK. Nanotechnology in Plant Nanobionics: Mechanisms, Applications, and Future Perspectives. Adv Biol (Weinh) 2025; 9:e2400589. [PMID: 39936866 DOI: 10.1002/adbi.202400589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 01/04/2025] [Indexed: 02/13/2025]
Abstract
Plants are vital to ecosystems and human survival, possessing intricate internal and inter-plant signaling networks that allow them to adapt quickly to changing environments and maintain ecological balance. The integration of engineered nanomaterials (ENMs) with plant systems has led to the emergence of plant nanobionics, a field that holds the potential to enhance plant capabilities significantly. This integration may result in improved photosynthesis, increased nutrient uptake, and accelerated growth and development. Plants treated with ENMs can be stress mitigators, pollutant detectors, environmental sensors, and even light emitters. This review explores recent advancements in plant nanobionics, focusing on nanoparticle (NP) synthesis, adhesion, uptake, transport, fate, and application in enhancing plant physiological functioning, stress mitigation, plant health monitoring, energy production, environmental sensing, and overall plant growth and productivity. Potential research directions and challenges in plant nanobionics are highlighted, and how material optimization and innovation are propelling the growth in the field of smart agriculture, pollution remediation, and energy/biomass production are discussed.
Collapse
Affiliation(s)
- Kajal Gautam
- Department of Chemistry, School of advanced Engineering, UPES, Dehradun, India
| | - Hukum Singh
- Plant Physiology, Genetics and Tree Improvement Division, Forest Research institute (FRI), Dehradun, India
| | - A K Sinha
- Department of Physics, School of advanced Engineering, UPES, Dehradun, India
| |
Collapse
|
5
|
Jia H, Li Y, Zheng Y, Wang H, Zhao F, Yang X, Zhao Q, Jiang Y, Man C. Recent advances in fucoidan-based improved delivery systems: Structure, carrier types and biomedical applications. Carbohydr Polym 2025; 352:123183. [PMID: 39843086 DOI: 10.1016/j.carbpol.2024.123183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/20/2024] [Accepted: 12/21/2024] [Indexed: 01/24/2025]
Abstract
Consumer demand for nutritional supplements has fueled the rapid growth of the functional food market. However, ensuring the stability of functional factors in harsh environments remains a major challenge. The development of encapsulation systems is regarded as an effective method for enhancing the stability of functional factors, encapsulation carriers can offer protection for these functional factors. However, the selection of materials remains a significant constraint in the construction of delivery systems. Therefore, developing new encapsulation materials is crucial for advancing delivery systems, preserving the stability of functional factors, and ensuring public health. Fucoidan, a sulfated marine polysaccharide, has garnered significant attention in the field of encapsulation due to its notable advantages, including its remarkable bioactivity, biocompatibility, and targeted binding properties. Fucoidan-improved delivery systems provide new strategies for encapsulation of functional factors. This review first describes the structure of fucoidan, its modification and lists the applications of modified fucoidan, and assesses its feasibility for enhancing delivery systems. Second, it summarizes several common encapsulation technologies and methods, and outlines various carrier types based on fucoidan. Finally, it elucidates recent advances in the biomedical applications of fucoidan-improved delivery systems. Notably, it also presents the challenges and future prospects of this promising field.
Collapse
Affiliation(s)
- Haifu Jia
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yuanyuan Li
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yaping Zheng
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Huabing Wang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Feng Zhao
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Infant Formula Food, State Administration for Market Regulation, Harbin 150030, China
| | - Xinyan Yang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Infant Formula Food, State Administration for Market Regulation, Harbin 150030, China
| | - Qianyu Zhao
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Infant Formula Food, State Administration for Market Regulation, Harbin 150030, China.
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Infant Formula Food, State Administration for Market Regulation, Harbin 150030, China; Food Laboratory of Zhongyuan, Luohe 462300, Henan, China.
| | - Chaoxin Man
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Infant Formula Food, State Administration for Market Regulation, Harbin 150030, China.
| |
Collapse
|
6
|
Kordyl O, Styrna Z, Wojtyłko M, Michniak-Kohn B, Osmałek T. Microneedle-based arrays - Breakthrough strategy for the treatment of bacterial and fungal skin infections. Microbes Infect 2025; 27:105426. [PMID: 39326631 DOI: 10.1016/j.micinf.2024.105426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Currently, fungal and bacterial skin infections rank among the most challenging public health problems due to the increasing prevalence of microorganisms and the development of resistance to available drugs. A major issue in treating these infections with conventional topical medications is the poor penetration through the stratum corneum, the outermost layer of the skin. The concept of microneedles seems to be a future-proof approach for delivering drugs directly into deeper tissues. By bypassing the skin barrier, microneedle systems allow therapeutic substances to reach deeper layers more efficiently, significantly improving treatment outcomes. Nonetheless, the primary challenges regarding the effectiveness of microneedles involve selecting the appropriate size and shape, along with polymer composition and fabrication technology, to enable controlled and efficient drug release. This review offers a comprehensive overview of the latest knowledge on microneedle types and manufacturing techniques, highlighting their potential effectiveness in treating bacterial and fungal skin infections. It includes updated statistics on infection prevalence and provides a detailed examination of common bacterial and fungal diseases, focusing on their symptoms, causative species, and treatment methods. Additionally, the review addresses safety considerations, regulatory aspects, and future perspectives for microneedle-based therapeutic systems. It also underscores the importance of industrialization and clinical translation efforts, emphasizing the significant potential of microneedle technology for advancing medical applications.
Collapse
Affiliation(s)
- Oliwia Kordyl
- Chair and Department of Pharmaceutical Technology, 3D Printing Division, Poznan University of Medical Sciences, 3 Rokietnicka Street, 60-806, Poznań, Poland
| | - Zuzanna Styrna
- Chair and Department of Pharmaceutical Technology, 3D Printing Division, Poznan University of Medical Sciences, 3 Rokietnicka Street, 60-806, Poznań, Poland
| | - Monika Wojtyłko
- Chair and Department of Pharmaceutical Technology, 3D Printing Division, Poznan University of Medical Sciences, 3 Rokietnicka Street, 60-806, Poznań, Poland
| | - Bozena Michniak-Kohn
- Center for Dermal Research and Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Tomasz Osmałek
- Chair and Department of Pharmaceutical Technology, 3D Printing Division, Poznan University of Medical Sciences, 3 Rokietnicka Street, 60-806, Poznań, Poland.
| |
Collapse
|
7
|
Hallan SS, Ferrara F, Cortesi R, Sguizzato M. Potential of the Nano-Encapsulation of Antioxidant Molecules in Wound Healing Applications: An Innovative Strategy to Enhance the Bio-Profile. Molecules 2025; 30:641. [PMID: 39942745 PMCID: PMC11820390 DOI: 10.3390/molecules30030641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/21/2025] [Accepted: 01/25/2025] [Indexed: 02/16/2025] Open
Abstract
Naturally available antioxidants offer remarkable medicinal applications in wound healing. However, the encapsulation of these phytoactive moieties into suitable nano-scale drug delivery systems has always been challenging due to their inherent characteristics, such as low molecular weight, poor aqueous solubility, and inadequate skin permeability. Here, we provide a systematic review focusing on the major obstacles hindering the development of various lipid and polymer-based drug transporters to carry these cargos to the targeted site. Additionally, this review covers the possibility of combining the effects of a polymer and a lipid within one system, which could increase the skin permeability threshold. Moreover, the lack of suitable physical characterization techniques and the challenges associated with scaling up the progression of these nano-carriers limit their utility in biomedical applications. In this context, consistent progressive approaches for addressing these shortcomings are introduced, and their prospects are discussed in detail.
Collapse
Affiliation(s)
- Supandeep Singh Hallan
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda 151401, India
| | - Francesca Ferrara
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy; (F.F.); (M.S.)
| | - Rita Cortesi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy; (F.F.); (M.S.)
- Biotechnology Interuniversity Consortium (C.I.B.), Ferrara Section, University of Ferrara, I-44121 Ferrara, Italy
| | - Maddalena Sguizzato
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy; (F.F.); (M.S.)
| |
Collapse
|
8
|
Kumar D, Pandey S, Shiekmydeen J, Kumar M, Chopra S, Bhatia A. Therapeutic Potential of Microneedle Assisted Drug Delivery for Wound Healing: Current State of the Art, Challenges, and Future Perspective. AAPS PharmSciTech 2025; 26:25. [PMID: 39779610 DOI: 10.1208/s12249-024-03017-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
Microneedles (MNs) appear as a transformative and minimally invasive platform for transdermal drug delivery, representing a highly promising strategy in wound healing therapeutics. This technology, entailing the fabrication of micron-scale needle arrays, enables the targeted and efficient delivery of bioactive agents into the epidermal and dermal layers without inducing significant pain or discomfort. The precise penetration of MNs facilitates localized and sustained drug release, which significantly enhances tissue regeneration and accelerates wound closure. Furthermore, MNs can be engineered to encapsulate essential bioactive compounds, including antimicrobial agents, growth factors, and stem cells, which are critical for modulating the wound healing cascade and mitigating infection risk. The biodegradable nature of these MNs obviates the need for device removal, rendering them particularly advantageous in the management of chronic wounds such as diabetic ulcers and pressure sores. The integration of nanotechnology within MNs further augments their drug-loading capacity, stability, and controlled-release kinetics, offering a sophisticated therapeutic modality. This cutting-edge approach has the potential to redefine wound care by optimizing therapeutic efficacy, reducing adverse effects, and enhancing patient adherence. As MN technology advances, its application in wound healing exemplifies a dynamic frontier within biomedical engineering and regenerative medicine.
Collapse
Affiliation(s)
- Devesh Kumar
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, Uttar Pradesh, India
| | - Shubham Pandey
- Institute of Nuclear Medicine & Allied Sciences (INMAS), Brig. S. K Majumdar Marg, Timarpur, Delhi, 110054, India
- Department of Chemistry, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | - Jailani Shiekmydeen
- Jailani Shiekmydeen, Formulation R&D, Alpha Pharma Industries, KAEC, Rabigh, Saudi Arabia
| | - Mohit Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India.
| | - Shruti Chopra
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India.
| | - Amit Bhatia
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India.
| |
Collapse
|
9
|
Wang Z, Tong S, Niu J, Cao C, Gao A, Jiao Y, Fu Y, Li D, Pan X, Cui D, Sheng N, Yan L, Cui S, Lin S, Liu Y. Microneedles: multifunctional devices for drug delivery, body fluid extraction, and bio-sensing. NANOSCALE 2025; 17:740-773. [PMID: 39606819 DOI: 10.1039/d4nr03538k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Microneedles represent a miniaturized mechanical structure with versatile applications, including transdermal drug delivery, vaccination, body-fluid extraction, and bio-sensing. Over the past two decades, microneedle-based devices have garnered considerable attention in the biomedicine field, exhibiting the potential for mitigating patient discomfort, enhancing treatment adherence, avoiding first-pass effects, and facilitating precise therapeutic interventions. As an application-oriented technology, the innovation of microneedles is generally carried out in response to a specific demand. Currently, three most common applications of microneedles are drug delivery, fluid extraction, and bio-sensing. This review focuses on the progress in the materials, fabrication techniques, and design of microneedles in recent years. On this basis, the progress and innovation of microneedles in the current research stage are introduced in terms of their three main applications.
Collapse
Affiliation(s)
- Zhitao Wang
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Siyu Tong
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Jiaqi Niu
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Cheng Cao
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Ang Gao
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yingao Jiao
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yanfei Fu
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Dongxia Li
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Xinni Pan
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200240, P. R. China
| | - Daxiang Cui
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Nengquan Sheng
- Department of General Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Li Yan
- Department of Geriatric Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
| | - Shengsheng Cui
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
- Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Shujing Lin
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
- Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yanlei Liu
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
- Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
10
|
Tang H, Cheng X, Liang L, Chen BZ, Liu C, Wang Y. A stimulus responsive microneedle-based drug delivery system for cancer therapy. Biomater Sci 2024; 12:6274-6283. [PMID: 39501760 DOI: 10.1039/d4bm00741g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
The intricate nature of the tumor microenvironment (TME) results in the inefficient delivery of anticancer drugs within tumor tissues, significantly compromising the therapeutic effect of cancer treatment. To address this issue, transdermal drug delivery microneedles (MNs) with high mechanical strength have emerged. Such MNs penetrate the skin barrier, enabling efficient drug delivery to tumor tissues. This approach enhances drug bioavailability, while also mitigating concerns such as liver and kidney toxicity associated with intravenous and oral drug administration. Notably, stimulus responsive MNs designed for drug delivery have the capacity to respond to various biological signals and pathological changes. This adaptability enables them to exert therapeutic effects within the TME, exploiting biochemical variations and tailoring treatment strategies to suit tumor characteristics. The present review surveys recent advancements in responsive MN systems. This comprehensive analysis serves as a valuable reference for the prospective application of smart MN drug delivery systems in cancer therapy.
Collapse
Affiliation(s)
- Hongyu Tang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xueqing Cheng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ling Liang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Bo Zhi Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Chaoyong Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Yushu Wang
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA.
| |
Collapse
|
11
|
Zhu H, Sun H, Dai J, Hao J, Zhou B. Chitosan-based hydrogels in cancer therapy: Drug and gene delivery, stimuli-responsive carriers, phototherapy and immunotherapy. Int J Biol Macromol 2024; 282:137047. [PMID: 39489261 DOI: 10.1016/j.ijbiomac.2024.137047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/18/2024] [Accepted: 10/28/2024] [Indexed: 11/05/2024]
Abstract
Nanotechnology has transformed the oncology sector by particularly targeting cancer cells and enhancing the efficacy of conventional therapies, not only improving efficacy of conventional therapeutics, but also reducing systemic toxicity. Environmentally friendly materials are the top choice for treating cancer. Chitosan, sourced from chitin, is widely used with its derivatives for the extensive synthesis or modification of nanostructures. Chitosan has been deployed to develop hydrogels, as 3D polymeric networks capable of water absorption with wide biomedical application. The chitosan hydrogels are biocompatible and biodegradable structures that can deliver drugs, genes or a combination of them in cancer therapy. Increased tumor ablation, reducing off-targeting feature and protection of genes against degradation are benefits of using chitosan hydrogels in cancer therapy. The efficacy of cancer immunotherapy can be improved by chitosan hydrogels to prevent emergence of immune evasion. In addition, chitosan hydrogels facilitate photothermal and photodynamic therapy for tumor suppression. Chitosan hydrogels can synergistically integrate chemotherapy, immunotherapy, and phototherapy in cancer treatment. Additionally, chitosan hydrogels that respond to stimuli, specifically thermo-sensitive hydrogels, have been developed for inhibiting tumors.
Collapse
Affiliation(s)
- Hailin Zhu
- Department of Pathology, Ganzhou Cancer Hospital, Ganzhou City, Jiangxi Province, China
| | - Hao Sun
- Faculty of Science, Autonomous University of Madrid, Spainish National Research Council-Consejo Superior de Investigaciones Científicas, (UAM-CSIC), 28049 Madrid, Spain
| | - Jingyuan Dai
- School of Computer Science and Information Systems, Northwest Missouri State University, MO, USA
| | - Junfeng Hao
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, Guangdong, China; Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang 110022, Liaoning, China.
| | - Boxuan Zhou
- Department of General Surgery, Breast Disease Center, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| |
Collapse
|
12
|
Ghosh R, Singh P, Pandit AH, Tariq U, Bhunia BK, Kumar A. Emerging Technological Advancement for Chronic Wound Treatment and Their Role in Accelerating Wound Healing. ACS APPLIED BIO MATERIALS 2024; 7:7101-7132. [PMID: 39466167 DOI: 10.1021/acsabm.4c01064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Chronic wounds are a major healthcare burden and may severely affect the social, mental, and economic status of the patients. Any impairment in wound healing stages due to underlying factors leads to a prolonged healing time and subsequently to chronic wounds. Traditional approaches for the treatment of chronic wounds include dressing free local therapy, dressing therapy, and tissue engineering based scaffold therapies. However, traditional therapies need improvisation and have been advanced through breakthrough technologies. The present review spans traditional therapies and further gives an extensive account of advancements in the treatment of chronic wounds. Cutting edge technologies, such as 3D printing, which includes inkjet printing, fused deposition modeling, digital light processing, extrusion-based printing, microneedle array-based therapies, gene therapy, which includes microRNAs (miRNAs) therapy, and smart wound dressings for real time monitoring of wound conditions through assessment of pH, temperature, oxygen, moisture, metabolites, and their use for planning of better treatment strategies have been discussed in detail. The review further gives the future direction of treatments that will aid in lowering the healthcare burden caused due to chronic wounds.
Collapse
Affiliation(s)
- Rupita Ghosh
- Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
| | - Prerna Singh
- Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
| | - Ashiq Hussain Pandit
- Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
| | - Ubaid Tariq
- Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
| | - Bibhas Kumar Bhunia
- Centre of Excellence for Materials in Medicine, Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
| | - Ashok Kumar
- Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
- Centre for Nanosciences, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
- The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
- Centre of Excellence for Materials in Medicine, Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
| |
Collapse
|
13
|
Ghaferi M, Alavi SE, Phan K, Maibach H, Mohammed Y. Transdermal Drug Delivery Systems (TDDS): Recent Advances and Failure Modes. Mol Pharm 2024; 21:5373-5391. [PMID: 39365887 DOI: 10.1021/acs.molpharmaceut.4c00211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
Abstract
Transdermal drug delivery systems (TDDS), commonly refered to as "patches", present a nonintrusive technique to provide medication without the need for invasive procedures. These products adhere to the skin and gradually release a specific dosage of medicine at a defined rate into the bloodstream. Compared with other methods of drug delivery, TDDS offer benefits such as reduced invasiveness, convenience for patients, and avoidance of the metabolic processes that occur when drugs are orally consumed. Throughout time, TDDS have been used to provide medications for various medical conditions (such as nicotine, fentanyl, nitroglycerin, and clonidine), and their potential for delivering biologics is currently being explored. This review investigates the current literature on the drug delivery efficacy of medical TDDS through the transdermal route. Additionally, the review addresses potential risks and failure modes associated with TDDS design and development as well as strategies for mitigating such risks. A thorough understanding of failure modes provides a blueprint to mitigate failure and produce high-quality efficacious therapeutics.
Collapse
Affiliation(s)
- Mohsen Ghaferi
- Department of Chemical Engineering, Islamic Azad University, Shahrood Branch, Shahrood, Semnan 9WVR+757, Iran
| | - Seyed Ebrahim Alavi
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, Queensland 4102, Australia
| | - Khanh Phan
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, Queensland 4102, Australia
| | - Howard Maibach
- University of California, San Francisco, San Francisco, California 94115, United States
| | - Yousuf Mohammed
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, Queensland 4102, Australia
- School of Pharmacy, The University of Queensland, Brisbane, Queensland 4102, Australia
| |
Collapse
|
14
|
Nguyen TD, Nguyen TH, Vo VT, Nguyen TQ. Panoramic review on polymeric microneedle arrays for clinical applications. Biomed Microdevices 2024; 26:41. [PMID: 39312013 DOI: 10.1007/s10544-024-00724-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2024] [Indexed: 11/01/2024]
Abstract
Transdermal drug delivery (TDD) has significantly advanced medical practice in recent years due to its ability to prevent the degradation of substances in the gastrointestinal tract and avoid hepatic metabolism. Among different available approaches, microneedle arrays (MNAs) technology represents a fascinating delivery tool for enhancing TDD by penetrating the stratum corneum painless and minimally invasive for delivering antibacterial, antifungal, and antiviral medications. Polymeric MNAs are extensively utilized among many available materials due to their biodegradability, biocompatibility, and low toxicity. Therefore, this review provides a comprehensive discussion of polymeric MNAs, starting with understanding stratum corneum and developing MNA technology. Furthermore, the engineering concepts, fundamental considerations, challenges, and future perspectives of polymeric MNAs in clinical applications are properly outlined, offering a comprehensive and unique overview of polymeric MNAs and their potential for a broad spectrum of clinical applications.
Collapse
Affiliation(s)
- Tien Dat Nguyen
- School of Biomedical Engineering, International University, Ho Chi Minh City, 700000 HCMC, Viet Nam
- Vietnam National University, Ho Chi Minh City, 700000 HCMC, Vietnam
| | - Thi-Hiep Nguyen
- School of Biomedical Engineering, International University, Ho Chi Minh City, 700000 HCMC, Viet Nam
- Vietnam National University, Ho Chi Minh City, 700000 HCMC, Vietnam
| | - Van Toi Vo
- School of Biomedical Engineering, International University, Ho Chi Minh City, 700000 HCMC, Viet Nam
- Vietnam National University, Ho Chi Minh City, 700000 HCMC, Vietnam
| | - Thanh-Qua Nguyen
- School of Biomedical Engineering, International University, Ho Chi Minh City, 700000 HCMC, Viet Nam.
- Vietnam National University, Ho Chi Minh City, 700000 HCMC, Vietnam.
| |
Collapse
|
15
|
Vikram A, Patel SK, Singh A, Pathania D, Ray RS, Upadhyay AK, Dwivedi A. Natural autophagy activators: A promising strategy for combating photoaging. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155508. [PMID: 38901286 DOI: 10.1016/j.phymed.2024.155508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/22/2024] [Accepted: 02/28/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND Photodamage to the skin stands out as one of the most widespread epidermal challenges globally. Prolonged exposure to sunlight containing ultraviolet radiation (UVR) instigates stress, thereby compromising the skin's functionality and culminating in photoaging. Recent investigations have shed light on the importance of autophagy in shielding the skin from photodamage. Despite the acknowledgment of numerous phytochemicals possessing photoprotective attributes, their potential to induce autophagy remains relatively unexplored. PURPOSE Diminished autophagy activity in photoaged skin underscores the potential benefits of restoring autophagy through natural compounds to enhance photoprotection. Consequently, this study aims to highlight the role of natural compounds in safeguarding against photodamage and to assess their potential to induce autophagy via an in-silico approach. METHODS A thorough search of the literature was done using several databases, including PUBMED, Science Direct, and Google Scholar, to gather relevant studies. Several keywords such as Phytochemical, Photoprotection, mTOR, Ultraviolet Radiation, Reactive oxygen species, Photoaging, and Autophagy were utilized to ensure thorough exploration. To assess the autophagy potential of phytochemicals through virtual screening, computational methodologies such as molecular docking were employed, utilizing tools like AutoDock Vina. Receptor preparation for docking was facilitated using MGLTools. RESULTS The initiation of structural and functional deterioration in the skin due to ultraviolet radiation (UVR) or sunlight-induced reactive oxygen species/reactive nitrogen species (ROS/RNS) involves the modulation of various pathways. Natural compounds like phenolics, flavonoids, flavones, and anthocyanins, among others, possess chromophores capable of absorbing light, thereby offering photoprotection by modulating these pathways. In our molecular docking study, these phytochemicals have shown binding affinity with mTOR, a negative regulator of autophagy, indicating their potential as autophagy modulators. CONCLUSION This integrated review underscores the photoprotective characteristics of natural compounds, while the in-silico analysis reveals their potential to modulate autophagy, which could significantly contribute to their anti-photoaging properties. The findings of this study hold promise for the advancement of cosmeceuticals and therapeutics containing natural compounds aimed at addressing photoaging and various skin-related diseases. By leveraging their dual benefits of photoprotection and autophagy modulation, these natural compounds offer a multifaceted approach to combatting skin aging and related conditions.
Collapse
Affiliation(s)
- Apeksha Vikram
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow-226001 Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002 Uttar Pradesh, India
| | - Sunil Kumar Patel
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow-226001 Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002 Uttar Pradesh, India
| | - Arshwinder Singh
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala-147004 Punjab, India
| | - Diksha Pathania
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow-226001 Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002 Uttar Pradesh, India
| | - Ratan Singh Ray
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow-226001 Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002 Uttar Pradesh, India
| | - Atul Kumar Upadhyay
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala-147004 Punjab, India.
| | - Ashish Dwivedi
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow-226001 Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002 Uttar Pradesh, India.
| |
Collapse
|
16
|
Khan MUA, Aslam MA, Abdullah MFB, Gul H, Stojanović GM, Abdal-Hay A, Hasan A. Microneedle system for tissue engineering and regenerative medicines: a smart and efficient therapeutic approach. Biofabrication 2024; 16:042005. [PMID: 39121888 DOI: 10.1088/1758-5090/ad6d90] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/09/2024] [Indexed: 08/12/2024]
Abstract
The global demand for an enhanced quality of life and extended lifespan has driven significant advancements in tissue engineering and regenerative medicine. These fields utilize a range of interdisciplinary theories and techniques to repair structurally impaired or damaged tissues and organs, as well as restore their normal functions. Nevertheless, the clinical efficacy of medications, materials, and potent cells used at the laboratory level is always constrained by technological limitations. A novel platform known as adaptable microneedles has been developed to address the abovementioned issues. These microneedles offer a solution for the localized distribution of various cargos while minimizing invasiveness. Microneedles provide favorable patient compliance in clinical settings due to their effective administration and ability to provide a painless and convenient process. In this review article, we summarized the most recent development of microneedles, and we started by classifying various microneedle systems, advantages, and fundamental properties. Subsequently, it provides a comprehensive overview of different types of microneedles, the material used to fabricate microneedles, the fundamental properties of ideal microneedles, and their applications in tissue engineering and regenerative medicine, primarily focusing on preserving and restoring impaired tissues and organs. The limitations and perspectives have been discussed by concluding their future therapeutic applications in tissue engineering and regenerative medicines.
Collapse
Affiliation(s)
- Muhammad Umar Aslam Khan
- Department of Mechanical and Industrial Engineering, Qatar University, Doha 2713, Qatar
- Biomedical Research Center, Qatar University, Doha 2713, Qatar
| | - Muhammad Azhar Aslam
- Department of Physics, University of Engineering and Technology, Lahore 39161, Pakistan
| | - Mohd Faizal Bin Abdullah
- Oral and Maxillofacial Surgery Unit, School of Dental Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kota Bharu, Kelantan, Malaysia
- Oral and Maxillofacial Surgery Unit, Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kota Bharu, Kelantan, Malaysia
| | - Hilal Gul
- Department of Biomedical Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Goran M Stojanović
- Department of Electronics, Faculty of Technical Sciences, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Abdalla Abdal-Hay
- School of Dentistry, University of Queensland, 288 Herston Road, Herston, QLD 4006, Australia
- Department of Mechanical Engineering, Faculty of Engineering, South Valley University, Qena 83523, Egypt
- Faculty of Industry and Energy Technology, Mechatronics Technology Program, New Cairo Technological University, New Cairo-Fifth Settlement, Cairo 11835, Egypt
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, Qatar University, Doha 2713, Qatar
- Biomedical Research Center, Qatar University, Doha 2713, Qatar
| |
Collapse
|
17
|
Mohanty S, Desai VM, Jain R, Agrawal M, Dubey SK, Singhvi G. Unveiling the potential of photodynamic therapy with nanocarriers as a compelling therapeutic approach for skin cancer treatment: current explorations and insights. RSC Adv 2024; 14:21915-21937. [PMID: 38989245 PMCID: PMC11234503 DOI: 10.1039/d4ra02564d] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024] Open
Abstract
Skin carcinoma is one of the most prevalent types of carcinomas. Due to high incidence of side effects in conventional therapies (radiotherapy and chemotherapy), photodynamic therapy (PDT) has gained huge attention as an alternate treatment strategy. PDT involves the administration of photosensitizers (PS) to carcinoma cells which produce reactive oxygen species (ROS) on irradiation by specific wavelengths of light that result in cancer cells' death via apoptosis, autophagy, or necrosis. Topical delivery of PS to the skin cancer cells at the required concentration is a challenge due to the compounds' innate physicochemical characteristics. Nanocarriers have been observed to improve skin permeability and enhance the therapeutic efficiency of PDT. Polymeric nanoparticles (NPs), metallic NPs, and lipid nanocarriers have been reported to carry PS successfully with minimal side effects and high effectiveness in both melanoma and non-melanoma skin cancers. Advanced carriers such as quantum dots, microneedles, and cubosomes have also been addressed with reported studies to show their scope of use in PDT-assisted skin cancer treatment. In this review, nanocarrier-aided PDT in skin cancer therapies has been discussed with clinical trials and patents. Additionally, novel nanocarriers that are being investigated in PDT are also covered with their future prospects in skin carcinoma treatment.
Collapse
Affiliation(s)
- Shambo Mohanty
- Industrial Research Laboratory, Department of Pharmacy, FD-III, Birla Institute of Technology and Science, Pilani (BITS-PILANI) Pilani Campus, Vidya Vihar Pilani Rajasthan 333031 India
| | - Vaibhavi Meghraj Desai
- Industrial Research Laboratory, Department of Pharmacy, FD-III, Birla Institute of Technology and Science, Pilani (BITS-PILANI) Pilani Campus, Vidya Vihar Pilani Rajasthan 333031 India
| | - Rupesh Jain
- Industrial Research Laboratory, Department of Pharmacy, FD-III, Birla Institute of Technology and Science, Pilani (BITS-PILANI) Pilani Campus, Vidya Vihar Pilani Rajasthan 333031 India
| | - Mukta Agrawal
- School of Pharmacy & Technology Management, NMIMS Hyderabad India
| | | | - Gautam Singhvi
- Industrial Research Laboratory, Department of Pharmacy, FD-III, Birla Institute of Technology and Science, Pilani (BITS-PILANI) Pilani Campus, Vidya Vihar Pilani Rajasthan 333031 India
| |
Collapse
|
18
|
Freundlich E, Shimony N, Gross A, Mizrahi B. Bioadhesive microneedle patches for tissue sealing. Bioeng Transl Med 2024; 9:e10578. [PMID: 38818121 PMCID: PMC11135150 DOI: 10.1002/btm2.10578] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/06/2023] [Accepted: 07/05/2023] [Indexed: 06/01/2024] Open
Abstract
Sealing of soft tissues prevents leakage of gas and liquid, closes wounds, and promotes healing and is, therefore, of great significance in the clinical and medical fields. Although various formulations have been developed for reliable sealing of soft tissue, tradeoffs between adhesive properties, degradation profile, and tissue toxicity limit their clinical use. Hydrogel-based adhesives, for example, are highly biocompatible but adhere very weakly to the tissue and degrade quickly, while oxidized cellulose patches are poorly absorbed and may cause healing complications postoperatively. Here, we present a novel strategy for tissue sealing based on bioadhesive microneedle patches that can spontaneously adhere to tissue surface through electrostatic interactions and swell within it. A series of microneedle patches made of pullulan, chitosan, Carbopol, poly (lactic-co-glycolic acid), and a Carbopol/chitosan combination were fabricated and characterized for their use in tissue sealing. The effect of microneedle composition on the fabrication process, physical and mechanical properties, in vitro cytotoxicity, and in vivo biocompatibility were examined. The needle structure enables microneedles to strongly fix onto various tissues via physical interlocking, while their adhesive properties improve staying time and sealing capabilities. The microneedle patch comprising Carbopol needles and chitosan as a second pedestal layer presented the best results in terms of sealing and adhesion, a consequence of the needle's swelling and adhesion features combined with the supportive chitosan base layer. Finally, single Carbopol/chitosan patches stopped intense liver bleeding in a rat model significantly quicker and with less blood loss compared with commercial oxidized cellulose patches. These microneedles can be considered a promising cost-effective platform for adhering and sealing tissues as they can be applied quickly and painlessly, and require less trained medical staff and equipment.
Collapse
Affiliation(s)
- Eden Freundlich
- Faculty of Biotechnology and Food EngineeringTechnion – Israel Institute of TechnologyHaifaIsrael
| | - Neta Shimony
- Faculty of Biotechnology and Food EngineeringTechnion – Israel Institute of TechnologyHaifaIsrael
| | - Adi Gross
- Faculty of Biotechnology and Food EngineeringTechnion – Israel Institute of TechnologyHaifaIsrael
| | - Boaz Mizrahi
- Faculty of Biotechnology and Food EngineeringTechnion – Israel Institute of TechnologyHaifaIsrael
| |
Collapse
|
19
|
Priya S, Choudhari M, Tomar Y, Desai VM, Innani S, Dubey SK, Singhvi G. Exploring polysaccharide-based bio-adhesive topical film as a potential platform for wound dressing application: A review. Carbohydr Polym 2024; 327:121655. [PMID: 38171676 DOI: 10.1016/j.carbpol.2023.121655] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024]
Abstract
Wound dressings act as a physical barrier between the wound site and the external environment, preventing additional harm; choosing suitable wound dressings is essential for the healing process. Polysaccharide biopolymers have demonstrated encouraging findings and therapeutic prospects in recent decades about wound therapy. Additionally, polysaccharides have bioactive qualities like anti-inflammatory, antibacterial, and antioxidant capabilities that can help the process of healing. Due to their excellent tissue adhesion, swelling, water absorption, bactericidal, and immune-regulating properties, polysaccharide-based bio-adhesive films have recently been investigated as intriguing alternatives in wound management. These films also mimic the structure of the skin and stimulate the regeneration of the skin. This review presented several design standards and functions of suitable bio-adhesive films for the healing of wounds. Additionally, the most recent developments in the use of bio-adhesive films as wound dressings based on polysaccharides, including hyaluronic acid, chondroitin sulfate, dextran, alginate, chitosan, cellulose, konjac glucomannan, gellan gum, xanthan gum, pectin, guar gum, heparin, arabinogalactans, carrageen, and tragacanth gum, are thoroughly discussed. Lastly, to create a road map for the function of polysaccharide-based bio-adhesive films in advanced wound care, their clinical performances and future challenges in making bio-adhesive films by three-dimensional bioprinting are summarized.
Collapse
Affiliation(s)
- Sakshi Priya
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, Rajasthan 333031, India
| | - Manisha Choudhari
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, Rajasthan 333031, India
| | - Yashika Tomar
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, Rajasthan 333031, India
| | - Vaibhavi Meghraj Desai
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, Rajasthan 333031, India
| | - Srinath Innani
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, Rajasthan 333031, India
| | | | - Gautam Singhvi
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, Rajasthan 333031, India.
| |
Collapse
|
20
|
Khorshidian A, Sharifi N, Choupani Kheirabadi F, Rezaei F, Sheikholeslami SA, Ariyannejad A, Esmaeili J, Basati H, Barati A. In Vitro Release of Glycyrrhiza Glabra Extract by a Gel-Based Microneedle Patch for Psoriasis Treatment. Gels 2024; 10:87. [PMID: 38391417 PMCID: PMC10887857 DOI: 10.3390/gels10020087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/01/2023] [Accepted: 01/17/2024] [Indexed: 02/24/2024] Open
Abstract
Microneedle patches are attractive drug delivery systems that give hope for treating skin disorders. In this study, to first fabricate a chitosan-based low-cost microneedle patch (MNP) using a CO2 laser cutter for in vitro purposes was tried and then the delivery and impact of Glycyrrhiza glabra extract (GgE) on the cell population by this microneedle was evaluated. Microscopic analysis, swelling, penetration, degradation, biocompatibility, and drug delivery were carried out to assess the patch's performance. DAPI staining and acridine orange (AO) staining were performed to evaluate cell numbers. Based on the results, the MNs were conical and sharp enough (diameter: 400-500 μm, height: 700-900 μm). They showed notable swelling (2 folds) during 5 min and good degradability during 30 min, which can be considered a burst release. The MNP showed no cytotoxicity against fibroblast cell line L929. It also demonstrated good potential for GgE delivery. The results from AO and DAPI staining approved the reduction in the cell population after GgE delivery. To sum up, the fabricated MNP can be a useful recommendation for lab-scale studies. In addition, a GgE-loaded MNP can be a good remedy for skin disorders in which cell proliferation needs to be controlled.
Collapse
Affiliation(s)
- Ayeh Khorshidian
- Department of Biomedical Engineering, TISSUEHUB Co., Tehran 1956854977, Iran;
- Department of Tissue Engineering, TISSUEHUB Co., Tehran 1956854977, Iran; (N.S.); (F.C.K.); (S.A.S.); (A.A.); (H.B.)
| | - Niloufar Sharifi
- Department of Tissue Engineering, TISSUEHUB Co., Tehran 1956854977, Iran; (N.S.); (F.C.K.); (S.A.S.); (A.A.); (H.B.)
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450066, China
| | - Fatemeh Choupani Kheirabadi
- Department of Tissue Engineering, TISSUEHUB Co., Tehran 1956854977, Iran; (N.S.); (F.C.K.); (S.A.S.); (A.A.); (H.B.)
- Department of Biomedical Engineering, Faculty of Engineering, Islamic Azad University, Tabriz 54911, Iran
| | - Farnoushsadat Rezaei
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO 65211, USA;
| | - Seyed Alireza Sheikholeslami
- Department of Tissue Engineering, TISSUEHUB Co., Tehran 1956854977, Iran; (N.S.); (F.C.K.); (S.A.S.); (A.A.); (H.B.)
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak 3848177584, Iran
| | - Ayda Ariyannejad
- Department of Tissue Engineering, TISSUEHUB Co., Tehran 1956854977, Iran; (N.S.); (F.C.K.); (S.A.S.); (A.A.); (H.B.)
- Department of Marine Biology, Faculty of Life Science and Biotechnology, Shahid Beheshti University, Tehran 1983969411, Iran
| | - Javad Esmaeili
- Department of Tissue Engineering, TISSUEHUB Co., Tehran 1956854977, Iran; (N.S.); (F.C.K.); (S.A.S.); (A.A.); (H.B.)
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak 3848177584, Iran
- Tissue Engineering Hub (TEHUB), Universal Scientific Education and Research Network (USERN), Tehran 1956854977, Iran
| | - Hojat Basati
- Department of Tissue Engineering, TISSUEHUB Co., Tehran 1956854977, Iran; (N.S.); (F.C.K.); (S.A.S.); (A.A.); (H.B.)
- Department of Chemical Engineering, Faculty of Engineering, Tehran University, Tehran 3584014179, Iran
| | - Aboulfazl Barati
- Center for Materials and Manufacturing Sciences, Department of Chemistry and Physics, Troy University, Troy, AL 36082, USA
| |
Collapse
|
21
|
Mohanty S, Swarup J, Priya S, Jain R, Singhvi G. Exploring the potential of polysaccharide-based hybrid hydrogel systems for their biomedical and therapeutic applications: A review. Int J Biol Macromol 2024; 256:128348. [PMID: 38007021 DOI: 10.1016/j.ijbiomac.2023.128348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
Hydrogels are a versatile category of biomaterials that have been widely applied in the fields of biomedicine for the last several decades. The three-dimensional polymeric crosslinked hydrophilic structures of the hydrogel can proficiently hold drugs, nanoparticles, and cells, making them a potential delivery system. However, disadvantages like low mechanical strength, poor biocompatibility, and unusual in-vivo biodegradation are associated with conventional hydrogels. To overcome these hurdles, hybrid hydrogels are designed using two or more structurally different polymeric units. Polysaccharides, characterized by their innate biocompatibility, biodegradability, and abundance, establish an ideal foundation for the development of these hybrid hydrogels. This review aims to discuss the studies that have utilized naturally occurring polysaccharides to prepare hybrid systems, which were aimed for various biomedical applications such as tissue engineering, bone and cartilage regeneration, wound healing, skin cancer treatment, antimicrobial therapy, osteoarthritis treatment, and drug delivery. Furthermore, this review extensively examines the properties of the employed polysaccharides within hydrogel matrices, emphasizing the advantageous characteristics that make them a preferred choice. Furthermore, the challenges associated with the commercial implementation of these systems are explored alongside an assessment of the current patent landscape.
Collapse
Affiliation(s)
- Shambo Mohanty
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) - Pilani, Pilani Campus, Rajasthan 333031, India
| | - Jayanti Swarup
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) - Pilani, Pilani Campus, Rajasthan 333031, India
| | - Sakshi Priya
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) - Pilani, Pilani Campus, Rajasthan 333031, India
| | - Rupesh Jain
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) - Pilani, Pilani Campus, Rajasthan 333031, India
| | - Gautam Singhvi
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) - Pilani, Pilani Campus, Rajasthan 333031, India.
| |
Collapse
|
22
|
Hasnain M, Kanwal T, Rehman K, Rehman SRU, Aslam S, Roome T, Perveen S, Zaidi MB, Saifullah S, Yasmeen S, Hasan A, Shah MR. Microarray needles comprised of arginine-modified chitosan/PVA hydrogel for enhanced antibacterial and wound healing potential of curcumin. Int J Biol Macromol 2023; 253:126697. [PMID: 37673138 DOI: 10.1016/j.ijbiomac.2023.126697] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 09/01/2023] [Accepted: 09/02/2023] [Indexed: 09/08/2023]
Abstract
Wound healing is a multifaceted and complex process that includes inflammation, hemostasis, remodeling, and granulation. Failures in any link may cause the healing process to be delayed. As a result, wound healing has always been a main research focus across the entire medical field, posing significant challenges and financial burdens. Hence, the current investigation focused on the design and development of arginine-modified chitosan/PVA hydrogel-based microneedles (MNs) as a curcumin (CUR) delivery system for improved wound healing and antibacterial activity. The substrate possesses exceptional swelling capabilities that allow tissue fluid from the wound to be absorbed, speeding up wound closure. The antibacterial activity of MNs was investigated against S. aureus and E. coli. The results revealed that the developed CUR-loaded MNs had increased antioxidant activity and sustained drug release behavior. Furthermore, after being loaded in the developed MNs, it revealed improved antibacterial activity of CUR. Wound healing potential was assessed by histopathological analysis and wound closure%. The observed results suggest that the CUR-loaded MNs greatly improved wound healing potential via tissue regeneration and collagen deposition, demonstrating the potential of developed MNs patches to be used as an effective carrier for wound healing in healthcare settings.
Collapse
Affiliation(s)
- Muhammad Hasnain
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Tasmina Kanwal
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Khadija Rehman
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| | - Syed Raza Ur Rehman
- Mechanical and Industrial Engineering, Qatar University, 2713, Doha, Qatar; Biomedical Research Center, Qatar University, 2713, Doha, Qatar.
| | - Shazmeen Aslam
- Dow Institute for Advanced Biological and Animal Research, Dow International Medical College, Dow University of Health Sciences, Karachi 74200, Pakistan.
| | - Talat Roome
- Dow Institute for Advanced Biological and Animal Research, Dow International Medical College, Dow University of Health Sciences, Karachi 74200, Pakistan; Molecular Pathology Section, Department of Pathology, Dow Diagnostic Reference and Research Laboratory, Dow University of Health Sciences, Karachi 74200, Pakistan.
| | - Samina Perveen
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, PR China
| | - Midhat Batool Zaidi
- Dow Institute for Advanced Biological and Animal Research, Dow International Medical College, Dow University of Health Sciences, Karachi 74200, Pakistan.
| | - Salim Saifullah
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; Pakistan Forest Institute Peshawar, Pakistan
| | - Saira Yasmeen
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Anwarul Hasan
- Mechanical and Industrial Engineering, Qatar University, 2713, Doha, Qatar; Biomedical Research Center, Qatar University, 2713, Doha, Qatar
| | - Muhammad Raza Shah
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| |
Collapse
|
23
|
Almajidi YQ, Gupta J, Sheri FS, Zabibah RS, Faisal A, Ruzibayev A, Adil M, Saadh MJ, Jawad MJ, Alsaikhan F, Narmani A, Farhood B. Advances in chitosan-based hydrogels for pharmaceutical and biomedical applications: A comprehensive review. Int J Biol Macromol 2023; 253:127278. [PMID: 37806412 DOI: 10.1016/j.ijbiomac.2023.127278] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/26/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
The treatment of diseases, such as cancer, is one of the most significant issues correlated with human beings health. Hydrogels (HGs) prepared from biocompatible and biodegradable materials, especially biopolymers, have been effectively employed for the sort of pharmaceutical and biomedical applications, including drug delivery systems, biosensors, and tissue engineering. Chitosan (CS), one of the most abundant bio-polysaccharide derived from chitin, is an efficient biomaterial in the prognosis, diagnosis, and treatment of diseases. CS-based HGs possess some potential advantages, like high values of bioactive encapsulation, efficient drug delivery to a target site, sustained drug release, good biocompatibility and biodegradability, high serum stability, non-immunogenicity, etc., which made them practical and useful for pharmaceutical and biomedical applications. In this review, we summarize recent achievements and advances associated with CS-based HGs for drug delivery, regenerative medicine, disease detection and therapy.
Collapse
Affiliation(s)
| | - Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura Pin Code 281406, U.P., India
| | - Fatime Satar Sheri
- College of Dentistry, National University of Science and Technology, Dhi Qar, Iraq
| | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Ahmed Faisal
- Department of Pharmacy, Al-Noor University College, Nineveh, Iraq
| | - Akbarali Ruzibayev
- Department of Food Products Technology, Tashkent Institute of Chemical Technology, Navoi street 32, 100011 Tashkent City, Uzbekistan
| | - Mohaned Adil
- Pharmacy College, Al-Farahidi University, Baghdad, Iraq
| | - Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan
| | | | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia; School of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia.
| | - Asghar Narmani
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
24
|
Dai P, Ge X, Sun C, Jiang H, Zuo W, Wu P, Liu C, Deng S, Yang J, Dai J, Ju Y. A Novel Methacryloyl Chitosan Hydrogel Microneedles Patch with Sustainable Drug Release Property for Effective Treatment of Psoriasis. Macromol Biosci 2023; 23:e2300194. [PMID: 37534769 DOI: 10.1002/mabi.202300194] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/17/2023] [Indexed: 08/04/2023]
Abstract
Psoriasis is a chronic and recurrent skin disease that often requires long-term treatment, and topical transdermal drug delivery can reduce systemic side effects. However, it is still a challenge in efficient transdermal drug delivery for psoriasis treatment due to low penetration efficiency of most drugs and the abnormal skin conditions of psoriasis patients. Here, a safe and effective methacryloyl chitosan hydrogel microneedles (CSMA hMNs) patch is developed and served as a sustained drug release platform for the treatment of psoriasis. By systematically optimizing the CSMA preparation, CSMA hMNs with excellent morphological characteristics and strong mechanical properties (0.7 N needle-1 ) are prepared with a concentration of only 3% (w/v) CSMA. As a proof-of-concept, methotrexate (MTX) and nicotinamide (NIC) are loaded into CSMA hMNs patch, which can produce a sustained drug release of 80% within 24 h in vitro. In vivo experiments demonstrated that the CSMA hMNs patch can effectively inhibit the skin thickening and spleen enlargement of psoriatic mice and has a good biosafety profile at sufficient therapeutic doses. This study provides a new idea for the preparation of hMN systems using modified CS or other biocompatible materials and offers an effective therapeutic option for psoriasis treatment.
Collapse
Affiliation(s)
- Panpan Dai
- College of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Xing Ge
- College of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Caixia Sun
- College of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Hui Jiang
- Nanjing Institute for Food and Drug Control, Nanjing, 210038, China
| | - Wanchao Zuo
- College of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Pengcheng Wu
- College of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Cong Liu
- College of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Shuyue Deng
- College of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Jun Yang
- Nanjing Institute for Food and Drug Control, Nanjing, 210038, China
| | - Jianjun Dai
- College of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
- College of Life Science and Technology, Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education) and State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, 211198, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Laboratory of Animal Bacteriology (Ministry of Agriculture), College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yanmin Ju
- College of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| |
Collapse
|
25
|
Shriky B, Babenko M, Whiteside BR. Dissolving and Swelling Hydrogel-Based Microneedles: An Overview of Their Materials, Fabrication, Characterization Methods, and Challenges. Gels 2023; 9:806. [PMID: 37888379 PMCID: PMC10606778 DOI: 10.3390/gels9100806] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/29/2023] [Accepted: 10/02/2023] [Indexed: 10/28/2023] Open
Abstract
Polymeric hydrogels are a complex class of materials with one common feature-the ability to form three-dimensional networks capable of imbibing large amounts of water or biological fluids without being dissolved, acting as self-sustained containers for various purposes, including pharmaceutical and biomedical applications. Transdermal pharmaceutical microneedles are a pain-free drug delivery system that continues on the path to widespread adoption-regulatory guidelines are on the horizon, and investments in the field continue to grow annually. Recently, hydrogels have generated interest in the field of transdermal microneedles due to their tunable properties, allowing them to be exploited as delivery systems and extraction tools. As hydrogel microneedles are a new emerging technology, their fabrication faces various challenges that must be resolved for them to redeem themselves as a viable pharmaceutical option. This article discusses hydrogel microneedles from a material perspective, regardless of their mechanism of action. It cites the recent advances in their formulation, presents relevant fabrication and characterization methods, and discusses manufacturing and regulatory challenges facing these emerging technologies before their approval.
Collapse
Affiliation(s)
- Bana Shriky
- Faculty of Engineering and Digital Technologies, University of Bradford, Bradford BD7 1DP, UK;
| | | | - Ben R. Whiteside
- Faculty of Engineering and Digital Technologies, University of Bradford, Bradford BD7 1DP, UK;
| |
Collapse
|
26
|
Yang Y, Li B, Wang M, Pan S, Wang Y, Gu J. Effect of natural polymer materials on skin healing based on internal wound microenvironment: a review. Front Chem 2023; 11:1257915. [PMID: 37731458 PMCID: PMC10507733 DOI: 10.3389/fchem.2023.1257915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/17/2023] [Indexed: 09/22/2023] Open
Abstract
The concept of wound microenvironment has been discussed for a long time. However, the mechanism of the internal microenvironment is relatively little studied. Here, we present a systematic discussion on the mechanism of natural polymer materials such as chitosan, cellulose, collagen and hyaluronic acid through their effects on the internal wound microenvironment and regulation of wound healing, in order to more comprehensively explain the concept of wound microenvironment and provide a reference for further innovative clinical for the preparation and application of wound healing agents.
Collapse
Affiliation(s)
- Ying Yang
- The People’s Hospital of SND, Suzhou, Jiangsu, China
| | - Bingbing Li
- Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Mengxin Wang
- Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Shicong Pan
- Guzhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Yu Wang
- The People’s Hospital of SND, Suzhou, Jiangsu, China
| | - Jinhui Gu
- Suzhou Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
| |
Collapse
|
27
|
Sadjadi S, Heydari A. Palladated Cyclodextrin Nanosponge-Alginate Dual Bead as an Efficient Catalyst for Hydrogenation of Nitroarenes in Aqueous Solution. Polymers (Basel) 2023; 15:3240. [PMID: 37571132 PMCID: PMC10422427 DOI: 10.3390/polym15153240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
In this study, we present a novel composite material consisting of β-cyclodextrin nanosponge and sodium alginate, used as a support for the immobilization of palladium (Pd) nanoparticles. The composite alginate-cyclodextrin nanosponge beads were prepared, taking advantage of the 3D polymeric network and β-cyclodextrin cavity of the nanosponge. These beads exhibited excellent encapsulation capabilities for hydrophobic substrates, allowing their transfer in aqueous media. The cyclodextrin nanosponge served as a stabilizer for Pd nanoparticles and facilitated phase transfer. Additionally, the sodium alginate bead contributed to the robustness of the structure and improved the recovery and recyclability of the composite material. Comparative studies with control catalysts confirmed the beneficial effect of incorporating cyclodextrin nanosponge within alginate beads, particularly for more hydrophobic substrates. Optimization of reaction conditions revealed that employing 0.03 g of catalyst per mmol of nitroarene at 45 °C resulted in the maximum yield within 90 min. Evaluation of the substrate scope demonstrated the hydrogenation capability of various substrates with different electronic properties under the developed protocol. Notably, the nitro group was selectively reduced in substrates featuring competing functionalities. Furthermore, the recyclability and stability of the composite catalyst were confirmed, making it a promising candidate for sustainable catalysis.
Collapse
Affiliation(s)
- Samahe Sadjadi
- Gas Conversion Department, Faculty of Petrochemicals, Iran Polymer and Petrochemical Institute, P.O. Box 14975-112, Tehran 14977-13115, Iran
| | - Abolfazl Heydari
- Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia;
| |
Collapse
|
28
|
Gopan G, Jose J, Khot KB, Bandiwadekar A. The use of cellulose, chitosan and hyaluronic acid in transdermal therapeutic management of obesity: A review. Int J Biol Macromol 2023:125374. [PMID: 37330096 DOI: 10.1016/j.ijbiomac.2023.125374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/29/2023] [Accepted: 06/11/2023] [Indexed: 06/19/2023]
Abstract
Obesity is a clinical condition with rising popularity and detrimental impacts on human health. According to the World Health Organization, obesity is the sixth most common cause of death worldwide. It is challenging to combat obesity because medications that are successful in the clinical investigation have harmful side effects when administered orally. The conventional approaches for treating obesity primarily entail synthetic compounds and surgical techniques but possess severe adverse effects and recurrences. As a result, a safe and effective strategy to combat obesity must be initiated. Recent studies have shown that biological macromolecules of the carbohydrate class, such as cellulose, hyaluronic acid, and chitosan, can enhance the release and efficacy of medications for obesity but due to their short biological half-lives and poor oral bioavailability, their distribution rate is affected. This helps to comprehend the need for an effective therapeutic approach via a transdermal drug delivery system. This review focuses on the transdermal administration, utilizing cellulose, chitosan, and hyaluronic acid via microneedles, as it offers a promising solution to overcome existing therapy limitations in managing obesity and it also highlights how microneedles can effectively deliver therapeutic substances through the skin's outer layer, bypassing pain receptors and specifically targeting adipose tissue.
Collapse
Affiliation(s)
- Gopika Gopan
- NITTE Deemed-to-be University, NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangalore 575018, India
| | - Jobin Jose
- NITTE Deemed-to-be University, NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangalore 575018, India.
| | - Kartik Bhairu Khot
- NITTE Deemed-to-be University, NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangalore 575018, India
| | - Akshay Bandiwadekar
- NITTE Deemed-to-be University, NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangalore 575018, India
| |
Collapse
|
29
|
Sultana N, Waheed A, Ali A, Jahan S, Aqil M, Sultana Y, Mujeeb M. Exploring new frontiers in drug delivery with minimally invasive microneedles: fabrication techniques, biomedical applications and regulatory aspects. Expert Opin Drug Deliv 2023:1-17. [PMID: 37038271 DOI: 10.1080/17425247.2023.2201494] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
INTRODUCTION Transdermal drug delivery is limited by the stratum corneum, inhibiting the therapeutic potential of the permeants. Microneedles (MN) have opened new frontiers in transdermal drug delivery systems. These micro-sized needles offer painless and accentuated delivery of drugs even with high molecular weights. AREAS COVERED The review embodies drug delivery strategies with microneedles with a description of MN types and fabrication techniques using various materials. The application of MN is not limited to drug delivery, but it also encompasses in vaccine delivery, diagnosis, phlebotomy and even in the cosmetic industry. The review also tabulates microneedle-based marketed formulations. In a nutshell, we aim to present a panoramic view of microneedles including the design, applications, and regulatory aspects of MN. EXPERT OPINION With the availability of numerous materials at the disposal of pharmaceutical scientists; the microneedle-based drug delivery technology has offered significant interventions towards the management of chronic maladies including cardiovascular disorders, diabetes, asthma, mental depression, etc. As happens with any new technology there are concerns with MN also such as biocompatibility issues with the material used for the fabrication. Nevertheless, the pharmaceutical industry must strive for preparing harmless, efficient, and cost-effective MN based delivery systems for wider acceptance and patient compliance.
Collapse
Affiliation(s)
- Niha Sultana
- School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India-110062
| | - Ayesha Waheed
- School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India-110062
| | - Asad Ali
- School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India-110062
| | - Samreen Jahan
- School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India-110062
| | - Mohd Aqil
- School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India-110062
| | - Yasmin Sultana
- School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India-110062
| | - Mohd Mujeeb
- School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India-110062
| |
Collapse
|
30
|
Leong MY, Kong YL, Burgess K, Wong WF, Sethi G, Looi CY. Recent Development of Nanomaterials for Transdermal Drug Delivery. Biomedicines 2023; 11:biomedicines11041124. [PMID: 37189742 DOI: 10.3390/biomedicines11041124] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 05/17/2023] Open
Abstract
Nano-engineered medical products first appeared in the last decade. The current research in this area focuses on developing safe drugs with minimal adverse effects associated with the pharmacologically active cargo. Transdermal drug delivery, an alternative to oral administration, offers patient convenience, avoids first-pass hepatic metabolism, provides local targeting, and reduces effective drug toxicities. Nanomaterials provide alternatives to conventional transdermal drug delivery including patches, gels, sprays, and lotions, but it is crucial to understand the transport mechanisms involved. This article reviews the recent research trends in transdermal drug delivery and emphasizes the mechanisms and nano-formulations currently in vogue.
Collapse
Affiliation(s)
- Moong Yan Leong
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, Subang Jaya, Selangor Darul Ehsan 47500, Malaysia
| | - Yeo Lee Kong
- Department of Engineering and Applied Science, America Degree Program, Taylor's University Lakeside Campus, Subang Jaya, Selangor Darul Ehsan 47500, Malaysia
| | - Kevin Burgess
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, TX 77842, USA
| | - Won Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Chung Yeng Looi
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, Subang Jaya, Selangor Darul Ehsan 47500, Malaysia
| |
Collapse
|
31
|
Priya S, Tomar Y, Desai VM, Singhvi G. Enhanced skin drug delivery using dissolving microneedles: a potential approach for the management of skin disorders. Expert Opin Drug Deliv 2023:1-18. [PMID: 36893450 DOI: 10.1080/17425247.2023.2190095] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
INTRODUCTION For decades, finding effective long-term or disease-modifying treatments for skin disorders has been a major focus of scientists. The conventional drug delivery systems showed poor efficacy with high doses and are associated with side effects, which lead to challenges in adherence to therapy. Therefore, to overcome the limitations of conventional drug delivery systems, drug delivery research has focused on topical, transdermal, and intradermal drug delivery systems. Among all, the dissolving microneedles have gained attention with a new range of advantages of drug delivery in skin disorders such as breaching skin barriers with minimal discomfort and its simplicity of application to the skin, which allows patients to administer it themselves. AREAS COVERED This review highlighted the insights into dissolving microneedles for different skin disorders in detail. Additionally, it also provides evidence for its effective utilization in the treatment of various skin disorders. The clinical trial status and patents for dissolving microneedles for the management of skin disorders are also covered. EXPERT OPINION The current review on dissolving microneedles for skin drug delivery is accentuating the breakthroughs achieved so far in the management of skin disorders. The output of the discussed case studies anticipated that dissolving microneedles can be a novel drug delivery strategy for the long-term treatment of skin disorders.
Collapse
Affiliation(s)
- Sakshi Priya
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, India
| | - Yashika Tomar
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, India
| | - Vaibhavi Meghraj Desai
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, India
| | - Gautam Singhvi
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, India
| |
Collapse
|
32
|
George A, Shrivastav PS. Preparation and optimization of tetraethyl orthosilicate cross-linked chitosan-guar gum-poly(vinyl alcohol) composites reinforced with montmorillonite for sustained release of sitagliptin. Int J Biol Macromol 2023; 229:51-61. [PMID: 36587636 DOI: 10.1016/j.ijbiomac.2022.12.302] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/25/2022] [Accepted: 12/26/2022] [Indexed: 12/30/2022]
Abstract
Development of efficient drug carriers has become an integral part of advanced drug delivery systems. This work aims at developing composites by adopting an economically viable method for sustained release of anti-diabetic drug sitagliptin - a potent and selective dipeptidyl peptidase-IV inhibitor. To combat the harsh environment of gastrointestinal tract, the composite (F13) was prepared using biodegradable polymers namely chitosan, guar gum and poly(vinyl alcohol) with montmorillonite clay as nano-filler and tetraethyl orthosilicate as the cross linker. The composites were characterized using FT-IR, XRD, DSC and SEM techniques. Physical properties such as thickness, swelling capacity, folding endurance and water solubility were studied. In vitro analysis of composites (F17, F19 and F20) in simulated gastric medium showed <14 % cumulative release in 2 h while a sustained release was observed in simulated intestinal medium. Drug release kinetics was investigated using five mathematical models namely zero order, first order, Higuchi, Hixon-Crowell and Korsemeyer-Peppas wherein the latter was the best fit model (R2, 0.969). Antimicrobial studies of drug free composite (F13) revealed good activity against bacteria as well as fungi. The results implied that the composites were pH sensitive and could serve as a potential choice for sustained release of drugs.
Collapse
Affiliation(s)
- Archana George
- Department of Chemistry, School of Sciences, Gujarat University, Navrangpura, Ahmedabad 380009, Gujarat, India
| | - Pranav S Shrivastav
- Department of Chemistry, School of Sciences, Gujarat University, Navrangpura, Ahmedabad 380009, Gujarat, India.
| |
Collapse
|
33
|
Kazmi I, Shaikh MAJ, Afzal O, Alfawaz Altamimi AS, Almalki WH, Alzarea SI, Al-Abbasi FA, Pandey M, Dureja H, Singh SK, Dua K, Gupta G. Chitosan-based nano drug delivery system for lung cancer. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104196] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
34
|
Revolutionizing Therapeutic Delivery with Microneedle Technology for Tumor Treatment. Pharmaceutics 2022; 15:pharmaceutics15010014. [PMID: 36678643 PMCID: PMC9866211 DOI: 10.3390/pharmaceutics15010014] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/11/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
The tumor is an uncontrolled growth of tissue that can be localized (benign) or possesses the capability of metastasis (malignant). The conventional methods of tumor diagnosis, such as acupuncture, endoscopy, and histopathology, and treatment methods, such as injections, chemotherapy, surgery, and radiotherapy, are invasive, expensive, and pose severe safety and management issues for the patients. Microneedle technology is a recently developed approach for active transdermal drug delivery. It is minimally invasive, self-administrable, bypasses the first-pass effect, and effectively delivers chemotherapeutics and drugs at low doses, thus, overcoming the drawbacks of conventional delivery systems. This review provides an idea of the types, materials utilized in the fabrication, and techniques used for the preparation of microneedles (MNs), as well as their application in tumor diagnosis and treatment. Additionally, emphasis is given to the case studies related to MNs-assisted tumor therapy, such as photothermal therapy, gene therapy, photodynamic therapy, chemotherapy, immunotherapy, and various combination therapies. MNs also serve as a tool for diagnosis by the bio-sampling of blood and interstitial skin fluid, as well as biosensing various cancer biomarkers. The combined therapy and diagnostics provide theranostic MNs for enhanced and personalized tumor therapy. The limitations and prospects of MNs development are also discussed.
Collapse
|
35
|
Prabahar K, Udhumansha U, Elsherbiny N, Qushawy M. Microneedle mediated transdermal delivery of β-sitosterol loaded nanostructured lipid nanoparticles for androgenic alopecia. Drug Deliv 2022; 29:3022-3034. [PMID: 36110028 PMCID: PMC10003132 DOI: 10.1080/10717544.2022.2120927] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/22/2022] [Accepted: 08/29/2022] [Indexed: 02/01/2023] Open
Abstract
Plant-derived 5 α-reductase inhibitors, such as β-sitosterol and phytosterol glycosides, have been used to treat androgenic alopecia, but their oral absolute bioavailability is poor. This study aimed to develop a transdermal drug delivery system of β-sitosterol (BS) using a nanostructured lipid carrier (NLC) incorporated into polymeric microneedles (MN). Using a high-speed homogenization method, NLC was formulated variables were optimized by Box-Behnken statistical design. The optimized formulation of BS-loaded NLCs was incorporated into the chitosan-based MNs to prepare NLC-loaded polymeric MNs (NLC-MNs) and evaluated using testosterone induced alopecia rats. The cumulative amount of β-sitosterol associated with NLC- MN which penetrated the rat skin in-vitro was 3612.27 ± 120.81 μg/cm2, while from the NLC preparation was 2402.35 ± 162.5 μg/cm2. The steady state flux (Jss) of NLC-MN was significantly higher than that of the optimized NLC formulation (P < 0.05). Anagen/telogen ratio was significantly affected by NLC and NLC-MN, which was 2.22 ± 0.34, 1.24 ± 0.18 respectively compared to 0.26 ± 0.08 for animal group treated with testosterone. The reversal of androgen-induced hair loss in animals treated with β-sitosterol was a sign of hair follicle dominance in the anagenic growth phase. However, NLC-MN delivery system has shown significant enhancement of hair growth in rats. From these experimental data, it can be concluded that NLC incorporated MN transdermal system have potential in effective treatment of androgenic alopecia.
Collapse
Affiliation(s)
- Kousalya Prabahar
- Department of Pharmacy Practice, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
- Department of Pharmacy Practice, Faculty of Pharmacy, Dr. M.G.R. Educational and Research Institute, Velappanchavadi, Chennai, Tamil Nadu, India
| | | | - Nehal Elsherbiny
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Mona Qushawy
- Department of Pharmaceutics, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
- Department of Pharmaceutics, Faculty of Pharmacy, Sinai University, Alarish, North Sinai, Egypt
| |
Collapse
|
36
|
Gorantla S, Puppala ER, Naidu V, Saha RN, Singhvi G. Hyaluronic acid-coated proglycosomes for topical delivery of tofacitinib in rheumatoid arthritis condition: Formulation design, in vitro, ex vivo characterization, and in vivo efficacy studies. Int J Biol Macromol 2022; 224:207-222. [DOI: 10.1016/j.ijbiomac.2022.10.117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/29/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022]
|
37
|
Priya S, Singhvi G. Microneedles-based drug delivery strategies: A breakthrough approach for the management of pain. Biomed Pharmacother 2022; 155:113717. [PMID: 36174381 DOI: 10.1016/j.biopha.2022.113717] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/03/2022] [Accepted: 09/19/2022] [Indexed: 11/29/2022] Open
Abstract
Pain is a personalized event or body alarm system that can limit a patient's activities and lead to negative repercussions. The commercially available conventional treatment strategies like oral, parenteral, and topical drug delivery systems for pain management are associated with side effects and poor patient compliance. The transdermal route is eminent for its painless distribution. Among transdermal drug delivery system, microneedles (MNs) are gaining attention for their application with delivery at the deeper dermal layer because it bypasses the major barrier of the skin, easily accesses the skin dermal microcirculation, prevents damage to dermal blood vessels, and can be simply inserted into the skin without utilizing any additional applicator devices. Hence, considered a promising drug delivery strategy with high patient compliance. This review highlights the recent advancements of MNs in pain management. The present work mainly emphasizes all the case studies reported from the past 10 years that utilize MNs containing therapeutics in the treatment of chronic pain-associated diseases like rheumatoid arthritis, neuropathic pain, osteoarthritis, psoriatic arthritis, and atopic dermatitis. These studies have proven the efficacious application of MNs in the management of chronic pain and inflammation. The review also covered the clinical trials, patents, and future goals of pain management by using MNs.
Collapse
Affiliation(s)
- Sakshi Priya
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) - Pilani, Pilani Campus, Rajasthan 333031, India
| | - Gautam Singhvi
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) - Pilani, Pilani Campus, Rajasthan 333031, India.
| |
Collapse
|
38
|
Recent Advances of Chitosan Formulations in Biomedical Applications. Int J Mol Sci 2022; 23:ijms231810975. [PMID: 36142887 PMCID: PMC9504745 DOI: 10.3390/ijms231810975] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 02/07/2023] Open
Abstract
Chitosan, a naturally abundant cationic polymer, is chemically composed of cellulose-based biopolymers derived by deacetylating chitin. It offers several attractive characteristics such as renewability, hydrophilicity, biodegradability, biocompatibility, non-toxicity, and a broad spectrum of antimicrobial activity towards gram-positive and gram-negative bacteria as well as fungi, etc., because of which it is receiving immense attention as a biopolymer for a plethora of applications including drug delivery, protective coating materials, food packaging films, wastewater treatment, and so on. Additionally, its structure carries reactive functional groups that enable several reactions and electrochemical interactions at the biomolecular level and improves the chitosan’s physicochemical properties and functionality. This review article highlights the extensive research about the properties, extraction techniques, and recent developments of chitosan-based composites for drug, gene, protein, and vaccine delivery applications. Its versatile applications in tissue engineering and wound healing are also discussed. Finally, the challenges and future perspectives for chitosan in biomedical applications are elucidated.
Collapse
|
39
|
Ouyang M, Wang X, Fu Y, Xie G, Du S, Li Y, Zhang L, Tao J, Zhu J. Skin optical clearing enabled by dissolving hyaluronic acid microneedle patches. Int J Biol Macromol 2022; 220:1188-1196. [PMID: 36044941 DOI: 10.1016/j.ijbiomac.2022.08.153] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/27/2022] [Accepted: 08/23/2022] [Indexed: 11/05/2022]
Abstract
Optical imaging and phototherapy are of great significance in the detection, diagnosis, and therapy of diseases. Depth of light in the skin tissues in optical imaging and phototherapy can be significantly improved with the assistance of optical clearing technology by weakening the scattering from the refractive indexes inhomogeneity among skin constituents. However, the barrier of the stratum corneum restricts the penetration of optical clearing agents into deep tissues and limits the optical clearing effects. Herein, we develop an optical clearing strategy by using dissolving microneedle (MN) patches made of hyaluronic acid (HA), which can effortlessly and painlessly penetrate the stratum corneum to reach the epidermis and dermis. By using the HA MN patches, the transmittance of skin tissues is improved by about 12.13 %. We show that the HA MN patches enhance the clarity of blood vessels to realize naked-eyes observation. Moreover, a simulated subcutaneous tumor cells experiment also verifies that the optical clearing effects of the HA MN patch efficiently boost the efficiency of the photodynamic killing of tumor cells by 26.8 %. As a courageous attempt, this study provides a promising avenue to improve the optical clearing effects for further clinical application of optical imaging and phototherapy.
Collapse
Affiliation(s)
- Mengping Ouyang
- Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Xue Wang
- Department of Dermatology, Union Hospital, Tongji Medical College, HUST, Wuhan 430022, China
| | - Yangxue Fu
- Department of Dermatology, Union Hospital, Tongji Medical College, HUST, Wuhan 430022, China
| | - Ge Xie
- Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Shuo Du
- Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Yan Li
- Department of Dermatology, Union Hospital, Tongji Medical College, HUST, Wuhan 430022, China
| | - Lianbin Zhang
- Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| | - Juan Tao
- Department of Dermatology, Union Hospital, Tongji Medical College, HUST, Wuhan 430022, China.
| | - Jintao Zhu
- Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| |
Collapse
|
40
|
Priya S, Batra U, R N S, Sharma S, Chaurasiya A, Singhvi G. Polysaccharide-based nanofibers for pharmaceutical and biomedical applications: A review. Int J Biol Macromol 2022; 218:209-224. [PMID: 35872310 DOI: 10.1016/j.ijbiomac.2022.07.118] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/12/2022] [Accepted: 07/16/2022] [Indexed: 01/22/2023]
Abstract
Nanofibers are fibrous nanocarriers that can be synthesized from natural polymers, synthetic polymers, semiconducting materials, composite materials, and carbon-based materials. Recently, natural polysaccharides-based nanofibers are gaining attention in the field of pharmaceuticals and biomedical as these are biocompatible, biodegradable, non-toxic, and economic. Nanofibers can deliver a significant amount of drug to the targeted site and provide effective interaction of therapeutic agent at the site of action due to a larger surface area. Other important advantages of nanofibers are low density, high porosity, small pore size, high mechanical strength, and low cost. In this review, natural polysaccharides such as alginate, pullulan, hyaluronic acid, dextran, cellulose, chondroitin sulfate, chitosan, xanthan gum, and gellan gum are discussed for their characteristics, pharmaceutical utility, and biomedical applications. The authors have given particular emphasis to the several fabrication processes that utilize these polysaccharides to form nanofibers, and their recent updates in pharmaceutical applications such as drug delivery, tissue engineering, skin disorders, wound-healing dressings, cancer therapy, bioactive molecules delivery, anti-infectives, and solubility enhancement. Despite these many advantages, nanofibers have been explored less for their scale-up and applications in advanced therapeutic delivery.
Collapse
Affiliation(s)
- Sakshi Priya
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) - Pilani, Pilani Campus, Rajasthan 333031, India
| | - Unnati Batra
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) - Pilani, Pilani Campus, Rajasthan 333031, India
| | - Samshritha R N
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) - Pilani, Pilani Campus, Rajasthan 333031, India
| | - Sudhanshu Sharma
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) - Pilani, Pilani Campus, Rajasthan 333031, India
| | - Akash Chaurasiya
- Translational Pharmaceutics Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) - Pilani, Hyderabad Campus, Telangana 500078, India
| | - Gautam Singhvi
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) - Pilani, Pilani Campus, Rajasthan 333031, India.
| |
Collapse
|
41
|
Al-Rawi NN, Rawas-Qalaji M. Dissolving microneedles with antibacterial functionalities: A systematic review of laboratory studies. Eur J Pharm Sci 2022; 174:106202. [PMID: 35526676 DOI: 10.1016/j.ejps.2022.106202] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/18/2022] [Accepted: 05/03/2022] [Indexed: 02/05/2023]
Abstract
Dissolving microneedles (MN) with enhanced physiochemical properties are generating considerable interest as antibacterial delivery devices, which minimize hazardous sharp wastes, injuries, and transmission of blood-borne pathogens. This systematic review demonstrates and analyzes the current state of dissolvable antibacterial MN to establish their efficacy, and the effect of biomaterials selection on their final properties. A systematic review was conducted according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Three electronic databases Pubmed, Google scholar, and Scopus were explored for peer-reviewed articles. A total of 551 results with 176 citations and 915 references of resulted articles were reviewed and analyzed. No publication date restrictions were imposed. Last search was placed on 9th of June, 2021. The literature search in electronic databases according to the inclusion criteria was funneled down to 20 papers that were related to antibacterial effects of dissolving microneedles. In conclusion, all included dissolving MN studies presented an enhanced or at least an equal antibacterial activity against common bacterial species when compared to conventional treatments. In addition, composition modifications can enhance their activity and performance. Other factors such as the size and geometry of the produced MN can be tailored to conform to the infected site's characteristics.
Collapse
Affiliation(s)
| | - Mutasem Rawas-Qalaji
- College of Pharmacy, University of Sharjah, Sharjah, UAE; Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, UAE; Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA.
| |
Collapse
|
42
|
Chitosan: A Sustainable Material for Multifarious Applications. Polymers (Basel) 2022; 14:polym14122335. [PMID: 35745912 PMCID: PMC9228948 DOI: 10.3390/polym14122335] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 02/04/2023] Open
Abstract
Due to the versatility of its features and capabilities, chitosan generated from marine crustacean waste is gaining importance and appeal in a wide variety of applications. It was initially used in pharmaceutical and medical applications due to its antibacterial, biocompatible, and biodegradable properties. However, as the demand for innovative materials with environmentally benign properties has increased, the application range of chitosan has expanded, and it is now used in a variety of everyday applications. The most exciting aspect of the chitosan is its bactericidal properties against pathogens, which are prevalent in contaminated water and cause a variety of human ailments. Apart from antimicrobial and water filtration applications, chitosan is used in dentistry, in water filtration membranes to remove metal ions and some heavy metals from industrial effluents, in microbial fuel cell membranes, and in agriculture to maintain moisture in fruits and leaves. It is also used in skin care products and cosmetics as a moisturizer, in conjunction with fertilizer to boost plant immunity, and as a bi-adhesive for bonding woods and metals. As it has the capacity to increase the life span of food items and raw meat, it is an unavoidable component in food packing and preservation. The numerous applications of chitosan are reviewed in this brief study, as well as the approaches used to incorporate chitosan alongside traditional materials and its effect on the outputs.
Collapse
|
43
|
Synthesis of Hydroxypropyltrimethyl Ammonium Chitosan Derivatives Bearing Thioctate and the Potential for Antioxidant Application. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092682. [PMID: 35566038 PMCID: PMC9101115 DOI: 10.3390/molecules27092682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/07/2022] [Accepted: 04/19/2022] [Indexed: 11/17/2022]
Abstract
Hydroxypropyltrimethyl ammonium chloride chitosan (HACC) is one of the most important water-soluble chitosan derivatives; its derivatives have gained growing attention due to their potential biomedical applications. Here, hydroxypropyltrimethyl ammonium chitosan derivatives bearing thioctate (HACTs), with different degrees of substitution of thioctate, were prepared using HACC and α-lipoic acid as the reaction precursors, using an ion exchange method. The structural characteristics of the synthesized derivatives were confirmed by FTIR, 1H NMR, and 13C NMR spectroscopy. In addition, their antioxidant behaviors were also investigated in vitro by the assays of reducing power, and scavenging activities against hydroxyl radicals and DPPH radicals. The antioxidant assay indicated that HACTs displayed strong antioxidant activity compared with HACC, especially in terms of reducing power. Besides, the antioxidant activities of the prepared products were further enhanced with the increase in the test concentration and the degrees of substitution of thioctate. At the maximum test concentration of 1.60 mg/mL, the absorbance value at 700 nm of HACTs, under the test conditions, was 4.346 ± 0.296, while the absorbance value of HACC was 0.041 ± 0.007. The aforementioned results support the use of HACTs as antioxidant biomaterials in food and the biomedical field.
Collapse
|
44
|
Gorantla S, Batra U, Rn S, Puppala ER, Waghule T, Naidu V, Singhvi G. Emerging trends in microneedle-based drug delivery strategies for the treatment of rheumatoid arthritis. Expert Opin Drug Deliv 2022; 19:395-407. [PMID: 35287532 DOI: 10.1080/17425247.2022.2053674] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The current drug therapies for treating Rheumatoid Arthritis (RA) include NSAIDs, DMARDs, or biological products designed to mitigate the symptoms of the disease. These therapies with conventional delivery systems possess limitations such as lack of selectivity and adverse effects in the extra-articular tissues. Microneedles-based transdermal drug delivery gained huge attention that can overcome the limitations associated with conventional preparations. AREAS COVERED This review aims to provide detailed information on types of Microneedles (MNs) and their usage in drug delivery for the management of Rheumatoid Arthritis. In addition, it also provides evidence for the effective use of MNs in RA treatment. Various types of MNs, their regulatory status, clinical trials and patents are also compiled in this review. EXPERT OPINION Microneedles are small patch-like structures consisting of needles in micron range arranged in array-like structure, used to manage drugs designed to be given via transdermal route. Microneedles provide painless delivery, fast onset of action, bypass the first-pass metabolism and be easily self-administered. In the case of RA treatment, which requires a long-term application of drugs, MNs is a new and emerging way to ease the symptoms of RA.
Collapse
Affiliation(s)
- Srividya Gorantla
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, India, 333031
| | - Unnati Batra
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, India, 333031
| | - Samshritha Rn
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, India, 333031
| | - Eswara Rao Puppala
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India, 781101
| | - Tejashree Waghule
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, India, 333031
| | - Vgm Naidu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India, 781101
| | - Gautam Singhvi
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, India, 333031
| |
Collapse
|
45
|
Yu X, Wang C, Wang Y, Li L, Gao X, Zhu T, An P, Meng Z, Wang W, Wu T, Hao Y. Microneedle Array Patch Made of Kangfuxin/Chitosan/Fucoidan Complex Enables Full-Thickness Wound Healing. Front Chem 2022; 10:838920. [PMID: 35155371 PMCID: PMC8826035 DOI: 10.3389/fchem.2022.838920] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 01/04/2022] [Indexed: 12/15/2022] Open
Abstract
Skin wound caused by external injury is usually difficult to be cured by conventional topical administration because of its poor drug diffusion across the stratum corneum. It has been recognized that stratum corneum is the major obstacle for transdermal drug delivery. To address this issue, microneedles (MNs) have been developed to penetrate the stratum corneum of the skin and then form micron-sized pores between the epidermis and the dermis layers. As such, biomacromolecule drugs and/or insoluble drug molecules can be allowed for effective transdermal penetration. A multifunctional microneedle array patch that can avoid wound infection and promote tissue remolding has important value for wound healing. Among others, marine polysaccharides have attracted much attention in multifarious biomedical applications due to their excellent (bio)physical and chemical properties. Herein, we developed a microneedle array patch using a blend of kangfuxin (KFX), chitosan (CS), and fucoidan (FD), named KCFMN, for accelerating full-thickness wound healing. The traditional Chinese medicine KFX extracted from Periplaneta americana (PA) has effective bio-functions in promoting wound healing. The macro-/micro-morphology and (bio)physicochemical properties of such composite microneedles were also studied. We showed that the KCFMN patch displayed noticeable antibacterial properties and good cytocompatibility. In particular, the KCFMN patch significantly accelerated the wound healing development in a full-thickness wound in rats by improving the epithelial thickness and collagen deposition. Thus, this versatile KCFMN patch has great prospects as a dressing for full-thickness wound healing.
Collapse
Affiliation(s)
- Xixi Yu
- Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, China
| | - Caixia Wang
- Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, China
| | - Yuanfei Wang
- Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, China
| | - Longhao Li
- Department of Stomatology, School of Stomatology of Weifang Medical University, Weifang, China
| | - Xiang Gao
- Department of Stomatology, School of Stomatology of Weifang Medical University, Weifang, China
| | - Tingting Zhu
- Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, China
| | - Pugen An
- Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, China
| | - Zhaojian Meng
- Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, China
| | - Wanchun Wang
- Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, China
- *Correspondence: Wanchun Wang, ; Tong Wu, ; Yuanping Hao,
| | - Tong Wu
- Department of Cosmetic and Plastic Surgery, Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
- Shandong Key Laboratory of Textile Materials for Healthcare, Collaborative Innovation Center for Eco-textiles of Shandong Province, Ministry of Education, Qingdao, China
- *Correspondence: Wanchun Wang, ; Tong Wu, ; Yuanping Hao,
| | - Yuanping Hao
- Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, China
- *Correspondence: Wanchun Wang, ; Tong Wu, ; Yuanping Hao,
| |
Collapse
|
46
|
Dubey SK, Bhatt T, Agrawal M, Saha RN, Saraf S, Saraf S, Alexander A. Application of chitosan modified nanocarriers in breast cancer. Int J Biol Macromol 2022; 194:521-538. [PMID: 34822820 DOI: 10.1016/j.ijbiomac.2021.11.095] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/11/2021] [Accepted: 11/14/2021] [Indexed: 12/12/2022]
Abstract
As per the WHO, every year around 2.1 million women are detected with breast cancer. It is one of the most invasive cancer in women and second most among all, contributing around 15% of death worldwide. The available anticancer therapies including chemo, radio, and hormone therapy are associated with a high load of reversible and irreversible adverse effects, limited therapeutic efficacy, and low chances of quality survival. To minimize the side effects, improving therapeutic potency and patient compliance promising targeted therapies are highly desirable. In this sequence, various nanocarriers and target modified systems have been explored by researchers throughout the world. Among these chitosan-based nanocarriers offers one of the most interesting, flexible, and biocompatible systems. The unique characteristics of chitosan like surface flexibility, biocompatibility, hydrophilicity, non-toxic and cost-effective behavior assist to overcome the inadequacy of existing therapy. The present review throws light on the successes, failures, and current status of chitosan modified novel techniques for tumor targeting of bioactives. It also emphasizes the molecular classification of breast cancer and current clinical development of novel therapies. The review compiles most relevant works of the past 10 years focusing on the application of chitosan-based nanocarrier against breast cancer.
Collapse
Affiliation(s)
- Sunil Kumar Dubey
- Medical Research, R&D Healthcare Division, Emami Ltd, 13, BT Road, Belgharia, 700056 Kolkata, India; Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, India.
| | - Tanya Bhatt
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, India
| | - Mukta Agrawal
- School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS), Hyderabad, India, 509301
| | - Ranendra Narayan Saha
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, India
| | - Swarnlata Saraf
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| | - Shailendra Saraf
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| | - Amit Alexander
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER-Guwahati), Sila, Changsari, Kamrup, 781101 Guwahati, Assam, India.
| |
Collapse
|
47
|
Vyas T, Rapalli VK, Chellappan DK, Dua K, Dubey SK, Singhvi G. Bacterial biofilms associated skin disorders: Pathogenesis, advanced pharmacotherapy and nanotechnology-based drug delivery systems as a treatment approach. Life Sci 2021; 287:120148. [PMID: 34785190 DOI: 10.1016/j.lfs.2021.120148] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/30/2021] [Accepted: 11/09/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND Biofilms are microcolonies of microbes that form communities with a variety of microbes, exhibit the same gene composition but differ in gene expression. Biofilm-associated infections have been in existence for a long, however, biofilm-associated skin disorders have not been investigated much. OBJECTIVES Biofilms, which are made mostly of the matrix can be thought of as communities of microbes that are more virulent and more difficult to eradicate as compared to their planktonic counterparts. Currently, several formulations are available in the market which have the potential to treat biofilm-assisted skin disorders. However, the existing pharmacotherapies are not competent enough to cure them effectively and entirely, in several cases. KEY FINDINGS Especially with the rising resistance towards antibiotics, it has become particularly challenging to ameliorate these disorders completely. The new approaches are being used to combat biofilm-associated skin disorders, some of them being photodynamic therapy, nanotherapies, and the use of novel drug delivery systems. The focus of attention, however, is nanotherapy. Micelles, solid lipid nanoparticles, quatsomes, and many others are being considered to find a better solution for the biofilm-associated skin disorders. SIGNIFICANCE This review is an attempt to give a perspective on these new approaches for treating bacterial biofilms associated with skin disorders.
Collapse
Affiliation(s)
- Taraj Vyas
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani 333031, India
| | | | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney (UTS), Ultimo, NSW 2007, Australia; Centre for Inflammation, Centenary Institute, Sydney, NSW 2050, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, 2007 New South Wales, Australia
| | - Sunil Kumar Dubey
- Medical Research, R&D Healthcare Division, Emami Ltd, Kolkata 700056, India
| | - Gautam Singhvi
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani 333031, India.
| |
Collapse
|
48
|
Chitosan: An Overview of Its Properties and Applications. Polymers (Basel) 2021; 13:polym13193256. [PMID: 34641071 PMCID: PMC8512059 DOI: 10.3390/polym13193256] [Citation(s) in RCA: 499] [Impact Index Per Article: 124.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/16/2021] [Accepted: 09/22/2021] [Indexed: 12/13/2022] Open
Abstract
Chitosan has garnered much interest due to its properties and possible applications. Every year the number of publications and patents based on this polymer increase. Chitosan exhibits poor solubility in neutral and basic media, limiting its use in such conditions. Another serious obstacle is directly related to its natural origin. Chitosan is not a single polymer with a defined structure but a family of molecules with differences in their composition, size, and monomer distribution. These properties have a fundamental effect on the biological and technological performance of the polymer. Moreover, some of the biological properties claimed are discrete. In this review, we discuss how chitosan chemistry can solve the problems related to its poor solubility and can boost the polymer properties. We focus on some of the main biological properties of chitosan and the relationship with the physicochemical properties of the polymer. Then, we review two polymer applications related to green processes: the use of chitosan in the green synthesis of metallic nanoparticles and its use as support for biocatalysts. Finally, we briefly describe how making use of the technological properties of chitosan makes it possible to develop a variety of systems for drug delivery.
Collapse
|
49
|
Djošić M, Janković A, Mišković-Stanković V. Electrophoretic Deposition of Biocompatible and Bioactive Hydroxyapatite-Based Coatings on Titanium. MATERIALS (BASEL, SWITZERLAND) 2021; 14:5391. [PMID: 34576615 PMCID: PMC8472014 DOI: 10.3390/ma14185391] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/09/2021] [Accepted: 09/11/2021] [Indexed: 01/18/2023]
Abstract
Current trends in biomaterials science address the issue of integrating artificial materials as orthopedic or dental implants with biological materials, e.g., patients' bone tissue. Problems arise due to the simple fact that any surface that promotes biointegration and facilitates osteointegration may also provide a good platform for the rapid growth of bacterial colonies. Infected implant surfaces easily lead to biofilm formation that poses a major healthcare concern since it could have destructive effects and ultimately endanger the patients' life. As of late, research has centered on designing coatings that would eliminate possible infection but neglected to aid bone mineralization. Other strategies yielded surfaces that could promote osseointegration but failed to prevent microbial susceptibility. Needless to say, in order to assure prolonged implant functionality, both coating functions are indispensable and should be addressed simultaneously. This review summarizes progress in designing multifunctional implant coatings that serve as carriers of antibacterial agents with the primary intention of inhibiting bacterial growth on the implant-tissue interface, while still promoting osseointegration.
Collapse
Affiliation(s)
- Marija Djošić
- Institute for Technology of Nuclear and Other Mineral Raw Materials, Bulevar Franš d’Eperea 86, 11000 Belgrade, Serbia;
| | - Ana Janković
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia;
| | - Vesna Mišković-Stanković
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia;
| |
Collapse
|