1
|
Chen Y, Liu X, Zhou Y, Zheng Y, Xiao Y, Yuan X, Yan Q, Chen X. Functional characterization of four soybean C2H2 zinc-finger genes in Phytophthora resistance. PLANT SIGNALING & BEHAVIOR 2025; 20:2481185. [PMID: 40110654 PMCID: PMC11926910 DOI: 10.1080/15592324.2025.2481185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 03/08/2025] [Accepted: 03/13/2025] [Indexed: 03/22/2025]
Abstract
Soybean (Glycine max) is one of the most important industrial and oilseed crops; however, the yield is threatened by the invasion of various pathogens. Soybean stem and root rot, caused by Phytophthora sojae, is a destructive disease that significantly damages soybean production worldwide. C2H2 zinc finger protein (C2H2-ZFP) is a large transcription factor family in plants that plays crucial roles in stress response and hormone signal transduction. Given its importance, we analyzed the expression patterns of C2H2-ZFP family genes in response to P. sojae infection and selected four candidate genes to explore their molecular characteristics and functions related to P. sojae resistance. Subcellular localization analysis indicated that three ZFPs (GmZFP2, GmZFP3, and GmZFP4) were localized in the nucleus, while GmZFP1 was found in both the nucleus and plasma membrane. Dual-luciferase transient expression analysis revealed that all four ZFPs possessed transcriptional repression activation. Further transient expression in N. benthamiana leaves demonstrated that GmZFP2 induced significant cell death and reactive oxygen species (ROS) accumulation. GmZFP2 significantly enhanced the resistance to Phytophthora pathogens in N. benthamiana leaves and soybean hairy roots. This study provides insights in to the functional characterization of soybean ZFPs in Phytophthora resistance and demonstrates that GmZFP2 plays a positive role in P. sojae resistance in soybeans.
Collapse
Affiliation(s)
- Yuting Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, China
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xinyue Liu
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, China
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yanyan Zhou
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, China
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yu Zheng
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, China
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Yating Xiao
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, China
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xingxing Yuan
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, China
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Qiang Yan
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, China
| | - Xin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, China
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| |
Collapse
|
2
|
Alvarez-Vasquez A, Lima-Huanca L, Bardales-Álvarez R, Valderrama-Valencia M, Condori-Pacsi S. In Silico Characterization and Determination of Gene Expression Levels Under Saline Stress Conditions in the Zinc Finger Family of the C1-2i Subclass in Chenopodium quinoa Willd. Int J Mol Sci 2025; 26:2570. [PMID: 40141212 PMCID: PMC11942331 DOI: 10.3390/ijms26062570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 03/28/2025] Open
Abstract
Quinoa (Chenopodium quinoa) is recognized for its tolerance to abiotic stress, including salinity, and its recent genome sequencing has facilitated the study of the mechanisms underlying this adaptation. This study focused on characterizing the ZAT genes of the C2H2 subfamily in quinoa, evaluating their expression under saline stress. Eight ZAT genes were identified and analyzed in silico using genomic databases and bioinformatics tools, assessing their conserved domains, cis-regulatory motifs, and physicochemical characteristics. Additionally, germination assays, hydroponic cultivation, and gene expression analyses via qPCR were performed on halotolerant (UNSA_VP033) and halosensitive (UNSA_VP021) accessions exposed to different NaCl concentrations. The genes CqZAT4 and CqZAT6 showed high expression in the halotolerant accession under saline stress, correlating with increased dry matter, root length, and water retention. In contrast, the halosensitive accession exhibited lower tolerance, with significant reductions in these metrics. Promoter analysis revealed cis-elements associated with hormonal and stress responses. ZAT genes play a key role in quinoa's response to saline stress, with CqZAT4 and CqZAT6 standing out in the halotolerant accession. These findings could drive the development of more resilient varieties, contributing to agricultural sustainability in saline soils.
Collapse
Affiliation(s)
- Andrea Alvarez-Vasquez
- Escuela de Biología, Facultad de Ciencias Biológicas, Universidad Nacional de San Agustín de Arequipa, Arequipa 04001, Peru; (L.L.-H.); (R.B.-Á.); (M.V.-V.); (S.C.-P.)
| | | | | | | | | |
Collapse
|
3
|
Han X, Song C, Fang S, Wei Y, Tian J, Zheng X, Jiao J, Wang M, Zhang K, Hao P, Wu G, Bai T. Systematic identification and analysis of the HSP70 genes reveals MdHSP70-38 enhanced salt tolerance in transgenic tobacco and apple. Int J Biol Macromol 2025; 289:138943. [PMID: 39701234 DOI: 10.1016/j.ijbiomac.2024.138943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/02/2024] [Accepted: 12/17/2024] [Indexed: 12/21/2024]
Abstract
Heat shock protein 70 (HSP70) is a class of important molecular chaperones that are involved in protein folding, stabilization, and maturation, and play a vital role in plant growth and response to environmental stress. Apple trees frequently suffer from different-degree salt stress, which seriously affects their growth, quality, and yield. However, whether HSP70 genes are involved in salt tolerance is unexplored in apple. In this study, 67 MdHSP70 genes were identified and unevenly distributed on 17 apple chromosomes. Gene structure and protein motif analysis revealed that MdHSP70 genes in the same subgroup have similar intron phase and motif organization, further supporting the phylogenetic results. RNA-seq analysis showed the expression level of nine of 67 MdHSP70 genes was induced by salt stress. Subsequent qRT-PCR analysis revealed that MdHSP70-38 was dramatically up-regulated in response to salt stress. The overexpression of MdHSP70-38 in transgenic tobacco and apple improved salt stress tolerance, which was associated with less electrolyte leakage and malondialdehyde (MDA), as well as diminished accumulation of hydrogen peroxide (H2O2) and superoxide radicals (O2-). Our findings demonstrated that MdHSP70-38 played a positive regulatory role in salt tolerance in tobacco and apple, and provided a promising candidate gene in genetic applications for improving salt tolerance.
Collapse
Affiliation(s)
- Xuanxuan Han
- College of Horticulture, Henan Agricultural University, Zhengzhou 450046, China
| | - Chunhui Song
- College of Horticulture, Henan Agricultural University, Zhengzhou 450046, China
| | - Sen Fang
- College of Horticulture, Henan Agricultural University, Zhengzhou 450046, China
| | - Yuyao Wei
- College of Horticulture, Henan Agricultural University, Zhengzhou 450046, China
| | - Jianwen Tian
- College of Horticulture, Henan Agricultural University, Zhengzhou 450046, China
| | - Xianbo Zheng
- College of Horticulture, Henan Agricultural University, Zhengzhou 450046, China
| | - Jian Jiao
- College of Horticulture, Henan Agricultural University, Zhengzhou 450046, China
| | - Miaomiao Wang
- College of Horticulture, Henan Agricultural University, Zhengzhou 450046, China
| | - Kunxi Zhang
- College of Horticulture, Henan Agricultural University, Zhengzhou 450046, China
| | - Pengbo Hao
- College of Horticulture, Henan Agricultural University, Zhengzhou 450046, China
| | - Guoliang Wu
- College of Horticulture, Henan Agricultural University, Zhengzhou 450046, China.
| | - Tuanhui Bai
- College of Horticulture, Henan Agricultural University, Zhengzhou 450046, China.
| |
Collapse
|
4
|
Song W, Sun T, Xin R, Li X, Zhao Q, Guan S, Kan M, Zhou X, Sun X, Yang P. PlZAT10 binds to the ABA catabolism gene PlCYP707A2 promoter to mediate seed dormancy release in Paeonia lactiflora. PLANT CELL REPORTS 2024; 43:276. [PMID: 39520557 DOI: 10.1007/s00299-024-03363-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
KEY MESSAGE PlZAT10-PlCYP707A2 module promotes Paeonia lactiflora seeds germination. The herbaceous peony (Paeonia lactiflora) seeds exhibit double dormancy in the epicotyl and hypocotyl, which significantly inhibits the process of cultivation and breeding of new varieties. Nevertheless, the molecular mechanism underlying seed dormancy release in P. lactiflora remains to be fully identified. In this current study, we analyzed differentially expressed genes based on transcriptome data and selected the abscisic acid catabolic gene PlCYP707A2 for further investigation. The conserved domain of the protein indicated that PlCYP707A2 possessed a cytochrome P450 monooxygenase domain. Subcellular localization indicated that PlCYP707A2 was localized on the cytoplasm and cell membrane. Overexpression of PlCYP707A2 in P. lactiflora seeds decreased ABA contents and promoted seeds germination. The silencing of PlCYP707A2 resulted in seed dormancy and an alteration in the content of ABA. Moreover, yeast one-hybrid, electrophoretic mobility shift and dual-luciferase reporter assay revealed that PlZAT10 bound to the promoter of PlCYP707A2. In conclusion, the results demonstrated the mechanism of the PlZAT10-PlCYP707A2 module in regulating the dormancy release of P. lactiflora seeds, enriching relevant theories on seed dormancy and having significant implications for the herbaceous peony industry developing.
Collapse
Affiliation(s)
- Wenhui Song
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang, 110866, China
| | - Tianyi Sun
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang, 110866, China
| | - Rujie Xin
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang, 110866, China
| | - Xueting Li
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang, 110866, China
| | - Qingwen Zhao
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang, 110866, China
| | - Shixin Guan
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang, 110866, China
| | - Ming Kan
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang, 110866, China
| | - Xiaoqing Zhou
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang, 110866, China
| | - Xiaomei Sun
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China.
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang, 110866, China.
| | - Panpan Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
5
|
Lu Y, Wang K, Ngea GLN, Godana EA, Ackah M, Dhanasekaran S, Zhang Y, Su Y, Yang Q, Zhang H. Recent advances in the multifaceted functions of Cys2/His2-type zinc finger proteins in plant growth, development, and stress responses. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5501-5520. [PMID: 38912636 DOI: 10.1093/jxb/erae278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 06/21/2024] [Indexed: 06/25/2024]
Abstract
Recent research has highlighted the importance of Cys2/His2-type zinc finger proteins (C2H2-ZFPs) in plant growth and in responses to various stressors, and the complex structures of C2H2-ZFP networks and the molecular mechanisms underlying their responses to stress have received considerable attention. Here, we review the structural characteristics and classification of C2H2-ZFPs, and consider recent research advances in their functions. We systematically introduce the roles of these proteins across diverse aspects of plant biology, encompassing growth and development, and responses to biotic and abiotic stresses, and in doing so hope to lay the foundations for further functional studies of C2H2-ZFPs in the future.
Collapse
Affiliation(s)
- Yuchun Lu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Kaili Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | | | - Esa Abiso Godana
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Michael Ackah
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Solairaj Dhanasekaran
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Yu Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Yingying Su
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Qiya Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Hongyin Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| |
Collapse
|
6
|
Liu H, Liu Y, Liu F, Zeng L, Xu Y, Jin Q, Wang Y. Genome-wide identification of the Q-type C2H2 zinc finger protein gene family and expression analysis under abiotic stress in lotus (Nelumbo nucifera G.). BMC Genomics 2024; 25:648. [PMID: 38943098 PMCID: PMC11214253 DOI: 10.1186/s12864-024-10546-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 06/21/2024] [Indexed: 07/01/2024] Open
Abstract
BACKGROUND Lotus (Nelumbo nucifera G.) is an important aquatic plant with high ornamental, economic, cultural and ecological values, but abiotic stresses seriously affect its growth and distribution. Q-type C2H2 zinc finger proteins (ZFPs) play an important role in plant growth development and environmental stress responses. Although the Q-type C2H2 gene family has been identified in some plants, limited reports has been carried out it in lotus. RESULTS In this study, we identified 45 Q-type NnZFP members in lotus. Based on the phylogenetic tree, these Q-type NnZFP gene family members were divided into 4 groups, including C1-1i, C1-2i, C1-3i and C1-4i. Promoter cis-acting elements analysis indicated that most Q-type NnZFP gene family members in lotus were associated with response to abiotic stresses. Through collinearity analyses, no tandem duplication gene pairs and 14 segmental duplication gene pairs were identified, which showed that duplication events might play a key role in the expansion of the Q-type NnZFP gene family. The synteny results suggested that 54 and 28 Q-type NnZFP genes were orthologous to Arabidopsis and rice, respectively. The expression patterns of these Q-type NnZFP genes revealed that 30 Q-type NnZFP genes were expressed in at least one lotus tissue. Nn5g30550 showed relatively higher expression levels in all tested tissues. 12 genes were randomly selected with at least one gene from each phylogenetic clade, and the expression of these selected genes were confirmed by qRT-PCR (quantitative real-time polymerase chain reaction). The results indicated that Q-type NnZFP genes were extensively involved in cadmium, drought, salt and cold stresses responses. Among them, 11 genes responded to at least three different stress treatments, especially Nn2g12894, which induced by all four treatments. CONCLUSIONS These results could increase our understanding of the characterization of the Q-type NnZFP gene family and provide relevant information for further functional analysis of Q-type NnZFP genes in plant development, and abiotic stress tolerance in lotus.
Collapse
Affiliation(s)
- Huan Liu
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, Jiangsu Province, Nanjing Agricultural University, Weigang No.1, Nanjing, 210095, People's Republic of China
| | - Yidan Liu
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, Jiangsu Province, Nanjing Agricultural University, Weigang No.1, Nanjing, 210095, People's Republic of China
| | - Fangyu Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lihong Zeng
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, Jiangsu Province, Nanjing Agricultural University, Weigang No.1, Nanjing, 210095, People's Republic of China
| | - Yingchun Xu
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, Jiangsu Province, Nanjing Agricultural University, Weigang No.1, Nanjing, 210095, People's Republic of China
| | - Qijiang Jin
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, Jiangsu Province, Nanjing Agricultural University, Weigang No.1, Nanjing, 210095, People's Republic of China
| | - Yanjie Wang
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, Jiangsu Province, Nanjing Agricultural University, Weigang No.1, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
7
|
Nikraftar S, Ebrahimzadegan R, Majdi M, Mirzaghaderi G. Genome-wide analysis of the C2H2-ZFP gene family in Stevia rebaudiana reveals involvement in abiotic stress response. Sci Rep 2024; 14:6164. [PMID: 38486071 PMCID: PMC10940304 DOI: 10.1038/s41598-024-56624-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/08/2024] [Indexed: 03/18/2024] Open
Abstract
Stevia (Stevia rebaudiana Bertoni) is a natural sweetener plant that accumulates highly sweet steviol glycosides (SGs) especially in leaves. Stevia is native to humid areas and does not have a high tolerance to drought which is the most serious abiotic stress restricting its production worldwide. C2H2 zinc finger proteins (C2H2-ZFPs) are a group of well-known transcription factors that involves in various developmental, physiological and biochemical activities as well as in response to abiotic stresses. Here we analyzed C2H2-ZFP gene family in stevia and identified a total of 185 putative SrC2H2-ZF proteins from the genome sequence of S. rebaudiana. We further characterized the identified C2H2-ZF domains and their organization, additional domains and motifs and analyzed their physicochemical properties, localization and gene expression patterns. The cis-element analysis suggested multiple roles of SrC2H2-ZFPs in response to light, phytohormone, and abiotic stresses. In silico analysis revealed that the stevia C2H2-ZFP genes are interactively expressed in different tissues and developmental stages and some C2H2-ZFP genes are involved in response to drought stress. This study provides a background for future exploration of the functional, and regulatory aspects of the C2H2-ZFP gene family in S. rebaudiana.
Collapse
Affiliation(s)
- Shahla Nikraftar
- Department of Plant Production and Genetics, Faculty of Agriculture, University of Kurdistan, P. O. Box 416, Sanandaj, Iran
| | - Rahman Ebrahimzadegan
- Department of Plant Production and Genetics, Faculty of Agriculture, University of Kurdistan, P. O. Box 416, Sanandaj, Iran
| | - Mohammad Majdi
- Department of Plant Production and Genetics, Faculty of Agriculture, University of Kurdistan, P. O. Box 416, Sanandaj, Iran
| | - Ghader Mirzaghaderi
- Department of Plant Production and Genetics, Faculty of Agriculture, University of Kurdistan, P. O. Box 416, Sanandaj, Iran.
| |
Collapse
|
8
|
Chaudhary MT, Majeed S, Rana IA, Ali Z, Jia Y, Du X, Hinze L, Azhar MT. Impact of salinity stress on cotton and opportunities for improvement through conventional and biotechnological approaches. BMC PLANT BIOLOGY 2024; 24:20. [PMID: 38166652 PMCID: PMC10759391 DOI: 10.1186/s12870-023-04558-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 10/24/2023] [Indexed: 01/05/2024]
Abstract
Excess salinity can affect the growth and development of all plants. Salinization jeopardizes agroecosystems, induces oxidative reactions in most cultivated plants and reduces biomass which affects crop yield. Some plants are affected more than others, depending upon their ability to endure the effects of salt stress. Cotton is moderately tolerant to salt stress among cultivated crops. The fundamental tenet of plant breeding is genetic heterogeneity in available germplasm for acquired characteristics. Variation for salinity tolerance enhancing parameters (morphological, physiological and biochemical) is a pre-requisite for the development of salt tolerant cotton germplasm followed by indirect selection or hybridization programs. There has been a limited success in the development of salt tolerant genotypes because this trait depends on several factors, and these factors as well as their interactions are not completely understood. However, advances in biochemical and molecular techniques have made it possible to explore the complexity of salt tolerance through transcriptomic profiling. The focus of this article is to discuss the issue of salt stress in crop plants, how it alters the physiology and morphology of the cotton crop, and breeding strategies for the development of salinity tolerance in cotton germplasm.
Collapse
Affiliation(s)
| | - Sajid Majeed
- Federal Seed Certification and Registration Department, Ministry of National Food Security and Research, Islamabad, 44090, Pakistan
| | - Iqrar Ahmad Rana
- Center of Agricultural Biochemistry and Biotechnology/Centre of Advanced Studies in Agriculture and Food Security, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Zulfiqar Ali
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Yinhua Jia
- State Key Laboratory of Cotton Biology, Institute of Cotton Research Chinese Academy of Agricultural Science, Anyang, 455000, China
| | - Xiongming Du
- State Key Laboratory of Cotton Biology, Institute of Cotton Research Chinese Academy of Agricultural Science, Anyang, 455000, China
| | - Lori Hinze
- US Department of Agriculture, Southern Plains Agricultural Research Center, College Station, TX, 77845, USA
| | - Muhammad Tehseen Azhar
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, 38040, Pakistan.
- School of Agriculture Sciences, Zhengzhou University, Zhengzhou, 450000, China.
| |
Collapse
|
9
|
Fan Y, Peng F, Cui R, Wang S, Cui Y, Lu X, Huang H, Ni K, Liu X, Jiang T, Feng X, Liu M, Lei Y, Chen W, Meng Y, Han M, Wang D, Yin Z, Chen X, Wang J, Li Y, Guo L, Zhao L, Ye W. GhIMP10D, an inositol monophosphates family gene, enhances ascorbic acid and antioxidant enzyme activities to confer alkaline tolerance in Gossypium hirsutum L. BMC PLANT BIOLOGY 2023; 23:447. [PMID: 37736713 PMCID: PMC10515029 DOI: 10.1186/s12870-023-04462-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 09/14/2023] [Indexed: 09/23/2023]
Abstract
BACKGROUND Inositol monophosphates (IMP) are key enzymes in the ascorbic acid (AsA) synthesis pathways, which play vital roles in regulating plant growth and development and stresses tolerance. To date, no comprehensive analysis of the expression profile of IMP genes and their functions under abiotic stress in cotton has been reported. RESULTS In this study, the genetic characteristics, phylogenetic evolution, cis-acting elements and expression patterns of IMP gene family in cotton were systematically analyzed. A total of 28, 27, 13 and 13 IMP genes were identified in Gossypium hirsutum (G. hirsutum), Gossypium barbadense (G. barbadense), Gossypium arboreum (G. arboreum), and Gossypium raimondii (G. raimondii), respectively. Phylogenetic analysis showed that IMP family genes could cluster into 3 clades. Structure analysis of genes showed that GhIMP genes from the same subgroup had similar genetic structure and exon number. And most GhIMP family members contained hormone-related elements (abscisic acid response element, MeJA response element, gibberellin response element) and stress-related elements (low temperature response element, defense and stress response element, wound response element). After exogenous application of abscisic acid (ABA), some GhIMP genes containing ABA response elements positively responded to alkaline stress, indicating that ABA response elements played an important role in response to alkaline stress. qRT-PCR showed that most of GhIMP genes responded positively to alkaline stress, and GhIMP10D significantly upregulated under alkaline stress, with the highest up-regulated expression level. Virus-induced gene silencing (VIGS) experiment showed that compared with 156 plants, MDA content of pYL156:GhIMP10D plants increased significantly, while POD, SOD, chlorophyII and AsA content decreased significantly. CONCLUSIONS This study provides a thorough overview of the IMP gene family and presents a new perspective on the evolution of this gene family. In particular, some IMP genes may be involved in alkaline stress tolerance regulation, and GhIMP10D showed high expression levels in leaves, stems and roots under alkaline stress, and preliminary functional verification of GhIMP10D gene suggested that it may regulate tolerance to alkaline stress by regulating the activity of antioxidant enzymes and the content of AsA. This study contributes to the subsequent broader discussion of the structure and alkaline resistance of IMP genes in cotton.
Collapse
Affiliation(s)
- Yapeng Fan
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Anyang Institute of Technology, Henan, 455000, China
| | - Fanjia Peng
- Hunan Institute of Cotton Science, Hunan, 415101, China
| | - Ruifeng Cui
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Anyang Institute of Technology, Henan, 455000, China
| | - Shuai Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Anyang Institute of Technology, Henan, 455000, China
| | - Yupeng Cui
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Anyang Institute of Technology, Henan, 455000, China
| | - Xuke Lu
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Anyang Institute of Technology, Henan, 455000, China
| | - Hui Huang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Anyang Institute of Technology, Henan, 455000, China
| | - Kesong Ni
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Anyang Institute of Technology, Henan, 455000, China
| | - Xiaoyu Liu
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Anyang Institute of Technology, Henan, 455000, China
| | - Tiantian Jiang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Anyang Institute of Technology, Henan, 455000, China
| | - Xixian Feng
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Anyang Institute of Technology, Henan, 455000, China
| | - Mengyue Liu
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Anyang Institute of Technology, Henan, 455000, China
| | - Yuqian Lei
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Anyang Institute of Technology, Henan, 455000, China
| | - Wenhua Chen
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Anyang Institute of Technology, Henan, 455000, China
| | - Yuan Meng
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Anyang Institute of Technology, Henan, 455000, China
| | - Mingge Han
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Anyang Institute of Technology, Henan, 455000, China
| | - Delong Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Anyang Institute of Technology, Henan, 455000, China
| | - Zujun Yin
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Anyang Institute of Technology, Henan, 455000, China
| | - Xiugui Chen
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Anyang Institute of Technology, Henan, 455000, China
| | - Junjuan Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Anyang Institute of Technology, Henan, 455000, China
| | - Yujun Li
- Hunan Institute of Cotton Science, Hunan, 415101, China
| | - Lixue Guo
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Anyang Institute of Technology, Henan, 455000, China
| | - Lanjie Zhao
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Anyang Institute of Technology, Henan, 455000, China
| | - Wuwei Ye
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Anyang Institute of Technology, Henan, 455000, China.
| |
Collapse
|
10
|
Fang H, Shi Y, Liu S, Jin R, Sun J, Grierson D, Li S, Chen K. The transcription factor CitZAT5 modifies sugar accumulation and hexose proportion in citrus fruit. PLANT PHYSIOLOGY 2023; 192:1858-1876. [PMID: 36911987 PMCID: PMC10315291 DOI: 10.1093/plphys/kiad156] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/19/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Sugars are fundamental to plant developmental processes. For fruits, the accumulation and proportion of sugars play crucial roles in the development of quality and attractiveness. In citrus (Citrus reticulata Blanco.), we found that the difference in sweetness between mature fruits of "Gongchuan" and its bud sport "Youliang" is related to hexose contents. Expression of a SuS (sucrose synthase) gene CitSUS5 and a SWEET (sugars will eventually be exported transporter) gene CitSWEET6, characterized by transcriptome analysis at different developmental stages of these 2 varieties, revealed higher expression levels in "Youliang" fruit. The roles of CitSUS5 and CitSWEET6 were investigated by enzyme activity and transient assays. CitSUS5 promoted the cleavage of sucrose to hexoses, and CitSWEET6 was identified as a fructose transporter. Further investigation identified the transcription factor CitZAT5 (ZINC FINGER OF ARABIDOPSIS THALIANA) that contributes to sucrose metabolism and fructose transportation by positively regulating CitSUS5 and CitSWEET6. The role of CitZAT5 in fruit sugar accumulation and hexose proportion was investigated by homologous transient CitZAT5 overexpression, -VIGS, and -RNAi. CitZAT5 modulates the hexose proportion in citrus by mediating CitSUS5 and CitSWEET6 expression, and the molecular mechanism explained the differences in sugar composition of "Youliang" and "Gongchuan" fruit.
Collapse
Affiliation(s)
- Heting Fang
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
| | - Yanna Shi
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
| | - Shengchao Liu
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
| | - Rong Jin
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
- Department of Horticulture and Agricultural Experiment Station, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
| | - Jun Sun
- Zhejiang Agricultural Technology Extension Center, Hangzhou 310029, China
| | - Donald Grierson
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Nottingham, UK
| | - Shaojia Li
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
| | - Kunsong Chen
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
| |
Collapse
|
11
|
Ding H, Yang Z, Zai Z, Feng K, Wang L, Yue Y, Yang X. Genome-Wide Analysis of ZAT Gene Family in Osmanthus fragrans and the Function Exploration of OfZAT35 in Cold Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:2346. [PMID: 37375971 PMCID: PMC10305554 DOI: 10.3390/plants12122346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/04/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023]
Abstract
Osmanthus fragrans is a popular ornamental and odorant plant with high commercial value, but its cultivation and exploitation are limited by low temperature. The ZAT (zinc finger of Arabidopsis thaliana) genes as a subclass of the C2H2-type zinc finger proteins (C2H2-ZFP) family play essential roles in various abiotic stresses. However, their roles in cold stress response in O. fragrans remain unclear. This study identified 38 OfZATs, which could be divided into 5 subgroups based on the phylogenetic tree, with OfZATs in the same subgroup harboring similar gene structures and motif patterns. In addition, 49 segmental and 5 tandem duplication events were detected among OfZAT genes, while some OfZAT genes exhibited specific expression patterns in different tissues. Furthermore, two OfZATs were induced in salt stress and eight OfZATs responded to cold stress. Interestingly, OfZAT35 showed a continuously increasing expression trend under cold stress, while its protein showed nucleus localization with no transcriptional activation activity. Transiently transformed tobacco overexpressing OfZAT35 exhibited a significantly higher relative electrolyte leakage (REL) level and increased activities of superoxide dismutase (SOD), peroxidase (POD), and Ascorbate peroxidase (APX), while there was significantly decreased activity of catalase (CAT). Moreover, CAT, DREB3, and LEA5, which are associated with cold stress, were dramatically decreased after cold treatment in transiently transformed tobacco, suggesting that overexpression of OfZAT35 negatively regulated cold stress. This study provides a basis for exploring the roles of ZAT genes and contributes to uncovering the mechanism of ZAT-mediated cold stress response in O. fragrans.
Collapse
Affiliation(s)
- Huifen Ding
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Zhandong Yang
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Zhouying Zai
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Keyi Feng
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Lianggui Wang
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Yuanzheng Yue
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Xiulian Yang
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
12
|
Gui Y, Fu G, Li X, Dai Y. Identification and analysis of isoflavone reductase gene family in Gossypium hirsutum L. Sci Rep 2023; 13:5703. [PMID: 37029187 PMCID: PMC10082034 DOI: 10.1038/s41598-023-32213-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 03/24/2023] [Indexed: 04/09/2023] Open
Abstract
Isoflavone reductase (IFR) is a key enzyme controlling isoflavone synthesis and widely involved in response to various stresses. In this study, the IFR genes in four Gossypium species and other 7 species were identified and analyzed in the whole genome, and the physicochemical properties, gene structures, cis-acting elements, chromosomal locations, collinearity relationships and expression patterns of IFR genes were systematically analyzed. 28, 28, 14 and 15 IFR genes were identified in Gossypium hirsutum, Gossypium barbadense, Gossypium arboreum and Gossypium raimondii, respectively, which were divided into five clades according to the evolutionary tree and gene structure. Collinear analysis showed that segmental duplication and whole genome duplication were the main driving forces in the process of evolution, and most genes underwent pure selection. Gene structure analysis showed that IFR gene family was relatively conserved. Cis-element analysis of promoter showed that most GhIFR genes contain cis-elements related to abiotic stresses and plant hormones. Analysis of GhIFR gene expression under different stresses showed that GhIFR genes were involved in the response to drought, salt, heat and cold stresses through corresponding network mechanisms, especially GhIFR9A. Phenotypic analysis after silencing GhIFR9A gene by VIGS was shown that GhIFR9A gene was involved in the response to salt stress. This study laid a foundation for the subsequent functional study of cotton IFR genes.
Collapse
Affiliation(s)
- Yanting Gui
- College of Agronomy, Henan University of Science and Technology, Luoyang, 471023, People's Republic of China
| | - Guozhan Fu
- College of Agronomy, Henan University of Science and Technology, Luoyang, 471023, People's Republic of China.
| | - Xuelin Li
- College of Agronomy, Henan University of Science and Technology, Luoyang, 471023, People's Republic of China
| | - Yinghao Dai
- College of Agronomy, Henan University of Science and Technology, Luoyang, 471023, People's Republic of China
| |
Collapse
|
13
|
Arabidopsis Cys2/His2 Zinc Finger Transcription Factor ZAT18 Modulates the Plant Growth-Defense Tradeoff. Int J Mol Sci 2022; 23:ijms232315436. [PMID: 36499767 PMCID: PMC9738932 DOI: 10.3390/ijms232315436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
Plant defense responses under unfavorable conditions are often associated with reduced growth. However, the mechanisms underlying the growth-defense tradeoff remain to be fully elucidated, especially at the transcriptional level. Here, we revealed a Cys2/His2-type zinc finger transcription factor, namely, ZAT18, which played dual roles in plant immunity and growth by oppositely regulating the signaling of defense- and growth-related hormones. ZAT18 was first identified as a salicylic acid (SA)-inducible gene and was required for plant responses to SA in this study. In addition, we observed that ZAT18 enhanced the plant immunity with growth penalties that may have been achieved by activating SA signaling and repressing auxin signaling. Further transcriptome analysis of the zat18 mutant showed that the biological pathways of defense-related hormones, including SA, ethylene and abscisic acid, were repressed and that the biological pathways of auxin and cytokinin, which are growth-related hormones, were activated by abolishing the function of ZAT18. The ZAT18-mediated regulation of hormone signaling was further confirmed using qRT-PCR. Our results explored a mechanism by which plants handle defense and growth at the transcriptional level under stress conditions.
Collapse
|
14
|
Zheng Y, Zong J, Liu J, Wang R, Chen J, Guo H, Kong W, Liu J, Chen Y. Mining for salt-tolerant genes from halophyte Zoysia matrella using FOX system and functional analysis of ZmGnTL. FRONTIERS IN PLANT SCIENCE 2022; 13:1063436. [PMID: 36466287 PMCID: PMC9714509 DOI: 10.3389/fpls.2022.1063436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/03/2022] [Indexed: 06/17/2023]
Abstract
Zoysia matrella is a salt-tolerant turfgrass grown in areas with high soil salinity irrigated with effluent water. Previous studies focused on explaining the regulatory mechanism of Z. matrella salt-tolerance at phenotypic and physiological levels. However, the molecular mechanism associated with salt tolerance of Z. matrella remained unclear. In this study, a high-efficient method named FOX (full-length cDNA overexpression) hunting system was used to search for salt-tolerant genes in Z. matrella. Eleven candidate genes, including several known or novel salt-tolerant genes involved in different metabolism pathways, were identified. These genes exhibited inducible expression under salt stress condition. Furthermore, a novel salt-inducible candidate gene ZmGnTL was transformed into Arabidopsis for functional analysis. ZmGnTL improved salt-tolerance through regulating ion homeostasis, reactive oxygen species scavenging, and osmotic adjustment. In summary, we demonstrated that FOX is a reliable system for discovering novel genes relevant to salt tolerance and several candidate genes were identified from Z. matrella that can assist molecular breeding for plant salt-tolerance improvement.
Collapse
Affiliation(s)
- Yuying Zheng
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Junqin Zong
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Jun Liu
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Ruying Wang
- Department of Horticulture, Oregon State University, Corvallis, OR, United States
| | - Jingbo Chen
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Hailin Guo
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Weiyi Kong
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Jianxiu Liu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Yu Chen
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
15
|
Maryum Z, Luqman T, Nadeem S, Khan SMUD, Wang B, Ditta A, Khan MKR. An overview of salinity stress, mechanism of salinity tolerance and strategies for its management in cotton. FRONTIERS IN PLANT SCIENCE 2022; 13:907937. [PMID: 36275563 PMCID: PMC9583260 DOI: 10.3389/fpls.2022.907937] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 09/20/2022] [Indexed: 05/14/2023]
Abstract
Salinity stress is one of the primary threats to agricultural crops resulting in impaired crop growth and development. Although cotton is considered as reasonably salt tolerant, it is sensitive to salt stress at some critical stages like germination, flowering, boll formation, resulting in reduced biomass and fiber production. The mechanism of partial ion exclusion (exclusion of Na+ and/or Cl-) in cotton appears to be responsible for the pattern of uptake and accumulation of harmful ions (Na+ and Cl) in tissues of plants exposed to saline conditions. Maintaining high tissue K+/Na+ and Ca2+/Na+ ratios has been proposed as a key selection factor for salt tolerance in cotton. The key adaptation mechanism in cotton under salt stress is excessive sodium exclusion or compartmentation. Among the cultivated species of cotton, Egyptian cotton (Gossypium barbadense L.) exhibit better salt tolerance with good fiber quality traits as compared to most cultivated cotton and it can be used to improve five quality traits and transfer salt tolerance into Upland or American cotton (Gossypium hirsutum L.) by interspecific introgression. Cotton genetic studies on salt tolerance revealed that the majority of growth, yield, and fiber traits are genetically determined, and controlled by quantitative trait loci (QTLs). Molecular markers linked to genes or QTLs affecting key traits have been identified, and they could be utilized as an indirect selection criterion to enhance breeding efficiency through marker-assisted selection (MAS). Transfer of genes for compatible solute, which are an important aspect of ion compartmentation, into salt-sensitive species is, theoretically, a simple strategy to improve tolerance. The expression of particular stress-related genes is involved in plant adaptation to environmental stressors. As a result, enhancing tolerance to salt stress can be achieved by marker assisted selection added with modern gene editing tools can boost the breeding strategies that defend and uphold the structure and function of cellular components. The intent of this review was to recapitulate the advancements in salt screening methods, tolerant germplasm sources and their inheritance, biochemical, morpho-physiological, and molecular characteristics, transgenic approaches, and QTLs for salt tolerance in cotton.
Collapse
Affiliation(s)
- Zahra Maryum
- Nuclear Institute for Agriculture and Biology-Constituent College (NIAB-C), Pakistan Institute of Engineering and Applied Science Nilore, Islamabad, Pakistan
| | - Tahira Luqman
- Nuclear Institute for Agriculture and Biology-Constituent College (NIAB-C), Pakistan Institute of Engineering and Applied Science Nilore, Islamabad, Pakistan
| | - Sahar Nadeem
- Nuclear Institute for Agriculture and Biology-Constituent College (NIAB-C), Pakistan Institute of Engineering and Applied Science Nilore, Islamabad, Pakistan
| | - Sana Muhy Ud Din Khan
- Plant Breeding and Genetics Division, Cotton Group, Nuclear Institute for Agriculture and Biology, Faisalabad, Pakistan
| | - Baohua Wang
- School of Life Sciences, Nantong University, Nantong, China
| | - Allah Ditta
- Nuclear Institute for Agriculture and Biology-Constituent College (NIAB-C), Pakistan Institute of Engineering and Applied Science Nilore, Islamabad, Pakistan
- Plant Breeding and Genetics Division, Cotton Group, Nuclear Institute for Agriculture and Biology, Faisalabad, Pakistan
| | - Muhammad Kashif Riaz Khan
- Nuclear Institute for Agriculture and Biology-Constituent College (NIAB-C), Pakistan Institute of Engineering and Applied Science Nilore, Islamabad, Pakistan
- Plant Breeding and Genetics Division, Cotton Group, Nuclear Institute for Agriculture and Biology, Faisalabad, Pakistan
| |
Collapse
|
16
|
Li X, Cao X, Li J, Niu Q, Mo Y, Xiao L. Genome-wide characterization of C2H2 zinc-finger gene family provides insight into the mechanisms and evolution of the dehydration-rehydration responses in Physcomitrium and Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:953459. [PMID: 36262662 PMCID: PMC9574186 DOI: 10.3389/fpls.2022.953459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/31/2022] [Indexed: 06/16/2023]
Abstract
Dehydration tolerance is a vital factor for land plant evolution and world agricultural production. Numerous studies enlightened that the plant-specific C2H2-type zinc-finger proteins (C2H2-ZFPs) as master regulators played pivotal roles in the abiotic stress responses of plants. However, a comprehensive understanding of the evolution of C2H2-ZFPs in terrestrial plants and its regulatory mechanism in dehydration and rehydration response remains a mystery. In this study, the genome-wide identification of C2H2-ZFP genes revealed 549 homologs in the representatives of terrestrial plant lineages from liverwort to angiosperms. Based on the characteristics of the conserved C2H2-ZF domains, four major C2H2-ZF types (M-, Z-, Q-, and D-type) were identified in the C2H2-ZFPs, with the dominants of M-type in all selected species and followed by Z-type in non-seed plants and Q-type in seed plants, respectively. Phylogenetic analyses of the identified C2H2-ZFPs supported four major groups in the land plant representatives, among which the members from the desiccation-tolerant Physcomitrium patens and the dehydration-sensitive Arabidopsis thaliana displayed different topological relationships in the phylogenies reconstructed for a single species. C2H2-ZFPs clustered in the same subclades shared similar features in their conserved domains and gene structures. Approximately, 81% of the C2H2-ZFP promoters of all 549 identified C2H2-ZFPs harbored the conserved ABA-responsive elements (ABREs) and/or dehydration-responsive elements (DREs). Comparative transcriptomic analyses showed that 50 PpZFPs and 56 AtZFPs significantly changed their transcripts abundance. Interestingly, most of the dehydration- and rehydration-responsive PpZPFs and AtZFPs had been predicted to contain the ABRE and DRE elements in their promoter regions and with over half of which phylogenetically belonging to group III. The differences in the expression patterns of C2H2-ZFPs in responses to dehydration and rehydration between P. patens and A. thaliana reflected their different strategies to adapt to dehydration. The identified candidate PpZFPs were specifically induced by moderate dehydration and reached the peak transcript abundance in severe dehydration. Our study lays the foundations for further functional investigation of C2H2-ZFPs in dehydration responses from an evolutionary perspective in land plants. The findings will provide us with genetic resources and potential targets for drought tolerance breeding in crops and beyond.
Collapse
|
17
|
Wang J, Lv P, Yan D, Zhang Z, Xu X, Wang T, Wang Y, Peng Z, Yu C, Gao Y, Duan L, Li R. Exogenous Melatonin Improves Seed Germination of Wheat ( Triticum aestivum L.) under Salt Stress. Int J Mol Sci 2022; 23:8436. [PMID: 35955571 PMCID: PMC9368970 DOI: 10.3390/ijms23158436] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 01/27/2023] Open
Abstract
Melatonin (MT) can effectively reduce oxidative damage induced by abiotic stresses such as salt in plants. However, the effects of MT on physiological responses and molecular regulation during wheat germination remains largely elusive. In this study, the response of wheat seeds to MT under salt stress during germination was investigated at physiological and transcriptome levels. Our results revealed that application of MT significantly reduced the negative influence of salt stress on wheat seed germination. The oxidative load was reduced by inducing high activities of antioxidant enzymes. In parallel, the content of gibberellin A3 (GA3) and jasmonic acid (JA) increased in MT-treated seedling. RNA-seq analysis demonstrated that MT alters oxidoreductase activity and phytohormone-dependent signal transduction pathways under salt stress. Weighted correlation network analysis (WGCNA) revealed that MT participates in enhanced energy metabolism and protected seeds via maintained cell morphology under salt stress during wheat seed germination. Our findings provide a conceptual basis of the MT-mediated regulatory mechanism in plant adaptation to salt stress, and identify the potential candidate genes for salt-tolerant wheat molecular breeding.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Liusheng Duan
- Beijing Key Laboratory of New Technology in Agricultural Application, National Experimental Teaching Demonstration Center for Plant Production, Beijing University of Agriculture, Beijing 102206, China; (J.W.); (P.L.); (D.Y.); (Z.Z.); (X.X.); (T.W.); (Y.W.); (Z.P.); (C.Y.); (Y.G.)
| | - Runzhi Li
- Beijing Key Laboratory of New Technology in Agricultural Application, National Experimental Teaching Demonstration Center for Plant Production, Beijing University of Agriculture, Beijing 102206, China; (J.W.); (P.L.); (D.Y.); (Z.Z.); (X.X.); (T.W.); (Y.W.); (Z.P.); (C.Y.); (Y.G.)
| |
Collapse
|
18
|
Liu J, Xue C, Lin Y, Yan Q, Chen J, Wu R, Zhang X, Chen X, Yuan X. Genetic analysis and identification of VrFRO8, a salt tolerance-related gene in mungbean. Gene 2022; 836:146658. [PMID: 35714797 DOI: 10.1016/j.gene.2022.146658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/09/2022] [Accepted: 06/02/2022] [Indexed: 12/20/2022]
Abstract
Mungbean (Vigna radiata (L.) R. Wilczek) is an important legume crop of Asia. Salt concentrations typically causes major yield reductions in mungbean. Although the biochemical and genetic basis of salt tolerance-related gene are well studied in Arabidopsis and soybean, limited information concerning the salt tolerance-related genes in mungbean. To address this issue, we mined salt tolerance related genes using the survival rate trait and 160,1405 SNPs in 112 mungbean accessions. As a result, VrFRO8 significantly associated with salt-stress were identified in the GWAS analysis. The candidate gene VrFRO8 was evidenced by comparative genomics, transcriptome and RT-qPCR analysis. The expression level of VrFRO8 was significantly up-regulated (P-value = 0.001) after salt treatment compared with the control group. Moreover, 188 genes and 158 transcription factors related to salt-stress signal transduction pathway were mined, and 18 genes (18/188) had higher expression level in the salt-tolerant varieties than salt-sensitive varieties. And, the function of VrFRO8 was predicted in mungbean, the protein interaction between VrFRO8 and seven related-genes were found by molecular structure analysis. VrFRO8 might reduce SOD contents by influence Fe2+/Fe3+ ratio under the damage of salt stress. This study used multi-omics data to mine a key genes significantly associated with salt tolerance, and constructed a VrFRO8-related PPI network for salt tolerance, which would lay a solid foundation for further molecular biology research of VrFRO8 and mungbean breeding.
Collapse
Affiliation(s)
- Jinyang Liu
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, Jiangsu, China
| | - Chenchen Xue
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, Jiangsu, China
| | - Yun Lin
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, Jiangsu, China
| | - Qiang Yan
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, Jiangsu, China
| | - Jingbin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, Jiangsu, China
| | - Ranran Wu
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, Jiangsu, China
| | - Xiaoyan Zhang
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, Jiangsu, China
| | - Xin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, Jiangsu, China.
| | - Xingxing Yuan
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, Jiangsu, China.
| |
Collapse
|
19
|
Fan Y, Zhang Y, Rui C, Zhang H, Xu N, Wang J, Han M, Lu X, Chen X, Wang D, Wang S, Guo L, Zhao L, Huang H, Wang J, Sun L, Chen C, Ye W. Molecular structures and functional exploration of NDA family genes respond tolerant to alkaline stress in Gossypium hirsutum L. Biol Res 2022; 55:4. [PMID: 35063045 PMCID: PMC8781182 DOI: 10.1186/s40659-022-00372-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 01/09/2022] [Indexed: 11/25/2022] Open
Abstract
Background The internal NAD(P)H dehydrogenase (NDA) gene family was a member of the NAD(P)H dehydrogenase (ND) gene family, mainly involved in the non-phosphorylated respiratory pathways in mitochondria and played crucial roles in response to abiotic stress. Methods The whole genome identification, structure analysis and expression pattern of NDA gene family were conducted to analyze the NDA gene family. Results There were 51, 52, 26, and 24 NDA genes identified in G. hirsutum, G. barbadense, G. arboreum and G. raimondii, respectively. According to the structural characteristics of genes and traits of phylogenetic tree, we divided the NDA gene family into 8 clades. Gene structure analysis showed that the NDA gene family was relatively conservative. The four Gossypium species had good collinearity, and segmental duplication played an important role in the evolution of the NDA gene family. Analysis of cis-elements showed that most GhNDA genes contained cis-elements related to light response and plant hormones (ABA, MeJA and GA). The analysis of the expression patterns of GhNDA genes under different alkaline stress showed that GhNDA genes were actively involved in the response to alkaline stress, possibly through different molecular mechanisms. By analyzing the existing RNA-Seq data after alkaline stress, it was found that an NDA family gene GhNDA32 was expressed, and then theGhNDA32 was silenced by virus-induced gene silencing (VIGS). By observing the phenotype, we found that the wilting degree of silenced plants was much higher than that of the control plant after alkaline treatment, suggesting that GhNDA32 gene was involved in the response to alkaline stress. Conclusions In this study, GhNDAs participated in response to alkaline stress, especially NaHCO3 stress. It was of great significance for the future research on the molecular mechanism of NDA gene family in responding to abiotic stresses. Supplementary Information The online version contains supplementary material available at 10.1186/s40659-022-00372-8.
Collapse
|
20
|
Zhang X, Guo Q, Qin L, Li L. A Cys2His2 Zinc Finger Transcription Factor BpSZA1 Positively Modulates Salt Stress in Betula platyphylla. FRONTIERS IN PLANT SCIENCE 2022; 13:823547. [PMID: 35693173 PMCID: PMC9174930 DOI: 10.3389/fpls.2022.823547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 03/29/2022] [Indexed: 05/07/2023]
Abstract
Zinc finger proteins (ZFPs) are widely involved in plant growth and abiotic stress responses, however, few of these proteins have been functionally characterized in tree species. In this study, we cloned and characterized the BpSZA1 gene encoding a C2H2-type ZFP from Betula platyphylla. BpSZA1 is a transcription factor localized in the nucleus, with a transcription activation domain located at the N-terminus. BpSZA1 was predominantly expressed in stems and was induced by salt. We generated transgenic birch lines displaying overexpression (OE) or RNAi silencing (Ri) of BpSZA1 and exposed these along with wild-type birch seedlings to salinity. Phenotypic and physiological parameters such as superoxide dismutase, peroxisome, H2O2 content, proline content, water loss rate, and malondialdehyde content were examined. Overexpression of BpSZA1 in birch conferred increased salt tolerance. Chromatin immunoprecipitation-qPCR and RNA-seq showed that BpSZA1 binds to the GAGA-motif in the promoter of downstream target genes including BpAPX1, BpAPX2, BpCAT, and Bp6PGDH to activate their transcription. BpSZA1 also participates in abscisic acid (ABA) biosynthesis, proline biosynthesis, and the ABA/jasmonic acid pathway to enhance the salt stress of B. platyphylla.
Collapse
|
21
|
Peng Z, Jiang X, Wang Z, Wang X, Li H, He S, Pan Z, Qayyum A, Rehman A, Du X. Identification of Raf-Like Kinases B Subfamily Genes in Gossypium Species Revealed GhRAF42 Enhanced Salt Tolerance in Cotton. Int J Mol Sci 2021; 22:12649. [PMID: 34884455 PMCID: PMC8657469 DOI: 10.3390/ijms222312649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/12/2021] [Accepted: 11/19/2021] [Indexed: 11/16/2022] Open
Abstract
Salinity is a critical abiotic factor that significantly reduces agricultural production. Cotton is an important fiber crop and a pioneer on saline soil, hence genetic architecture that underpins salt tolerance should be thoroughly investigated. The Raf-like kinase B-subfamily (RAF) genes were discovered to regulate the salt stress response in cotton plants. However, understanding the RAFs in cotton, such as Enhanced Disease Resistance 1 and Constitutive Triple Response 1 kinase, remains a mystery. This study obtained 29, 28, 56, and 54 RAF genes from G. arboreum, G. raimondii, G. hirsutum, and G. barbadense, respectively. The RAF gene family described allopolyploidy and hybridization events in allotetraploid cotton evolutionary connections. Ka/Ks analysis advocates that cotton evolution was subjected to an intense purifying selection of the RAF gene family. Interestingly, integrated analysis of synteny and gene collinearity suggested dispersed and segmental duplication events involved in the extension of RAFs in cotton. Transcriptome studies, functional validation, and virus-induced gene silencing on salt treatments revealed that GhRAF42 is engaged in salt tolerance in upland cotton. This research might lead to a better understanding of the role of RAFs in plants and the identification of suitable candidate salt-tolerant genes for cotton breeding.
Collapse
Affiliation(s)
- Zhen Peng
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450000, China; (Z.P.); (X.J.); (H.L.); (S.H.); (Z.P.)
- State Key Laboratory of Cotton Biology, Institute of Cotton Research Chinese Academy of Agricultural Science, Anyang 455000, China; (Z.W.); (X.W.)
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China
| | - Xuran Jiang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450000, China; (Z.P.); (X.J.); (H.L.); (S.H.); (Z.P.)
| | - Zhenzhen Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research Chinese Academy of Agricultural Science, Anyang 455000, China; (Z.W.); (X.W.)
| | - Xiaoyang Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research Chinese Academy of Agricultural Science, Anyang 455000, China; (Z.W.); (X.W.)
| | - Hongge Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450000, China; (Z.P.); (X.J.); (H.L.); (S.H.); (Z.P.)
- State Key Laboratory of Cotton Biology, Institute of Cotton Research Chinese Academy of Agricultural Science, Anyang 455000, China; (Z.W.); (X.W.)
| | - Shoupu He
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450000, China; (Z.P.); (X.J.); (H.L.); (S.H.); (Z.P.)
- State Key Laboratory of Cotton Biology, Institute of Cotton Research Chinese Academy of Agricultural Science, Anyang 455000, China; (Z.W.); (X.W.)
| | - Zhaoe Pan
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450000, China; (Z.P.); (X.J.); (H.L.); (S.H.); (Z.P.)
| | - Abdul Qayyum
- Department of Plant Breeding and Genetics, Bahauddin Zakariya University, Multan 66000, Pakistan;
| | - Abdul Rehman
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450000, China; (Z.P.); (X.J.); (H.L.); (S.H.); (Z.P.)
- State Key Laboratory of Cotton Biology, Institute of Cotton Research Chinese Academy of Agricultural Science, Anyang 455000, China; (Z.W.); (X.W.)
| | - Xiongming Du
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450000, China; (Z.P.); (X.J.); (H.L.); (S.H.); (Z.P.)
- State Key Laboratory of Cotton Biology, Institute of Cotton Research Chinese Academy of Agricultural Science, Anyang 455000, China; (Z.W.); (X.W.)
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China
| |
Collapse
|