1
|
Barreto MQ, Garbelotti CV, Lopes DCB, Soares JDM, Ward RJ. Xylose isomerase: From fundamental research to applied enzyme technology. J Biotechnol 2025; 404:39-54. [PMID: 40204218 DOI: 10.1016/j.jbiotec.2025.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/22/2025] [Accepted: 04/04/2025] [Indexed: 04/11/2025]
Abstract
Xylose isomerases (XI, EC 5.3.1.5) are key enzymes for the metabolism of pentoses by microorganisms. The importance of XIs goes beyond academic biochemical research and the catalysis of aldo-ketose conversion by XIs is among the most successful examples of industrial enzyme technology in a market that generates multibillion dollar annual revenues. Here we present an in-depth review of how structural information has contributed to the current understanding of XI catalysis, and discuss topics related to the ongoing efforts to elucidate key aspects of the catalytic mechanism. An overview of XI immobilization is also provided that illustrates how the discoveries in basic enzyme technology research can generate opportunities for novel uses of XI, and we review not only historical aspects but also more recent applications in HFCS, biofuels and other applications. The systems biology revolution will impact all aspects of XI research and application, and we finalize by reviewing the contemporary efforts of metabolic and protein engineering using XI and the future roles of the enzyme in the expanding bioeconomy.
Collapse
Affiliation(s)
- Matheus Quintana Barreto
- Departamento de Bioquímica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Carolina Victal Garbelotti
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Douglas Christian Borges Lopes
- Departamento de Bioquímica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Jéssica de Moura Soares
- Departamento de Bioquímica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Richard John Ward
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
2
|
Oh SJ, Lim G, Han Y, Kim W, Joo HS, Kim YG, Kim JS, Bhatia SK, Yang YH. High-Yield Production of Polyhydroxybutyrate and Poly(3-hydroxybutyrate- co-3-hydroxyhexanoate) from Crude Glycerol by a Newly Isolated Burkholderia Species Oh_219. Polymers (Basel) 2025; 17:197. [PMID: 39861268 PMCID: PMC11768116 DOI: 10.3390/polym17020197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/09/2025] [Accepted: 01/12/2025] [Indexed: 01/27/2025] Open
Abstract
Crude glycerol (CG), a major biodiesel production by-product, is the focus of ongoing research to convert it into polyhydroxyalkanoate (PHA). However, few bacterial strains are capable of efficiently achieving this conversion. Here, 10 PHA-producing strains were isolated from various media. Among them, Burkholderia sp. Oh_219 exhibited the highest polyhydroxybutyrate (PHB) production from glycerol and was therefore characterized further. Burkholderia sp. Oh_219 demonstrated significant tolerance to major growth inhibitors in CG and metabolized the fatty acids present as impurities in CG. Furthermore, the Oh_219 strain was genetically engineered using phaCBP-M-CPF4 and phaJPa to enable the fatty acid-based production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx), a component of CG. The resulting strain produced PHBHHx containing 1.0-1.3 mol% of 3HHx from CG. Further supplementation with capric and lauric acids increased the 3HHx molar fraction to 9.7% and 18%, respectively. In a 5 L fermenter, the Oh_219 strain produced 15.3 g/L PHB from 29.6 g/L biomass using a two-stage fermentation system. This is the highest yield reported for PHA production from glycerol by Burkholderia spp. Additionally, PHB produced from CG had a lower melting point than that from pure glycerol and fructose. Taken together, Burkholderia sp. Oh_219 is a promising new candidate strain for producing PHA from CG.
Collapse
Affiliation(s)
- Suk-Jin Oh
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; (S.-J.O.); (G.L.); (Y.H.); (S.K.B.)
| | - Gaeun Lim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; (S.-J.O.); (G.L.); (Y.H.); (S.K.B.)
| | - Yebin Han
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; (S.-J.O.); (G.L.); (Y.H.); (S.K.B.)
| | - Wooseong Kim
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea;
| | - Hwang-Soo Joo
- Department of Biotechnology, College of Engineering, Duksung Women’s University, Seoul 01370, Republic of Korea;
| | - Yun-Gon Kim
- Department of Chemical Engineering, Soongsil University, Seoul 06978, Republic of Korea;
| | - Jae-Seok Kim
- Department of Laboratory Medicine, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul 05355, Republic of Korea;
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; (S.-J.O.); (G.L.); (Y.H.); (S.K.B.)
- Institute for Ubiquitous Information Technology and Applications, Konkuk University, Seoul 05029, Republic of Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; (S.-J.O.); (G.L.); (Y.H.); (S.K.B.)
- Institute for Ubiquitous Information Technology and Applications, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
3
|
Jaiboon K, Chouwatat P, Napathorn SC. Valorization of biodiesel-derived crude glycerol for simultaneous biosynthesis of biodegradable polyhydroxybutyrate and exopolysaccharide by the newly isolated Burkholderia sp. SCN-KJ. Int J Biol Macromol 2024; 281:136556. [PMID: 39406327 DOI: 10.1016/j.ijbiomac.2024.136556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/29/2024] [Accepted: 10/11/2024] [Indexed: 10/20/2024]
Abstract
This study demonstrated that Burkholderia sp. SCN-KJ is a promising novel species for the biovalorization of crude glycerol to polyhydroxybutyrate (PHB) and galactose-rich heteroexopolysaccharide (EPS). Whole-genome and genetic evolution analyses revealed separation of the different clades according to the ANIb and dDDH analyses, which confirmed that Burkholderia sp. SCN-KJ is a novel species. The highest PHB production from crude glycerol was 12.9 ± 0.4 g/L (72.9 ± 2.1 % w/w), with a productivity of 0.46 g/L/h and YP/S of 0.3 g/g at 28 h in a 10 L fermenter. The galactose-rich hetero-EPS began to be produced after nitrogen depletion, resulting in a concentration of 22.4 ± 0.2 g/L at 38 h. Examination of the carbon-to‑nitrogen ratio (C/N) showed that nitrogen-rich condition (C/N 20) was optimal for PHB production, whereas nitrogen-depleted condition promoted EPS production, showing two different extrema. The findings showed that Burkholderia sp. SCN-KJ has the potential to transform the landscape of biovalorization for sustainable production.
Collapse
Affiliation(s)
- Kanokjun Jaiboon
- Biotechnology Program, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand.
| | - Patcharida Chouwatat
- Bangchak Corporation Public Company Limited, M Tower Building, 8(th) Floor, Sukhumvit Rd, Phra Khanong, Bangkok 10260, Thailand.
| | - Suchada Chanprateep Napathorn
- Biotechnology Program, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand; Department of Microbiology, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand; International Center for Biotechnology, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
4
|
González-Rojo S, Paniagua-García AI, Díez-Antolínez R. Advances in Microbial Biotechnology for Sustainable Alternatives to Petroleum-Based Plastics: A Comprehensive Review of Polyhydroxyalkanoate Production. Microorganisms 2024; 12:1668. [PMID: 39203509 PMCID: PMC11357511 DOI: 10.3390/microorganisms12081668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/09/2024] [Accepted: 08/10/2024] [Indexed: 09/03/2024] Open
Abstract
The industrial production of polyhydroxyalkanoates (PHAs) faces several limitations that hinder their competitiveness against traditional plastics, mainly due to high production costs and complex recovery processes. Innovations in microbial biotechnology offer promising solutions to overcome these challenges. The modification of the biosynthetic pathways is one of the main tactics; allowing for direct carbon flux toward PHA formation, increasing polymer accumulation and improving polymer properties. Additionally, techniques have been implemented to expand the range of renewable substrates used in PHA production. These feedstocks are inexpensive and plentiful but require costly and energy-intensive pretreatment. By removing the need for pretreatment and enabling the direct use of these raw materials, microbial biotechnology aims to reduce production costs. Furthermore, improving downstream processes to facilitate the separation of biomass from culture broth and the recovery of PHAs is critical. Genetic modifications that alter cell morphology and allow PHA secretion directly into the culture medium simplify the extraction and purification process, significantly reducing operating costs. These advances in microbial biotechnology not only enhance the efficient and sustainable production of PHAs, but also position these biopolymers as a viable and competitive alternative to petroleum-based plastics, contributing to a circular economy and reducing the dependence on fossil resources.
Collapse
Affiliation(s)
- Silvia González-Rojo
- Department of Chemistry and Applied Physics, Chemical Engineering Area, Campus de Vegazana s/n, University of León, 24071 León, Spain
| | - Ana Isabel Paniagua-García
- Centro de Biocombustibles y Bioproductos, Instituto Tecnológico Agrario de Castilla y León (ITACyL), Polígono Agroindustrial del Órbigo p. 2-6, Villarejo de Órbigo, 24358 León, Spain; (A.I.P.-G.); (R.D.-A.)
| | - Rebeca Díez-Antolínez
- Centro de Biocombustibles y Bioproductos, Instituto Tecnológico Agrario de Castilla y León (ITACyL), Polígono Agroindustrial del Órbigo p. 2-6, Villarejo de Órbigo, 24358 León, Spain; (A.I.P.-G.); (R.D.-A.)
| |
Collapse
|
5
|
Costa P, Basaglia M, Casella S, Favaro L. Copolymers as a turning point for large scale polyhydroxyalkanoates applications. Int J Biol Macromol 2024; 275:133575. [PMID: 38960239 DOI: 10.1016/j.ijbiomac.2024.133575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/28/2024] [Accepted: 06/28/2024] [Indexed: 07/05/2024]
Abstract
Traditional plastics reshaped the society thanks to their brilliant properties and cut-price manufacturing costs. However, their protracted durability and limited recycling threaten the environment. Worthy alternatives seem to be polyhydroxyalkanoates, compostable biopolymers produced by several microbes. The most common 3-hydroxybutyrate homopolymer has limited applications calling for copolymers biosynthesis to enhance material properties. As a growing number of researches assess the discovery of novel comonomers, great endeavors are dedicated as well to copolymers production scale-up, where the choice of the microbial carbon source significantly affects the overall economic feasibility. Diving into novel metabolic pathways, engineered strains, and cutting-edge bioprocess strategies, this review aims to survey up-to-date publications about copolymers production, focusing primarily on precursors origins. Specifically, in the core of the review, copolymers precursors have been divided into three categories based on their economic value: the costliest structurally related ones, the structurally unrelated ones, and finally various low-cost waste streams. The combination of cheap biomasses, efficient pretreatment strategies, and robust microorganisms paths the way towards the development of versatile and circular polymers. Conceived to researchers and industries interested in tackling polyhydroxyalkanoates production, this review explores an angle often underestimated yet of prime importance: if PHAs copolymers offer advanced properties and sustainable end-of-life, the feedstock choice for their upstream becomes a major factor in the development of plastic substitutes.
Collapse
Affiliation(s)
- Paolo Costa
- Waste-to-Bioproducts Lab, Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Agripolis, Viale dell'Università, 16, 35020 Legnaro, PD, Italy.
| | - Marina Basaglia
- Waste-to-Bioproducts Lab, Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Agripolis, Viale dell'Università, 16, 35020 Legnaro, PD, Italy.
| | - Sergio Casella
- Waste-to-Bioproducts Lab, Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Agripolis, Viale dell'Università, 16, 35020 Legnaro, PD, Italy.
| | - Lorenzo Favaro
- Waste-to-Bioproducts Lab, Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Agripolis, Viale dell'Università, 16, 35020 Legnaro, PD, Italy; Department of Microbiology, Stellenbosch University, Private Bag X1, 7602 Matieland, South Africa.
| |
Collapse
|
6
|
Baltacı NG, Baltacı MÖ, Görmez A, Örtücü S. Green alternatives to petroleum-based plastics: production of bioplastic from Pseudomonas neustonica strain NGB15 using waste carbon source. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:31149-31158. [PMID: 38625463 PMCID: PMC11096215 DOI: 10.1007/s11356-024-33309-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/10/2024] [Indexed: 04/17/2024]
Abstract
Polyhydroxyalkanoates have attracted great interest as a suitable alternative to petrochemical based plastics due to their outstanding properties such as biodegradability and biocompatibility. However, the biggest problem in the production of microbial polyhydroxyalkanoates is low cost-effectiveness. In this study, polyhydroxyalkanoate production was carried out using waste substrates with local isolates. Culture conditions were optimized to increase the polyhydroxyalkanoate production potential. The produced polyhydroxyalkanoate was characterized by FTIR analyses, and its metabolic pathway was determined by real-time PCR. According to the results, the best polyhydroxyalkanoate producer bacteria was characterized as Pseudomonas neustonica NGB15. The optimal culture conditions were detected as 30 g/L banana peel powder, 25 °C temperature, pH 8, and 4-day incubation time. Under the optimized conditions, 3.34 g/L PHA production was achieved. As a result of FTIR analyses, major peaks were obtained at 1723, 1277, 1261, 1097, 1054, and 993 cm-1. These peaks represent that the type of produced polyhydroxyalkanoate was poly-β-hydroxybutyrate. According to gene expression profile of NGB15, it was determined that Pseudomonas neustonica NGB15 produces PHA using the de novo fatty acid synthesis metabolic pathway. In conclusion, poly-β-hydroxybutyrate production by Pseudomonas neustonica NGB15 using a low-cost fermentation medium has been shown to be biotechnologically promising.
Collapse
Affiliation(s)
- Nurdan Gönül Baltacı
- Department of Molecular Biology and Genetics, Faculty of Science, Ataturk University, 25240, Erzurum, Turkey.
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey.
| | - Mustafa Özkan Baltacı
- Department of Molecular Biology and Genetics, Faculty of Science, Ataturk University, 25240, Erzurum, Turkey
| | - Arzu Görmez
- Department of Biology, Faculty of Science, Dokuz Eylul University, 35390, Izmir, Turkey
| | - Serkan Örtücü
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
| |
Collapse
|
7
|
Oh SJ, Lee HJ, Hwang JH, Kim HJ, Shin N, Lee SH, Seo SO, Bhatia SK, Yang YH. Validating a Xylose Regulator to Increase Polyhydroxybutyrate Production for Utilizing Mixed Sugars from Lignocellulosic Biomass Using Escherichia coli. J Microbiol Biotechnol 2024; 34:700-709. [PMID: 37919866 PMCID: PMC11016755 DOI: 10.4014/jmb.2306.06006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/29/2023] [Accepted: 09/05/2023] [Indexed: 11/04/2023]
Abstract
Polyhydroxybutyrate (PHB) production from lignocellulosic biomass is economically beneficial. Because lignocellulosic biomass is a mixture rich in glucose and xylose, Escherichia coli, which prefers glucose, needs to overcome glucose repression for efficient biosugar use. To avoid glucose repression, here, we overexpressed a xylose regulator (xylR) in an E. coli strain expressing bktB, phaB, and phaC from Cupriavidus necator and evaluated the effect of xylR on PHB production. XylR overexpression increased xylose consumption from 0% to 46.53% and produced 4.45-fold more PHB than the control strain without xylR in a 1% sugar mixture of glucose and xylose (1:1). When the xylR-overexpressed strain was applied to sugars from lignocellulosic biomass, cell growth and PHB production of the strain showed a 4.7-fold increase from the control strain, yielding 2.58 ± 0.02 g/l PHB and 4.43 ± 0.28 g/l dry cell weight in a 1% hydrolysate mixture. XylR overexpression increased the expression of xylose operon genes by up to 1.7-fold. Moreover, the effect of xylR was substantially different in various E. coli strains. Overall, the results showed the effect of xylR overexpression on PHB production in a non-native PHB producer and the possible application of xylR for xylose utilization in E. coli.
Collapse
Affiliation(s)
- Suk-Jin Oh
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Hong-Ju Lee
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Jeong Hyeon Hwang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyun Jin Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Nara Shin
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Sang-Ho Lee
- Department of Pharmacy, College of Pharmacy, Jeju National University, Jeju-si 63243, Republic of Korea
| | - Seung-Oh Seo
- Department of Food Science and Technology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
8
|
Santos-Oliveira PH, Silva JGP, Blank LM, Silva LF, Gomez JGC. Constant fed-batch cultivation with glucose and propionate as co-substrate: A strategy to fine-tune polyhydroxyalkanoates monomeric composition in Pseudomonas spp. Int J Biol Macromol 2024; 256:128287. [PMID: 37995793 DOI: 10.1016/j.ijbiomac.2023.128287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 11/14/2023] [Accepted: 11/18/2023] [Indexed: 11/25/2023]
Abstract
Pseudomonas sp. LFM693 is a 2-methylisocitrate lyase (prpB) disrupted mutant. This enzyme catalyzes a step in the 2-methylcitrate cycle, the only known and described pathway for propionate oxidation in this organism. The affected mutants can efficiently produce PHA containing even and odd-chain length hydroxyalkanoates (HAeven/odd) in the presence of propionate and glucose. In this study, a constant fed-batch configuration was utilized to control the composition of PHA and decrease the toxicity of propionate. The incorporation of HAodd into the copolymer was linear, ranging from 7 to approximately 30 %, and correlated directly with the propionate/glucose molar ratio in the feeding solution. This allowed for the molecular composition of the mclPHA to be fine-tuned with minimum process monitoring and control. The average PHA content was 52 % cell dry weight with a molar composition that favored 3-hydroxyalkanoates containing C8, C9, and C10. The conversion factor of propionate to HAodd varied between 0.36 and 0.53 mol·mol-1 (YHAodd/prop.), which are significantly lower than the theoretical maximum efficiency (1.0 mol·mol-1). These results along with the lack of 2-methylisocitrate as a byproduct provides further support for the evidence that the mutant prpB- is still capable of oxidizing propionate.
Collapse
Affiliation(s)
- Pedro Henrique Santos-Oliveira
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | | | - Lars Mathias Blank
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Luiziana Ferreira Silva
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
9
|
Urtuvia V, Ponce B, Andler R, Díaz-Barrera A. Relation of 3HV fraction and thermomechanical properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) produced by Azotobacter vinelandii OP. Int J Biol Macromol 2023; 253:127681. [PMID: 37890746 DOI: 10.1016/j.ijbiomac.2023.127681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/11/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) has attracted substantial attention as a promising material for industrial applications. In this study, different PHBV films with distinct 3-hydroxyvalerate (3HV) contents produced by Azotobacter vinelandii OP were evaluated. The 3HV fraction ranged from 18.6 to 36.7 mol%, and the number-average molecular weight (Mn) was between 238 and 434 kDa. In the bioreactor, a 3HV fraction (36.7 mol%) and an Mn value of 409 kDa were obtained with an oxygen transfer rate (OTR) of 12.5 mmol L-1 h-1. Thermal analysis measurements showed decreased melting (Tm) and glass transition (Tg) temperatures, and values with relatively high 3HV fractions indicated improved thermomechanical properties. The incorporation of the 3HV fraction in the PHBV chain improved the thermal stability of the films, reduced the polymer Tm, and affected the tensile strength. PHBV film with 36.7 mol% 3HV showed an increase in its tensile strength (51.8 MPa) and a decrease in its Tm (170.61 °C) compared with PHB. Finally, scanning electron microscopy (SEM) results revealed that the PHBV film with 32.8 mol% 3HV showed a degradation upon contact with soil, water, or soil bacteria, showing more porous surfaces after degradation. The latter phenomenon indicated that thermomechanical properties played an important role in biodegradation.
Collapse
Affiliation(s)
- Viviana Urtuvia
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2147 Casilla 4059, Valparaíso, Chile.
| | - Belén Ponce
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2147 Casilla 4059, Valparaíso, Chile
| | - Rodrigo Andler
- Escuela de Ingeniería en Biotecnología, Centro de Biotecnología de los Recursos Naturales (Cenbio), Universidad Católica del Maule, Talca, Chile
| | - Alvaro Díaz-Barrera
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2147 Casilla 4059, Valparaíso, Chile
| |
Collapse
|
10
|
Blunt W, Shah P, Vasquez V, Ye M, Doyle C, Liu Y, Saeidlou S, Monteil-Rivera F. Biosynthesis and properties of polyhydroxyalkanoates synthesized from mixed C 5 and C 6 sugars obtained from hardwood hydrolysis. N Biotechnol 2023; 77:40-49. [PMID: 37390901 DOI: 10.1016/j.nbt.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/02/2023]
Abstract
Glucose and xylose are fermentable sugars readily available from lignocellulosic biomass, and are a sustainable carbon substrate supporting industrial biotechnology. Three strains were assessed in this work - Paraburkholderia sacchari, Hydrogenophaga pseudoflava, and Bacillus megaterium - for their ability to uptake both C5 and C6 sugars contained in a hardwood hydrolysate produced via a thermomechanical pulping-based process with concomitant production of poly(3-hydroxyalkanoate) (PHA) biopolymers. In batch conditions, B. megaterium showed poor growth after 12 h, minimal uptake of xylose throughout the cultivation, and accumulated a maximum of only 25 % of the dry biomass as PHA. The other strains simultaneously utilized both sugars, although glucose uptake was faster than xylose. From hardwood hydrolysate, P. sacchari accumulated 57 % of its biomass as PHA within 24 h, whereas H. pseudoflava achieved an intracellular PHA content of 84 % by 72 h. The molecular weight of the PHA synthesized by H. pseudoflava (520.2 kDa) was higher than that of P. sacchari (265.5 kDa). When the medium was supplemented with propionic acid, the latter was rapidly consumed by both strains and incorporated as 3-hydroxyvalerate subunits into the polymer, demonstrating the potential for production of polymers with improved properties and value. H. pseudoflava incorporated 3-hydroxyvalerate subunits with at least a 3-fold higher yield, and produced polymers with higher 3-hydroxyvalerate content than P. sacchari. Overall, this work has shown that H. pseudoflava can be an excellent candidate for bioconversion of lignocellulosic sugars to PHA polymers or copolymers as part of an integrated biorefinery.
Collapse
Affiliation(s)
- Warren Blunt
- Aquatic and Crop Resource Development Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montreal, Québec, Canada H4P 2R2; Department of Biosystems Engineering, University of Manitoba (Fort Garry Campus), 75 Chancellors Circle, Winnipeg, MB, Canada R3T 5V6.
| | - Purnank Shah
- FPInnovations, 570 Boulevard Saint-Jean, Pointe-Claire, Québec, Canada H9R 3J9
| | - Vinicio Vasquez
- Aquatic and Crop Resource Development Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montreal, Québec, Canada H4P 2R2
| | - Mengwei Ye
- Aquatic and Crop Resource Development Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montreal, Québec, Canada H4P 2R2
| | - Christopher Doyle
- Aquatic and Crop Resource Development Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montreal, Québec, Canada H4P 2R2
| | - Yali Liu
- Aquatic and Crop Resource Development Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montreal, Québec, Canada H4P 2R2
| | - Sajjad Saeidlou
- Automotive and Surface Transportation Research Centre, National Research Council Canada, 75 de Mortagne Boulevard, Boucherville, Québec, Canada J4B 6Y4
| | - Fanny Monteil-Rivera
- Aquatic and Crop Resource Development Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montreal, Québec, Canada H4P 2R2.
| |
Collapse
|
11
|
Kalia VC, Patel SKS, Lee JK. Exploiting Polyhydroxyalkanoates for Biomedical Applications. Polymers (Basel) 2023; 15:polym15081937. [PMID: 37112084 PMCID: PMC10144186 DOI: 10.3390/polym15081937] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Polyhydroxyalkanoates (PHA) are biodegradable plastic. Numerous bacteria produce PHAs under environmental stress conditions, such as excess carbon-rich organic matter and limitations of other nutritional elements such as potassium, magnesium, oxygen, phosphorus, and nitrogen. In addition to having physicochemical properties similar to fossil-fuel-based plastics, PHAs have unique features that make them ideal for medical devices, such as easy sterilization without damaging the material itself and easy dissolution following use. PHAs can replace traditional plastic materials used in the biomedical sector. PHAs can be used in a variety of biomedical applications, including medical devices, implants, drug delivery devices, wound dressings, artificial ligaments and tendons, and bone grafts. Unlike plastics, PHAs are not manufactured from petroleum products or fossil fuels and are, therefore, environment-friendly. In this review, a recent overview of applications of PHAs with special emphasis on biomedical sectors, including drug delivery, wound healing, tissue engineering, and biocontrols, are discussed.
Collapse
Affiliation(s)
- Vipin Chandra Kalia
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Sanjay K S Patel
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| |
Collapse
|
12
|
Min Song H, Chan Joo J, Hyun Lim S, Jin Lim H, Lee S, Jae Park S. Production of polyhydroxyalkanoates containing monomers conferring amorphous and elastomeric properties from renewable resources: Current status and future perspectives. BIORESOURCE TECHNOLOGY 2022; 366:128114. [PMID: 36283671 DOI: 10.1016/j.biortech.2022.128114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/06/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Petrochemical-based plastics cause environmental pollution and threaten humans and ecosystems. Polyhydroxyalkanoate (PHA) is considered a promising alternative to nondegradable plastics since it is eco-friendly and biodegradable polymer having similar properties to conventional plastics. PHA's material properties are generally determined by composition and type of monomers in PHA. PHA can be designed in tailor-made manner for their suitable application areas. Among many monomers in PHAs, ω-hydroxalkanoates such as 3-hydroxypropionate (3HP), 4-hydroxybutyrate (4HB), 5-hydroxyvalerate (5HV), and 6-hydroxyhexanoate (6HHx) and medium-chain-length 3-hydroxyalkanoate such as 3-hydroxyhexanoate (3HHx) and 4-hydroxyvalerate (4HV), have been examined as potential monomers able to confer amorphous and elastomer properties when these are incorporated as comonomer in poly(3-hydroxybutyrate) copolymer that has 3HB as main monomer along with comonomers in different monomer fraction. Herein, recent advances in production of PHAs designed to have amorphous and elastomeric properties from renewable sources such as lignocellulose, levulinic acid, crude glycerol, and waste oil are discussed.
Collapse
Affiliation(s)
- Hye Min Song
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jeong Chan Joo
- Department of Biotechnology, The Catholic University of Korea, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Seo Hyun Lim
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hye Jin Lim
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Siseon Lee
- Department of Biotechnology, The Catholic University of Korea, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Si Jae Park
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
13
|
McCaffrey Z, Cal A, Torres L, Chiou BS, Wood D, Williams T, Orts W. Polyhydroxybutyrate Rice Hull and Torrefied Rice Hull Biocomposites. Polymers (Basel) 2022; 14:polym14183882. [PMID: 36146029 PMCID: PMC9501343 DOI: 10.3390/polym14183882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/18/2022] Open
Abstract
Raw and torrefied rice hulls (RRH and TRH) were incorporated into polyhydroxybutyrate (PHB) as fillers using extrusion and injection molding to produce biomass-polymer composites. Filler and composite materials were characterized by particle size analysis, thermomechanical analysis, thermogravimetric analysis, differential scanning calorimetry, FTIR analysis, CHNSO analysis, and mechanical testing. Heat distortion temperature of the RRH composites were 16–22 °C higher than TRH composites. The RRH composite samples showed a 50–60% increase in flexural modulus and 5% increase in stress at yield compared to PHB, while TRH composite samples showed nearly equal flexural modulus and a 24% decrease in stress at yield. The improved mechanical properties of the RRH composites in comparison to TRH composites were due to better particle-matrix adhesion. FTIR analysis showed RRH particles contained more surface functional groups containing oxygen than TRH particles, indicating that RRHs should be more compatible with the polar PHB plastic. SEM images showed space between filler and plastic in TRH composites and better wetted filler particles in the RRH composites.
Collapse
Affiliation(s)
- Zach McCaffrey
- Agricultural Research Service, US Department of Agriculture 800 Buchanan Street, Albany, CA 94710, USA
- Correspondence:
| | - Andrew Cal
- Mango Materials, 490 Lake Park Ave, Oakland, CA 94610, USA
| | - Lennard Torres
- Agricultural Research Service, US Department of Agriculture 800 Buchanan Street, Albany, CA 94710, USA
| | - Bor-Sen Chiou
- Agricultural Research Service, US Department of Agriculture 800 Buchanan Street, Albany, CA 94710, USA
| | - Delilah Wood
- Agricultural Research Service, US Department of Agriculture 800 Buchanan Street, Albany, CA 94710, USA
| | - Tina Williams
- Agricultural Research Service, US Department of Agriculture 800 Buchanan Street, Albany, CA 94710, USA
| | - William Orts
- Agricultural Research Service, US Department of Agriculture 800 Buchanan Street, Albany, CA 94710, USA
| |
Collapse
|