1
|
Teodoro JA, Senra MVX, Amaral DT. In silico bioprospecting of the Neotropical Plant Mandacaru (Cereus) for antimicrobial properties. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10580-9. [PMID: 40388104 DOI: 10.1007/s12602-025-10580-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2025] [Indexed: 05/20/2025]
Abstract
The mandacaru is a cactus species complex widely known in Brazil, with extensive applications in medicinal, food, and agricultural fields. Although it is used medicinally by traditional populations, to treat several diseases, knowledge about its biomolecules of biotechnological potential is still limited, specifically regarding antimicrobial and healing properties. The bacterial resistance to conventional antibiotics presents a significant challenge in modern medicine. In light of this scenario, bioprospecting mandacaru for biotechnological applications as an antimicrobial has emerged as a new and promising research area. In this study, transcriptomic data from three Cereus species (C. fernambucensis, C. hildmannianus, and C. jamacaru) were combined with bioinformatic approaches, including protein modeling, molecular docking, and molecular dynamics simulations, to identify proteins with therapeutic potential for treating wound infections. Our findings highlighted peptides as particularly promising antimicrobial agents, demonstrating efficacy against a range of pathogens, including Gram-positive and Gram-negative bacteria, as well as fungi. Those peptides showed strong interactions with the streptolydigin and sodium ligands, with the streptolydigin ligand emerging as the most promising for enhancing antimicrobial activity. Molecular dynamics revealed that while CF15 exhibited limited stability, CF267, CF48, CH167, and CH176 displayed superior stability, positioning them as the most promising candidates for further investigation. Future work will focus on synthesizing these peptides and evaluating their antimicrobial properties through in vitro and in vivo analyses, to develop them into potent therapeutic agents.
Collapse
Affiliation(s)
- João A Teodoro
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), Avenida dos Estados, 5001, bloco A, 504-3 room, São Paulo, Santo André, 09210-580, Brazil
| | - Marcus V X Senra
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), Avenida dos Estados, 5001, bloco A, 504-3 room, São Paulo, Santo André, 09210-580, Brazil
| | - Danilo T Amaral
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), Avenida dos Estados, 5001, bloco A, 504-3 room, São Paulo, Santo André, 09210-580, Brazil.
| |
Collapse
|
2
|
Zhou Y, Chen Z, Zou Y, Qin Y, Jiang Y, Zou P, Zhang J, Zhu Y, Zhang Z, Wang Y. Screening and preliminary analysis of antimicrobial peptide genes in Octopussinensis. FISH & SHELLFISH IMMUNOLOGY 2025; 163:110408. [PMID: 40360041 DOI: 10.1016/j.fsi.2025.110408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 04/30/2025] [Accepted: 05/10/2025] [Indexed: 05/15/2025]
Abstract
Antimicrobial peptides (AMPs) are small molecular peptides that widely exist in organisms to resist external microbial invasion and play a crucial role in the host's immune defense system. Owing to their functions of efficient broad-spectrum killing of pathogenic microorganisms, immune enhancement, and intestinal health improvement, they have emerged as a focal point in research on the immune defense of aquatic animals in recent years. In this study, a total of 105 putative AMP-derived genes from the genome were screened, and seven candidate AMPs were finally identified by analyzing the differential expression results of the hepatopancreas and the white body transcriptomes combined with machine learning algorithms. Furthermore, the seven synthesized antimicrobial peptides were demonstrated to have good antimicrobial activity. Among them, GAP1 and Big Defensin showed the strongest antibacterial activity. GAP1 and Big Defensin exhibited antibacterial activity against four bacteria (Escherichia coli, Vibro parahaemolyticus, Staphylococcus aureus, and Bacillus subtilis) at low concentrations of 5-10 μM and 3.2-12.9 μM respectively. These data will contribute to the development of AMP-based aquatic drugs.
Collapse
Affiliation(s)
- Yuquan Zhou
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen, 361021, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Zebin Chen
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen, 361021, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Yihua Zou
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen, 361021, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Yongjie Qin
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen, 361021, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Yonghua Jiang
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen, 361021, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Pengfei Zou
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen, 361021, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Jianming Zhang
- Putian Municipal Institute of Fishery Science, Putian, 351100, China
| | - Youfang Zhu
- Putian Municipal Institute of Fishery Science, Putian, 351100, China
| | - Ziping Zhang
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Yilei Wang
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen, 361021, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, 361021, China.
| |
Collapse
|
3
|
Zhou Y, Wang Y, Meng X, Xiong M, Dong X, Peng H, Chen F, Wang KJ. Newly Identified Antimicrobial Peptide Scymicrosin 7-26 from Scylla paramamosain Showing Potent Antimicrobial Activity Against Methicillin-Resistant Staphylococcus aureus In Vitro and In Vivo. ACS Infect Dis 2025; 11:1216-1232. [PMID: 40263886 DOI: 10.1021/acsinfecdis.5c00034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a predominant pathogen causing skin and soft tissue infections, which significantly hinders the wound healing process and contributes to high mortality rates. The rise of multidrug-resistant bacteria, coupled with the limited availability of new antibiotics, underscores the pressing need for the development of innovative antimicrobial substances. Antimicrobial peptides (AMPs), with their multitargeted and rapid antimicrobial activity, are promising candidates to address this crisis. In this study, we identified a novel AMP, Scymicrosin7-26, derived from Scylla paramamosain, which demonstrated potent antimicrobial activity against a variety of MDR strains, particularly MRSA. Confocal microscopy and transmission electron microscopy observations showed that Scymicrosin7-26 bound to MRSA, and had a disruptive effect on cell walls and cell membranes, rapidly penetrating and killing MRSA. Notably, Scymicrosin7-26 exhibited good stability under various ionic conditions, thermal stresses and certain serum concentration, had no obvious toxic effects on HaCaT cells, and its ability to penetrate HaCaT cells indicated its potential for intracellular targeted therapy. In vitro, Scymicrosin7-26 significantly reduced the number of MRSA in HaCaT cells and inhibited intracellular MRSA proliferation. After verifying the low toxicity of Scymicrosin7-26 in vivo in the Marine model organism─marine medaka (Oryzias melastigma), a wound model of MRSA-infected mice was made, and topical administration of Scymicrosin7-26 in hypromellose gels could significantly reduce bacterial burden and promote wound closure. Histological analysis confirmed that Scymicrosin7-26 alleviated tissue damage and was comparable to the effect of vancomycin treatment. Collectively, Scymicrosin7-26 is promising for the treatment of MRSA wound infections and could be a valuable addition to the arsenal against antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Ying Zhou
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China
| | - Ying Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China
| | - Xiangyu Meng
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China
| | - Ming Xiong
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China
- Fujian Innovation Research Institute for Marine Biological Antimicrobial Peptide Industrial Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361005, China
| | - Xianxian Dong
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China
| | - Hui Peng
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China
- Fujian Innovation Research Institute for Marine Biological Antimicrobial Peptide Industrial Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361005, China
| | - Fangyi Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China
- Fujian Innovation Research Institute for Marine Biological Antimicrobial Peptide Industrial Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361005, China
| | - Ke-Jian Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China
- Fujian Innovation Research Institute for Marine Biological Antimicrobial Peptide Industrial Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361005, China
| |
Collapse
|
4
|
Chen Q, Feng G, Shen Y, Li X, Pei Q, Wang H, Tian L, Cao Y, Wu J, Yang H, Mu L. An Anionic Cathelicidin Exerts Antimelanoma Effects in Mice by Promoting Pyroptosis. J Med Chem 2025; 68:8618-8633. [PMID: 40207383 DOI: 10.1021/acs.jmedchem.5c00281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
While cationic antimicrobial peptides (AMPs) are extensively studied for antitumor effects, anionic AMPs remain underexplored. Notably, no amphibian-derived anionic cathelicidins with antitumor activity have been reported. This study identifies Boma-CATH, a novel anionic cathelicidin (net charge-3) from Bombina maxima skin, which suppresses melanoma growth in mice and triggers pyroptosis-like morphological changes in A375 cells via the NLRP3/Caspase-1/GSDMD pathway. Further investigation revealed that ROS played a crucial role in promoting pyroptosis, as NAC (ROS scavenger) and Ac-YVAD-cmk (Caspase-1 inhibitor) reversed cell death and reduced LDH/IL-1β release in vitro and in vivo. GSDMD knockdown further validated its role. Additionally, Boma-CATH inhibited A375 cell proliferation, migration, and invasion, demonstrating dual antitumor mechanisms: pyroptosis induction and metastasis suppression. Importantly, Boma-CATH caused no adverse effects in mice, highlighting its therapeutic safety. These findings position Boma-CATH as a promising melanoma treatment and expand the mechanistic understanding of anionic AMPs in oncology.
Collapse
Affiliation(s)
- Qian Chen
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Guizhu Feng
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Yan Shen
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Xiang Li
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Qiqi Pei
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Hanying Wang
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Li Tian
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Yuanyuan Cao
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Jing Wu
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Hailong Yang
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Lixian Mu
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| |
Collapse
|
5
|
Su Z, Yu H, Lv T, Chen Q, Luo H, Zhang H. Progress in the classification, optimization, activity, and application of antimicrobial peptides. Front Microbiol 2025; 16:1582863. [PMID: 40336834 PMCID: PMC12055553 DOI: 10.3389/fmicb.2025.1582863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 04/03/2025] [Indexed: 05/09/2025] Open
Abstract
Antimicrobial peptides (AMPs) come from various sources and exhibit unique antimicrobial properties. Their rapid action, effectiveness, and resistance to resistance development make them promising alternatives to combat antibiotic resistance. In addition to its excellent antibacterial properties, AMPs have superior immunomodulatory, antitumor, and antiviral activities. In recent years, the demand for AMPs has continued to increase in many fields, especially in the medical field, and the prospects are extensive. However, AMPs have the disadvantages of expensive development cost, higher hemolysis, short half-life, susceptibility to degradation by protein hydrolases, low bioavailability, toxic side effects, and other disadvantages, which seriously limit the wide application of AMPs. Therefore, fewer AMPs have been approved for marketing or are undergoing clinical trials. The review covers the period from 2001 to 2025 and provides a detailed discussion by searching databases such as Google Scholar and Web of Science. This paper reviews the progress of research on AMPs sources, structures, optimization strategies, biological activities, mechanisms of action, and applications. In general, the development approaches and the number of new AMPs have increased significantly. The improvement technologies for AMPs high hemolysis, poor stability, low bioavailability and high cost have increased significantly. The development cost of AMPs is still high, but many AMPs have been widely used in clinical, food, livestock, poultry, cosmetics and other fields. This article focuses on the commonly used optimization strategies and main activities of AMPs, aiming to effectively respond to challenges and provide a theoretical basis for expanding their application range.
Collapse
Affiliation(s)
- Zuheng Su
- School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, China
| | - Huajun Yu
- Guangdong Medical University, Zhanjiang, China
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, China
| | - Tingting Lv
- Department of Neurology, Huazhou People's Hospital, Huazhou, China
| | - Qizhou Chen
- Guangdong Medical University, Zhanjiang, China
| | - Hui Luo
- School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, China
| | - Haitao Zhang
- Guangdong Medical University, Zhanjiang, China
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
6
|
de Freitas AB, Rezende HHA, de Souza GRL, Gonçalves PJ. Photodynamic inactivation of KPC-producing Klebsiella pneumoniae difficult-to-treat resistance (DTR) by a cationic porphyrin. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2025; 265:113133. [PMID: 39987860 DOI: 10.1016/j.jphotobiol.2025.113133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/12/2025] [Accepted: 02/18/2025] [Indexed: 02/25/2025]
Abstract
The global rise of difficult-to-treat resistance (DTR) bacteria, such as Klebsiella pneumoniae carbapenemase-producing Klebsiella pneumoniae (KPC-Kp), poses a critical challenge in controlling infections and curbing the spread of antimicrobial resistance genes. Antimicrobial photodynamic inactivation (aPDI) offers a promising alternative to traditional antimicrobials by effectively targeting extensively drug-resistant pathogens and mitigating antimicrobial resistance. This study investigated the in vitro photodynamic efficacy of the cationic porphyrin 5,10,15,20-tetrakis(1-methylpyridinium-4-yl)porphyrin (TMPyP) against planktonic cultures of KPC-Kp. The minimum effective concentration (MEC) of TMPyP for significant photodynamic activity was determined to be 0.8 μM under an irradiance of 314 ± 11 mW/cm2, delivering a total light dose of 189 J/cm2. At the same concentration, bacterial suspensions exposed to a lower irradiance of 107 ± 7 mW/cm2 achieved a > 99.997 % reduction in viability with a lethal light dose of 51.4 J/cm2. Scanning electron microscopy (SEM) revealed oxidative damage to the bacterial cell wall induced by aPDI. Hemolysis assays confirmed the safety of TMPyP, with no significant cytotoxicity or photocytotoxicity observed, and a selectivity index (SI) greater than 8, indicating a favorable therapeutic window. These findings underscore the potential of TMPyP-based aPDI as a therapeutic strategy to combat KPC-Kp infections. Further studies are warranted to explore its clinical applications and optimize treatment protocols for DTR bacterial infections.
Collapse
Affiliation(s)
- Alysson Benite de Freitas
- Programa de Pós-Graduação em Química, Universidade Federal de Goiás, Goiânia, GO, Brazil; Câmpus Jataí do Instituto Federal de Educação, Ciência e Tecnologia de Goiás, Brazil.
| | | | - Guilherme Rocha Lino de Souza
- Escola de Veterinária e Zootecnia, Universidade Federal de Goiás, Goiânia, GO, Brazil; Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brazil.
| | - Pablo José Gonçalves
- Programa de Pós-Graduação em Química, Universidade Federal de Goiás, Goiânia, GO, Brazil; Instituto de Física, Universidade Federal de Goiás, Goiânia, GO, Brazil; Centro de Excelência em Hidrogênio e Tecnologias Energéticas Sustentáveis (CEHTES), Goiânia, GO, Brazil.
| |
Collapse
|
7
|
Sun S. Progress in the Identification and Design of Novel Antimicrobial Peptides Against Pathogenic Microorganisms. Probiotics Antimicrob Proteins 2025; 17:918-936. [PMID: 39557756 PMCID: PMC11925980 DOI: 10.1007/s12602-024-10402-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2024] [Indexed: 11/20/2024]
Abstract
The occurrence and spread of antimicrobial resistance (AMR) pose a looming threat to human health around the world. Novel antibiotics are urgently needed to address the AMR crisis. In recent years, antimicrobial peptides (AMPs) have gained increasing attention as potential alternatives to conventional antibiotics due to their abundant sources, structural diversity, broad-spectrum antimicrobial activity, and ease of production. Given its significance, there has been a tremendous advancement in the research and development of AMPs. Numerous AMPs have been identified from various natural sources (e.g., plant, animal, human, microorganism) based on either well-established isolation or bioinformatic pipelines. Moreover, computer-assisted strategies (e.g., machine learning (ML) and deep learning (DL)) have emerged as a powerful and promising technology for the accurate prediction and design of new AMPs. It may overcome some of the shortcomings of traditional antibiotic discovery and contribute to the rapid development and translation of AMPs. In these cases, this review aims to appraise the latest advances in identifying and designing AMPs and their significant antimicrobial activities against a wide range of bacterial pathogens. The review also highlights the critical challenges in discovering and applying AMPs.
Collapse
Affiliation(s)
- Shengwei Sun
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, 100 44, Stockholm, Sweden.
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, Tomtebodavägen 23, 171 65, Solna, Sweden.
| |
Collapse
|
8
|
Yang H, Chen Y, Wang L, Gan B, Yu L, Ren R, Kwok HF, Wu Y, Cao Z. The Fungal Secretory Peptide Micasin Induces Itch by Activating MRGPRX1/C11/A1 on Peripheral Neurons. J Invest Dermatol 2025; 145:618-630. [PMID: 38945438 DOI: 10.1016/j.jid.2024.05.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 07/02/2024]
Abstract
Pruritus is the leading symptom of dermatophytosis. Microsporium canis is one of the predominant dermatophytes causing dermatophytosis. However, the pruritogenic agents and the related molecular mechanisms of the dermatophyte M canis remain poorly understood. In this study, the secretion of the dermatophyte M canis was found to dose-dependently evoke itch in mice. The fungal peptide micasin secreted from M canis was then identified to elicit mouse significant scratching and itching responses. The peptide micasin was further revealed to directly activate mouse dorsal root ganglia neurons to mediate the nonhistaminergic itch. Knockout and antagonistic experiments demonstrated that MRGPRX1/C11/A1 rather than MRGPRX2/b2 activated by micasin contributed to pruritus. The chimeras and single-amino acid variants of MRGPRX1 showed that 3 domains (extracellular loop 3, transmembrane helical domain 3, and transmembrane helical domain 6) and 4 hydrophobic residues (Y99, F237, L240, and W241) of MRGPRX1 played the key role in micasin-triggered MRGPRX1 activation. Our study sheds light on the dermatophytosis-associated pruritus and may provide potential therapeutic targets and strategies against pruritus caused by dermatophytes.
Collapse
Affiliation(s)
- Haifeng Yang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China; State Key Laboratory of Virology, Shenzhen Research Institute, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yian Chen
- State Key Laboratory of Virology, Shenzhen Research Institute, College of Life Sciences, Wuhan University, Wuhan, China
| | - Luyao Wang
- State Key Laboratory of Virology, Shenzhen Research Institute, College of Life Sciences, Wuhan University, Wuhan, China
| | - Bing Gan
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Leiye Yu
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Ruobing Ren
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Hang Fai Kwok
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Taipa, China
| | - Yingliang Wu
- State Key Laboratory of Virology, Shenzhen Research Institute, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhijian Cao
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China.
| |
Collapse
|
9
|
Lyapina I, Ganaeva D, Rogozhin EA, Ryabukhina EV, Ryazantsev DY, Lazarev V, Alieva SE, Mamaeva A, Fesenko I. Comparative analysis of small secreted peptide signaling during defense response: insights from vascular and non-vascular plants. PHYSIOLOGIA PLANTARUM 2025; 177:e70147. [PMID: 40079373 DOI: 10.1111/ppl.70147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 03/15/2025]
Abstract
Small secreted peptides (SSPs) play an important role in modulating immune responses in all land plants. However, the evolution of stress peptide signaling in different plant phyla remains poorly understood. Here, we compared the expression of SSP genes in the pathogen-induced transcriptomes of vascular and non-vascular plants. We found 13, 19, 15, and 28 SSP families that were differentially expressed during infection in Physcomitrium patens, Zea mays, Brassica napus, and Solanum tuberosum, respectively. A comparative study of peptide motifs and predicted three-dimensional structures confirmed the similarity of SSPs across the examined plant species. In both vascular and non-vascular plants. However, only the RALF peptide family was differentially regulated under infection. We also found that EPFL peptides, which are involved in growth and development processes in angiosperms, were differentially regulated in P. patens in response to pathogen infection. The search for novel immune-specific peptides revealed a family of PSY-like peptides that are differentially regulated during infection in P. patens. The treatment with synthetic tyrosine-modified and non-modified PSY, and PSY-like peptides, as well as recombinant EPFL and MEG, validated their roles in the immune response and growth regulation. Thus, our study showed the complex nature of SSP signaling and shed light on the regulation of SSPs in different plant lineages during infection.
Collapse
Affiliation(s)
- Irina Lyapina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Daria Ganaeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Eugene A Rogozhin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
- All-Russian Institute for Plant Protection, Pushkin, Russia
| | | | | | - Vassili Lazarev
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Sabina E Alieva
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Anna Mamaeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | | |
Collapse
|
10
|
Lou M, Ji S, Wu R, Zhu Y, Wu J, Zhang J. Microbial production systems and optimization strategies of antimicrobial peptides: a review. World J Microbiol Biotechnol 2025; 41:66. [PMID: 39920500 DOI: 10.1007/s11274-025-04278-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/26/2025] [Indexed: 02/09/2025]
Abstract
Antibiotic resistance has become a public safety issue of the twenty-first century, posing a growing threat and drawing increased attention. Compared to traditional antibiotics, antimicrobial peptides (AMPs), as naturally produced small peptides, can target multiple pathways within pathogens and render them less prone to developing resistance. This makes them promising alternatives to antibiotics. However, traditional chemical synthesis methods face challenges, such as high costs, low yields, and poor stability, limiting the large-scale industrial production of AMPs. Despite extensive research to improve AMP production efficiency, issues such as low yields and complex extraction processes continue to pose significant barriers to commercial application. Therefore, there is an urgent need for new biosynthesis strategies and optimization methods to enhance AMP production efficiency and quality. This review summarizes the sources, classification, mechanisms of action and recent advances in the microbial synthesis of AMPs. It also explores innovative production methods, including recombinant microbial expression systems, fusion tags, codon optimization, tandem multimer expression, and hybrid peptide expression. Furthermore, we review the applications of gene editing technologies and artificial intelligence in AMP production, providing new perspectives and strategies for efficient, large-scale AMP production.
Collapse
Affiliation(s)
- Mengxue Lou
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, 110866, People's Republic of China
| | - Shuaiqi Ji
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, 110866, People's Republic of China
| | - Rina Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang, 110866, People's Republic of China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, 110866, People's Republic of China
| | - Yi Zhu
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang, 110866, People's Republic of China
| | - Junrui Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China.
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang, 110866, People's Republic of China.
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, 110866, People's Republic of China.
| | - Jiachao Zhang
- School of Food Science and Engineering, Hainan University, Haikou, Hainan, 570228, People's Republic of China.
| |
Collapse
|
11
|
Moura AMA, Oliveira JTA, Sousa DOB, Dias LP, Araujo NMS, de O Rocha R, Aguiar TKB, Neto JMM, Silva VO, Feitosa RM, Chaves QLSG, Ramos MV, Freitas CDT. Purification, Characterization, and Antimicrobial Activity Against Candida parapsilosis and Staphylococcus aureus of a Highly Stable Type-1 Cystatin from Terminalia catappa L. Seeds. Curr Protein Pept Sci 2025; 26:308-319. [PMID: 39722487 DOI: 10.2174/0113892037339021241017084509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/18/2024] [Accepted: 09/25/2024] [Indexed: 12/28/2024]
Abstract
INTRODUCTION Clinic infections caused by various microorganisms are a public health concern. The rise of new strains resistant to traditional antibiotics has exacerbated the problem. Thus, the search for new antimicrobial molecules remains highly relevant. METHODS The current study purified, characterized, and assessed the antimicrobial activity of a papain inhibitor from Terminalia catappa L. seeds. RESULTS The inhibitor was purified by heating the crude extract at 80°C for 30 min, followed by ion exchange chromatography on a DEAE cellulose column. The purification index was 9-fold, yielding 2.3%. SDS-PAGE and size exclusion chromatography revealed that the protease inhibitor (TcPI) is a 15.9 kDa monomeric protein. The inhibition kinetics showed that TcPI is a competitive inhibitor specific to papain (Ki = 1.02 x 10-4 M). TcPI remained active even after heating at 100oC for 120 min and at pH conditions varying from 2.0 to 10.0. Even after 60 min, TcPI was resistant to papain proteolysis. TcPI exhibited antimicrobial activity against Candida parapsilosis and Staphylococcus aureus. Conclusion: Here, we show that TcPI is a highly stable type-1 cystatin with the potential to combat infections caused by C. parapsilosis and S. aureus. Additional investigations into TcPI's structural aspects and mechanism of action, as well as safety assessments, are essential prerequisites for its potential application as a novel therapeutic intervention.
Collapse
Affiliation(s)
- Amanda M A Moura
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Campus do Pici, Fortaleza-Ceará, Brazil. CEP 60451-970
| | - Jose Tadeu A Oliveira
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Campus do Pici, Fortaleza-Ceará, Brazil. CEP 60451-970
| | - Daniele O B Sousa
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Campus do Pici, Fortaleza-Ceará, Brazil. CEP 60451-970
| | - Lucas P Dias
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Campus do Pici, Fortaleza-Ceará, Brazil. CEP 60451-970
| | - Nadine M S Araujo
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Campus do Pici, Fortaleza-Ceará, Brazil. CEP 60451-970
| | - Raquel de O Rocha
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven-CT 06511, USA
| | - Tawanny K B Aguiar
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Campus do Pici, Fortaleza-Ceará, Brazil. CEP 60451-970
| | - Joao M M Neto
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Campus do Pici, Fortaleza-Ceará, Brazil. CEP 60451-970
| | - Viviane O Silva
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Campus do Pici, Fortaleza-Ceará, Brazil. CEP 60451-970
| | - Ricardo M Feitosa
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Campus do Pici, Fortaleza-Ceará, Brazil. CEP 60451-970
| | - Queilane L S G Chaves
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Campus do Pici, Fortaleza-Ceará, Brazil. CEP 60451-970
| | - Marcio V Ramos
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Campus do Pici, Fortaleza-Ceará, Brazil. CEP 60451-970
| | - Cleverson D T Freitas
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Campus do Pici, Fortaleza-Ceará, Brazil. CEP 60451-970
| |
Collapse
|
12
|
Lu Y, Zhu Y, Ma C, Wang L, Zhou M, Chen T, Ma X, Zhang X, Fan Z. Senegalin-2: A Novel Hexadecapeptide from Kassina senegalensis with Antibacterial and Muscle Relaxant Activities, and Its Derivative Senegalin-2BK as a Bradykinin Antagonist. Biomolecules 2024; 15:30. [PMID: 39858425 PMCID: PMC11764382 DOI: 10.3390/biom15010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/13/2024] [Accepted: 12/18/2024] [Indexed: 01/27/2025] Open
Abstract
The amphibian skin secretions are excellent sources of bioactive peptides, some of which and their derivatives exhibit multiple properties, including antibacterial and antagonism against bradykinin. A novel peptide Senegalin-2 was isolated from the skin secretions of Kassina senegalensis frog. Senegalin-2 relaxed rat bladder smooth muscle (EC50 17.94 nM) and ileum smooth muscle (EC50 135 nM), inhibited S. aureus and MRSA at 2 μM, and exhibited low hemolytic activity with no cytotoxicity. To design effective bradykinin antagonists, Senegalin-2 was conjugated with bradykinin to synthesize Senegalin-2BK. This modification retained potent activity against Gram-positive bacteria. Compared to Senegalin-2, Senegalin-2BK significantly reduced hemolysis and exhibited a more than threefold increase in the selectivity index. Furthermore, Senegalin-2BK contracted the bladder (EC50 2.83 μM) and ileum (EC50 56.64 nM)'s smooth muscle. The pretreatment with 10-7 M Senegalin-2BK reduced the 10-6 M bradykinin contraction on the bladder by over 70%. In conclusion, Senegalin-2 has dual functionalities as an antibacterial agent and muscle relaxant, positioning it as a potential therapeutic candidate for managing overactive bladder. As a synthetically derived bradykinin antagonist and myotropic peptide with antibacterial properties, Senegalin-2BK shows promise in effective therapies for relieving pain, inflammation, and addressing muscular disorders such as urinary retention, constipation, and infections.
Collapse
Affiliation(s)
- Yueyang Lu
- Jiangsu Clinical Innovation Center for Anorectal Diseases of T.C.M., Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210022, China;
| | - Yanguo Zhu
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (Y.Z.); (C.M.); (L.W.); (M.Z.); (T.C.); (X.M.)
| | - Chengbang Ma
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (Y.Z.); (C.M.); (L.W.); (M.Z.); (T.C.); (X.M.)
| | - Lei Wang
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (Y.Z.); (C.M.); (L.W.); (M.Z.); (T.C.); (X.M.)
| | - Mei Zhou
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (Y.Z.); (C.M.); (L.W.); (M.Z.); (T.C.); (X.M.)
| | - Tianbao Chen
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (Y.Z.); (C.M.); (L.W.); (M.Z.); (T.C.); (X.M.)
| | - Xiaonan Ma
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (Y.Z.); (C.M.); (L.W.); (M.Z.); (T.C.); (X.M.)
| | - Xu Zhang
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing 210023, China;
| | - Zhimin Fan
- Jiangsu Clinical Innovation Center for Anorectal Diseases of T.C.M., Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210022, China;
| |
Collapse
|
13
|
de Oliveira SSS, Cherene MB, Taveira GB, de Oliveira Mello É, de Oliveira Carvalho A, Gomes VM. Plant Antimicrobial Peptides and Their Main Families and Roles: A Review of the Literature. Curr Issues Mol Biol 2024; 47:1. [PMID: 39852116 PMCID: PMC11840293 DOI: 10.3390/cimb47010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 01/26/2025] Open
Abstract
Antimicrobial peptides (AMPs) are constituent molecules of the innate defense system and are naturally produced by all organisms. AMPs are characterized by a relatively low molecular weight (less than 10 kDa) and a variable number of cysteine residues that form disulfide bonds and contribute to the stabilization of the tertiary structure. In addition, there is a wide repertoire of antimicrobial agents against bacteria, viruses, fungi, and protozoa that can provide a large number of prototype peptides for study and biochemical manipulation. In this sense, plant AMPs stand out because they have a wide range of biological functions against microorganisms and potential applications in medicine and agriculture. Herein, we describe a mini-review of the principal AMP families, such as defensins, lipid transfer proteins (LTPs), thionins, heveins, and cyclotides. The objective of this work was to present the main discoveries regarding the biological activities of these plant AMP families, especially in the last 20 years. We also discuss the current knowledge of their biological activities, gene expression, and possible uses as antimicrobial molecules and in plant biotechnology.
Collapse
Affiliation(s)
| | | | | | | | | | - Valdirene Moreira Gomes
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Rio de Janeiro 28013-602, Brazil; (S.S.S.d.O.); (M.B.C.); (G.B.T.); (É.d.O.M.); (A.d.O.C.)
| |
Collapse
|
14
|
Ghanbarzadeh Z, Mohagheghzadeh A, Hemmati S. The Roadmap of Plant Antimicrobial Peptides Under Environmental Stress: From Farm to Bedside. Probiotics Antimicrob Proteins 2024; 16:2269-2304. [PMID: 39225894 DOI: 10.1007/s12602-024-10354-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Antimicrobial peptides (AMPs) are the most favorable alternatives in overcoming multidrug resistance, alone or synergistically with conventional antibiotics. Plant-derived AMPs, as cysteine-rich peptides, widely compensate the pharmacokinetic drawbacks of peptide therapeutics. Compared to the putative genes encrypted in the genome, AMPs that are produced under stress are active forms with the ability to combat resistant microbial species. Within this study, plant-derived AMPs, namely, defensins, nodule-specific cysteine-rich peptides, snakins, lipid transfer proteins, hevein-like proteins, α-hairpinins, and aracins, expressed under biotic and abiotic stresses, are classified. We could observe that while α-hairpinins and snakins display a helix-turn-helix structure, conserved motif patterns such as β1αβ2β3 and β1β2β3 exist in plant defensins and hevein-like proteins, respectively. According to the co-expression data, several plant AMPs are expressed together to trigger synergistic effects with membrane disruption mechanisms such as toroidal pore, barrel-stave, and carpet models. The application of AMPs as an eco-friendly strategy in maintaining agricultural productivity through the development of transgenes and bio-pesticides is discussed. These AMPs can be consumed in packaging material, wound-dressing products, coating catheters, implants, and allergology. AMPs with cell-penetrating properties are verified for the clearance of intracellular pathogens. Finally, the dominant pharmacological activities of bioactive peptides derived from the gastrointestinal digestion of plant AMPs, namely, inhibitors of renin and angiotensin-converting enzymes, dipeptidyl peptidase IV and α-glucosidase inhibitors, antioxidants, anti-inflammatory, immunomodulating, and hypolipidemic peptides, are analyzed. Conclusively, as phytopathogens and human pathogens can be affected by plant-derived AMPs, they provide a bright perspective in agriculture, breeding, food, cosmetics, and pharmaceutical industries, translated as farm to bedside.
Collapse
Affiliation(s)
- Zohreh Ghanbarzadeh
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abdolali Mohagheghzadeh
- Department of Phytopharmaceuticals, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shiva Hemmati
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Pharmaceutical Biology, Faculty of Pharmaceutical Sciences, UCSI University, Cheras, 56000, Kuala Lumpur, Malaysia.
| |
Collapse
|
15
|
Neghabi Hajigha M, Hajikhani B, Vaezjalali M, Samadi Kafil H, Kazemzadeh Anari R, Goudarzi M. Antiviral and antibacterial peptides: Mechanisms of action. Heliyon 2024; 10:e40121. [PMID: 39748995 PMCID: PMC11693924 DOI: 10.1016/j.heliyon.2024.e40121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/02/2024] [Accepted: 11/04/2024] [Indexed: 01/04/2025] Open
Abstract
Antimicrobial peptides (AMPs) present promising alternatives for addressing bacterial and viral multidrug resistance due to their distinctive properties. Understanding the mechanisms of these compounds is essential for achieving this objective. Therefore, this comprehensive review aims to highlight primary natural sources of AMPs and elucidate various aspects of the modes of action of antiviral and antibacterial peptides (ABPs). It emphasizes that antiviral peptides (AVPs) can disrupt the replication cycle of both enveloped and non-enveloped viruses at several stages, including pre-fusion, fusion, and post-entry into the host cell. Additionally, the review discusses the inhibitory effects of ABPs on bacterial growth, outlining their extracellular actions as well as their intracellular activities following membrane translocation. Factors such as structure, size, electric charge, environmental factors, degrading enzymes, and microbial resistance against AMPs can affect the function of AMPs.
Collapse
Affiliation(s)
- Mahdyeh Neghabi Hajigha
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahareh Hajikhani
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Vaezjalali
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Raana Kazemzadeh Anari
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Roytrakul S, Charoenlappanit S, Kittisenachai S, Siangpro N, Sichaem J, Chuakrut S, Sarin S, Jutakanoke R. Antimicrobial and antioxidant activities of peptide derived from turmeric plant (Curcuma longa L). PLoS One 2024; 19:e0314482. [PMID: 39585886 PMCID: PMC11588247 DOI: 10.1371/journal.pone.0314482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 11/11/2024] [Indexed: 11/27/2024] Open
Abstract
The overuse and inappropriate use of antibiotics have led to the emergence of several antibiotic resistant bacteria. As a result, there is growing interest in exploring alternative agents as antimicrobial peptides (AMPs), which operate through unique mechanisms to effectively counteract bacterial resistance. In this study, peptides smaller than 3 kDa were isolated by cation exchange chromatography, anion exchange chromatography and reverse-phase chromatography. Subsequently, 12 candidate peptides were selected and chemically synthesized for a comparative study of growth inhibition in pathogenic bacteria. They demonstrated potent antibacterial activity toward A. baumannii, S. epidermidis, S. aureus, and S. enterica. Exposure to the Cur-1 peptide induced changes in bacterial proteins associated with metabolite interconversion and translation. In addition, all peptides derived from turmeric peptic hydrolysate exhibited antioxidant activity as assessed by ABTS, DPPH and FRAP assays. Cur-1 peptide displayed both high antibacterial and antioxidant potential, positioning it as a promising natural option for antibacterial management and applications within food industry.
Collapse
Affiliation(s)
- Sittiruk Roytrakul
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Pathumthani, Thailand
| | - Sawanya Charoenlappanit
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Pathumthani, Thailand
| | - Suthathip Kittisenachai
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Pathumthani, Thailand
| | - Noppadon Siangpro
- Office of Disease Prevention and Control, Region 3 Nakhon Sawan, Nakhon Sawan, Thailand
| | - Jirapast Sichaem
- Faculty of Science and Technology, Research Unit in Natural Products Chemistry and Bioactivities, Thammasat University Lampang Campus, Lampang, Thailand
| | - Songkran Chuakrut
- Faculty of Medical Science, Department of Microbiology and Parasitology, Naresuan University, Phitsanulok, Thailand
| | - Siripun Sarin
- Faculty of Medical Science, Department of Microbiology and Parasitology, Naresuan University, Phitsanulok, Thailand
| | - Rumpa Jutakanoke
- Faculty of Medical Science, Department of Microbiology and Parasitology, Naresuan University, Phitsanulok, Thailand
- Faculty of Medical Science, Centre of Excellence in Medical Biotechnology (CEMB), Naresuan University, Phitsanulok, Thailand
| |
Collapse
|
17
|
Vladkova TG, Smani Y, Martinov BL, Gospodinova DN. Recent Progress in Terrestrial Biota Derived Antibacterial Agents for Medical Applications. Molecules 2024; 29:4889. [PMID: 39459256 PMCID: PMC11510244 DOI: 10.3390/molecules29204889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/07/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024] Open
Abstract
Conventional antibiotic and multidrug treatments are becoming less and less effective and the discovery of new effective and safe antibacterial agents is becoming a global priority. Returning to a natural antibacterial product is a relatively new current trend. Terrestrial biota is a rich source of biologically active substances whose antibacterial potential has not been fully utilized. The aim of this review is to present the current state-of-the-art terrestrial biota-derived antibacterial agents inspired by natural treatments. It summarizes the most important sources and newly identified or modified antibacterial agents and treatments from the last five years. It focuses on the significance of plant- animal- and bacteria-derived biologically active agents as powerful alternatives to antibiotics, as well as the advantages of utilizing natural antibacterial molecules alone or in combination with antibiotics. The main conclusion is that terrestrial biota-derived antibacterial products and substances open a variety of new ways for modern improved therapeutic strategies. New terrestrial sources of known antibacterial agents and new antibacterial agents from terrestrial biota were discovered during the last 5 years, which are under investigation together with some long-ago known but now experiencing their renaissance for the development of new medical treatments. The use of natural antibacterial peptides as well as combinational therapy by commercial antibiotics and natural products is outlined as the most promising method for treating bacterial infections. In vivo testing and clinical trials are necessary to reach clinical application.
Collapse
Affiliation(s)
- Todorka G. Vladkova
- Department of Polymer Engineering, University of Chemical Technology and Metallurgy, 8 “Kl. Ohridski” Blvd, 1756 Sofia, Bulgaria
| | - Younes Smani
- Andalusian Center of Developmental Biology, CSIC, Junta de Andalusia, University of Pablo de Olavide, 41013 Seville, Spain;
- Department of Molecular Biology and Biochemical Engineering, Andalusian Center of Developmental Biology, CSIC, Junta de Andalusia, University of Pablo de Olavide, 41013 Seville, Spain
| | - Boris L. Martinov
- Department of Biotechnology, University of Chemical Technology and Metallurgy, 8 “Kl. Ohridski” Blvd, 1756 Sofia, Bulgaria;
| | - Dilyana N. Gospodinova
- Faculty of Electrical Engineering, Technical University of Sofia, 8 “Kl. Ohridski” Blvd, 1756 Sofia, Bulgaria;
| |
Collapse
|
18
|
Royan S, Shirzadian-Khorramabad R, Zibaee A, Bagherieh-Najjar MB, Nazarian-Firouzabadi F. Expression of a novel NaD1 recombinant antimicrobial peptide enhances antifungal and insecticidal activities. Sci Rep 2024; 14:23235. [PMID: 39369025 PMCID: PMC11455875 DOI: 10.1038/s41598-024-73710-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 09/20/2024] [Indexed: 10/07/2024] Open
Abstract
This study aimed to increase the antifungal and insecticidal activities of NaD1, as an antimicrobial peptides (AMP), by improving its interaction with the fungal cell wall and chitin monomeric units in insect midguts. Hence, the chitin-binding domains (CBDs) of wheat germ agglutinin protein (WGA) were fused to either N- or C-terminus of NaD1 generating transgenic Nicotiana tabacum hairy roots (HRs). Molecular assessments confirmed the integration of NaD1 transgenes, their transcription and production of recombinant peptides in the HR lines. Total protein of (CBD)4-NaD1 and NaD1-(CBD)4 transgenic lines inhibited the growth of Pyricularia oryzae mycelium, suggesting that fusion of CBD to NaD1 can increase NaD1 half-life, leading to higher affinity toward cell wall chitin. Furthermore, feeding the third-instar larvae of Chilo suppressalis with both (CBD)4-NaD1 and NaD1-(CBD)4 extracts exhibited a higher mortality rate. Both NaD1-CBDs caused a significant decrease in trypsin (TRY) and chymotrypsin (CTR) activities in the larvae, while enhancing the activity of antioxidant enzymes CAT, POD, APX, and SOD. Therefore, feeding the larvae by total extract of NaD1-(CBD)4 and (CBD)4-NaD1 HR lines probably increased affinity to midgut chitin in C. suppressalis, enhancing insecticidal activities. Overall, the results indicate that recombinant peptides are effective in enhancing fungal and insect resistance.
Collapse
Affiliation(s)
- Sara Royan
- Department of Agricultural Biotechnology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | - Reza Shirzadian-Khorramabad
- Department of Agricultural Biotechnology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran.
| | - Arash Zibaee
- Department of Plant Protection, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | | | - Farhad Nazarian-Firouzabadi
- Production Engineering and Plant Genetic Department, Faculty of Agriculture, Lorestan University, Khorramabad, Iran
| |
Collapse
|
19
|
de Bem Matos AC, Telli EMRP, Camillo LC, da Silva GF, Gonçalves MJ, Casa R, Rufato L, de Lourdes Borba Magalhães M. Plant Defensin PgD1 a Biotechnological Alternative Against Plant Pathogens. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10333-0. [PMID: 39243352 DOI: 10.1007/s12602-024-10333-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2024] [Indexed: 09/09/2024]
Abstract
Plant defensins are small antimicrobial proteins (AMP) that participate in the immune defense of plants through their antibacterial, antiviral and antifungal activities. PgD1 is a defensin from Picea glauca (Canadian Pine) and has antifungal activity against plant pathogens. This activity positions it as an alternative biotechnological agent to pesticides commonly used against these plant fungi diseases. The present study aimed to recombinantly produce PgD1 in Escherichia coli to characterize its in vitro antifungal potential against different phytopathogens. To achieve this, the coding gene was amplified and cloned into pET30a( +). Recombinant plasmid was subsequently introduced into E. coli for the soluble expression of defensin PgD1. To evaluate the antifungal activity of the expressed protein, the growth inhibition test was used in solid and liquid media for approximately 7 days against significant plant pathogens, that cause significant crop damage including: Botrytis cinerea, Colletotrichum gloeosporioides, Colletotrichum musae, Colletotrichum graminicola and Fusarium oxysporum. Additionally, stability assessments included temperature variation experiments and inhibition tests using dithiothreitol (DTT). The results showed that there was significant inhibition of the fungal species tested when in the presence of PgD1. Furthermore, defensin proved to be resistant to temperature variations and demonstrated that part of its stability is due to its primary structure rich in cysteine residues through the denaturation test with dithiothreitol (DTT) where the antifungal activity of PgD1 defensin was inhibited. These data indicate that recombinant PgD1 could be utilized as a plant protection technology in agriculture.
Collapse
Affiliation(s)
- Alaide Cristina de Bem Matos
- Programa Multicêntrico de Pós-Graduação Em Bioquímica E Biologia Molecular, Universidade do Estado de Santa Catarina - UDESC, Lages, Santa Catarina, Brasil
| | | | - Luana Coldebella Camillo
- Programa Multicêntrico de Pós-Graduação Em Bioquímica E Biologia Molecular, Universidade do Estado de Santa Catarina - UDESC, Lages, Santa Catarina, Brasil
| | - Gustavo Felippe da Silva
- Programa Multicêntrico de Pós-Graduação Em Bioquímica E Biologia Molecular, Universidade do Estado de Santa Catarina - UDESC, Lages, Santa Catarina, Brasil
| | | | - Ricardo Casa
- Departamento de Agronomia, Universidade do Estado de Santa Catarina - UDESC, Lages, Santa Catarina, Brasil
| | - Leo Rufato
- Departamento de Agronomia, Universidade do Estado de Santa Catarina - UDESC, Lages, Santa Catarina, Brasil
| | - Maria de Lourdes Borba Magalhães
- Programa Multicêntrico de Pós-Graduação Em Bioquímica E Biologia Molecular, Universidade do Estado de Santa Catarina - UDESC, Lages, Santa Catarina, Brasil.
- Department of Food and Animal Science, State University of Santa Catarina, 2090 Luiz de Camões, Lages, SC, 88520-000, Brazil.
| |
Collapse
|
20
|
Barashkova AS, Smirnov AN, Rogozhin EA. Complex of Defense Polypeptides of Wheatgrass ( Elytrigia elongata) Associated with Plant Immunity to Biotic and Abiotic Stress Factors. PLANTS (BASEL, SWITZERLAND) 2024; 13:2459. [PMID: 39273943 PMCID: PMC11396971 DOI: 10.3390/plants13172459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/19/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024]
Abstract
Plant defense polypeptides play a crucial role in providing plants with constitutive immunity against various biotic and abiotic stressors. In this study, we explored a complex of proteins from wheatgrass (Elytrigia elongata) spikelets to estimate their role in the plant's tolerance to various environmental factors. The current research shows that in vitro protein extracts from E. elongata spikelets possess antifungal activity against certain Fusarium species, which are specific cereal pathogens, at concentrations of 1-2 mg/mL. In this study, we reproduced these antifungal activities using a 4 mg/mL extract in artificial fungal infection experiments on wheat grain (Triticum aestivum) under controlled laboratory conditions. Furthermore, the tested extract demonstrated a protective effect on Saccharomyces cerevisiae exposed to hyper-salinity stress at a concentration of 2 mg/mL. A combined scheme of fractionation and structural identification was applied for the estimation of the diversity of defense polypeptides. Defensins, lipid-transfer proteins, hydrolase inhibitors (cereal bifunctional trypsin/alpha-amylase inhibitors from a Bowman-Birk trypsin inhibitor), and high-molecular-weight disease resistance proteins were isolated from the extract. Thus, wheatgrass spikelets appear to be a reservoir of defense polypeptides. Our findings contribute to a deeper understanding of plant defense proteins and peptides and their involvement in the adaptation to various stress factors, and they reveal the regulatory effect at the ecosystem level.
Collapse
Affiliation(s)
- Anna S Barashkova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- All-Russian Institute of Plant Protection, 196608 Saint Petersburg, Russia
| | - Alexey N Smirnov
- Department of Plant Protection, Institute of Agrobiotechnology, Timiryazev Russian State Agrarian University, 127550 Moscow, Russia
| | - Eugene A Rogozhin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- All-Russian Institute of Plant Protection, 196608 Saint Petersburg, Russia
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, 152742 Borok, Russia
| |
Collapse
|
21
|
Bucataru C, Ciobanasu C. Antimicrobial peptides: Opportunities and challenges in overcoming resistance. Microbiol Res 2024; 286:127822. [PMID: 38986182 DOI: 10.1016/j.micres.2024.127822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/12/2024]
Abstract
Antibiotic resistance represents a global health threat, challenging the efficacy of traditional antimicrobial agents and necessitating innovative approaches to combat infectious diseases. Among these alternatives, antimicrobial peptides have emerged as promising candidates against resistant pathogens. Unlike traditional antibiotics with only one target, these peptides can use different mechanisms to destroy bacteria, with low toxicity to mammalian cells compared to many conventional antibiotics. Antimicrobial peptides (AMPs) have encouraging antibacterial properties and are currently employed in the clinical treatment of pathogen infection, cancer, wound healing, cosmetics, or biotechnology. This review summarizes the mechanisms of antimicrobial peptides against bacteria, discusses the mechanisms of drug resistance, the limitations and challenges of AMPs in peptide drug applications for combating drug-resistant bacterial infections, and strategies to enhance their capabilities.
Collapse
Affiliation(s)
- Cezara Bucataru
- Alexandru I. Cuza University, Institute of Interdisciplinary Research, Department of Exact and Natural Sciences, Bulevardul Carol I, Nr.11, Iasi 700506, Romania
| | - Corina Ciobanasu
- Alexandru I. Cuza University, Institute of Interdisciplinary Research, Department of Exact and Natural Sciences, Bulevardul Carol I, Nr.11, Iasi 700506, Romania.
| |
Collapse
|
22
|
Uncu AT, Patat AS, Uncu AO. Whole-genome sequencing and identification of antimicrobial peptide coding genes in parsley (Petroselinum crispum), an important culinary and medicinal Apiaceae species. Funct Integr Genomics 2024; 24:142. [PMID: 39187716 DOI: 10.1007/s10142-024-01423-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 08/28/2024]
Abstract
Parsley is a commonly cultivated Apiaceae species of culinary and medicinal importance. Parsley has several recognized health benefits and the species has been utilized in traditional medicine since ancient times. Although parsley is among the most commonly cultivated members of Apiaceae, no systematic genomic research has been conducted on parsley. In the present work, parsley genome was sequenced using the long-read HiFi (high fidelity) sequencing technology and a draft contig assembly of 1.57 Gb that represents 80.9% of the estimated genome size was produced. The assembly was highly repeat-rich with a repetitive DNA content of 81%. The assembly was phased into a primary and alternate assembly in order to minimize redundant contigs. Scaffolds were constructed with the primary assembly contigs, which were used for the identification of AMP (antimicrobial peptide) genes. Characteristic AMP domains and 3D structures were used to detect and verify antimicrobial peptides. As a result, 23 genes (PcAMP1-23) representing defensin, snakin, thionin, lipid transfer protein and vicilin-like AMP classes were identified. Bioinformatic analyses for the characterization of peptide physicochemical properties indicated that parsley AMPs are extracellular peptides, therefore, plausibly exert their antimicrobial effects through the most commonly described AMP action mechanism of membrane attack. AMPs are attracting increasing attention since they display their fast antimicrobial effects in small doses on both plant and animal pathogens with a significantly reduced risk of resistance development. Therefore, identification and characterization of AMPs is important for their incorporation into plant disease management protocols as well as medicinal research for the treatment of multi-drug resistant infections.
Collapse
Affiliation(s)
- Ali Tevfik Uncu
- Department of Molecular Biology and Genetics, Faculty of Science, Necmettin Erbakan University, Meram, Konya, 42090, Turkey
| | - Aysenur Soyturk Patat
- Department of Molecular Biology and Genetics, Faculty of Science, Necmettin Erbakan University, Meram, Konya, 42090, Turkey
| | - Ayse Ozgur Uncu
- Department of Biotechnology, Faculty of Science, Necmettin Erbakan University, Meram, Konya, 42090, Turkey.
| |
Collapse
|
23
|
Angelini P. Plant-Derived Antimicrobials and Their Crucial Role in Combating Antimicrobial Resistance. Antibiotics (Basel) 2024; 13:746. [PMID: 39200046 PMCID: PMC11350763 DOI: 10.3390/antibiotics13080746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/27/2024] [Accepted: 07/31/2024] [Indexed: 09/01/2024] Open
Abstract
Antibiotic resistance emerged shortly after the discovery of the first antibiotic and has remained a critical public health issue ever since. Managing antibiotic resistance in clinical settings continues to be challenging, particularly with the rise of superbugs, or bacteria resistant to multiple antibiotics, known as multidrug-resistant (MDR) bacteria. This rapid development of resistance has compelled researchers to continuously seek new antimicrobial agents to curb resistance, despite a shrinking pipeline of new drugs. Recently, the focus of antimicrobial discovery has shifted to plants, fungi, lichens, endophytes, and various marine sources, such as seaweeds, corals, and other microorganisms, due to their promising properties. For this review, an extensive search was conducted across multiple scientific databases, including PubMed, Elsevier, ResearchGate, Scopus, and Google Scholar, encompassing publications from 1929 to 2024. This review provides a concise overview of the mechanisms employed by bacteria to develop antibiotic resistance, followed by an in-depth exploration of plant secondary metabolites as a potential solution to MDR pathogens. In recent years, the interest in plant-based medicines has surged, driven by their advantageous properties. However, additional research is essential to fully understand the mechanisms of action and verify the safety of antimicrobial phytochemicals. Future prospects for enhancing the use of plant secondary metabolites in combating antibiotic-resistant pathogens will also be discussed.
Collapse
Affiliation(s)
- Paola Angelini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06122 Perugia, Italy
| |
Collapse
|
24
|
Ruszczyńska M, Sytykiewicz H. New Insights into Involvement of Low Molecular Weight Proteins in Complex Defense Mechanisms in Higher Plants. Int J Mol Sci 2024; 25:8531. [PMID: 39126099 PMCID: PMC11313046 DOI: 10.3390/ijms25158531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
Dynamic climate changes pose a significant challenge for plants to cope with numerous abiotic and biotic stressors of increasing intensity. Plants have evolved a variety of biochemical and molecular defense mechanisms involved in overcoming stressful conditions. Under environmental stress, plants generate elevated amounts of reactive oxygen species (ROS) and, subsequently, modulate the activity of the antioxidative enzymes. In addition, an increase in the biosynthesis of important plant compounds such as anthocyanins, lignin, isoflavonoids, as well as a wide range of low molecular weight stress-related proteins (e.g., dehydrins, cyclotides, heat shock proteins and pathogenesis-related proteins), was evidenced. The induced expression of these proteins improves the survival rate of plants under unfavorable environmental stimuli and enhances their adaptation to sequentially interacting stressors. Importantly, the plant defense proteins may also have potential for use in medical applications and agriculture (e.g., biopesticides). Therefore, it is important to gain a more thorough understanding of the complex biological functions of the plant defense proteins. It will help to devise new cultivation strategies, including the development of genotypes characterized by better adaptations to adverse environmental conditions. The review presents the latest research findings on selected plant defense proteins.
Collapse
Affiliation(s)
| | - Hubert Sytykiewicz
- Faculty of Natural Sciences, Institute of Biological Sciences, University of Siedlce, 14 Prusa St., 08-110 Siedlce, Poland;
| |
Collapse
|
25
|
Bai Y, Zhang W, Zheng W, Meng XZ, Duan Y, Zhang C, Chen F, Wang KJ. A 14-amino acid cationic peptide Bolespleenin 334-347 from the marine fish mudskipper Boleophthalmus pectinirostris exhibiting potent antimicrobial activity and therapeutic potential. Biochem Pharmacol 2024; 226:116344. [PMID: 38852647 DOI: 10.1016/j.bcp.2024.116344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
Antimicrobial peptides (AMPs) are an important component of innate immunity in both vertebrates and invertebrates, and some of the unique characteristics of AMPs are usually associated with their living environment. The marine fish, mudskipper Boleophthalmus pectinirostris, usually live amphibiously in intertidal environments that are quite different from other fish species, which would be an exceptional source of new AMPs. In the study, an AMP named Bolespleenin334-347 was identified, which was a truncated peptide derived from a new functional gene found in B. pectinirostris, that was up-regulated in response to bacterial challenge. Bolespleenin334-347 had only 14 amino acid residues, including five consecutive arginine residues. It was found that the peptide had broad-spectrum antibacterial activity, good thermal stability and sodium ion tolerance. Bolespleenin334-347 killed Acinetobacter baumannii and Staphylococcus aureus by disrupting the structural integrity of the bacterial membrane, leading to leakage of the cellular contents, and inducing accumulation of bacterial endogenous reactive oxygen species (ROS). In addition, Bolespleenin334-347 effectively inhibited biofilm formation of A. baumannii and S. aureus and long-term treatment did not lead to the development of resistance. Importantly, Bolespleenin334-347 maintained stable activity against clinically multi-drug resistant bacterial strains. In addition, it was noteworthy that Bolespleenin334-347 showed superior efficacy to LL-37 and vancomycin in a constructed mouse model of MRSA-induced superficial skin infections, as evidenced by a significant reduction in bacterial load and more favorable wound healing. This study provides an effective antimicrobial agent for topical skin infections with potential therapeutic efficacy for infections with drug-resistant bacteria, including MRSA.
Collapse
Affiliation(s)
- Yuqi Bai
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Weibin Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Wenbin Zheng
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xin-Zhan Meng
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yingyi Duan
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Chang Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Fangyi Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China; State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China; Fujian Innovation Research Institute for Marine Biological Antimicrobial Peptide Industrial Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen, China.
| | - Ke-Jian Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China; State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China; Fujian Innovation Research Institute for Marine Biological Antimicrobial Peptide Industrial Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen, China.
| |
Collapse
|
26
|
Jiang Z, Huang YH, Kaas Q, Craik DJ, Wang CK. Structure and Activity of Reconstructed Pseudo-Ancestral Cyclotides. ChemMedChem 2024; 19:e202400124. [PMID: 38632079 DOI: 10.1002/cmdc.202400124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/19/2024]
Abstract
Cyclotides are cyclic peptides that are promising scaffolds for the design of drug candidates and chemical tools. However, despite there being hundreds of reported cyclotides, drug design studies have commonly focussed on a select few prototypic examples. Here, we explored whether ancestral sequence reconstruction could be used to generate new cyclotides for further optimization. We show that the reconstructed 'pseudo-ancestral' sequences, named Ancy-m (for the ancestral cyclotide of the Möbius sub-family) and Ancy-b (for the bracelet sub-family), have well-defined structures like their extant members, comprising the core structural feature of a cyclic cystine knot. This motif underpins efforts to re-engineer cyclotides for agrochemical and therapeutic applications. We further show that the reconstructed sequences are resistant to temperatures approaching boiling, bind to phosphatidyl-ethanolamine lipid bilayers at micromolar affinity, and inhibit the growth of insect cells at inhibitory concentrations in the micromolar range. Interestingly, the Ancy-b cyclotide had a higher oxidative folding yield than its comparator cyclotide cyO2, which belongs to the bracelet cyclotide subfamily known to be notoriously difficult to fold. Overall, this study provides new cyclotide sequences not yet found naturally that could be valuable starting points for the understanding of cyclotide evolution and for further optimization as drug leads.
Collapse
Affiliation(s)
- Zhihao Jiang
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - Yen-Hua Huang
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - Quentin Kaas
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - Conan K Wang
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Qld, 4072, Australia
| |
Collapse
|
27
|
Yang H, Wang J, Wang X, Wang S, Xu J, Shan Q, Wang J, Ma X, Zhu Y. Nanofiber Peptides for Bacterial Trapping: A Novel Approach to Antibiotic Alternatives in Wound Infections. Adv Healthc Mater 2024; 13:e2304657. [PMID: 38607802 DOI: 10.1002/adhm.202304657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/09/2024] [Indexed: 04/14/2024]
Abstract
The pervasive employment of antibiotics has engendered the advent of drug-resistant bacteria, imperiling the well-being and health of both humans and animals. Infections precipitated by such multi-resistant bacteria, especially those induced by methicillin-resistant Staphylococcus aureus (MRSA), pervade hospital settings, constituting a grave menace to patient vitality. Antimicrobial peptides (AMPs) have garnered considerable attention as a potent countermeasure against multidrug resistant bacteria. In preceding research endeavors, an insect-derived antimicrobial peptide is identified that, while possessing antimicrobial attributes, manifested suboptimal efficacy against drug-resistant Gram-positive bacteria. To ameliorate this issue, this work enhances the antimicrobial capabilities of the initial β-hairpin AMPs by substituting the structural sequence of the original AMPs with variant lengths of hydrophobic amino acid-hydrophilic amino acid repeat units. Throughout this endeavor, this work has identified a number of peptides that possess highly effective antibacterial characteristics against a wide range of bacteria. Additionally, some of these peptides have the ability to self-assemble into nanofibers, which then build networks in a distinctive manner to capture bacteria. Consequently, they represent prospective antibiotic alternatives for addressing wound infections engendered by drug-resistant bacteria.
Collapse
Affiliation(s)
- Hao Yang
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Jiufeng Wang
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
- College of Veterinary Medicine, Sanya Institute of China Agricultural University, Sanya, 572025, China
| | - Xue Wang
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Siyu Wang
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Jieru Xu
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Qiang Shan
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Jingyi Wang
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Xi Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yaohong Zhu
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
- College of Veterinary Medicine, Sanya Institute of China Agricultural University, Sanya, 572025, China
| |
Collapse
|
28
|
Parisi MG, Ozón B, Vera González SM, García-Pardo J, Obregón WD. Plant Protease Inhibitors as Emerging Antimicrobial Peptide Agents: A Comprehensive Review. Pharmaceutics 2024; 16:582. [PMID: 38794245 PMCID: PMC11125377 DOI: 10.3390/pharmaceutics16050582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/26/2024] Open
Abstract
Antimicrobial peptides (AMPs) are important mediator molecules of the innate defense mechanisms in a wide range of living organisms, including bacteria, mammals, and plants. Among them, peptide protease inhibitors (PPIs) from plants play a central role in their defense mechanisms by directly attacking pathogens or by modulating the plant's defense response. The growing prevalence of microbial resistance to currently available antibiotics has intensified the interest concerning these molecules as novel antimicrobial agents. In this scenario, PPIs isolated from a variety of plants have shown potential in inhibiting the growth of pathogenic bacteria, protozoans, and fungal strains, either by interfering with essential biochemical or physiological processes or by altering the permeability of biological membranes of invading organisms. Moreover, these molecules are active inhibitors of a range of proteases, including aspartic, serine, and cysteine types, with some showing particular efficacy as trypsin and chymotrypsin inhibitors. In this review, we provide a comprehensive analysis of the potential of plant-derived PPIs as novel antimicrobial molecules, highlighting their broad-spectrum antimicrobial efficacy, specificity, and minimal toxicity. These natural compounds exhibit diverse mechanisms of action and often multifunctionality, positioning them as promising molecular scaffolds for developing new therapeutic antibacterial agents.
Collapse
Affiliation(s)
- Mónica G. Parisi
- Instituto de Ecología y Desarrollo Sustentable (INEDES, CONICET-UNLu) and Departamento de Ciencias Básicas, Universidad Nacional de Luján, Ruta 5 y Avenida Constitución, Luján B6700, Buenos Aires, Argentina;
| | - Brenda Ozón
- Centro de Investigación de Proteínas Vegetales (CIProVe) and Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115 s/N, La Plata B1900, Buenos Aires, Argentina; (B.O.); (S.M.V.G.)
| | - Sofía M. Vera González
- Centro de Investigación de Proteínas Vegetales (CIProVe) and Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115 s/N, La Plata B1900, Buenos Aires, Argentina; (B.O.); (S.M.V.G.)
| | - Javier García-Pardo
- Institut de Biotecnologia i de Biomedicina (IBB) and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Walter David Obregón
- Centro de Investigación de Proteínas Vegetales (CIProVe) and Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115 s/N, La Plata B1900, Buenos Aires, Argentina; (B.O.); (S.M.V.G.)
| |
Collapse
|
29
|
Istomina EA, Korostyleva TV, Kovtun AS, Slezina MP, Odintsova TI. Transcriptome-Wide Identification and Expression Analysis of Genes Encoding Defense-Related Peptides of Filipendula ulmaria in Response to Bipolaris sorokiniana Infection. J Fungi (Basel) 2024; 10:258. [PMID: 38667929 PMCID: PMC11050963 DOI: 10.3390/jof10040258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/06/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Peptides play an essential role in plant development and immunity. Filipendula ulmaria, belonging to the Rosaceae family, is a medicinal plant which exhibits valuable pharmacological properties. F. ulmaria extracts in vitro inhibit the growth of a variety of plant and human pathogens. The role of peptides in defense against pathogens in F. ulmaria remains unknown. The objective of this study was to explore the repertoire of antimicrobial (AMPs) and defense-related signaling peptide genes expressed by F. ulmaria in response to infection with Bipolaris sorokiniana using RNA-seq. Transcriptomes of healthy and infected plants at two time points were sequenced on the Illumina HiSeq500 platform and de novo assembled. A total of 84 peptide genes encoding novel putative AMPs and signaling peptides were predicted in F. ulmaria transcriptomes. They belong to known, as well as new, peptide families. Transcriptional profiling in response to infection disclosed complex expression patterns of peptide genes and identified both up- and down-regulated genes in each family. Among the differentially expressed genes, the vast majority were down-regulated, suggesting suppression of the immune response by the fungus. The expression of 13 peptide genes was up-regulated, indicating their possible involvement in triggering defense response. After functional studies, the encoded peptides can be used in the development of novel biofungicides and resistance inducers.
Collapse
Affiliation(s)
- Ekaterina A. Istomina
- Laboratory of Molecular-Genetic Bases of Plant Immunity, Vavilov Institute of General Genetics RAS, 119333 Moscow, Russia; (E.A.I.); (T.V.K.); (M.P.S.)
| | - Tatyana V. Korostyleva
- Laboratory of Molecular-Genetic Bases of Plant Immunity, Vavilov Institute of General Genetics RAS, 119333 Moscow, Russia; (E.A.I.); (T.V.K.); (M.P.S.)
| | - Alexey S. Kovtun
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics RAS, 119333 Moscow, Russia;
| | - Marina P. Slezina
- Laboratory of Molecular-Genetic Bases of Plant Immunity, Vavilov Institute of General Genetics RAS, 119333 Moscow, Russia; (E.A.I.); (T.V.K.); (M.P.S.)
| | - Tatyana I. Odintsova
- Laboratory of Molecular-Genetic Bases of Plant Immunity, Vavilov Institute of General Genetics RAS, 119333 Moscow, Russia; (E.A.I.); (T.V.K.); (M.P.S.)
| |
Collapse
|
30
|
Ji S, An F, Zhang T, Lou M, Guo J, Liu K, Zhu Y, Wu J, Wu R. Antimicrobial peptides: An alternative to traditional antibiotics. Eur J Med Chem 2024; 265:116072. [PMID: 38147812 DOI: 10.1016/j.ejmech.2023.116072] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/04/2023] [Accepted: 12/17/2023] [Indexed: 12/28/2023]
Abstract
As antibiotic-resistant bacteria and genes continue to emerge, the identification of effective alternatives to traditional antibiotics has become a pressing issue. Antimicrobial peptides are favored for their safety, low residue, and low resistance properties, and their unique antimicrobial mechanisms show significant potential in combating antibiotic resistance. However, the high production cost and weak activity of antimicrobial peptides limit their application. Moreover, traditional laboratory methods for identifying and designing new antimicrobial peptides are time-consuming and labor-intensive, hindering their development. Currently, novel technologies, such as artificial intelligence (AI) are being employed to develop and design new antimicrobial peptide resources, offering new opportunities for the advancement of antimicrobial peptides. This article summarizes the basic characteristics and antimicrobial mechanisms of antimicrobial peptides, as well as their advantages and limitations, and explores the application of AI in antimicrobial peptides prediction amd design. This highlights the crucial role of AI in enhancing the efficiency of antimicrobial peptide research and provides a reference for antimicrobial drug development.
Collapse
Affiliation(s)
- Shuaiqi Ji
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, PR China; Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, 110866, PR China
| | - Feiyu An
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, PR China; Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang, 110866, PR China
| | - Taowei Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, PR China; Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, 110866, PR China
| | - Mengxue Lou
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, PR China; Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang, 110866, PR China
| | - Jiawei Guo
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, PR China; Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, 110866, PR China
| | - Kexin Liu
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, PR China; Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, 110866, PR China
| | - Yi Zhu
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, PR China; Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang, 110866, PR China
| | - Junrui Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, PR China; Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang, 110866, PR China; Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, 110866, PR China.
| | - Rina Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, PR China; Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang, 110866, PR China; Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, 110866, PR China.
| |
Collapse
|
31
|
Nahirñak V, Almasia NI, Lia VV, Hopp HE, Vazquez Rovere C. Unveiling the defensive role of Snakin-3, a member of the subfamily III of Snakin/GASA peptides in potatoes. PLANT CELL REPORTS 2024; 43:47. [PMID: 38302779 DOI: 10.1007/s00299-023-03108-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/05/2023] [Indexed: 02/03/2024]
Abstract
KEY MESSAGE The first in-depth characterization of a subfamily III Snakin/GASA member was performed providing experimental evidence on promoter activity and subcellular localization and unveiling a role of potato Snakin-3 in defense Snakin/GASA proteins share 12 cysteines in conserved positions in the C-terminal region. Most of them were involved in different aspects of plant growth and development, while a small number of these peptides were reported to have antimicrobial activity or participate in abiotic stress tolerance. In potato, 18 Snakin/GASA genes were identified and classified into three groups based on phylogenetic analysis. Snakin-1 and Snakin-2 are members of subfamilies I and II, respectively, and were reported to be implicated not only in defense against pathogens but also in plant development. In this work, we present the first in-depth characterization of Snakin-3, a member of the subfamily III within the Snakin/GASA gene family of potato. Transient co-expression of Snakin-3 fused to the green fluorescent protein and organelle markers revealed that it is located in the endoplasmic reticulum. Furthermore, expression analyses via pSnakin-3::GUS transgenic plants showed GUS staining mainly in roots and vascular tissues of the stem. Moreover, GUS expression levels were increased after inoculation with Pseudomonas syringae pv. tabaci or Pectobacterium carotovorum subsp. carotovorum and also after auxin treatment mainly in roots and stems. To gain further insights into the function of Snakin-3 in planta, potato overexpressing lines were challenged against P. carotovorum subsp. carotovorum showing enhanced tolerance to this bacterial pathogen. In sum, here we report the first functional characterization of a Snakin/GASA gene from subfamily III in Solanaceae. Our findings provide experimental evidence on promoter activity and subcellular localization and reveal a role of potato Snakin-3 in plant defense.
Collapse
Affiliation(s)
- Vanesa Nahirñak
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Los Reseros y Nicolas Repetto, Hurlingham, Argentina
| | - Natalia Inés Almasia
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Los Reseros y Nicolas Repetto, Hurlingham, Argentina
| | - Verónica Viviana Lia
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Los Reseros y Nicolas Repetto, Hurlingham, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Horacio Esteban Hopp
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Los Reseros y Nicolas Repetto, Hurlingham, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Cecilia Vazquez Rovere
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Los Reseros y Nicolas Repetto, Hurlingham, Argentina.
| |
Collapse
|
32
|
Dart A, Sarviya N, Babaie A, Clare J, Bhave M, Sumer H, de Haan JB, Giri J, Kingshott P. Highly active nisin coated polycaprolactone electrospun fibers against both Staphylococcus aureus and Pseudomonas aeruginosa. BIOMATERIALS ADVANCES 2023; 154:213641. [PMID: 37804685 DOI: 10.1016/j.bioadv.2023.213641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/17/2023] [Accepted: 09/25/2023] [Indexed: 10/09/2023]
Abstract
In this study, a wound dressing of electrospun polycaprolactone (PCL) fibers incorporating the antimicrobial peptide (AMP) nisin was fabricated. Nisin was physically adsorbed to the PCL fibers and tested for antibacterial activity against both Staphylococcus aureus (S. aureus) and Pseudomonas aeruginosa (P. aeruginosa). The PCL fibers had an average diameter of 1.16 μm ± 0.42 μm and no significant change in diameter occurred after nisin adsorption. X-ray photoelectron spectroscopy (XPS) analysis of the fibers detected nitrogen indicative of adsorbed nisin and the signal was used to quantify the levels of coverage on the fiber surfaces. In vitro nisin release studies showed a burst release profile with 80 % of the nisin being released from the fibers within 30 min. Air plasma pre-treatment of the PCL fibers to render them hydrophilic improved nisin loading and release. Antibacterial testing was performed using minimum inhibitory concentration (MIC) and surface attachment assays. The released nisin remained active against both Gram positive S. aureus and Gram negative P. aeruginosa, which has previously been difficult to achieve with single polymer fiber systems. Mammalian cell culture of the nisin coated fibers with L-929 mouse fibroblasts and human epidermal keratinocytes (HEKa) showed that the nisin did not have a significant effect on the biocompatibility of the PCL fibers. The results presented here demonstrate that the physical adsorption, which is a post-treatment, overcomes the potential limitations of harsh chemicals and fabrication conditions of electrospinning from organic solvents and provides a drug loading system having effective antibacterial properties in wound dressings.
Collapse
Affiliation(s)
- Alexander Dart
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Nandini Sarviya
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Ali Babaie
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Jessie Clare
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia; Baker Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia
| | - Mrinal Bhave
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Huseyin Sumer
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Judy B de Haan
- Baker Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia
| | - Jyotsnendu Giri
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, India
| | - Peter Kingshott
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia; ARC Training Centre Training Centre in Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Hawthorn, Victoria 3122, Australia.
| |
Collapse
|
33
|
Dong Y, Wang Y, Tang M, Chen W, Chai Y, Wang W. Bioinformatic analysis of wheat defensin gene family and function verification of candidate genes. FRONTIERS IN PLANT SCIENCE 2023; 14:1279502. [PMID: 37941661 PMCID: PMC10628452 DOI: 10.3389/fpls.2023.1279502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/11/2023] [Indexed: 11/10/2023]
Abstract
Plant defensins are widely distributed in the leaves, fruits, roots, stems, seeds, and tubers. Research shows that defensin in plants play a significant role in physiological metabolism, growth and development. Plant defensins can kill and suppress a variety of pathogenic bacteria. In this study, we understand the phylogenetic relationships, protein characterization, chromosomal localization, promoter and gene structural features of the TaPDFs family through sequence alignment and conserved protein structural domain analysis. A total of 73 PDF gene members in wheat, 15 PDF genes in maize, and 11 PDF genes in rice were identified. A total of 35, 65, and 34 PDF gene members were identified in the genomes of Ae. tauschii, T. urartu, and T. dicoccoides, respectively. TaPDF4.9 and TaPDF2.15 were constructed into pART27 vector with YFP by homologous recombination for subcellular localization analysis. Subcellular localization results showed that TaPDF4.9 and TaPDF2.15 were basically located in the cell membrane and cytoplasm, and TaPDF4.9 was also located in the nucleus. TaPDF4.9 and TaPDF2.15 could inhibit the infection of Phytophthora infestans strain '88069'. The results suggest that TaPDFs may be able to improve disease resistance. The study of wheat defensins will be beneficial for improving wheat yield and provides a theoretical basis for research on resistance to wheat diseases.
Collapse
Affiliation(s)
- Ye Dong
- Ministry of Agriculture and Rural Affairs (MARA) Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, China
| | - Youning Wang
- Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, Hubei Engineering University, Xiaogan, Hubei, China
| | - Mingshuang Tang
- Nanchong Academy of Agriculture Sciences, Nanchong, Sichuan, China
| | - Wang Chen
- Ministry of Agriculture and Rural Affairs (MARA) Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, China
| | - Yi Chai
- Ministry of Agriculture and Rural Affairs (MARA) Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, China
| | - Wenli Wang
- College of Plant Protection, Northwest A&F University, Yangling, Shanxi, China
| |
Collapse
|
34
|
Wang A, Zhou M, Chen Q, Jin H, Xu G, Guo R, Wang J, Lai R. Functional Analyses of Three Targeted DNA Antimicrobial Peptides Derived from Goats. Biomolecules 2023; 13:1453. [PMID: 37892141 PMCID: PMC10605153 DOI: 10.3390/biom13101453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/03/2023] [Accepted: 09/14/2023] [Indexed: 10/29/2023] Open
Abstract
With the increase in drug-resistant bacteria, new antibacterial drugs have emerged as a prominent area of research and development. Antimicrobial peptides (AMPs), as innate immune agents, have garnered significant attention due to their potent, rapid, and broad-spectrum antibacterial activity. This study focused on investigating the functionality of three AMPs (CATH 1, CATH 2, and MAP34-B) derived from goat submandibular glands. Among these AMPs, CATH 2 and MAP34-B exhibited direct antibacterial activity against both Gram-negative and Gram-positive bacteria, primarily targeting the bacterial membrane. Additionally, these two AMPs were found to have the potential to induce reactive oxygen species (ROS) production in bacterial cells and interact with bacterial genome DNA, which may play a crucial role in their mechanisms of action. Furthermore, both CATH 1 and CATH 2 demonstrated significant antioxidant activity, and all three AMPs exhibited potential anti-inflammatory activity. Importantly, the cytotoxic activity of these AMPs against mammalian cells was found to be weak, and their hemolytic activity was extremely low. Overall, the characteristics of these three AMPs found in goat submandibular glands offer new insights for the study of host protection from an immunological perspective. They hold promise as potential candidates for the development of novel antibacterial agents, particularly in the context of combating drug-resistant bacteria.
Collapse
Affiliation(s)
- Aili Wang
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; (A.W.)
| | - Mengying Zhou
- Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou 215137, China
| | - Qian Chen
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; (A.W.)
| | - Hui Jin
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; (A.W.)
| | - Gaochi Xu
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; (A.W.)
| | - Ruiyin Guo
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; (A.W.)
| | - Jianmin Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271000, China;
| | - Ren Lai
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; (A.W.)
- Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Center and Engineering Laboratory of Peptides, Kunming Institute of Zoology, Kunming 650107, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
35
|
Park SC, Yoon AM, Kim YM, Lee MY, Lee JR. Antifungal Action of Arabidopsis thaliana TCP21 via Induction of Oxidative Stress and Apoptosis. Antioxidants (Basel) 2023; 12:1767. [PMID: 37760070 PMCID: PMC10525234 DOI: 10.3390/antiox12091767] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/13/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
The realm of antimicrobial proteins in plants is extensive but remains relatively uncharted. Understanding the mechanisms underlying the action of plant antifungal proteins (AFPs) holds promise for antifungal strategies. This study aimed to bridge this knowledge gap by comprehensively screening Arabidopsis thaliana species to identify novel AFPs. Using MALDI-TOF analysis, we identified a member of the TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR1 (TCP) family of transcription factors as a novel AFP, A. thaliana TCP21 (AtTCP21; accession number NP_196450). Bacterially purified recombinant AtTCP21 inhibited the growth of various pathogenic fungal cells. AtTCP21 was more potent than melittin, a well-known AFP, in combating Colletotrichum gloeosporioides. Growth inhibition assays against various fungal pathogens and yeasts confirmed the pH-dependent antimicrobial activity of AtTCP21. Without inducing any membrane alterations, AtTCP21 penetrates the fungal cell wall and membrane, where it instigates a repressive milieu for fungal cell growth by generating intracellular reactive oxygen species and mitochondrial superoxides; resulting in morphological changes and apoptosis. Our findings demonstrate the redox-regulating effects of AtTCP21 and point to its potential as an antimicrobial agent.
Collapse
Affiliation(s)
- Seong-Cheol Park
- Department of Chemical Engineering, Sunchon National University, Suncheon 57922, Republic of Korea; (S.-C.P.); (Y.-M.K.)
| | - A-Mi Yoon
- LMO Team, National Institute of Ecology (NIE), Seocheon 33657, Republic of Korea;
- Division of Life Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Young-Min Kim
- Department of Chemical Engineering, Sunchon National University, Suncheon 57922, Republic of Korea; (S.-C.P.); (Y.-M.K.)
| | - Min-Young Lee
- Department of Clinical Laboratory Science, Daejeon Health Institute of Technology, Daejeon 34504, Republic of Korea;
| | - Jung Ro Lee
- LMO Team, National Institute of Ecology (NIE), Seocheon 33657, Republic of Korea;
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
36
|
Liu Y, Song M, Wu J, Xie S, Zhou Y, Liu L, Huang M, Jiang L, Xu P, Li J. Exploring the mechanism of photosensitizer conjugation on membrane perturbation of antimicrobial peptide: A multiscale molecular simulation study. Int J Biol Macromol 2023; 247:125698. [PMID: 37414326 DOI: 10.1016/j.ijbiomac.2023.125698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/20/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Antimicrobial peptides (AMPs) exert their biological functions by perturbation with cellular membrane. Conjugation of AMPs with photosensitizer (PS) is a promising strategy for enhancing the efficacy and reducing systemic toxicity of AMPs. However, it is still elusive how the conjugated PS impacts the perturbation of AMPs on cell membrane from molecular level. Here, we addressed this issue by a multiscale computational strategy on pyropheophorbide-a (PPA) conjugated K6L9 (PPA-K6L9), a PS-AMP conjugate developed by us previously. Our atomistic molecular dynamics (MD) simulations revealed that the porphyrin moiety of PPA enhanced the stability of the conjugate in a lipid bilayer membrane model. Moreover, such moiety also maintained the amphipathic structure of K6L9, which is crucial for membrane pore formation. Coarse-grained MD simulations further showed that the conjugates aggregated in membrane environment and formed more stable toroidal pores with respect to K6L9 alone, suggesting the conjugation of PPA may enhance the membrane-disruption activity of K6L9. Consistent with this, our cellular experiments confirmed that PPA-K6L9 was more toxic to 4 T1 tumor cells than K6L9. This study provides insights into the mechanism by which PS-AMP conjugates disrupt cellular membranes and could aid in the design of more potent AMP conjugates.
Collapse
Affiliation(s)
- Yichang Liu
- College of Chemistry, Fuzhou University, Fuzhou 350108, Fujian, China; School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Meiru Song
- College of Chemistry, Fuzhou University, Fuzhou 350108, Fujian, China; Henan Academy of Sciences, Zhengzhou 450046, Henan, China
| | - Juhong Wu
- College of Chemistry, Fuzhou University, Fuzhou 350108, Fujian, China
| | - Song Xie
- College of Chemistry, Fuzhou University, Fuzhou 350108, Fujian, China
| | - Yang Zhou
- College of Chemistry, Fuzhou University, Fuzhou 350108, Fujian, China
| | - Lin Liu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350108, Fujian, China
| | - Mingdong Huang
- College of Chemistry, Fuzhou University, Fuzhou 350108, Fujian, China
| | - Lizhi Jiang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou 350117, Fujian, China; Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou 350117, Fujian, China.
| | - Peng Xu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, Fujian, China.
| | - Jinyu Li
- College of Chemistry, Fuzhou University, Fuzhou 350108, Fujian, China; Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen 361005, Fujian, China.
| |
Collapse
|
37
|
Barashkova AS, Ryazantsev DY, Zhuravleva AS, Sharoyko VV, Rogozhin EA. Recombinant Fusion Protein Containing Plant Nigellothionin Regulates the Growth of Food-Spoiling Fungus ( Aspergillus niger). Foods 2023; 12:3002. [PMID: 37628001 PMCID: PMC10453017 DOI: 10.3390/foods12163002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/25/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
This study aimed to obtain a recombinant chimeric protein named trx-NsW2 via theheterologous expression of the multifunctional antimicrobial peptide nigellothionin from black cumin (Nigella sativa L.) seeds in the Escherichia coli system. The protein was purified using a combination of Ni-NTA affinity chromatography and reversed-phase HPLC. Based on the HPLC calibration, the total yield of the protein was calculated to be 650 mg/L of bacterial culture. The fungistatic activity of trx-NsW2 against the food-spoiling fungus Aspergillus niger was demonstrated as itinhibited the maturation of conidiawithout affecting conidial germination or fungal growth. In contrast to mature nigellothionin NsW2, the fusion protein showeda low level of cytotoxicity towards both normal and tumor cell lines at concentrationsof up to 100-200 µM. Interestingly, at lower concentrations, it even stimulated cytokinesis. These findings are of critical importance for applying chimeric antimicrobial proteins obtained via microbiological synthesis in applied science.
Collapse
Affiliation(s)
- Anna S. Barashkova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, Moscow 117937, Russia; (A.S.B.); (D.Y.R.)
- All-Russian Institute for Plant Protection, Pushkin 196608, Russia
| | - Dmitry Yu. Ryazantsev
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, Moscow 117937, Russia; (A.S.B.); (D.Y.R.)
| | | | - Vladimir V. Sharoyko
- Department of General and Bioorganic Chemistry, Pavlov First Saint-Petersburg State Medical University, Saint-Petersburg 197022, Russia;
| | - Eugene A. Rogozhin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, Moscow 117937, Russia; (A.S.B.); (D.Y.R.)
- All-Russian Institute for Plant Protection, Pushkin 196608, Russia
| |
Collapse
|
38
|
Masoudi-Sobhanzadeh Y, Pourseif MM, Khalili-Sani A, Jafari B, Salemi A, Omidi Y. Deciphering anti-biofilm property of Arthrospira platensis-origin peptides against Staphylococcusaureus. Comput Biol Med 2023; 160:106975. [PMID: 37146493 DOI: 10.1016/j.compbiomed.2023.106975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/17/2023] [Accepted: 04/22/2023] [Indexed: 05/07/2023]
Abstract
Arthrospira platensis is a valuable natural health supplement consisting of various types of vitamins, dietary minerals, and antioxidants. Although different studies have been conducted to explore the hidden benefits of this bacterium, its antimicrobial property has been poorly understood. To decipher this important feature, here, we extended our recently introduced optimization algorithm (Trader) for aligning amino acid sequences associated with the antimicrobial peptides (AMPs) of Staphylococcus aureus and A.platensis. As a result, similar amino acid sequences were identified, and several candidate peptides were generated accordingly. The obtained peptides were then filtered based on their potential biochemical and biophysical properties, and their 3D structures were simulated based on homology modeling techniques. Next, to investigate how the generated peptides can interact with S. aureus proteins (i.e., heptameric state of the hly and homodimeric form of the arsB), molecular docking approaches were used. The results indicated that four peptides included better molecular interactions relative to the other generated ones in terms of the number/average length of hydrogen bonds and hydrophobic interactions. Based on the outcomes, it can be concluded that the antimicrobial property of A.platensis might be associated with its capability in disturbing the membrane of pathogens and their functions.
Collapse
Affiliation(s)
- Yosef Masoudi-Sobhanzadeh
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad M Pourseif
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ava Khalili-Sani
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Computer Engineering, University College of Nabi Akram, Tabriz, Iran
| | - Behzad Jafari
- Department of Medicinal Chemistry, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Aysan Salemi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Florida, 33328, USA.
| |
Collapse
|
39
|
Flores-Alvarez LJ, Jiménez-Alcántar P, Ochoa-Zarzosa A, López-Meza JE. The Antimicrobial Peptide γ-Thionin from Habanero Chile ( Capsicum chinense) Induces Caspase-Independent Apoptosis on Human K562 Chronic Myeloid Leukemia Cells and Regulates Epigenetic Marks. Molecules 2023; 28:molecules28093661. [PMID: 37175071 PMCID: PMC10180109 DOI: 10.3390/molecules28093661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
Cancer is a relevant health problem worldwide. In 2020, leukemias represented the 13th most commonly reported cancer cases worldwide but the 10th most likely to cause deaths. There has been a progressive increase in the efficacy of treatments for leukemias; however, these still generate important side effects, so it is imperative to search for new alternatives. Defensins are a group of antimicrobial peptides with activity against cancer cells. However, the cytotoxic mechanism of these peptides has been described mainly for animal defensins. This study shows that defensin γ-thionin (Capsicum chinense) is cytotoxic to the K562 leukemia cells with an IC50 = 290 μg/mL (50.26 μM) but not for human peripheral blood mononuclear cells. Results showed that γ-thionin did not affect the membrane potential; however, the peptide modified the mitochondrial membrane potential (ΔΨm) and the intracellular calcium release. In addition, γ-thionin induced apoptosis in K562 cells, but the activation of caspases 8 and 9 was not detected. Moreover, the activation of calpains was detected at one hour of treatment, suggesting that γ-thionin activates the caspase-independent apoptosis. Furthermore, the γ-thionin induced epigenetic modifications on histone 3 in K562 cells, increased global acetylation (~2-fold), and specific acetylation marks at lysine 9 (H3K9Ac) (~1.5-fold). In addition, γ-thionin increased the lysine 9 methylation (H3K9me) and dimethylation marks (H3K9me2) (~2-fold), as well as the trimethylation mark (H3K9me3) (~2-fold). To our knowledge, this is the first report of a defensin that triggers caspase-independent apoptosis in cancer cells via calpains and regulating chromatin remodelation, a novel property for a plant defensin.
Collapse
Affiliation(s)
- Luis José Flores-Alvarez
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Km 9.5 Carretera Morelia-Zinapécuaro, Posta Veterinaria, Morelia C.P. 58893, Mexico
| | - Paola Jiménez-Alcántar
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Km 9.5 Carretera Morelia-Zinapécuaro, Posta Veterinaria, Morelia C.P. 58893, Mexico
| | - Alejandra Ochoa-Zarzosa
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Km 9.5 Carretera Morelia-Zinapécuaro, Posta Veterinaria, Morelia C.P. 58893, Mexico
| | - Joel E López-Meza
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Km 9.5 Carretera Morelia-Zinapécuaro, Posta Veterinaria, Morelia C.P. 58893, Mexico
| |
Collapse
|
40
|
Novel Arginine- and Proline-Rich Candidacidal Peptides Obtained through a Bioinformatic Approach. Antibiotics (Basel) 2023; 12:antibiotics12030472. [PMID: 36978339 PMCID: PMC10044544 DOI: 10.3390/antibiotics12030472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Antimicrobial resistance is a major public health concern worldwide. Albeit to a lesser extent than bacteria, fungi are also becoming increasingly resistant to antifungal drugs. Moreover, due to the small number of antifungal classes, therapy options are limited, complicating the clinical management of mycoses. In this view, antimicrobial peptides (AMPs) are a potential alternative to conventional drugs. Among these, Proline-rich antimicrobial peptides (PrAMPs), almost exclusively of animal origins, are of particular interest due to their peculiar mode of action. In this study, a search for new arginine- and proline-rich peptides from plants has been carried out with a bioinformatic approach by sequence alignment and antimicrobial prediction tools. Two peptide candidates were tested against planktonic cells and biofilms of Candida albicans and Candida glabrata strains, including resistant isolates. These peptides showed similar potent activity, with half-maximal effective concentration values in the micromolar range. In addition, some structural and functional features, revealing peculiar mechanistic behaviors, were investigated.
Collapse
|
41
|
Branco LAC, Souza PFN, Neto NAS, Aguiar TKB, Silva AFB, Carneiro RF, Nagano CS, Mesquita FP, Lima LB, Freitas CDT. New Insights into the Mechanism of Antibacterial Action of Synthetic Peptide Mo-CBP 3-PepI against Klebsiella pneumoniae. Antibiotics (Basel) 2022; 11:antibiotics11121753. [PMID: 36551410 PMCID: PMC9774128 DOI: 10.3390/antibiotics11121753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Klebsiella pneumoniae is a multidrug-resistant opportunistic human pathogen related to various infections. As such, synthetic peptides have emerged as potential alternative molecules. Mo-CBP3-PepI has presented great activity against K. pneumoniae by presenting an MIC50 at a very low concentration (31.25 µg mL-1). Here, fluorescence microscopy and proteomic analysis revealed the alteration in cell membrane permeability, ROS overproduction, and protein profile of K. pneumoniae cells treated with Mo-CBP3-PepI. Mo-CBP3-PepI led to ROS overaccumulation and membrane pore formation in K. pneumoniae cells. Furthermore, the proteomic analysis highlighted changes in essential metabolic pathways. For example, after treatment of K. pneumoniae cells with Mo-CBP3-PepI, a reduction in the abundance of protein related to DNA and protein metabolism, cytoskeleton and cell wall organization, redox metabolism, regulation factors, ribosomal proteins, and resistance to antibiotics was seen. The reduction in proteins involved in vital processes for cell life, such as DNA repair, cell wall turnover, and protein turnover, results in the accumulation of ROS, driving the cell to death. Our findings indicated that Mo-CBP3-PepI might have mechanisms of action against K. pneumoniae cells, mitigating the development of resistance and thus being a potent molecule to be employed in producing new drugs against K. pneumoniae infections.
Collapse
Affiliation(s)
- Levi A. C. Branco
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza 60020-181, CE, Brazil
| | - Pedro F. N. Souza
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza 60020-181, CE, Brazil
- Drug Research and Development Center, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza 60020-181, CE, Brazil
- Correspondence: or
| | - Nilton A. S. Neto
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza 60020-181, CE, Brazil
| | - Tawanny K. B. Aguiar
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza 60020-181, CE, Brazil
| | - Ayrles F. B. Silva
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza 60020-181, CE, Brazil
| | - Rômulo F. Carneiro
- Department of Fisheries Engineering, Federal University of Ceará, Fortaleza 60020-181, CE, Brazil
| | - Celso S. Nagano
- Department of Fisheries Engineering, Federal University of Ceará, Fortaleza 60020-181, CE, Brazil
| | - Felipe P. Mesquita
- Drug Research and Development Center, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza 60020-181, CE, Brazil
| | - Luina B. Lima
- Drug Research and Development Center, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza 60020-181, CE, Brazil
| | - Cleverson D. T. Freitas
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza 60020-181, CE, Brazil
| |
Collapse
|
42
|
Dini I, De Biasi MG, Mancusi A. An Overview of the Potentialities of Antimicrobial Peptides Derived from Natural Sources. Antibiotics (Basel) 2022; 11:1483. [PMID: 36358138 PMCID: PMC9686932 DOI: 10.3390/antibiotics11111483] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 07/21/2023] Open
Abstract
Antimicrobial peptides (AMPs) are constituents of the innate immune system in every kind of living organism. They can act by disrupting the microbial membrane or without affecting membrane stability. Interest in these small peptides stems from the fear of antibiotics and the emergence of microorganisms resistant to antibiotics. Through membrane or metabolic disruption, they defend an organism against invading bacteria, viruses, protozoa, and fungi. High efficacy and specificity, low drug interaction and toxicity, thermostability, solubility in water, and biological diversity suggest their applications in food, medicine, agriculture, animal husbandry, and aquaculture. Nanocarriers can be used to protect, deliver, and improve their bioavailability effectiveness. High cost of production could limit their use. This review summarizes the natural sources, structures, modes of action, and applications of microbial peptides in the food and pharmaceutical industries. Any restrictions on AMPs' large-scale production are also taken into consideration.
Collapse
Affiliation(s)
- Irene Dini
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| | | | - Andrea Mancusi
- Department of Food Microbiology, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, 80055 Portici, Italy
| |
Collapse
|