1
|
Kaliyamoorthy V, Jacop JP, Ibrahim HIM, Kandhasamy S. Lactobacillus plantarum with lignin prevents Helicobacter pylori mediated DSS-colitis through improved intestinal integrity and reducing colonic inflammation in C57BL/6J mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025. [PMID: 40396390 DOI: 10.1002/jsfa.14374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 03/15/2025] [Accepted: 04/21/2025] [Indexed: 05/22/2025]
Abstract
BACKGROUND Probiotics are beneficial microorganisms that affect stomach acid and reduce bile production in the host organism. Helicobacter pylori infection causes chronic gastritis, peptic ulcer, gastric carcinoma and gastric lymphoma. Probiotic mediated gut health improvement in H. pylori infection remains underestimated. OBJECTIVE The study aimed to develop Venu Lactiplantibacillus plantarum (VLP) surface coated with lignin and examine their protective effects and metabolic pathways in a colitis model using dextran sulphate sodium (DSS) in male C57BL/6J mice. MATERIALS AND METHODS The toxic effects of dietary lignin were assessed on H. pylori and L. plantarum (VLP) using bacterial growth optical density (OD) at 600 nm. C57BL/6J male mice were induced with DSS colitis with H. pylori antigens and VLP with lignin was used to reduce the gut colitis by examined the length of the colon, the presence of inflammation, and the level of oxidative stress in mice. The collapse of the intestinal barrier was further identified by investigating gut permeability and inflammatory markers such as tumour necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interferon-γ (IFN-γ), and transforming growth factor-β (TGF-β) using enzyme linked immunosorbent assay (ELISA) platform methods. RESULT The toxic effects of dietary lignin were assessed and it was found that lignin treatment exhibited substantial inhibition against H. pylori inhibition at a dose of 5 μmol/L and the OD value at 600 nm. The viability of VLPs treated with lignin exhibited a 2.0 CFU/mL with significant increase in viable growth after a period of 3 h. The findings demonstrated that the application of L. plantarum with lignin treatment effectively decreased the levels of inflammatory cytokines in colon tissues affected by inflammation. The ulcerative colitis disease activity index was greatly lowered by modulating the immunological response, boosting antioxidant capacity, and regulating inflammatory signalling pathways. In vitro experiments demonstrated that VLP-treated Caco-2 cells effectively decreased H. pylori infection and enhanced their survival ability, invasion, and adhesion. CONCLUSION To summarize, the presence of lignin in VLP has the ability to alleviate colitis generated by DSS and H. pylori antigens, and its therapeutic capabilities against ulcerative colitis in a mouse model have been investigated. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Venugopal Kaliyamoorthy
- Department of Biotechnology, Karpaga Vinayaga College of Engineering and Technology, Chengalpattu, India
| | - Justin Packia Jacop
- Department of Biotechnology, St Joseph's College of Engineering, Chennai, India
| | - Hairul Islam Mohamed Ibrahim
- Division of microbiology and molecular biology, Pondicherry Centre for Biological Sciences and Educational Trust, Pondicherry, India
- Biology Department, College of Science, King Faisal University, Hofouf, Saudi Arabia
| | - Sivakumar Kandhasamy
- Department of Biotechnology, Karpaga Vinayaga College of Engineering and Technology, Chengalpattu, India
| |
Collapse
|
2
|
Ma R, Duan C, Yan C, Yang K, Fan Q, Nie X, Dai L, Ni Y. Bio-based composite hydrogel/film reinforced by hyperbranched lignin nanoparticles: Robustness, thermostability, thermal insulation and UV shielding. Int J Biol Macromol 2025; 307:142175. [PMID: 40101819 DOI: 10.1016/j.ijbiomac.2025.142175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/20/2025] [Accepted: 03/14/2025] [Indexed: 03/20/2025]
Abstract
Most of the bio-based hydrogels tend to malfunction under a high-temperature condition, as the crosslinked network structure readily disintegrates, failing to meet the demands of hot environment. Herein, we exploit a thermostable composite hydrogel (CH) mainly using bio-based hyperbranched lignin nanoparticles (H-LNPs), TEMPO-oxidized cellulose nanofibers (TOCN), and scleroglucan (Slg), followed by a slow evaporation to form a multifunctional CH film. Thanks to the uniform distribution of H-LNPs and TOCN, which are rich in hydroxyl groups, within the hydrogel matrix, the crosslinking density, storage modulus, loss modulus, and thermal stability of the CHs are remarkably enhanced. As a result, the optimum CH demonstrates excellent thermal resistance and structural stability even after 196 h at 140 °C. Moreover, the resultant CH film exhibits outstanding UV shielding (>99.8 %) and solar radiation shielding (cooling 6.6 °C), endowing it as an ideal candidate for thermal insulation. These findings underscore the potential of H-LNPs in the development of robust, thermostable, and thermally insulating hydrogels for industrial applications in extreme environments.
Collapse
Affiliation(s)
- Ruoteng Ma
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; Limerick Pulp and Paper Centre, University of New Brunswick, New Brunswick E3B 5A3, Canada
| | - Chao Duan
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Chenyue Yan
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Kang Yang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Qi Fan
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xiaorang Nie
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Lei Dai
- Key Laboratory of Eco-Textiles, Ministry of Education, College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China.
| | - Yonghao Ni
- Limerick Pulp and Paper Centre, University of New Brunswick, New Brunswick E3B 5A3, Canada
| |
Collapse
|
3
|
Zhao D, Luo J, Fang K, Huang C, Zhou X, Jiang K. Highly adhesive conductive hydrogels fabricated by catechol lignin/liquid metal-initiated polymerization of acrylic acid for strain sensors. Int J Biol Macromol 2025; 310:143438. [PMID: 40274148 DOI: 10.1016/j.ijbiomac.2025.143438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 04/10/2025] [Accepted: 04/21/2025] [Indexed: 04/26/2025]
Abstract
Conductive hydrogels have emerged as promising candidates for next-generation flexible electronics owing to their unique combination of electrical conductivity and mechanical compliance. However, the development of an eco-friendly and efficient polymerization strategy to simultaneously achieve robust adhesion and superior functionality remains a challenge. In the work, catechol lignin (DAL)/liquid metal (LM) were utilized as initiators for the polymerization of acrylic monomers (PAA), resulting in the preparation of conductive hydrogels (PAA-DAL-LM). The engineered DAL component serves dual functions of establishing an interfacial stabilization layer for LM nanoparticles while participating in radical generation for polymerization initiation, and this synthesis protocol eliminates conventional toxic initiators through LM-mediated radical generation mechanisms. The resultant PAA-DAL-1.6 %LM hydrogel demonstrated remarkable performance characteristics, including exceptional compressive strength (688.5 KPa), good self-healing properties, and high electrical conductivity (0.24 S/m). Structural modification of alkali lignin through catechol incorporation significantly improved both the water solubility and interfacial adhesion strength (16.23 KPa). Systematic characterization revealed stable strain-responsive electrical behavior with high strain sensing accuracy as well as stable electrical output. These multifunctional hydrogels not only hold significant potential for advancing flexible sensor technologies but also pave the way for sustainable valorization of lignin biopolymers in advanced material applications.
Collapse
Affiliation(s)
- Dongping Zhao
- National Key Laboratory for the Development and Utilization of Forest Food Resources, Nanjing Forestry University, Nanjing 210037, China; Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jing Luo
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Kaili Fang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou 310053, China
| | - Caoxing Huang
- National Key Laboratory for the Development and Utilization of Forest Food Resources, Nanjing Forestry University, Nanjing 210037, China; Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xin Zhou
- National Key Laboratory for the Development and Utilization of Forest Food Resources, Nanjing Forestry University, Nanjing 210037, China; Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Kankan Jiang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou 310053, China.
| |
Collapse
|
4
|
Xiong J, Li K, Lin C, Shen H, Lu C. Molecular Interaction Mechanism and Mechanical Performance of Lignin/Gelatin Composites by Molecular Dynamics Simulation Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:8369-8379. [PMID: 40112035 DOI: 10.1021/acs.langmuir.5c00274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Owing to the weak intermolecular interaction and inferior mechanical properties, the application of biobased gelatin as a textile fiber can be limited. Although lignin is a promising biobased filler for reinforcing gelatin, the interaction mechanism and mechanical performance of lignin/gelatin composites remain insufficiently explored. In this work, the molecular interaction mechanism in lignin/gelatin blends was systematically investigated by using molecular dynamics (MD) simulations. Simulation models of gelatin composites with varying lignin contents (0, 5, 10, and 20%) were constructed to elucidate the influence of the lignin content on the molecular interaction and mechanical performance. The results implied that the addition of lignin into the gelatin matrix has a significant effect on the hydrogen bonding interaction, which is primarily formed between the hydroxyl/amino groups in gelatin and the hydroxyl groups in lignin. The mechanical properties of the 10% lignin/gelatin composite achieved optimal values, attributed to the improved interfacial interaction and compatibility between lignin and gelatin. The simulation findings were further validated by the experimental data. This study provides valuable insights into the potential fabrication of lignin-reinforced gelatin textile fibers with enhanced mechanical properties.
Collapse
Affiliation(s)
- Jieyu Xiong
- Shanghai Frontiers Science Center of Advanced Textiles, Donghua University, Shanghai 201620, China
- College of Textiles, Donghua University, Shanghai 201620, China
| | - Kexin Li
- Shanghai Frontiers Science Center of Advanced Textiles, Donghua University, Shanghai 201620, China
- College of Textiles, Donghua University, Shanghai 201620, China
| | - Canhui Lin
- Shanghai Frontiers Science Center of Advanced Textiles, Donghua University, Shanghai 201620, China
- College of Textiles, Donghua University, Shanghai 201620, China
| | - Hua Shen
- Shanghai Frontiers Science Center of Advanced Textiles, Donghua University, Shanghai 201620, China
- College of Textiles, Donghua University, Shanghai 201620, China
- Wujiang Dingsheng Silk Co., Ltd, Suzhou, Jiangsu 215228, China
| | - Chunhong Lu
- Shanghai Frontiers Science Center of Advanced Textiles, Donghua University, Shanghai 201620, China
- College of Textiles, Donghua University, Shanghai 201620, China
| |
Collapse
|
5
|
Chen S, Lai J, Chen J, Zheng L, Wang M. 3D printed gelatin/PTMC core/shell scaffolds with NIR laser-tuned drug/biomolecule release for cancer therapy and uterine regeneration. Int J Biol Macromol 2024; 283:137193. [PMID: 39500434 DOI: 10.1016/j.ijbiomac.2024.137193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/22/2024] [Accepted: 10/31/2024] [Indexed: 11/10/2024]
Abstract
Surgical resection is an efficient treatment for cancerous tissues and uterine fibroids in the women uterus. However, the insufficiency of clinical interventions could result in tumor recurrence, and the defective tissues remained would cause intrauterine adhesions (IUAs) and further affect reproduction capacity. In this study, 3D printed hydrogel/poly(l-lactide-co-trimethylene carbonate) (PLLA-co-TMC, "PTMC" in short) core/shell scaffolds with NIR-tuned doxorubicin hydrochloride (DOX) and estradiol (E2) dual release were designed and fabricated for cancer therapy and uterine regeneration. Gelatin (Gel) and DOX were homogeneously mixed and then 3D printed to form Gel-DOX scaffolds. Gel-DOX scaffolds were then immersed in PTMC-PDA@E2 solution to fabricate Gel-DOX/PTMC-PDA@E2 core/shell scaffolds. Consequently, Gel-DOX/PTMC-PDA@E2 scaffolds could release DOX and E2 in a chronological manner, firstly delivering DOX assisted by phototherapy (PTT) to effectively kill Hela cells and then sustainably releasing E2 to promote uterine tissue regeneration. In vitro experiments showed that core/shell scaffolds exhibited excellent anticancer efficiency through the synergy of DOX release and hyperthermia ablation. Moreover, E2 could be sustainably released for over 28 days in vitro to promote the proliferation of bone marrow-derived mesenchymal stem cells (BMSCs). The novel Gel-DOX/PTMC-PDA@E2 core/shell scaffolds have therefore exhibited potential promise for the treatment of cancer therapy and uterine regeneration.
Collapse
Affiliation(s)
- Shangsi Chen
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region of China
| | - Jiahui Lai
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region of China
| | - Jizhuo Chen
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region of China
| | - Liwu Zheng
- Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Sai Ying Pun, Hong Kong Special Administrative Region of China
| | - Min Wang
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region of China.
| |
Collapse
|
6
|
Zhang X, Ding H, Zhou Y, Li Z, Bai Y, Zhang L. Antidehydration and Stable Mechanical Properties during the Phase Transition of the PNIPAM-Based Hydrogel for Body-Temperature-Monitoring Sensors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:62776-62787. [PMID: 39482995 DOI: 10.1021/acsami.4c15748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Poly(N-isopropylacrylamide) (PNIPAM) enhances the reversibility and responsiveness of wearable temperature-sensitive devices. However, an open question is whether and how the hydrogel design can prevent adhesive performance loss caused by phase-transition-induced dehydration and unstable mechanical properties between devices and human skin and reduce interfacial failure. Herein, a gelatin-mesh scaffold-based hydrogel (NAGP-Gel) is constructed to inhibit dehydration and volume change, leading to stable mechanical properties, superior adhesiveness, and thermal sensing sensitivity during the phase transition. NAGP-Gel enhances the polymer chains-water interaction and weakens the degree of aggregation of polymer chains-chains, improving antidehydration properties under 45 °C conditions that are higher than the lower critical solution temperature (LCST; i.e., ∼32 °C). The mesh scaffold greatly restricts the phase-transition-induced polymer chain movement and maintains the mechanical performance. In a 60 °C environment, the maximum water loss and volume retention ratio of NAGP-Gel are only 3.58% and 97.3%, respectively. Additionally, NAGP-Gel serves as a temperature sensor, producing a stable thermal-electrical signal within the LCST range. It also can be assembled into an electronic device enabling the transmission of information and recognition of sign language via Morse code. This work broadens the application of PNIPAM in constructing intelligent hydrogels and opens the door to exploring emerging hydrogels for temperature-monitoring applications.
Collapse
Affiliation(s)
- Xiaoyong Zhang
- Anhui Province Key Laboratory of Specialty Polymers, School of Materials Science and Engineering, The First Affiliated Hospital of Anhui University of Science and Technology, Anhui University of Science and Technology, Huainan, Anhui 232001, P.R. China
| | - Haoran Ding
- Anhui Province Key Laboratory of Specialty Polymers, School of Materials Science and Engineering, The First Affiliated Hospital of Anhui University of Science and Technology, Anhui University of Science and Technology, Huainan, Anhui 232001, P.R. China
| | - Yujia Zhou
- Department of Oil Storage and Transportation Engineering, China University of Petroleum─Beijing, Beijing 100100, P.R. China
| | - Zhaozhao Li
- Anhui Province Key Laboratory of Specialty Polymers, School of Materials Science and Engineering, The First Affiliated Hospital of Anhui University of Science and Technology, Anhui University of Science and Technology, Huainan, Anhui 232001, P.R. China
| | - Yongping Bai
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150000, P.R. China
| | - Lidong Zhang
- Anhui Province Key Laboratory of Specialty Polymers, School of Materials Science and Engineering, The First Affiliated Hospital of Anhui University of Science and Technology, Anhui University of Science and Technology, Huainan, Anhui 232001, P.R. China
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P.R. China
| |
Collapse
|
7
|
Luo S, Hu CY, Huang S, Xu X. Polyacrylic Acid-Reinforced gelatin hydrogels with enhanced mechanical properties, temperature-responsiveness and antimicrobial activity for smart encryption and salmon freshness monitoring. J Colloid Interface Sci 2024; 680:725-741. [PMID: 39536549 DOI: 10.1016/j.jcis.2024.11.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/07/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Hydrogels hold great potential for use in intelligent packaging, yet they often suffer from limited functionality and inadequate mechanical strength when applied to anticounterfeiting and freshness monitoring. In this study, we present a straightforward method to create a multifunctional hydrogel by in-situ polymerizing acrylic acid (PAA) within a gelatin-Al3+ system. The resulting hydrogels exhibited an elongation at break of over 1200 %, a tensile stress of 1.20 MPa, and impressive toughness reaching 5.15 MJ/m3, significantly outperforming traditional gelatin-based hydrogels that typically achieve less than 800 % strain and below 1 MPa stress. These hydrogels also showed exceptional antifatigue and tear resistance, with a tearing energy of 5200 J/m2, greatly exceeding the 1000 J/m2 standard of typical double network hydrogels, and were capable of supporting weights 1560 times their own mass. The strong hydrogen bonding between the -COOH groups of PAA and the -NH2 groups of gelatins contributed to an upper critical solution temperature above 40°C, with adaptable PAA content allowing for anticounterfeiting applications. The hydrogel could encode information such as self-erasing numbers, QR codes, and ASCII binary codes, changing its encoded data with temperature shifts and erasing at room temperature to enhance data security. Additionally, it exhibited potent antibacterial properties against S. aureus and E. coli, immobilized anthocyanin as an ammonia-responsive indicator, and accurately tracked salmon spoilage by correlating color changes with total volatile basic nitrogen content. These characteristics make the hydrogel highly suitable for smart packaging applications within the food industry.
Collapse
Affiliation(s)
- Siyao Luo
- Key Laboratory of Product Packaging and Logistics, Packaging Engineering Institute, College of Packaging Engineering, Jinan University, Qianshan Road 206, Zhuhai 519070, China
| | - Chang-Ying Hu
- Key Laboratory of Product Packaging and Logistics, Packaging Engineering Institute, College of Packaging Engineering, Jinan University, Qianshan Road 206, Zhuhai 519070, China
| | - Shiqing Huang
- Key Laboratory of Product Packaging and Logistics, Packaging Engineering Institute, College of Packaging Engineering, Jinan University, Qianshan Road 206, Zhuhai 519070, China
| | - Xiaowen Xu
- Key Laboratory of Product Packaging and Logistics, Packaging Engineering Institute, College of Packaging Engineering, Jinan University, Qianshan Road 206, Zhuhai 519070, China.
| |
Collapse
|
8
|
Kang M, Liang H, Hu Y, Wei Y, Huang D. Gelatin-based hydrogels with tunable network structure and mechanical property for promoting osteogenic differentiation. Int J Biol Macromol 2024; 281:136312. [PMID: 39370072 DOI: 10.1016/j.ijbiomac.2024.136312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 09/25/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
Osteoarthritis (OA) is a joint disease involving all joint components, including cartilage, calcified cartilage, and subchondral bone. The repair of osteochondral defects remains a significant challenge in orthopedics. Development of new strategies is essential for effective osteochondral injury repair. In this study, gelatin (Gel), polyethylene glycol diglycidyl ether (PEGDGE), hydroxyethyl cellulose (HEC) and chitosan (CS) were used to prepare semi-IPNs and IPNs hydrogels. Mechanical properties of Gel based hydrogels significantly improved with the semi-IPN and IPN structures. Tensile strength ranges from 238.7 KPa to 479.5 KPa, and its compressive strength ranges from 35.6 KPa to 112.7 KPa. Additionally, the stress relaxation rate increased with higher CS concentrations, ranging from 25 % to 35 %. The network structure of Gel-based hydrogels was a key factor in regulating stress relaxation. Viscoelasticity was adjusted by its network structures. Swelling and degradation behaviors of Gel based hydrogels were systematically investigated. Gel based hydrogels had good cytocompatibility. Both semi-IPN and IPN structures Gel based hydrogels could promote cell spreading and osteogenic differentiation. G10HEC1 and G10CS1 hydrogels show promise as candidates for osteochondral tissue regeneration, offering a new strategy for osteochondral tissue engineering.
Collapse
Affiliation(s)
- Min Kang
- Research Center for Nano-Biomaterials & Regenerative Medicine, Department of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Haijiao Liang
- Research Center for Nano-Biomaterials & Regenerative Medicine, Department of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Yinchun Hu
- Research Center for Nano-Biomaterials & Regenerative Medicine, Department of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China.
| | - Yan Wei
- Research Center for Nano-Biomaterials & Regenerative Medicine, Department of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Di Huang
- Research Center for Nano-Biomaterials & Regenerative Medicine, Department of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| |
Collapse
|
9
|
Wang Y, Tang S, Jiang L, Yuan Z, Zhang Y. A review of lignin application in hydrogel dressing. Int J Biol Macromol 2024; 281:135786. [PMID: 39366610 DOI: 10.1016/j.ijbiomac.2024.135786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 09/08/2024] [Accepted: 09/17/2024] [Indexed: 10/06/2024]
Abstract
Lignin is the most abundant natural aromatic polymer in the world. Currently, researchers have developed a number of lignin-based composite materials that are widely used in various fields, including industry, agriculture and medicine. Especially in recent years, lignin has attracted great interest as a high-value product for biomedical applications. Due to its antioxidant, antibacterial, adhesive and other properties, lignin is a promising candidate for the development of hydrogel dressings. However, there is no comprehensive overview of the application of lignin-based hydrogel dressings. In this review, lignin-based hydrogel skin dressings were first presented, and the preparation methods of physical and chemical crosslinking in lignin-based hydrogel dressings were discussed. In addition, various functional and environmentally responsive lignin-based hydrogel dressings were primarily reviewed. Finally, the prospects for the development of novel multifunctional lignin-based hydrogel dressings in the future were presented. In conclusion, this review provided a timely and comprehensive summary of the latest advances in the use of lignin as a biomaterial for hydrogel dressings, which would provide valuable guidance for the further development of lignin-based hydrogels.
Collapse
Affiliation(s)
- Yuqing Wang
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical Engineering, Key Laboratory of Light Energy Conversion Materials of Hunan Province College, Hunan Normal University, Changsha 410081, PR China
| | - Shuo Tang
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical Engineering, Key Laboratory of Light Energy Conversion Materials of Hunan Province College, Hunan Normal University, Changsha 410081, PR China
| | - Liuyun Jiang
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical Engineering, Key Laboratory of Light Energy Conversion Materials of Hunan Province College, Hunan Normal University, Changsha 410081, PR China.
| | - Zhu Yuan
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical Engineering, Key Laboratory of Light Energy Conversion Materials of Hunan Province College, Hunan Normal University, Changsha 410081, PR China
| | - Yan Zhang
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical Engineering, Key Laboratory of Light Energy Conversion Materials of Hunan Province College, Hunan Normal University, Changsha 410081, PR China
| |
Collapse
|
10
|
Yadav P, Singh S, Jaiswal S, Kumar R. Synthetic and natural polymer hydrogels: A review of 3D spheroids and drug delivery. Int J Biol Macromol 2024; 280:136126. [PMID: 39349080 DOI: 10.1016/j.ijbiomac.2024.136126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/02/2024]
Abstract
This review centers on the synthesis and characterization of both natural and synthetic hydrogels, highlighting their diverse applications across various fields. We will delve into the evolution of hydrogels, focusing on the importance of polysaccharide-based and synthetic variants, which have been particularly chosen for 3D spheroid development in cancer research and drug delivery. A detailed background on the research and specific methodologies, including the in-situ free radical polymerization used for synthesizing these hydrogels, will be extensively discussed. Additionally, the review will explore various applications of these hydrogels, such as their self-healing properties, swelling ratios, pH responsiveness, and cell viability. A comprehensive literature review will support this investigation. Ultimately, this review aims to clearly outline the objectives and significance of hydrogel synthesis and their applications.
Collapse
Affiliation(s)
- Paramjeet Yadav
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India
| | - Shiwani Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India
| | - Sheetal Jaiswal
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India
| | - Rajesh Kumar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India.
| |
Collapse
|
11
|
Rahamim VS, Patel D, Drori E, Coopersmith S, Azagury A. In vitro Models for Predicting Bioadhesion Fracture Strength to Ex Vivo Animal Buccal Tissue. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310363. [PMID: 38895967 DOI: 10.1002/smll.202310363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/03/2024] [Indexed: 06/21/2024]
Abstract
Commitment to the 3Rs principle (Replacement, Reduction, and Refinement) led to the development of a cell-based system to measure buccal bioadhesion in vitro and replace the use of porcine buccal and esophageal tissues (PBT and PET, respectively). Additionally, the aim is to bridge the gap in knowledge regarding the bioadhesion properties of PBT and PET. The in vitro models are based on the human buccal epithelial cell line-TR146 without ("Model I") or with ("Model II") 5% (w/v) mucous layer. The in vitro setup also provides a method to evaluate the bioadhesion between two soft materials. Standard bioadhesive hydrogels (alginate, chitosan, and gelatin) are used to test and compare the results from the in vitro models to the ex vivo tissues. The ex vivo and in vitro models show increased bioadhesion as the applied force and contact time increases. Furthermore, Model I exhibits bioadhesion values-of alginate, chitosan, and gelatin-comparable to those obtained with PBT. It is also found that contact time and applied force similarly affect PBT and PET bioadhesion, while PET exhibits greater values. In conclusion, Model I can replace PBT for measuring bioadhesion and be incorporated into the experimental design of bioadhesive DDS, thus minimizing animal tissue usage.
Collapse
Affiliation(s)
- Valeria Solomianski Rahamim
- Department of Chemical and Biotechnology Engineering, Ariel University, Kyriat-ha-Mada 3, Ariel, 4070000, Israel
| | - Dhaval Patel
- Department of Chemical and Biotechnology Engineering, Ariel University, Kyriat-ha-Mada 3, Ariel, 4070000, Israel
| | - Eliyahu Drori
- Department of Chemical and Biotechnology Engineering, Ariel University, Kyriat-ha-Mada 3, Ariel, 4070000, Israel
| | - Sarah Coopersmith
- Department of Chemical and Biotechnology Engineering, Ariel University, Kyriat-ha-Mada 3, Ariel, 4070000, Israel
| | - Aharon Azagury
- Department of Chemical and Biotechnology Engineering, Ariel University, Kyriat-ha-Mada 3, Ariel, 4070000, Israel
| |
Collapse
|
12
|
Winters C, Carsi M, Sanchis MJ, Culebras M, Collins MN. On the design of lignin reinforced acrylic acid/hyaluronic acid adhesive hydrogels with conductive PEDOT:HA nanoparticles. Int J Biol Macromol 2024; 273:133093. [PMID: 38866291 DOI: 10.1016/j.ijbiomac.2024.133093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/19/2024] [Accepted: 06/09/2024] [Indexed: 06/14/2024]
Abstract
Hydrogels are of great importance in biomedical engineering. They possess the ability to mimic bodily soft tissues, and this allows exciting possibilities for applications such as tissue engineering, drug delivery and wound healing, however much work remains on stability and mechanical robustness to allow for translation to clinical applications. The work herein describes the synthesis and analysis of a biocompatible, versatile hydrogel that has tailorable swelling, high stability when swollen and thermal stability. The synthesis methods used produce a hydrogel with high elasticity, good mechanical properties and rapid crosslinking whilst displaying biocompatibility, adhesion, and conductivity. It has been shown that cell viability in the samples is above 80 % in all cases, a Young's Modulus of up to 85 kPa and high swelling degrees were achieved. These materials show potential for use in numerous applications such as adhesive sensors, skin grafts and drug delivery systems.
Collapse
Affiliation(s)
- Caitriona Winters
- Stokes Labs, Bernal Institute, School of Engineering, University of Limerick, Ireland
| | - Marta Carsi
- Instituto de Automática E Informática Industrial, Universitat Politècnica de Valencia, 46022, Valencia, Spain
| | - Maria J Sanchis
- Departamento de Termodinámica Aplicada, Instituto Tecnológico de La Energía, Universitat Politècnica de València, Camí de Vera S/N, 46022, Valencia, Spain
| | - Mario Culebras
- Institute of Material Science (ICMUV), University of Valencia, 46980, Spain
| | - Maurice N Collins
- Stokes Labs, Bernal Institute, School of Engineering, University of Limerick, Ireland; Health Research Institute, University of Limerick, Ireland; SFI AMBER Centre, University of Limerick, Ireland.
| |
Collapse
|
13
|
Park S, Sharma H, Safdar M, Lee J, Kim W, Park S, Jeong HE, Kim J. Micro/nanoengineered agricultural by-products for biomedical and environmental applications. ENVIRONMENTAL RESEARCH 2024; 250:118490. [PMID: 38365052 DOI: 10.1016/j.envres.2024.118490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
Agriculturally derived by-products generated during the growth cycles of living organisms as secondary products have attracted increasing interest due to their wide range of biomedical and environmental applications. These by-products are considered promising candidates because of their unique characteristics including chemical stability, profound biocompatibility and offering a green approach by producing the least impact on the environment. Recently, micro/nanoengineering based techniques play a significant role in upgrading their utility, by controlling their structural integrity and promoting their functions at a micro and nano scale. Specifically, they can be used for biomedical applications such as tissue regeneration, drug delivery, disease diagnosis, as well as environmental applications such as filtration, bioenergy production, and the detection of environmental pollutants. This review highlights the diverse role of micro/nano-engineering techniques when applied on agricultural by-products with intriguing properties and upscaling their wide range of applications across the biomedical and environmental fields. Finally, we outline the future prospects and remarkable potential that these agricultural by-products hold in establishing a new era in the realms of biomedical science and environmental research.
Collapse
Affiliation(s)
- Sunho Park
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea; Department of Bio-Industrial Machinery Engineering, Pusan National University, Miryang, 50463, Republic of Korea
| | - Harshita Sharma
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Mahpara Safdar
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jeongryun Lee
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Woochan Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Sangbae Park
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea; Department of Biosystems Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hoon Eui Jeong
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| | - Jangho Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
14
|
Álvarez-Viñas M, Zamboni F, Torres MD, Collins MN, Domínguez H. Hydrothermal processing of Sarcopeltis skottsbergii and study of the potential of its carrageenan for tissue engineering. Int J Biol Macromol 2024; 266:131456. [PMID: 38588844 DOI: 10.1016/j.ijbiomac.2024.131456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/30/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024]
Abstract
The red macroalga Sarcopeltis skottsbergii was subjected to hydrothermal processing to maximize the solubilization and recovery of carrageenan. Once isolated by ethanol precipitation, the carrageenan was further chemically (oligosaccharides composition), and structurally (TGA/DTG, DSC, HPSEC, FTIR-ATR, 1H NMR, SEM, etc.) characterized, as well as employed as source for the synthesis of hydrogels. The rheological properties of the carrageenan showed promising results as biopolymer for food applications due to the high molecular weight (500 kDa) presenting higher cell viability than 70 %. The evaluation of immune activation using ELISA test reflected a lower inflammatory response for concentrations of 0.025 % of carrageenan. Conversely, the cell viability of the synthesized hydrogels did not surpass 50 %. This work represents a considerable step forward to obtain a biopolymer from natural sources and a thorough study of their chemical, structural and biological properties.
Collapse
Affiliation(s)
- Milena Álvarez-Viñas
- Department of Chemical Engineering, University of Vigo (Campus Ourense), Edificio Politécnico, As Lagoas, 32004 Ourense, Spain; Stokes Laboratories, School of Engineering, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Fernanda Zamboni
- Stokes Laboratories, School of Engineering, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland; Health Research Institute, SFI BiOrbic and SFI AMBER centre University of Limerick, Limerick V94 T9PX, Ireland
| | - María Dolores Torres
- Department of Chemical Engineering, University of Vigo (Campus Ourense), Edificio Politécnico, As Lagoas, 32004 Ourense, Spain.
| | - Maurice N Collins
- Stokes Laboratories, School of Engineering, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland; Health Research Institute, SFI BiOrbic and SFI AMBER centre University of Limerick, Limerick V94 T9PX, Ireland
| | - Herminia Domínguez
- Department of Chemical Engineering, University of Vigo (Campus Ourense), Edificio Politécnico, As Lagoas, 32004 Ourense, Spain
| |
Collapse
|
15
|
Hameed H, Faheem S, Paiva-Santos AC, Sarwar HS, Jamshaid M. A Comprehensive Review of Hydrogel-Based Drug Delivery Systems: Classification, Properties, Recent Trends, and Applications. AAPS PharmSciTech 2024; 25:64. [PMID: 38514495 DOI: 10.1208/s12249-024-02786-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/05/2024] [Indexed: 03/23/2024] Open
Abstract
As adaptable biomaterials, hydrogels have shown great promise in several industries, which include the delivery of drugs, engineering of tissues, biosensing, and regenerative medicine. These hydrophilic polymer three-dimensional networks have special qualities like increased content of water, soft, flexible nature, as well as biocompatibility, which makes it excellent candidates for simulating the extracellular matrix and promoting cell development and tissue regeneration. With an emphasis on their design concepts, synthesis processes, and characterization procedures, this review paper offers a thorough overview of hydrogels. It covers the various hydrogel material types, such as natural polymers, synthetic polymers, and hybrid hydrogels, as well as their unique characteristics and uses. The improvements in hydrogel-based platforms for controlled drug delivery are examined. It also looks at recent advances in bioprinting methods that use hydrogels to create intricate tissue constructions with exquisite spatial control. The performance of hydrogels is explored through several variables, including mechanical properties, degradation behaviour, and biological interactions, with a focus on the significance of customizing hydrogel qualities for particular applications. This review paper also offers insights into future directions in hydrogel research, including those that promise to advance the discipline, such as stimuli-responsive hydrogels, self-healing hydrogels, and bioactive hydrogels. Generally, the objective of this review paper is to provide readers with a detailed grasp of hydrogels and all of their potential uses, making it an invaluable tool for scientists and researchers studying biomaterials and tissue engineering.
Collapse
Affiliation(s)
- Huma Hameed
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, 54000, Pakistan.
| | - Saleha Faheem
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, 54000, Pakistan
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548, Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Hafiz Shoaib Sarwar
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, 54000, Pakistan
| | - Muhammad Jamshaid
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, 54000, Pakistan
| |
Collapse
|
16
|
de Albuquerque TL, Cavalcante VGC, da Silva Rocha W, de Macedo AC, Rocha MVP. Hydrogels based on lignin extracted from cashew apple bagasse and its application in antimicrobial wound dressings. Int J Biol Macromol 2024; 262:130169. [PMID: 38365138 DOI: 10.1016/j.ijbiomac.2024.130169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/24/2024] [Accepted: 02/12/2024] [Indexed: 02/18/2024]
Abstract
Hydrogels are versatile materials with a three-dimensional network structure that can retain water and release bioactive compounds. They have found applications in various fields, including agriculture, biomaterial synthesis, and pharmaceuticals. Incorporating natural antimicrobial compounds into hydrogels is a promising approach to developing non-toxic biomedical materials, particularly for wound healing dressings. It was evaluated the extraction and use of cashew apple bagasse lignin (CAB-Lig) due to its healing, anti-inflammatory, and antimicrobial properties for producing a hydrogel-based bandage. The extraction process involved acid and alkali treatments followed by precipitation. The antimicrobial potential of CAB-Lig was evaluated at different concentrations for formulating hydrogels. Hydrogels containing 0.1 % and 3 % lignin showed high swelling and liquid retention abilities. The 3 % lignin hydrogel exhibited effectiveness against Escherichia coli and Staphylococcus aureus. Incorporating CAB-Lig into the hydrogel structure improved its mechanical properties, making it more suitable for application as a bandage. Moreover, the extracted lignin showed low toxicity, indicating its safe use. A bandage was formulated by combining the CAB-Lig-based hydrogel with polyester, which possessed antimicrobial properties and demonstrated biocompatibility (L929 and HaCat cells). The results confirmed the potential of CAB-Lig for synthesizing hydrogels and dressings with antimicrobial properties, offering a sustainable solution for utilizing lignocellulosic biomass.
Collapse
Affiliation(s)
- Tiago Lima de Albuquerque
- Federal University of Ceará, Department of Food Engineering, Center for Agricultural Sciences, Fortaleza, CE 60020-181, Brazil; Federal University of Ceará, Department of Chemical Engineering, Technology Center, Fortaleza, CE 60455-760, Brazil.
| | | | - Weslley da Silva Rocha
- Federal University of Ceará, Department of Transportation Engineering, Center of Technology, Fortaleza, CE 60020-181, Brazil
| | - André Casimiro de Macedo
- Federal University of Ceará, Department of Chemical Engineering, Technology Center, Fortaleza, CE 60455-760, Brazil
| | - Maria Valderez Ponte Rocha
- Federal University of Ceará, Department of Chemical Engineering, Technology Center, Fortaleza, CE 60455-760, Brazil
| |
Collapse
|
17
|
Huo M, Chen J, Jin C, Huo S, Liu G, Kong Z. Preparation, characterization, and application of waterborne lignin-based epoxy resin as eco-friendly wood adhesive. Int J Biol Macromol 2024; 259:129327. [PMID: 38219939 DOI: 10.1016/j.ijbiomac.2024.129327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/17/2023] [Accepted: 01/06/2024] [Indexed: 01/16/2024]
Abstract
A series of novel waterborne lignin-based epoxy resin emulsions (WLEPs) were successfully synthesized, and then the WLEPs were cured with polyamide (PA) to give formaldehyde-free wood adhesives with high-performance. The chemical structures and properties of WLEP emulsions were determined. The effects of the emulsifiers on thermal and mechanical properties of the adhesives were investigated, and the potential application of WLEPs in the formulation of plywood were also evaluated. The results demonstrated that the WLEP dispersions presented excellent storage stability (>180 days) with their viscosities range from 110 mPa·s to 470 mPa·s and particle sizes in the range of 321-696 nm, which were beneficial for the fluidity and permeability of the wood adhesives. Furthermore, the thermal and mechanical properties of adhesives could be tuned effectively by controlling the length of PEG chains. The adhesive bearing PEG 6000 exhibited the highest tensile strength of 24.0 MPa and Young's modulus of 1439 MPa. Notably, the plywood prepared with the resulting adhesives displayed good bonding performance, especially water resistance, which were much higher than the national standard requirement for exterior-grade plywood type I. These results indicated that the WLEPs could be used as sustainable alternatives for traditional formaldehyde-based wood adhesives in practical applications.
Collapse
Affiliation(s)
- Meiyu Huo
- Institute of Chemical Industry of Forest Products, CAF, Key Lab. of Biomass Energy and Material, Jiangsu Province, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Nanjing 210042, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources of Jiangsu Province, Nanjing 210037, China
| | - Jian Chen
- Institute of Chemical Industry of Forest Products, CAF, Key Lab. of Biomass Energy and Material, Jiangsu Province, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Nanjing 210042, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources of Jiangsu Province, Nanjing 210037, China
| | - Can Jin
- Institute of Chemical Industry of Forest Products, CAF, Key Lab. of Biomass Energy and Material, Jiangsu Province, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Nanjing 210042, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources of Jiangsu Province, Nanjing 210037, China
| | - Shuping Huo
- Institute of Chemical Industry of Forest Products, CAF, Key Lab. of Biomass Energy and Material, Jiangsu Province, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Nanjing 210042, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources of Jiangsu Province, Nanjing 210037, China
| | - Guifeng Liu
- Institute of Chemical Industry of Forest Products, CAF, Key Lab. of Biomass Energy and Material, Jiangsu Province, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Nanjing 210042, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources of Jiangsu Province, Nanjing 210037, China.
| | - Zhenwu Kong
- Institute of Chemical Industry of Forest Products, CAF, Key Lab. of Biomass Energy and Material, Jiangsu Province, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Nanjing 210042, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources of Jiangsu Province, Nanjing 210037, China
| |
Collapse
|
18
|
Xu S, Qian Z, Zhao N, Yuan W. Thermoresponsive injectable self-healing hydrogel containing polydopamine-coated Fe/Mo-doped TiO 2 nanoparticles for efficient synergistic sonodynamic-chemodynamic-photothermal-chemo therapy. J Colloid Interface Sci 2024; 654:1431-1446. [PMID: 37922629 DOI: 10.1016/j.jcis.2023.10.145] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/20/2023] [Accepted: 10/27/2023] [Indexed: 11/07/2023]
Abstract
A smart hydrogel loading multifunctional nanoparticles and anticancer drugs was designed to achieve synergistic therapy against tumors with high efficiency and specificity. The thermoresponsive injectable self-healing hydrogel was prepared through the Schiff base between aldehyde-functionalized poly(2-(2-methoxyethoxy) ethyl methacrylate)-co-oligo(ethylene glycol) methacrylate-co-2-hydroxyethyl methacrylate) (P(MEO2MA-co-OEGMA-co-HEMA), APMOH) and hydroxypropyl chitosan (HPCS). The polydopamine-coated Fe/Mo-doped titanium dioxide nanoparticles (PDA@dTiO2 NPs) were prepared and dispersed into the hydrogel with anticancer drug doxorubicin (DOX). PDA@dTiO2 NPs as sonosensitizers can convert oxygen into singlet oxygen (1O2) under ultrasound (US) irradiation, achieving sonodynamic therapy (SDT). They were also considered nanoenzymes, generating oxygen to supply an oxygen source for SDT, producing hydroxyl radical (·OH) to achieve chemodynamic therapy (CDT), and eliminating glutathione (GSH) to enhance the level of oxidative stress. After near-infrared (NIR) irradiation, the temperature of the hydrogel increased due to the photothermal ability of the polydopamine (PDA) layer. When the temperature reached the hydrogel's lower critical solution temperature (LCST), the hydrophilic-hydrophobic transformation occurred, and the hydrogel volume contracted. Consequently, the release rate of PDA@dTiO2 NPs and DOX increased, improving the therapeutic effects. The nanocomposite hydrogel system can achieve synergistic sonodynamic-chemodynamic-photothermal-chemo therapy (SDT-CDT-PTT-CT) for tumors, providing a novel platform for synergistic tumor treatment.
Collapse
Affiliation(s)
- Sicheng Xu
- School of Materials Science and Engineering, Key Laboratory of Advanced Civil Materials of Ministry of Education, Tongji University, Shanghai 201804, People's Republic of China
| | - Zhiyi Qian
- School of Materials Science and Engineering, Key Laboratory of Advanced Civil Materials of Ministry of Education, Tongji University, Shanghai 201804, People's Republic of China
| | - Nuoya Zhao
- School of Materials Science and Engineering, Key Laboratory of Advanced Civil Materials of Ministry of Education, Tongji University, Shanghai 201804, People's Republic of China
| | - Weizhong Yuan
- School of Materials Science and Engineering, Key Laboratory of Advanced Civil Materials of Ministry of Education, Tongji University, Shanghai 201804, People's Republic of China.
| |
Collapse
|
19
|
Ijaz F, Tahir HM, Ali S, Ali A, Khan HA, Muzamil A, Manzoor HH, Qayyum KA. Biomolecules based hydrogels and their potential biomedical applications: A comprehensive review. Int J Biol Macromol 2023; 253:127362. [PMID: 37827396 DOI: 10.1016/j.ijbiomac.2023.127362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
The need for biocompatible drug carriers has been significantly increased from the past few years. Researchers show great interest in the development of more versatile and sophisticated biomaterials based drug carriers. Hydrogels are beneficial drug carriers and easily release the controlled amount of drug at target site due to its tunable structure. The hydrogels made-up of potent biological macromolecules including collagen, gelatin, fibrin, elastin, fibroin, chitosan, starch, alginate, agarose and carrageenan have been proven as versatile biomaterials. These are three-dimensional polymeric networks, synthesized by crosslinking of hydrophilic polymers. The biological macromolecules based hydrogels containing therapeutic substances are used in a wide range of biomedical applications including wound healing, tissue engineering, cosmetics and contact lenses. However, many aspects related to hydrogels such as the mechanism of cross-linking and molecular entanglement are not clear. So, there is a need to do more research and exploration toward the extensive and cost-effective use of hydrogels. The present review article elaborately discusses the biomolecules based hydrogels and their possible biomedical applications in different fields.
Collapse
Affiliation(s)
- Fatima Ijaz
- Department of Zoology, Government College University Lahore, Pakistan
| | | | - Shaukat Ali
- Department of Zoology, Government College University Lahore, Pakistan
| | - Aamir Ali
- Department of Zoology, Government College University Lahore, Pakistan.
| | | | - Ayesha Muzamil
- Department of Zoology, Government College University Lahore, Pakistan
| | | | | |
Collapse
|
20
|
Luo Z, Wu W, Liu B, Qi Y, Chen L, Lin X. A Co-based nitrogen-doped lignin carbon catalyst with high stability and wide operating window for rapid degradation of antibiotics. Int J Biol Macromol 2023; 253:126601. [PMID: 37652326 DOI: 10.1016/j.ijbiomac.2023.126601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
Co-based catalysts play a crucial role in the activation of peroxymonosulfate (PMS) for degradation contaminants. However, the practical application of such catalysts is hindered by challenges like the self-aggregation of Co nanoparticles and leaching of Co2+. In this study, the Co-based catalyst Co-N/C@CL was synthesized from carboxymethylated lignin obtained by grafting abundant carboxymethyl groups into alkali lignin, in which the presence of these carboxymethyl groups enhanced its water solubility and allowed the formation of stable macromolecular complexes with Co2+. This catalyst exhibited a high specific surface area (521.8 m2·g-1) and a uniform distribution of Co nanoparticles. Consequently, the Co-N/C@CL/PMS system could completely remove 20 ppm tetracycline (TC) in 2 min at a rate of 2.404 min-1. Experimental results and DFT calculations revealed that the synergistic effect of lignin carbon and Co NPs accelerated the cleavage and electron transfer of OO bonds, thus promoting the formation of 1O2, OH and SO4-, with 1O2 emerging as the predominant contributor. Moreover, Co-N/C@CL displayed excellent cycling stability and low Co2+ leaching. This work not only provides a feasible strategy for the preparation of highly active and stable Co-based carbon materials but also offers a promising catalyst for the efficient degradation of TC.
Collapse
Affiliation(s)
- Zhicheng Luo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006, PR China
| | - Weidong Wu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006, PR China
| | - Bowen Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006, PR China
| | - Yi Qi
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006, PR China
| | - Liheng Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006, PR China; Guangdong Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou 510006, PR China; Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Jieyang 515200, PR China
| | - Xuliang Lin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006, PR China; Guangdong Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou 510006, PR China; Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Jieyang 515200, PR China.
| |
Collapse
|
21
|
Shen R, Wang D, Sun L, Diao M, Zheng Q, Gong X, Liu L, Yao J. Strong and flexible lignocellulosic film fabricated via a feasible molecular remodeling strategy. Int J Biol Macromol 2023; 253:126521. [PMID: 37633560 DOI: 10.1016/j.ijbiomac.2023.126521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 08/11/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
Biomass-derived sustainable film is a promising alternative to synthetic plastic, but hampered by strength, toughness and flexibility trade-off predicament. Here, a feasible and scalable strategy was proposed to fabricate strong and flexible lignocellulosic film through molecular reconstruction of cellulose and lignin. In this strategy, polyphenol lignin was absorbed and wrapped on the surface of cellulose fiber, forming strong interfacial adhesion and cohesion via intramolecular and intermolecular hydrogen bonding. Further, covalent ether bond was generated between the hydroxyl groups of lignocellulose to form chemical cross-linking network induced by epichlorohydrin (ECH). The synergistic effect of hydrogen bonding and stable chemical cross-linking enabled the resultant lignocellulosic film (ELCF) with outstanding mechanical strength of 132.48 MPa, the elongation at break of 9.77 %, and toughness of 9.77 MJ·m-3. Notably, the integration of polyphenol lignin synergistically improved the thermal stability, water resistance, UV-blocking performances of ELCF. Importantly, after immersion for 30 d, ELCF still possessed high wet strength of 70.38 MPa, and elongation at break of 7.70 %, suggesting excellent and durable mechanical performances. Moreover, ELCF could be biodegraded in the natural soil. Therefore, this study provides a new and versatile approach to reconstruct highly-performance lignocellulosic films coupling strength, toughness with flexibility for promising plastic replacement.
Collapse
Affiliation(s)
- Rongsheng Shen
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, China
| | - Dengfeng Wang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, China
| | - Longfei Sun
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, China
| | - Mengyuan Diao
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Qiannan Zheng
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xiujin Gong
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Lin Liu
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, China.
| | - Juming Yao
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, China; School of Materials Science and Chemical Engineering, Ningbo University, 818 Fenghua Road, Ningbo 315211, China
| |
Collapse
|
22
|
Ismaeilimoghadam S, Jonoobi M, Ashori A, Shahraki A, Azimi B, Danti S. Interpenetrating and semi-interpenetrating network superabsorbent hydrogels based on sodium alginate and cellulose nanocrystals: A biodegradable and high-performance solution for adult incontinence pads. Int J Biol Macromol 2023; 253:127118. [PMID: 37802434 DOI: 10.1016/j.ijbiomac.2023.127118] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/13/2023] [Accepted: 09/26/2023] [Indexed: 10/10/2023]
Abstract
Superabsorbent hydrogels (SAHs) are essential in various applications, including hygienic products like adult incontinence pads. However, synthetic-based super absorbent polymers (SAPs) dominate the market despite being non-biodegradable. Alternatively, bio-based hydrogels, such as sodium alginate (SA)-based hydrogels, offer biodegradable alternatives. In this study, we aimed to enhance the practical applied properties of SA-based hydrogels by grafting SA with acrylic acid (AA) and incorporating cellulose nanocrystals (CNCs). Specifically, we investigated the potential of interpenetrating network (IPN) and semi-interpenetrating network (S-IPN) hydrogels as absorbent materials in adult incontinence pads. The fabricated SAHs were characterized by Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM). They were also evaluated for absorption and rheological properties. The results showed that in IPN/SAHs, the addition of CNCs decreased pore sizes, while in S-IPN/SAHs, CNC incorporation increased pore sizes. The S-IPN/SAHs exhibited a significantly higher free swelling capacity (FSC) with CNCs loading, reaching 142.29 g/g in 0.9 % NaCl solution and 817.4 g/g in distilled water. On the other hand, IPN/SAHs showed a higher storage modulus and lower loss modulus compared to S-IPN/SAHs. Notably, the superior samples from this study showed a 33 % reduction in SAP consumption compared to commercial SAPs, making them more cost-effective for adult incontinence pad manufacturers. Overall, our research demonstrates the potential of interpenetrating and semi-interpenetrating network superabsorbent hydrogels as high-performance absorbent materials. The results offer improved absorbency and cost savings for producers of adult incontinence pads, and bio-based hydrogels like SA-based hydrogels are promising biodegradable alternatives to synthetic-based SAPs.
Collapse
Affiliation(s)
- Saeed Ismaeilimoghadam
- Department of Wood and Paper Science and Technology, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| | - Mehdi Jonoobi
- Department of Wood and Paper Science and Technology, Faculty of Natural Resources, University of Tehran, Karaj, Iran.
| | - Alireza Ashori
- Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran.
| | - Afsaneh Shahraki
- Department of Wood and Paper Science and Technology, Faculty of Natural Resources, University of Zabol, Zabol, Iran
| | - Bahareh Azimi
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy
| | - Serena Danti
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy.
| |
Collapse
|
23
|
El Rabey HA, Almutairi FM, Tayel AA, Alalawy AI, Mohammed GM, Aljohani MM, Keshk AA. Magnetic biopolymers' nanocomposites from chitosan, lignin and phycosynthesized iron nanoparticles to remediate water from polluting oil. Int J Biol Macromol 2023; 251:126318. [PMID: 37579903 DOI: 10.1016/j.ijbiomac.2023.126318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/02/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
Targeting the remediation of oil pollution in water, the construction of super magnetic adsorbent nanocomposites (NCs) was achieved using the nanoparticles of chitosan (Cht), lignin (Lg) and phycosynthesized iron nanoparticles (Fe MNPs) using Gelidium amansii extract. The syntheses and conjugations of nanomaterials were authenticated via infrared spectral analysis and the structural physiognomies of them were appraised via electron microscopy and zeta analysis. The Lg NPs, Cht NPs, Fe MNPs and their composites (Lg/Cht MNCs) had mean particles' sizes of 42.3, 76.4, 14.2 and 108.3 nm, and were charged with - 32.7, + 41.2, + 28.4 and +37.5 mV, respectively. The magnetometer revealed the high magnetic properties of both Fe MNPs and Lg/Cht MNCs; the maximum swelling of Lg/Cht NPs (46.3 %), and Lg/Cht MNPs (33.8 %) was detected after 175 min. The diesel oil adsorption experiments with Lg/Cht MNPs, using batch adsorption practices, revealed the powerful potentiality of magnetic NCs to remove oil pollution in water; the maximum adsorption capacity (qt) was achieved with the conditions of pH = 7.5, adsorption period = 90 min and adsorbent dose = 200 mg/L. The magnetic Lg/Cht MNCs exhibited excellent recovery/reusability attributes for five adsorption cycles; the qt differences were negligible after the entire oil-adsorption cycles, with oil removal of >90 %. The innovative fabricated Lg/Cht MNCs could provide an effectual, sustainable and eco-friendly approach for the removal of pollutant oil in water resources.
Collapse
Affiliation(s)
- Haddad A El Rabey
- Biochemistry Department, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; Genetic Engineering and Biotechnology Research Institute, University of Sadat City, El-Sadat City 32897, Egypt.
| | - Fahad M Almutairi
- Biochemistry Department, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Ahmed A Tayel
- Department of Fish Processing and Biotechnology, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh 33516, Egypt.
| | - Adel I Alalawy
- Biochemistry Department, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Ghena M Mohammed
- Department of Nutrition and Food Science, Faculty of Home Economics, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Meshari M Aljohani
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Ali A Keshk
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| |
Collapse
|
24
|
Kaushal N, Singh AK. Advancement in utilization of bio-based materials including cellulose, lignin, chitosan for bio-inspired surface coatings with special wetting behavior: A review on fabrication and applications. Int J Biol Macromol 2023; 246:125709. [PMID: 37414313 DOI: 10.1016/j.ijbiomac.2023.125709] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Natural bio-material surface with hydrophobic behavior (aqueous droplet to roll off from its surface) has inspired researchers to design sustainable artificial coatings with hydrophobic or superhydrophobic behavior. The developed hydrophobic or superhydrophobic artificial coatings are highly useful in various applications such as water remediation, oil/water separation, self-cleaning, anti-fouling, anti-corrosion and also in medical fields including anti-viral, anti-bacterial efficacy. In recent years, among various coating materials, bio-based materials derived from plants and animals (cellulose, lignin, sugarcane bagasse, peanut shell, rice husk, egg cell etc.) are applied on various surfaces in order to develop fluorine free hydrophobic coatings with longer durability by lowering the surface energy and increasing the surface roughness. This review summarized recent developments in hydrophobic/superhydrophobic coating fabrication methods, properties and applications with the use of different bio-based materials and their combinations. In addition, basic mechanisms behind the coating fabrication process and their durability under different environmental conditions are also discussed. Moreover, prospects and limitations of bio-based coatings in practical applications have been highlighted.
Collapse
Affiliation(s)
- Natasha Kaushal
- Department of Chemistry, M. M. Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India
| | - Arun K Singh
- Department of Chemistry, M. M. Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India.
| |
Collapse
|
25
|
Vasile C, Baican M. Lignins as Promising Renewable Biopolymers and Bioactive Compounds for High-Performance Materials. Polymers (Basel) 2023; 15:3177. [PMID: 37571069 PMCID: PMC10420922 DOI: 10.3390/polym15153177] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 08/13/2023] Open
Abstract
The recycling of biomass into high-value-added materials requires important developments in research and technology to create a sustainable circular economy. Lignin, as a component of biomass, is a multipurpose aromatic polymer with a significant potential to be used as a renewable bioresource in many fields in which it acts both as promising biopolymer and bioactive compound. This comprehensive review gives brief insights into the recent research and technological trends on the potential of lignin development and utilization. It is divided into ten main sections, starting with an outlook on its diversity; main properties and possibilities to be used as a raw material for fuels, aromatic chemicals, plastics, or thermoset substitutes; and new developments in the use of lignin as a bioactive compound and in nanoparticles, hydrogels, 3D-printing-based lignin biomaterials, new sustainable biomaterials, and energy production and storage. In each section are presented recent developments in the preparation of lignin-based biomaterials, especially the green approaches to obtaining nanoparticles, hydrogels, and multifunctional materials as blends and bio(nano)composites; most suitable lignin type for each category of the envisaged products; main properties of the obtained lignin-based materials, etc. Different application categories of lignin within various sectors, which could provide completely sustainable energy conversion, such as in agriculture and environment protection, food packaging, biomedicine, and cosmetics, are also described. The medical and therapeutic potential of lignin-derived materials is evidenced in applications such as antimicrobial, antiviral, and antitumor agents; carriers for drug delivery systems with controlled/targeting drug release; tissue engineering and wound healing; and coatings, natural sunscreen, and surfactants. Lignin is mainly used for fuel, and, recently, studies highlighted more sustainable bioenergy production technologies, such as the supercapacitor electrode, photocatalysts, and photovoltaics.
Collapse
Affiliation(s)
- Cornelia Vasile
- Romanian Academy, “P. Poni” Institute of Macromolecular Chemistry, Physical Chemistry of Polymers Department 41A Grigore Ghica Voda Alley, RO700487 Iaşi, Romania
| | - Mihaela Baican
- “Grigore T. Popa” Medicine and Pharmacy University, Faculty of Pharmacy, Pharmaceutical Sciences I Department, Laboratory of Pharmaceutical Physics, 16 University Street, RO700115 Iaşi, Romania;
| |
Collapse
|
26
|
Fazal T, Murtaza BN, Shah M, Iqbal S, Rehman MU, Jaber F, Dera AA, Awwad NS, Ibrahium HA. Recent developments in natural biopolymer based drug delivery systems. RSC Adv 2023; 13:23087-23121. [PMID: 37529365 PMCID: PMC10388836 DOI: 10.1039/d3ra03369d] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/24/2023] [Indexed: 08/03/2023] Open
Abstract
Targeted delivery of drug molecules to diseased sites is a great challenge in pharmaceutical and biomedical sciences. Fabrication of drug delivery systems (DDS) to target and/or diagnose sick cells is an effective means to achieve good therapeutic results along with a minimal toxicological impact on healthy cells. Biopolymers are becoming an important class of materials owing to their biodegradability, good compatibility, non-toxicity, non-immunogenicity, and long blood circulation time and high drug loading ratio for both macros as well as micro-sized drug molecules. This review summarizes the recent trends in biopolymer-based DDS, forecasting their broad future clinical applications. Cellulose chitosan, starch, silk fibroins, collagen, albumin, gelatin, alginate, agar, proteins and peptides have shown potential applications in DDS. A range of synthetic techniques have been reported to design the DDS and are discussed in the current study which is being successfully employed in ocular, dental, transdermal and intranasal delivery systems. Different formulations of DDS are also overviewed in this review article along with synthesis techniques employed for designing the DDS. The possibility of these biopolymer applications points to a new route for creating unique DDS with enhanced therapeutic qualities for scaling up creative formulations up to the clinical level.
Collapse
Affiliation(s)
- Tanzeela Fazal
- Department of Chemistry, Abbottabad University of Science and Technology Pakistan
| | - Bibi Nazia Murtaza
- Department of Zoology, Abbottabad University of Science and Technology Pakistan
| | - Mazloom Shah
- Department of Chemistry, Faculty of Science, Grand Asian University Sialkot Pakistan
| | - Shahid Iqbal
- Department of Chemistry, School of Natural Sciences (SNS), National University of Science and Technology (NUST) H-12 Islamabad 46000 Pakistan
| | - Mujaddad-Ur Rehman
- Department of Microbiology, Abbottabad University of Science & Technology Pakistan
| | - Fadi Jaber
- Department of Biomedical Engineering, Ajman University Ajman UAE
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University Ajman UAE
| | - Ayed A Dera
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University Abha Saudi Arabia
| | - Nasser S Awwad
- Chemistry Department, Faculty of Science, King Khalid University P.O. Box 9004 Abha 61413 Saudi Arabia
| | - Hala A Ibrahium
- Biology Department, Faculty of Science, King Khalid University P.O. Box 9004 Abha 61413 Saudi Arabia
| |
Collapse
|
27
|
Yu Z, Xiong Y, Fan M, Li J, Liang K. Metronidazole and Ketoprofen-Loaded Mesoporous Magnesium Carbonate for Rapid Treatment of Acute Periodontitis In Vitro. ACS OMEGA 2023; 8:25441-25452. [PMID: 37483201 PMCID: PMC10357566 DOI: 10.1021/acsomega.3c02968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/13/2023] [Indexed: 07/25/2023]
Abstract
In the clinical pharmacological treatment of acute periodontitis, local periodontal administration is expected to be preferable to systemic administration. However, the action of the active medicine component is hindered and diminished by the limitation of drug solubility, which does not provide timely relief of the enormous pain being suffered by patients. This study aimed to develop a mesoporous magnesium carbonate (MMC) medicine loading system consisting of MMC, metronidazole (MET), and ketoprofen (KET), which was noted as MET-KET@MMC. A solvent evaporation process was utilized to load MET and KET in MMC. Scanning electron microscopy, nitrogen sorption, thermogravimetric analysis, and X-ray diffraction were performed on the MET-KET@MMC. The rapid drug release properties were also investigated through the drug release curve. The rapid antiseptic property against Porphyromonas gingivalis (P. gingivalis) and the rapid anti-inflammatory property (within 1 min) were analyzed in vitro. The cytotoxicity of MET-KET@MMC was tested in direct contact with human gingival cells and human oral keratinocytes. Crystallizations of MET and KET were completely suppressed in MMC. As compared to crystalline MET and KET, MMC induced higher apparent solubility and rapid drug release, resulting in 8.76 times and 3.43 times higher release percentages of the drugs, respectively. Over 70.11% of MET and 85.97% of KET were released from MMC within 1 min, resisting bacteria and reducing inflammation. MET-KET@MMC nanoparticles enhanced the solubility of drugs and possess rapid antimicrobial and anti-inflammatory properties. The MET-KET@MMC is a promising candidate for the pharmacotherapy of acute periodontitis with drugs, highlighting a significant clinical potential of MMC-based immediate drug release systems.
Collapse
Affiliation(s)
- Zhaohan Yu
- State
Key Laboratory of Oral Diseases, National Clinical Research Center
for Oral Diseases, Department of Cariology and Endodontics, West China
Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yan Xiong
- Orthopedic
Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Menglin Fan
- State
Key Laboratory of Oral Diseases, National Clinical Research Center
for Oral Diseases, Department of Cariology and Endodontics, West China
Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jiyao Li
- State
Key Laboratory of Oral Diseases, National Clinical Research Center
for Oral Diseases, Department of Cariology and Endodontics, West China
Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Kunneng Liang
- State
Key Laboratory of Oral Diseases, National Clinical Research Center
for Oral Diseases, Department of Cariology and Endodontics, West China
Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
28
|
Berradi A, Aziz F, Achaby ME, Ouazzani N, Mandi L. A Comprehensive Review of Polysaccharide-Based Hydrogels as Promising Biomaterials. Polymers (Basel) 2023; 15:2908. [PMID: 37447553 DOI: 10.3390/polym15132908] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/20/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Polysaccharides have emerged as a promising material for hydrogel preparation due to their biocompatibility, biodegradability, and low cost. This review focuses on polysaccharide-based hydrogels' synthesis, characterization, and applications. The various synthetic methods used to prepare polysaccharide-based hydrogels are discussed. The characterization techniques are also highlighted to evaluate the physical and chemical properties of polysaccharide-based hydrogels. Finally, the applications of SAPs in various fields are discussed, along with their potential benefits and limitations. Due to environmental concerns, this review shows a growing interest in developing bio-sourced hydrogels made from natural materials such as polysaccharides. SAPs have many beneficial properties, including good mechanical and morphological properties, thermal stability, biocompatibility, biodegradability, non-toxicity, abundance, economic viability, and good swelling ability. However, some challenges remain to be overcome, such as limiting the formulation complexity of some SAPs and establishing a general protocol for calculating their water absorption and retention capacity. Furthermore, the development of SAPs requires a multidisciplinary approach and research should focus on improving their synthesis, modification, and characterization as well as exploring their potential applications. Biocompatibility, biodegradation, and the regulatory approval pathway of SAPs should be carefully evaluated to ensure their safety and efficacy.
Collapse
Affiliation(s)
- Achraf Berradi
- National Center for Research and Studies on Water and Energy (CNEREE), Cadi Ayyad University, P.O. Box 511, Marrakech 40000, Morocco
- Laboratory of Water, Biodiversity and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, P.O. Box 2390, Marrakech 40000, Morocco
| | - Faissal Aziz
- National Center for Research and Studies on Water and Energy (CNEREE), Cadi Ayyad University, P.O. Box 511, Marrakech 40000, Morocco
- Laboratory of Water, Biodiversity and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, P.O. Box 2390, Marrakech 40000, Morocco
| | - Mounir El Achaby
- Materials Science and Nano-Engineering (MSN) Department, Mohammed VI Polytechnic University (UM6P), Lot 660-Hay Moulay Rachid, Benguerir 43150, Morocco
| | - Naaila Ouazzani
- National Center for Research and Studies on Water and Energy (CNEREE), Cadi Ayyad University, P.O. Box 511, Marrakech 40000, Morocco
- Laboratory of Water, Biodiversity and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, P.O. Box 2390, Marrakech 40000, Morocco
| | - Laila Mandi
- National Center for Research and Studies on Water and Energy (CNEREE), Cadi Ayyad University, P.O. Box 511, Marrakech 40000, Morocco
- Laboratory of Water, Biodiversity and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, P.O. Box 2390, Marrakech 40000, Morocco
| |
Collapse
|
29
|
Thang NH, Chien TB, Cuong DX. Polymer-Based Hydrogels Applied in Drug Delivery: An Overview. Gels 2023; 9:523. [PMID: 37504402 PMCID: PMC10379988 DOI: 10.3390/gels9070523] [Citation(s) in RCA: 185] [Impact Index Per Article: 92.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023] Open
Abstract
Polymer-based hydrogels are hydrophilic polymer networks with crosslinks widely applied for drug delivery applications because of their ability to hold large amounts of water and biological fluids and control drug release based on their unique physicochemical properties and biocompatibility. Current trends in the development of hydrogel drug delivery systems involve the release of drugs in response to specific triggers such as pH, temperature, or enzymes for targeted drug delivery and to reduce the potential for systemic toxicity. In addition, developing injectable hydrogel formulations that are easily used and sustain drug release during this extended time is a growing interest. Another emerging trend in hydrogel drug delivery is the synthesis of nano hydrogels and other functional substances for improving targeted drug loading and release efficacy. Following these development trends, advanced hydrogels possessing mechanically improved properties, controlled release rates, and biocompatibility is developing as a focus of the field. More complex drug delivery systems such as multi-drug delivery and combination therapies will be developed based on these advancements. In addition, polymer-based hydrogels are gaining increasing attention in personalized medicine because of their ability to be tailored to a specific patient, for example, drug release rates, drug combinations, target-specific drug delivery, improvement of disease treatment effectiveness, and healthcare cost reduction. Overall, hydrogel application is advancing rapidly, towards more efficient and effective drug delivery systems in the future.
Collapse
Affiliation(s)
- Nguyen Hoc Thang
- Faculty of Chemical Technology, Ho Chi Minh City University of Food Industry, 140 Le Trong Tan, Tan Phu Distrist, Ho Chi Minh City 700000, Vietnam
| | - Truong Bach Chien
- Faculty of Chemical Technology, Ho Chi Minh City University of Food Industry, 140 Le Trong Tan, Tan Phu Distrist, Ho Chi Minh City 700000, Vietnam
| | - Dang Xuan Cuong
- Innovation and Entrepreneurship Center, Ho Chi Minh City University of Food Industry, 140 Le Trong Tan, Tan Phu Distrist, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
30
|
Zhang M, Tian R, Tang S, Wu K, Wang B, Liu Y, Zhu Y, Lu H, Liang B. The structure and properties of lignin isolated from various lignocellulosic biomass by different treatment processes. Int J Biol Macromol 2023:125219. [PMID: 37285885 DOI: 10.1016/j.ijbiomac.2023.125219] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/27/2023] [Accepted: 06/02/2023] [Indexed: 06/09/2023]
Abstract
The structure and properties of lignin can vary depending on the type of lignocellulosic biomass it comes from and the separation techniques used, and also affects its suitability for different applications. In this work, the structure and properties of lignin isolated from moso bamboo, wheat straw, and poplar wood by different treatment processes were compared. Results show that deep eutectic solvent (DES) extracted lignin exhibits well-preserved structures (including β-O-4, β-β, and β-5 linkages), a low molecular weight (Mn = 2300-3200 g/mol), and relatively homogeneous lignin fragments (1.93 < PDI < 2.33) compared to dealkaline lignin (DL) and milled wood lignin (MWL). Besides, lignin samples extracted by DES have a regular nanostructure, higher carbon residue content (>40 %), and excellent antioxidant properties (the free radical scavenging index >20). Among the three types of biomass, the structural destruction of lignin in straw is the most obvious, which is due to the degradation of β-O-4 and β-β linkages during DES treatment. These findings can contribute to a better understanding of the structural changes that occur in various treatment processes from different lignocellulosic biomass, and help maximize the targeted development of their applications based on the characteristics of lignin.
Collapse
Affiliation(s)
- Man Zhang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China; Institute of New Energy and Low-carbon Technology, Sichuan University, Chengdu 610207, China
| | - Rubo Tian
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Siyang Tang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Kejing Wu
- Institute of New Energy and Low-carbon Technology, Sichuan University, Chengdu 610207, China
| | - Binshen Wang
- Institute of New Energy and Low-carbon Technology, Sichuan University, Chengdu 610207, China
| | - Yingying Liu
- Institute of New Energy and Low-carbon Technology, Sichuan University, Chengdu 610207, China
| | - Yingming Zhu
- Institute of New Energy and Low-carbon Technology, Sichuan University, Chengdu 610207, China
| | - Houfang Lu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China; Institute of New Energy and Low-carbon Technology, Sichuan University, Chengdu 610207, China.
| | - Bin Liang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China; Institute of New Energy and Low-carbon Technology, Sichuan University, Chengdu 610207, China
| |
Collapse
|
31
|
Liang H, Zhao X, Li N, Zhang H, Geng Z, She D. Three-dimensional lignin-based polyporous carbon@polypyrrole for efficient removal of reactive blue 19: A synergistic effect of the N and O groups. Int J Biol Macromol 2023; 239:124220. [PMID: 37001780 DOI: 10.1016/j.ijbiomac.2023.124220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/10/2023] [Accepted: 03/24/2023] [Indexed: 04/03/2023]
Abstract
Reactive blue 19 is one of the abundant carcinogens commonly used in industrial applications. This study transformed industrial lignin into a lignin-based polyporous carbon@polypyrrole (LPC@PPy) by a hydrothermal-activation-in situ polymerization strategy for removal of reactive blue 19. The hydrothermal reaction and polypyrrole polymerization provide abundant O and N groups, and the pore-making process promotes the even distribution of O and N groups in the 3D pore of LPC@PPy, which is favorable for the adsorption of reactive blue 19. The adsorption capacity of LPC@PPy for reactive blue 19 is 537.52 mg g-1, which is 2.04 times the performance of LPC (only hydrothermal and activation process, only have O groups) and 3.36 times that of LC (direct lignin activation, lack of O and N groups). After 8 cycles, LPC@PPy still maintained a high adsorption capacity of 92.14 % for reactive blue 19. In addition, this study found that N and O groups in the material played an important role in adsorption, mainly pyridinic-N, C-OH, -COOR, -C-O- and CC. This work provides a new strategy for the removal of reactive blue 19 and determines the groups that mainly interact with reactive blue 19, which provides a new reference for adsorption, catalysis and related fields.
Collapse
Affiliation(s)
- Hongxu Liang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Xinkun Zhao
- College of Geography and Environment, Shandong Normal University, Jinan 250300, China
| | - Ning Li
- Guodian Yinhe Water Co. LTD, Qingdao 266071, China
| | - Hongwei Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Zengchao Geng
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China.
| | - Diao She
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, China; Institute of Soil and Water Conservation CAS&MWR, Yangling 712100, China.
| |
Collapse
|
32
|
Du B, Zhu H, Xu J, Bai Y, Wang Q, Wang X, Zhou J. N-S co-doping lignin-based carbon magnetic nanoparticles as high performance supercapacitor and electromagnetic wave absorber. Int J Biol Macromol 2023:125032. [PMID: 37245752 DOI: 10.1016/j.ijbiomac.2023.125032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/06/2023] [Accepted: 05/20/2023] [Indexed: 05/30/2023]
Abstract
Recently, multifunctional lignin-based materials are gaining more and more attention due to their great potential for low-cost and sustainability. In this work, to obtain both an excellent supercapacitor electrode and an outstanding electromagnetic wave (EMW) absorber, a series of multifunctional nitrogen-sulphur (N-S) co-doped lignin-based carbon magnetic nanoparticles (LCMNPs) had been successfully prepared through Mannich reaction at different carbonization temperature. As compared with the directly carbonized lignin carbon (LC), LCMNPs had more nano-size structure and higher specific surface area. Meanwhile, with the increase of carbonization temperature, the graphitization of the LCMNPs could also be effectively improved. Therefore, LCMNPs-800 displayed the best performance advantages. For the electric double layer capacitor (EDLC), the optimal specific capacitance of LCMNPs-800 reached 154.2 F/g, and the capacitance retention after 5000 cycles was as high as 98.14 %. When the power density was 2204.76 W/kg, the energy density achieved 33.81 Wh/kg. In addition, N-S co-doped LCMNPs also exhibited strong electromagnetic wave absorption (EMWA) ability, whose the minimum reflection loss (RL) value of LCMNPs-800 was realized -46.61 dB at 6.01 GHz with an thickness of 4.0 mm, and the effective absorption bandwidth (EAB) was up to 2.11 GHz ranging from 5.10 to 7.21 GHz, which could cover the C-band. Overall, this green and sustainable approach is a promising strategy for the preparation of high-performance multifunctional lignin-based materials.
Collapse
Affiliation(s)
- Boyu Du
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Hongwei Zhu
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Jingyu Xu
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Yating Bai
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Qingyu Wang
- Institute for Catalysis (ICAT) and Graduate School of Chemical Sciences and Engineering, Hokkaido University, N21W10, Kita-ku, Sapporo 001-0021, Japan
| | - Xing Wang
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, Liaoning 116034, China.
| | - Jinghui Zhou
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, Liaoning 116034, China.
| |
Collapse
|
33
|
Dong H, Tang S, Zhang L, Tong Z, Wu Z, Zhan P, Shao L, Qing Y, Liu J. Wood-derived bio-coating materials incorporating hydrophobic lignin and hierarchically porous biochar for high-efficiency coating slow-release fertilizers. Int J Biol Macromol 2023; 242:124769. [PMID: 37169057 DOI: 10.1016/j.ijbiomac.2023.124769] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/13/2023]
Abstract
Coating slow-release fertilizers (CSRFs) have gained significant attention for their potential to improve nutrient utilization efficiency and prevent environmental pollution through mitigating soil and water contamination. This study developed a novel wood waste-derived composition as a bio-coating material for urea slow-release by integrating modified lignin (PCL) and activated biochar (ABC). PCL was prepared by grafting palmitoyl chloride (PC) with hydrophobic groups to the lignin via an esterification reaction. ABC with a high surface area and hierarchically porous structure created rich channels for ion transportation. These results increased the water-retention ability with a reduced absorbing/expelling rate and confer an excellent Cr(VI) adsorption capacity to the PCL and ABC hybrid coating material (PCL/ABC). The as-prepared PCL/ABC-based CSRF (PCL/ABC-CSRF) showed improving fertilizer slow-release properties for real application (nitrogen release persistence for 40 days at soil). The rice (Oryza sativa L.) hydroponics study suggested that such novel PCL/ABC was conducive to the rice growth in micro metallic contaminated hydroponics by eliminating the accumulation of chromium metal in rice roots. Overall, this study provides an attractive platform for developing biodegradable, heavy-metal adsorbable, and high-efficient CSRFs and a feasible and effective way for functionalized utilization of wood waste.
Collapse
Affiliation(s)
- Hongping Dong
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Ministry of Forestry Bioethanol Research Center, Central South University of Forestry and Technology, Changsha 410004, China; Hunan International Joint Laboratory of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha 410004, China
| | - Shifeng Tang
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Ministry of Forestry Bioethanol Research Center, Central South University of Forestry and Technology, Changsha 410004, China; Hunan International Joint Laboratory of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha 410004, China
| | - Lin Zhang
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Ministry of Forestry Bioethanol Research Center, Central South University of Forestry and Technology, Changsha 410004, China; Hunan International Joint Laboratory of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha 410004, China; Agricultural and Biological Engineering, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Gainesville, FL 32611, United States.
| | - Zhaohui Tong
- School of Chemical & Biomolecular Engineering, Renewable Bioproducts Institute, Georgia Institute of Technology, Atlanta, GA 30332, United States; Agricultural and Biological Engineering, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Gainesville, FL 32611, United States
| | - Zhiping Wu
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Ministry of Forestry Bioethanol Research Center, Central South University of Forestry and Technology, Changsha 410004, China; Hunan International Joint Laboratory of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha 410004, China
| | - Peng Zhan
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Ministry of Forestry Bioethanol Research Center, Central South University of Forestry and Technology, Changsha 410004, China; Hunan International Joint Laboratory of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha 410004, China
| | - Lishu Shao
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Ministry of Forestry Bioethanol Research Center, Central South University of Forestry and Technology, Changsha 410004, China; Hunan International Joint Laboratory of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yan Qing
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Ministry of Forestry Bioethanol Research Center, Central South University of Forestry and Technology, Changsha 410004, China; Hunan International Joint Laboratory of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha 410004, China
| | - Jin Liu
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Ministry of Forestry Bioethanol Research Center, Central South University of Forestry and Technology, Changsha 410004, China; Hunan International Joint Laboratory of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
34
|
Djahaniani H, Ghavidel N, Kazemian H. Green and facile synthesis of lignin/HKUST-1 as a novel hybrid biopolymer metal-organic-framework for a pH-controlled drug release system. Int J Biol Macromol 2023; 242:124627. [PMID: 37119882 DOI: 10.1016/j.ijbiomac.2023.124627] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/18/2023] [Accepted: 04/23/2023] [Indexed: 05/01/2023]
Abstract
This manuscript describes the synthesis and characterization of a hybrid polymer/HKUST-1 composite for oral drug delivery. A green, one-pot approach was employed to synthesize the modified metal-organic frameworks (MOFs) composite using alkali lignin as a novel pH-responsive biopolymer carrier for the simulated oral delivery system. Several analytical techniques, including Fourier transform infrared (FTIR), X-ray powder diffraction (XRPD), Brunauer-Emmett-Teller (BET), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM) were used to analyze the chemical and crystalline structure of HKUST-1 and L/HKUST-1 composite. The drug loading capacity and drug-controlled release behavior of HKUST-1 and L/HKUST-1 were examined using ibuprofen (IBU) as an oral drug model. L/HKUST-1 composite demonstrated a pH-controlled drug release behavior by advancing the drug stability at low pHs such as the gastric medium and controlling drug release in the pH range of 6.8-7.4, similar to intestinal pH. The results suggest that the L/HKUST-1 composite is a promising candidate for oral medication delivery.
Collapse
Affiliation(s)
- Hoorieh Djahaniani
- Northern Analytical Lab Services (Northern BC's Environmental and Climate Solutions Innovation Hub), University of Northern British Columbia, Prince George, BC, Canada; Chemistry Department, Faculty of Science and Engineering, University of Northern British Columbia, Prince George, BC, Canada.
| | - Nasim Ghavidel
- Northern Analytical Lab Services (Northern BC's Environmental and Climate Solutions Innovation Hub), University of Northern British Columbia, Prince George, BC, Canada; Chemistry Department, Faculty of Science and Engineering, University of Northern British Columbia, Prince George, BC, Canada
| | - Hossein Kazemian
- Northern Analytical Lab Services (Northern BC's Environmental and Climate Solutions Innovation Hub), University of Northern British Columbia, Prince George, BC, Canada; Chemistry Department, Faculty of Science and Engineering, University of Northern British Columbia, Prince George, BC, Canada.
| |
Collapse
|
35
|
Mukheja Y, Kaur J, Pathania K, Sah SP, Salunke DB, Sangamwar AT, Pawar SV. Recent advances in pharmaceutical and biotechnological applications of lignin-based materials. Int J Biol Macromol 2023; 241:124601. [PMID: 37116833 DOI: 10.1016/j.ijbiomac.2023.124601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/03/2023] [Accepted: 04/21/2023] [Indexed: 04/30/2023]
Abstract
Lignin, a versatile and abundant biomass-derived polymer, possesses a wide array of properties that makes it a promising material for biotechnological applications. Lignin holds immense potential in the biotechnology and pharmaceutical field due to its biocompatibility, high carbon content, low toxicity, ability to be converted into composites, thermal stability, antioxidant, UV-protectant, and antibiotic activity. Notably, lignin is an environmental friendly alternative to synthetic plastic and fossil-based materials because of its inherent biodegradability, safety, and sustainability potential. The most important findings related to the use of lignin and lignin-based materials are reported in this review, providing an overview of the methods and techniques used for their manufacturing and modification. Additionally, it emphasizes on recent research and the current state of applications of lignin-based materials in the biomedical and pharmaceutical fields and also highlights the challenges and opportunities that need to be overcome to fully realize the potential of lignin biopolymer. An in-depth discussion of recent developments in lignin-based material applications, including drug delivery, tissue engineering, wound dressing, pharmaceutical excipients, biosensors, medical devices, and several other biotechnological applications, is provided in this review article.
Collapse
Affiliation(s)
- Yashdeep Mukheja
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Jaspreet Kaur
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Khushboo Pathania
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Sangeeta P Sah
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | | | - Abhay T Sangamwar
- National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, Punjab, India
| | - Sandip V Pawar
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India.
| |
Collapse
|
36
|
Ding T, Liu R, Yan X, Zhang Z, Xiong F, Li X, Wu Z. An electrochemically mediated ATRP synthesis of lignin-g-PDMAPS UCST-thermoresponsive polymer. Int J Biol Macromol 2023; 241:124458. [PMID: 37076067 DOI: 10.1016/j.ijbiomac.2023.124458] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/25/2023] [Accepted: 04/11/2023] [Indexed: 04/21/2023]
Abstract
It is a promising idea to graft zwitterionic polymers onto lignin and prepare lignin-grafted-poly [2-(methacryloyloxy) ethyl] dimethyl-(3-sulfopropyl) ammonium hydroxide (Lignin-g-PDMAPS) thermosensitive polymer with the upper critical solution temperature (UCST). In this paper, an electrochemically mediated atom transfer radical polymerization (eATRP) method was used to prepare Lignin-g-PDMAPS. The structure and property of the Lignin-g-PDMAPS polymer were characterized by the fourier transform infrared spectrum (FT-IR), nuclear magnetic resonance (NMR), X-ray electron spectroscopy (XPS), dynamic light scattering (DLS), differential scanning calorimeter (DSC). Furthermore, the effect of catalyst structure, applied potential, amount of Lignin-Br, Lignin-g-PDMAPS concentration, NaCl concentration on UCST of Lignin-g-PDMAPS were investigated. It was worth noting that polymerization was well controlled when the ligand was tris (2-aminoethyl) amine (Me6TREN), applied potential was -0.38 V and the amount of Lignin-Br was 100 mg. And the UCST of the Lignin-g-PDMAPS aqueous solution (1 mg/ml) was 51.47 °C, the molecular weight was 8987 g/mol, and the particle size was 318 nm. It was also found that the UCST increased and the particle size decreased with the Lignin-g-PDMAPS polymer concentration increased, and the UCST decreased and the particle size increased with the NaCl concentration increases. This work investigated UCST-thermoresponsive polymer which possessed lignin main chain combining the zwitterionic side chain, and provided a new way for development of lignin based UCST-thermoresponsive materials and medical carrier materials, in addition to expand the scope of eATRP.
Collapse
Affiliation(s)
- Tingting Ding
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Ruixia Liu
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Xiaofan Yan
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Zuoyu Zhang
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Fuquan Xiong
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Xingong Li
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Zhiping Wu
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| |
Collapse
|
37
|
Antunes F, Mota IF, Fangueiro JF, Lopes G, Pintado M, Costa PS. From sugarcane to skin: Lignin as a multifunctional ingredient for cosmetic application. Int J Biol Macromol 2023; 234:123592. [PMID: 36773873 DOI: 10.1016/j.ijbiomac.2023.123592] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/18/2023] [Accepted: 02/05/2023] [Indexed: 02/12/2023]
Abstract
Lignin has been suggested as a promising candidate for cosmetic applications due to its remarkable potential to absorb ultraviolet rays and distinctive antioxidant activity. This study aims at evaluating the performance of lignin from sugarcane bagasse (SCB) as natural UV blocker, antioxidant, and pigment. Lignin was extracted from SCB, characterized and incorporated into a blemish balm (BB) cream. The biological potential, concretely, in vitro and in vivo sun protection factor (SPF) and in vitro UVA-PF, and safety were assessed. A high-purity SCB lignin (>92 %) was obtained by a mild alkaline extraction process. The results of cytotoxicity, mutagenicity, skin sensitization and in vivo acute cutaneous irritation demonstrated that SCB lignin is safe for topical applications. Lignin showed capacity to scavenge both ABTS and DPPH radicals, which were preserved after its incorporation into the cosmetic formulation. Notable results were achieved in terms of in vitro and in vivo SPF of 9.5 ± 2.9 and 9.6 ± 0.8, respectively. Furthermore, the tested lignin-based BB cream revealed a broad-spectrum UV protection (critical wavelength of 378 ± 0.5 nm). These results suggest SCB lignin as multifunctional and safe ingredient for use in cosmetic products.
Collapse
Affiliation(s)
- Filipa Antunes
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; Amyris Bio Products Portugal Unipessoal Lda, Portugal
| | - Inês F Mota
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Joana F Fangueiro
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Graciliana Lopes
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Manuela Pintado
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Patrícia Santos Costa
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.
| |
Collapse
|
38
|
Li W, Wang G, Sui W, Xu Y, Parvez AM, Si C. Novel metal-lignin assembly strategy for one-pot fabrication of lignin-derived heteroatom-doped hierarchically porous carbon and its application in high-performance supercapacitor. Int J Biol Macromol 2023; 234:123603. [PMID: 36775225 DOI: 10.1016/j.ijbiomac.2023.123603] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/16/2023] [Accepted: 02/05/2023] [Indexed: 02/12/2023]
Abstract
The conversion of renewable lignin with low-cost and high carbon content properties into porous carbon materials for supercapacitor applications has caught considerable interest. Herein, two dimensional lignin-derived carbon nanosheets (N-LHPC) with hierarchically porous structures were facilely synthesized via a novel metal-lignin assembly strategy and their performances for supercapacitor applications were investigated. During the carbonization process, the uniformly distributed Zn facilitates the coordinating development of micropores structure and the generated MgO embedded in the carbon matrix acts as a template to produce mesoporous structure after acid washing. Moreover, the melamine addition promotes the development of mesopores by formation of lamellae structure and realizes the N doping in the carbon materials. Therefore, the obtained N-LHPC presents an excellent specific capacitance of 235.75 F/g at 0.5 A/g owing to its hierarchical pore structure as well as the N/O functional groups. Moreover, at the power density of 450 W/kg, the N-LHPC achieves a maximum energy density of 14.75 Wh/kg, showing great application potential in energy storage. The metal-lignin assembly strategy followed by N-doping proposed in this paper provides N-LHPC materials with hierarchical nanostructure, good electron/ion transfer properties, and abundant pseudocapacitive active species, which improve the capacitance performances of the N-LHPC.
Collapse
Affiliation(s)
- Wei Li
- Tianjin Key Laboratory of Pulp and Paper, College of Light Industry Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Guanhua Wang
- Tianjin Key Laboratory of Pulp and Paper, College of Light Industry Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; Shandong Shengquan New Materials Co., Ltd., Jinan 250204, China.
| | - Wenjie Sui
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Ying Xu
- Tianjin Key Laboratory of Pulp and Paper, College of Light Industry Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Ashak Mahmud Parvez
- Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for Resource Technology, Chemnitzer Str. 40, 09599 Freiberg, Germany
| | - Chuanling Si
- Tianjin Key Laboratory of Pulp and Paper, College of Light Industry Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
39
|
Sun X, Zhou Z, Tian D, Zhao J, Zhang J, Deng P, Zou H, Lu C. Acidic deep eutectic solvent assisted mechanochemical delignification of lignocellulosic biomass at room temperature. Int J Biol Macromol 2023; 234:123593. [PMID: 36773862 DOI: 10.1016/j.ijbiomac.2023.123593] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/19/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023]
Abstract
Lignocellulosic biomass is the most abundant natural polymer on Earth, but the efficient fractionation and refinery of all its components remain challenging. Acidic deep eutectic solvents refining is a promising method, while it is likely to cause lignin condensation and carbohydrates degradation, especially at server operation conditions. Here we propose the use of acidic deep eutectic solvent (DES), choline chloride/p-toluenesulfonic acid assisted mechanochemical pretreatment (DM) for efficient lignocellulose fractionation at mild condition. Four representative lignocellulose, wheat straw, moso bamboo, poplar wood and pine wood were selected at varied milling time (3, 6 h) to assess the fractionation ability of this strategy. This DM pretreatment demonstrated a rather high cellulose retentions (∼90 %) and extent of delignification for wheat straw and bamboo biomass, which corresponds to a high extent of enzymatic hydrolysis (∼75.5 %) for sugar platform pursuing. The extracted lignin showed rather high content of β-O-4' leakages due to the swelling effect of deep eutectic solvent and mild operation conditions. This work provided a promising strategy to fractionate lignocellulose using deep eutectic solvents with the goal of simultaneous cellulose hydrolysis and reactive lignin obtaining that is usually difficult to realize using traditional chemical fractionation approach.
Collapse
Affiliation(s)
- Xunwen Sun
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute at Sichuan University, Chengdu 610065, PR China
| | - Zehang Zhou
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute at Sichuan University, Chengdu 610065, PR China
| | - Dong Tian
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute at Sichuan University, Chengdu 610065, PR China; Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Jiangqi Zhao
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute at Sichuan University, Chengdu 610065, PR China
| | - Jian Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute at Sichuan University, Chengdu 610065, PR China
| | - Pengcheng Deng
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute at Sichuan University, Chengdu 610065, PR China
| | - Huawei Zou
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute at Sichuan University, Chengdu 610065, PR China.
| | - Canhui Lu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute at Sichuan University, Chengdu 610065, PR China; Advanced Polymer Materials Research Center of Sichuan University, Shishi 362700, PR China.
| |
Collapse
|
40
|
Tang Q, Chen Q, Zhou M, Yang D. Preparation of nano disperse dyes using sulfomethylated lignin: Effects of sulfonic group contents. Int J Biol Macromol 2023; 234:123605. [PMID: 36773858 DOI: 10.1016/j.ijbiomac.2023.123605] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/23/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023]
Abstract
The molecular simulation software was firstly applied to analyze the adsorption of sulfomethylated lignin (SAL) on dye surfaces. Then, SALs with different sulfonic group contents were prepared and characterized by FTIR, NMR, EA and GPC measurements using alkali lignin (AL) as raw materials and sodium sulfite as sulfonating agents. Next, SAL1.53 was determined to the optimum dispersant by TSI, particle size and thermal storage stability measurements, which had the smallest particle size of 173 nm and highest stability, comparable to the commercial Reax 85A lignin dispersant and basically satisfying the requirement of nano disperse dyes used in the digital printing technology. QCM, AFM and zeta potential results indicated that as the sulfonic group content of SAL increased, the adsorption mass, rigidity of the adsorbed layer, adsorption force and absolute zeta potential value all showed a gradually increasing tendency due to an enhanced hydrophilicity, and thus a decreased intermolecular agglomeration and an increased molecular chain stretching degree. A maximum was observed for SAL1.53. This research not only provided a novel approach to the preparation of high-performance lignin dispersants for nano disperse dyes, but also would broaden the high value-added industrial applications of biomass lignin into the digital printing and dyeing field.
Collapse
Affiliation(s)
- Qianqian Tang
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, 6 Jiqing Road, Yibin District, Luoyang 471934, People's Republic of China
| | - Qing Chen
- School of Chemistry and Chemical Engineering, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510640, People's Republic of China
| | - Mingsong Zhou
- School of Chemistry and Chemical Engineering, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510640, People's Republic of China.
| | - Dongjie Yang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510640, People's Republic of China
| |
Collapse
|
41
|
Ambika, Kumar V, Chandra D, Thakur V, Sharma U, Singh D. Depolymerization of lignin using laccase from Bacillus sp. PCH94 for production of valuable chemicals: A sustainable approach for lignin valorization. Int J Biol Macromol 2023; 234:123601. [PMID: 36775222 DOI: 10.1016/j.ijbiomac.2023.123601] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/19/2023] [Accepted: 02/05/2023] [Indexed: 02/12/2023]
Abstract
Lignin is the most abundant aromatic polymer in nature, and its depolymerization offers excellent opportunities to develop renewable aromatic chemicals. In the present study, Bacillus sp. PCH94 was investigated for laccase production and lignin depolymerization. Maximum production of laccase enzyme was achieved within 6.0 h at 50 °C on a natural lignocellulosic substrate. Furthermore, Bacillus sp. PCH94 was used to bioconvert lignin dimeric and polymeric substrates, validated using FT-IR, NMR (1H, 13C), and LCMS. Genome mining of Bacillus sp. PCH94 revealed laccase gene (lacBl) as multicopper oxidase (spore coat CotA). Further, lacBl from Bacillus sp. PCH94 was cloned, expressed, and kinetically characterized. LacBl enzyme showed activity for substrates ABTS (40.64 IU/mg), guaiacol (5.43 IU/mg), and DMP (11.93 IU/mg). The LacBl was active in higher temperatures (10 to 100 °C) and showed a half-life of 36 and 27 h at 50 and 60 °C, respectively. The purified LacBl was able to depolymerize kraft lignin into valuable products (ferulic acid and acetovanillone), which have applications in the pharmaceutical and food industries. Overall, the current study demonstrated the role of bacterial laccase in the depolymerization of lignin and opened a promising prospect for the green production of valuable compounds from recalcitrant lignin.
Collapse
Affiliation(s)
- Ambika
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh- 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad- 201002, India.
| | - Vijay Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh- 176061, India.
| | - Devesh Chandra
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh- 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad- 201002, India.
| | - Vikas Thakur
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh- 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad- 201002, India.
| | - Upendra Sharma
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh- 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad- 201002, India.
| | - Dharam Singh
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh- 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad- 201002, India.
| |
Collapse
|
42
|
Lu Y, Xu H, Wei S, Jiang F, Zhang J, Ge Y, Li Z. In situ doping lignin-derived carbon quantum dots on magnetic hydrotalcite for enhanced degradation of Congo Red over a wide pH range and simultaneous removal of heavy metal ions. Int J Biol Macromol 2023; 239:124303. [PMID: 37019204 DOI: 10.1016/j.ijbiomac.2023.124303] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/16/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023]
Abstract
A new N, S-CQDs@Fe3O4@HTC composite was prepared by loading N, S carbon quantum dots (N, S-CQDs) derived from lignin on magnetic hydrotalcite (HTC) via an in-situ growth method. The characterization results showed that the catalyst had a mesoporous structure. These pores facilitate the diffusion and mass transfer of pollutant molecules inside the catalyst, allowing them to approach the active site smoothly. The catalyst performed well in the UV degradation of Congo red (CR) over a wide pH range (3-11), with efficiencies over 95.43 % in all cases. Even at a high NaCl content (100 g/L), the catalyst showed extraordinary CR degradation (99.30 %). ESR analysis and free radical quenching experiments demonstrated that OH and O2- were the main active species governing CR degradation. Besides, the composite had outstanding removal efficiency for Cu2+ (99.90 %) and Cd2+ (85.08 %) simultaneously due to the electrostatic attraction between the HTC and metal ions. Moreover, the N, S-CQDs@Fe3O4@HTC had excellent stability and recyclability during five cycles, making it free of secondary contamination. This work provides a new environment-friendly catalyst for the simultaneous removal of multiple pollutants and a waste-to-waste strategy for the value-added utilization of lignin.
Collapse
|
43
|
Coating peanut shell lignin nanospheres with gelatin via non-covalent adsorption: Key parameters, consequences, and underlying interactions. Int J Biol Macromol 2023; 233:123607. [PMID: 36773874 DOI: 10.1016/j.ijbiomac.2023.123607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/24/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023]
Abstract
In the present work, lignin nanospheres (LNS, average diameter 166.43 nm) were prepared and the affecting parameters, the absorbed types, and mechanisms of their interactions with type-A gelatin (AG) were explored. The findings demonstrated that upon AG coating, the ζ-potential of LNS sharply decreased and concluded a negative-to-positive shift, while the average diameter and polydispersity index increased significantly. AG presented the highest coating capacity (0.32 mg/mg, db) onto LNS (0.5 mg/mL) at an optimum pH of 4.0 and an AG concentration of 1.0 mg/mL. The adsorption of AG onto LNS could be well described by the Hill model (R2 = 0.9895), which was characterized as positive synergistic adsorption by the Hill coefficient (1.32) and physical adsorption by the free energy (3.70 kJ/mg). The spectral analysis revealed that the interactions between AG and LNS were mainly driven by electrostatic forces (ΔG < 0, ΔH < 0, and ΔS > 0) together with the assistance of hydrogen bonds and hydrophobic interactions, which companied a decrease of α-helix (4.04 %) and β-turn (0.60 %) and an increase of β-sheet (3.10 %) and random coil (1.53 %) of the secondary structure of AG. The results herein certainly favored the hydrophilic/hydrophobic change of LNS/AG and the quality control of a binary system consisting of lignin and gelatin.
Collapse
|
44
|
Wang Q, Gao J, Liu S, Wang Y, Wu L. Lignin nanoparticle reinforced multifunctional polyvinyl alcohol/polyurethane composite hydrogel with excellent mechanical, UV-blocking, rheological and thermal properties. Int J Biol Macromol 2023; 232:123338. [PMID: 36706881 DOI: 10.1016/j.ijbiomac.2023.123338] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/11/2023] [Accepted: 01/15/2023] [Indexed: 01/26/2023]
Abstract
In this study, we innovatively synthesized a multifunctional PVA/PU-LNP composite hydrogel with integrated distinguished UV-blocking, mechanical strength, dynamic viscoelasticity and thermal properties by introducing lignin nanoparticle (LNP) into polyvinyl alcohol (PVA) and polyurethane (PU) mixed matrix through freeze-thaw cycle. The rigid porous network structure was established by hydrogen bond interactions among the well-distributed LNP and PVA/PU molecular chains, which endowed excellent mechanical strength, viscoelasticity, thermal stability and flexibility with PVA/PU-LNP composite hydrogel. The elongation at break and tensile strength of PVA/PU-LNP composite hydrogel were markedly improved from 227.3 % and 247.1 KPa to 460.1 % and 950.4 KPa with the LNP loading of 2 % based on PVA weight, respectively. Meanwhile, PVA/PU-2%LNP hydrogel exhibited prominent compressive resistance and pleasing shape recovery capability. Moreover, the blending of LNP at a low dosage (0.5 %) based on PVA weight effectively shielded 99.34 % of UV light and penetrated 42.27 % of visible light, indicating that PVA/PU-LNP composite hydrogel demonstrated outstanding anti-UV performance. In addition, the incorporation of LNP caused a remarkable decline in the pore size of PVA/PU-LNP composite hydrogel (4.39 ± 0.46 μm to 1.54 ± 0.22 μm), which slightly reduced water uptake capacity of composite hydrogel. Therefore, this work provided a new approach to constructing a multifunctional composite hydrogel.
Collapse
Affiliation(s)
- Qiang Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, China
| | - Jia Gao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, China
| | - Shanshan Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, China.
| | - Yingchao Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, China; Green Processes Research Centre and Chemical Engineering Department, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada.
| | - Liran Wu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, China
| |
Collapse
|
45
|
Abdullah T, İlyasoğlu G, Memić A. Designing Lignin-Based Biomaterials as Carriers of Bioactive Molecules. Pharmaceutics 2023; 15:pharmaceutics15041114. [PMID: 37111600 PMCID: PMC10143462 DOI: 10.3390/pharmaceutics15041114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/18/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
There is a need to develop circular and sustainable economies by utilizing sustainable, green, and renewable resources in high-tech industrial fields especially in the pharmaceutical industry. In the last decade, many derivatives of food and agricultural waste have gained considerable attention due to their abundance, renewability, biocompatibility, environmental amiability, and remarkable biological features. Particularly, lignin, which has been used as a low-grade burning fuel in the past, recently attracted a lot of attention for biomedical applications because of its antioxidant, anti-UV, and antimicrobial properties. Moreover, lignin has abundant phenolic, aliphatic hydroxyl groups, and other chemically reactive sites, making it a desirable biomaterial for drug delivery applications. In this review, we provide an overview of designing different forms of lignin-based biomaterials, including hydrogels, cryogels, electrospun scaffolds, and three-dimensional (3D) printed structures and how they have been used for bioactive compound delivery. We highlight various design criteria and parameters that influence the properties of each type of lignin-based biomaterial and corelate them to various drug delivery applications. In addition, we provide a critical analysis, including the advantages and challenges encountered by each biomaterial fabrication strategy. Finally, we highlight the prospects and future directions associated with the application of lignin-based biomaterials in the pharmaceutical field. We expect that this review will cover the most recent and important developments in this field and serve as a steppingstone for the next generation of pharmaceutical research.
Collapse
|
46
|
Wang S, Guo D, Kang R, Feng J, Pan H. Fabrication of lignin-derived mesoporous carbon/magnesium oxide composites for microwave-assisted isomerization of glucose in water. Int J Biol Macromol 2023; 232:123341. [PMID: 36682652 DOI: 10.1016/j.ijbiomac.2023.123341] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/12/2023] [Accepted: 01/15/2023] [Indexed: 01/22/2023]
Abstract
A series of mesoporous carbon/magnesium oxide composites (LDMC@MgO-x) with different Mg doping ratios were synthesized by using alkali lignin as the carbon source, potassium chloride as the salt template and magnesium nitrate as the catalytic site precursor, respectively. The BET, FTIR, SEM, and TEM analyses indicated that the as-prepared LDMC@MgO-x possessed a unique hierarchical porous structure with high specific surface area, rich functional groups, and uniformly distributed MgO nanoparticles. Among them, LDMC@MgO-20%, as an optimized base catalyst, could realize effective isomerization of glucose with a maximum fructose yield of 34.4 % in water at 130 °C for only 5 min under microwave assistance. In addition, the activation energy of glucose isomerization catalyzed by LDMC@MgO-20% was estimated to be about 43.6 kJ·mol-1, which was lower than that of most Lewis acid-catalyzed systems.
Collapse
Affiliation(s)
- Shuai Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, China
| | - Dayi Guo
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, China
| | - Rui Kang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, China
| | - Junfeng Feng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, China
| | - Hui Pan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, China.
| |
Collapse
|
47
|
Fangueiro JF, de Carvalho NM, Antunes F, Mota IF, Pintado ME, Madureira AR, Costa PS. Lignin from sugarcane bagasse as a prebiotic additive for poultry feed. Int J Biol Macromol 2023; 239:124262. [PMID: 37003388 DOI: 10.1016/j.ijbiomac.2023.124262] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/03/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Diet is a crucial factor on health and well-being of livestock animals. Nutritional strengthening with diet formulations is essential to the livestock industry and animal perfor-mance. Searching for valuable feed additives among by-products may promote not only circular economy, but also functional diets. Lignin from sugarcane bagasse was proposed as a potential prebiotic additive for chickens and incorporated at 1 % (w/w) in commercial chicken feed, tested in two feed forms, namely, mash and pellets. Physico-chemical characterization of both feed types with and without lignin was performed. Also, the prebiotic potential for feeds with lignin was assessed by in vitro gastrointestinal model and evaluated the impact on chicken cecal Lactobacillus and Bifidobacterium. As for the pellet's physical quality, there was a higher cohesion of the pellets with lignin, indicating a higher resistance to breakout and lignin decreases the tendency of the pellets for microbial contamination. Regarding the prebiotic potential, mash feed with lignin showed higher promotion of Bifidobacterium in comparison with mash feed without lignin and to pellet feed with lignin. Lignin from sugarcane bagasse has prebiotic potential as additive to chicken feed when supplemented in mash feed diets, presenting itself as a sustainable and eco-friendly alternative to chicken feed additives supplementation.
Collapse
Affiliation(s)
- Joana F Fangueiro
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho, 1327, 4169-005 Porto, Portugal
| | - Nelson Mota de Carvalho
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho, 1327, 4169-005 Porto, Portugal
| | - Filipa Antunes
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho, 1327, 4169-005 Porto, Portugal; Amyris Bio Products Portugal Unipessoal Lda, Portugal
| | - Inês F Mota
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho, 1327, 4169-005 Porto, Portugal
| | - Manuela Estevez Pintado
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho, 1327, 4169-005 Porto, Portugal
| | - Ana Raquel Madureira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho, 1327, 4169-005 Porto, Portugal.
| | - Patrícia Santos Costa
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho, 1327, 4169-005 Porto, Portugal
| |
Collapse
|
48
|
Ma Z, Han Y, Xu F, Wang X. Lignin-based hydrophobic DESs extracts Sudan dyes from aqueous solution. Int J Biol Macromol 2023; 240:124265. [PMID: 37003380 DOI: 10.1016/j.ijbiomac.2023.124265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/11/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
As a synthetic pigment, Sudan red is commonly used as a food additive and is harmful to the human kidney and can even cause cancer. In this work, we developed a one-step strategy to synthesize lignin-based hydrophobic deep eutectic solvents (LHDES), which were fabricated via methyltrioctylammonium chloride (TAC) as hydrogen bond acceptor and alkali lignin as hydrogen bond donor. LHDES with different mass ratios were synthesized and the mechanism of formation was determined by different characterization techniques. The synthetic LHDES was used as the extraction solvent to establish a vortex-assisted dispersion-liquid microextraction method for the determination of Sudan red dyes. The practicality of LHDES was evaluated by applying it to the detection of Sudan Red I in real water samples (seawater, river water) and duck blood in foodstuffs, and the obtained extraction rate reached up to 98.62 %. The method is simple and effective for the determination of Sudan Red in food.
Collapse
Affiliation(s)
- Zihao Ma
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Ying Han
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Fuqiong Xu
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xing Wang
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
49
|
Wu C, Yang Y, Sun K, Luo D, Liu X, Xiao H, Bian H, Dai H. Lignin decolorization in organic solvents and their application in natural sunscreen. Int J Biol Macromol 2023; 237:124081. [PMID: 36934814 DOI: 10.1016/j.ijbiomac.2023.124081] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/03/2023] [Accepted: 03/14/2023] [Indexed: 03/21/2023]
Abstract
In order to improve the utilization of industrial lignin as an effective component for ultraviolet (UV) shielding, organic solvent (methanol, ethanol, and acetone) fractionation was applied to improve its UV absorption performance and reduce its apparent color. Physicochemical properties of lignin and lignin-based sunscreens, such as molar mass fraction, functional group content, color change and UV shielding properties, were characterized in detail by GPC, UV spectroscopy, 31P NMR and HSQC-NMR spectroscopy. The results showed that the color and UV-shielding properties of the soluble fraction were significantly superior to those of the original and insoluble fractions. Different lignin fractions were acted as the only active substance in the pure cream and its UV-shielding properties were compared. Among them, the composite sunscreen by adding 5 wt% acetone fractionated lignin had highest sun protection factor (SPF) value of 6.6, approximately 4.5 times higher than those sunscreens mixed with pristine lignin. Overall, this work offers the potential of industrial lignin in value-added applications such as UV protection and cosmetics.
Collapse
Affiliation(s)
- Chen Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Yumeng Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Kaiqi Sun
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Dan Luo
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Xiuyu Liu
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada
| | - Huiyang Bian
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Hongqi Dai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
50
|
In vitro evaluation of alkaline lignins as antiparasitic agents and their use as an excipient in the release of benznidazole. Int J Biol Macromol 2023; 231:123339. [PMID: 36682648 DOI: 10.1016/j.ijbiomac.2023.123339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/10/2023] [Accepted: 01/15/2023] [Indexed: 01/21/2023]
Abstract
The Amazon rainforest is considered the largest tropical timber reserve in the world. The management of native forests in the Amazon is one of the most sensitive geopolitical issues today, given its national and international dimension. In this work, we obtained and characterized physicochemical lignins extracted from branches and leaves of Protium puncticulatum and Scleronema micranthum. In addition, we evaluated in vitro its potential as an antioxidant, cytotoxic agent against animal cells and antiparasitic against promastigotes of Leishmania amazonensis, trypomastigotes of T. cruzi and against Plasmodium falciparum parasites sensitive and resistant to chloroquine. The results showed that the lignins obtained are of the GSH type and have higher levels of guaiacyl units. However, they show structural differences as shown by spectroscopic analysis and radar charts. As for biological activities, they showed antioxidant potential and low cytotoxicity against animal cells. Antileishmanial/trypanocidal assays have shown that lignins can inhibit the growth of promastigotes and trypomastigotes in vitro. The lignins in this study showed low anti-Plasmodium falciparum activity against susceptible strains of Plasmodium falciparum and were able to inhibit the growth of the chloroquine-resistant strain. And were not able to inhibit the growth of Schistosoma mansoni parasites. Finally, lignins proved to be promising excipients in the release of benznidazole. These findings show the potential of these lignins not yet studied to promote different biological activities.
Collapse
|