1
|
Hamouda HI, Li T, Shabana S, Hashem AH, Yin H. Advances in fucoidan and fucoidan oligosaccharides: Current status, future prospects, and biological applications. Carbohydr Polym 2025; 358:123559. [PMID: 40383599 DOI: 10.1016/j.carbpol.2025.123559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/10/2025] [Accepted: 03/27/2025] [Indexed: 05/20/2025]
Abstract
Sulfated polysaccharides (SPS) derived from seaweeds are precious bioactive compounds of diverse biological activities. Fucoidan is a complex SPS composed of L-fucose and sulfate groups, can be extracted from brown seaweeds, as well as microbial, insect, plant glycans, and marine invertebrates. It has gained considerable attention due to its anti-inflammatory, anticancer, antiviral, antithrombotic, hypolipidemic, and immune-modulatory properties. Recent research has focused on the extraction and extensive characterization of fucoidan. Its structural complexity, influenced by species, sources, and harvesting conditions, directly influences its bioactivity, with higher sulfation and lower molecular weight enhancing its activity. Interestingly, fucoidan oligosaccharides (FOs) play a critical role in various metabolic processes and hold significant potential in disease diagnostics. This comprehensive review explores the current status of fucoidan research, covering its sources, extraction and purification techniques, structural variations and biological activities. Additionally, we highlight its potential health benefits, providing insights for researchers interested in sulfated polysaccharides.
Collapse
Affiliation(s)
- Hamed I Hamouda
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Dalian Technology Innovation Center for Green Agriculture, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Processes Development Department, Egyptian Petroleum Research Institute (EPRI), Nasr City 11727, Cairo, Egypt
| | - Tang Li
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Dalian Technology Innovation Center for Green Agriculture, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Samah Shabana
- School of Biomedical Engineering, Faculty of Medicine, Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian 116024, China
| | - Amr H Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt
| | - Heng Yin
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Dalian Technology Innovation Center for Green Agriculture, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
2
|
Birgersson PS, Chahal AS, Klau LJ, Holte HB, Arlov Ø, Aachmann FL. Structural characterization and immunomodulating assessment of ultra-purified water extracted fucoidans from Saccharina latissima, Alaria esculenta and Laminaria hyperborea. Carbohydr Polym 2024; 343:122448. [PMID: 39174088 DOI: 10.1016/j.carbpol.2024.122448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/19/2024] [Accepted: 06/27/2024] [Indexed: 08/24/2024]
Abstract
Fucoidans, a group of high molecular weight polysaccharides derived mainly from brown algae, are characterized by their high fucose content, degree of sulfation (DS), and intra- and interspecific structural variation. Fucoidans are increasingly recognized due to various reported bioactivities, potentially beneficial for human health. To unlock their potential use within biomedical applications, a better understanding of their structure-functional relationship is needed. To achieve this, systematic bioactivity studies based on well-defined, pure fucoidans, and the establishment of standardized, satisfactory purification protocols are required. We performed a comprehensive compositional and structural characterization of crude and ultra-purified fucoidans from three kelps: Saccharina latissima (SL), Alaria esculenta (AE) and Laminaria hyperborea (LH). Further, the complement-inhibiting activity of the purified fucoidans was assessed in a human whole blood model. The purification process led to fucoidans with higher DS and fucose and lower concentrations of other monosaccharides. Fucoidans from SL and LH resembles homofucans, while AE is a heterofucan rich in galactose with comparably lower DS. Fucoidans from SL and LH showed complement-inhibiting activity in blood and blood plasma, while no inhibition was observed for AE under the same conditions. The results emphasize the importance of high DS and possibly fucose content for fucoidans' bioactive properties.
Collapse
Affiliation(s)
- Paulina S Birgersson
- Norwegian Biopolymer Laboratory (NOBIPOL), Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Sem Sælands vei 6/8, 7491 Trondheim, Norway.
| | - Aman S Chahal
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Richard Birkelands vei 3 B, 7034 Trondheim, Norway.
| | - Leesa J Klau
- Norwegian Biopolymer Laboratory (NOBIPOL), Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Sem Sælands vei 6/8, 7491 Trondheim, Norway; Department of Process Technology, SINTEF Industry, Forskningsveien 1, 0373 Oslo, Norway.
| | - Helle Bratsberg Holte
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Richard Birkelands vei 3 B, 7034 Trondheim, Norway
| | - Øystein Arlov
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Richard Birkelands vei 3 B, 7034 Trondheim, Norway.
| | - Finn L Aachmann
- Norwegian Biopolymer Laboratory (NOBIPOL), Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Sem Sælands vei 6/8, 7491 Trondheim, Norway.
| |
Collapse
|
3
|
Li JK, Veeraperumal S, Aweya JJ, Liu Y, Cheong KL. Fucoidan modulates gut microbiota and immunity in Peyer's patches against inflammatory bowel disease. Carbohydr Polym 2024; 342:122421. [PMID: 39048206 DOI: 10.1016/j.carbpol.2024.122421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024]
Abstract
Although fucoidan has potential use as an anti-inflammatory agent, the specific mechanisms by which it influences signaling and immunomodulatory pathways between gut microbiota and Peyer's patches remain unclear. Therefore, the aim of this study was to investigate the therapeutic potential of fucoidan in a dextran sulfate sodium (DSS)-induced mouse model of inflammatory bowel disease (IBD) by examining the effects on gut microbiota and the underlying anti-inflammatory mechanisms. Purified fucoidan, which upon characterization revealed structural fragments comprising →3)-β-D-Galp-(1→, →4)-α-L-Fucp-(1→, and →3)-α-L-Fucp-(1→ residues with a sulfation at position C2 was used. Treatment of the mice with fucoidan significantly alleviated the symptoms of IBD and restored the diversity of gut microbiota by enhancing the abundance of Bacteroidetes and reducing the proportion of Firmicutes. The administration of fucoidan also elevated levels of short-chain fatty acids while reducing the levels of pro-inflammatory cytokines, including interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, and interferon (IFN)-γ. Most importantly, fucoidan attenuated the expression of integrin α4β7/MAdCAM-1 and CCL25/CCR9, which are involved in homing intestinal lymphocytes within Peyer's patches. These findings indicate that fucoidan is a promising gut microbiota modulator and an anti-inflammatory agent for IBD.
Collapse
Affiliation(s)
- Jia-Kang Li
- Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, China
| | - Suresh Veeraperumal
- Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, China
| | - Jude Juventus Aweya
- College of Ocean Food and Biological Engineering, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, Fujian, China
| | - Yang Liu
- Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, China
| | - Kit-Leong Cheong
- Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, China; Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China.
| |
Collapse
|
4
|
Bajwa B, Xing X, Serin SC, Hayes M, Terry SA, Gruninger RJ, Abbott DW. Characterization of Unfractionated Polysaccharides in Brown Seaweed by Methylation-GC-MS-Based Linkage Analysis. Mar Drugs 2024; 22:464. [PMID: 39452872 PMCID: PMC11509683 DOI: 10.3390/md22100464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024] Open
Abstract
This study introduces a novel approach to analyze glycosidic linkages in unfractionated polysaccharides from alcohol-insoluble residues (AIRs) of five brown seaweed species. GC-MS analysis of partially methylated alditol acetates (PMAAs) enables monitoring and comparison of structural variations across different species, harvest years, and tissues with and without blanching treatments. The method detects a wide array of fucose linkages, highlighting the structural diversity in glycosidic linkages and sulfation position in fucose-containing sulfated polysaccharides. Additionally, this technique enhances cellulose quantitation, overcoming the limitations of traditional monosaccharide composition analysis that typically underestimates cellulose abundance due to incomplete hydrolysis of crystalline cellulose. The introduction of a weak methanolysis-sodium borodeuteride reduction pretreatment allows for the detection and quantitation of uronic acid linkages in alginates.
Collapse
Affiliation(s)
- Barinder Bajwa
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403 1st Avenue South, Lethbridge, AB T1J 4B1, Canada; (B.B.); (X.X.); (S.A.T.); (R.J.G.)
| | - Xiaohui Xing
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403 1st Avenue South, Lethbridge, AB T1J 4B1, Canada; (B.B.); (X.X.); (S.A.T.); (R.J.G.)
| | - Spencer C. Serin
- Spoitz Enterprises Inc., 215-1610 Pandora Street, Vancouver, BC V5L 1L6, Canada;
| | - Maria Hayes
- Food BioSciences Department, Teagasc Food Research Centre, Ashtown, D15 KN3K Dublin, Ireland;
| | - Stephanie A. Terry
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403 1st Avenue South, Lethbridge, AB T1J 4B1, Canada; (B.B.); (X.X.); (S.A.T.); (R.J.G.)
| | - Robert J. Gruninger
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403 1st Avenue South, Lethbridge, AB T1J 4B1, Canada; (B.B.); (X.X.); (S.A.T.); (R.J.G.)
| | - D. Wade Abbott
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403 1st Avenue South, Lethbridge, AB T1J 4B1, Canada; (B.B.); (X.X.); (S.A.T.); (R.J.G.)
| |
Collapse
|
5
|
Wang Y, Yan M, Zhang P, Wu X, Huang S, Chen S, Rong Y, Sheng Y, Wang Y, Mao G, Chen L, Wang S, Yang B. Structure elucidation and antiviral activity of a cold water-extracted mannogalactofucan Ts1-1A from Trametes sanguinea against human cytomegalovirus in vitro. Carbohydr Polym 2024; 335:122101. [PMID: 38616079 DOI: 10.1016/j.carbpol.2024.122101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/09/2024] [Accepted: 03/26/2024] [Indexed: 04/16/2024]
Abstract
In this study, we purified a partially acetylated heteropolysaccharide (Ts1-1A) from the fruit bodies of Trametes sanguinea Lloyd through cold water extraction and serial chromatographic separation. The purified polysaccharide Ts1-1A (12.8 kDa) was characterized as a branched mannogalactofucan with a backbone of alternately connected 1,3-linked α-Fucp and 1,6-linked α-Galp, which was partially substituted by non-reducing end units of β-Manp at O-2 and O-3 positions of 1,6-linked α-Galp. Ts1-1A showed pronounced anti-human cytomegalovirus activity at the concentration of 200 and 500 μg/mL in systematical assessments including morphological changes, western blotting, qPCR, indirect immunofluorescence and tissue culture infective dose assays. Moreover, Ts1-1A exerted its antiviral activity at two distinct stages of viral proliferation manifesting as significantly inhibiting viral protein (IE1/2 and p52) expression and reducing viral gene (UL123, UL44 and UL32) replication in the HCMV-infected WI-38 cells. At viral attachment stage, Ts1-1A interacted with HCMV and prevented HCMV from attaching to its host cells. While at early phase of viral replication stage, Ts1-1A suppressed HCMV replication by downregulating NQO1 and HO-1 proteins related to oxidative stress as an antioxidant. To sum up, Ts1-1A is a promising anti-HCMV agent which could be developed for HCMV infection prevention and therapy.
Collapse
Affiliation(s)
- Yiran Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 260 Baichuan Street, Hangzhou 311402, PR China
| | - Mengxia Yan
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 260 Baichuan Street, Hangzhou 311402, PR China
| | - Panpan Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 260 Baichuan Street, Hangzhou 311402, PR China
| | - Xinna Wu
- Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou 310030, PR China
| | - Siyang Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 260 Baichuan Street, Hangzhou 311402, PR China
| | - Siru Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 260 Baichuan Street, Hangzhou 311402, PR China
| | - Yizhou Rong
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 260 Baichuan Street, Hangzhou 311402, PR China
| | - Yunjie Sheng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 260 Baichuan Street, Hangzhou 311402, PR China
| | - Yangyang Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 260 Baichuan Street, Hangzhou 311402, PR China
| | - Genxiang Mao
- Zhejiang Provincial Key Lab of Geriatrics & Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou 310030, PR China.
| | - Libing Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 260 Baichuan Street, Hangzhou 311402, PR China.
| | - Sanying Wang
- Zhejiang Provincial Key Lab of Geriatrics & Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou 310030, PR China.
| | - Bo Yang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 260 Baichuan Street, Hangzhou 311402, PR China.
| |
Collapse
|
6
|
Qin L, Xu H, Cao J, Wang K, Zhang L, Yao M, Lin H, Qu C, Miao J. Alleviative effects of sulfated polysaccharide from Ishige Okamurae against DSS-induced ulcerative colitis via inhibiting inflammation and modulating gut microbiota. Int J Biol Macromol 2024; 268:131915. [PMID: 38679254 DOI: 10.1016/j.ijbiomac.2024.131915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/24/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
A water-soluble polysaccharide from the brown alga Ishige Okamurae, designated IOP-0, was obtained by preparative anion-exchange and size-exclusion chromatography. Chemical and spectroscopic investigations revealed that IOP-0 was a sulfated fucoidan with a backbone primarily composed of 3-linked and 4-linked-L-fucose with sulfate groups at C-2/C-4 of the 3-linked-L-fucose. The protective effect of IOP-0 on ulcerative colitis was evaluated in this work. The results showed that IOP-0 could significantly alleviate the symptoms of ulcerative colitis by preventing weight loss, preserving the structure of intestinal tissues, and ameliorating the dysregulation of inflammatory cytokines (TNF-α, IL-6, and IL-10). Meanwhile, IOP-0 protected the colonic mucosal barrier by promoting the tight junction protein ZO-1 and occludin expression. In addition, IOP-0 was able to maintain intestinal homeostasis and improve intestinal function by regulating the gut microbiota and their metabolites, such as short-chain fatty acids (SCFAs). These results suggest that IOP-0 might be a potential dietary supplement for the prevention and treatment of ulcerative colitis.
Collapse
Affiliation(s)
- Ling Qin
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resource, Qingdao 266061, China
| | - Hui Xu
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resource, Qingdao 266061, China
| | - Junhan Cao
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resource, Qingdao 266061, China; College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Kai Wang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resource, Qingdao 266061, China
| | - Liping Zhang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resource, Qingdao 266061, China
| | - Mengke Yao
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resource, Qingdao 266061, China; College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Huan Lin
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resource, Qingdao 266061, China; College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Changfeng Qu
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resource, Qingdao 266061, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Jinlai Miao
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resource, Qingdao 266061, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Qingdao Key Laboratory of Marine Natural Products, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266061, China.
| |
Collapse
|