1
|
Wu M, Wang Y, Wei X, Han X, Xu L, Yan D, Li M, Zhong G, Liu Y, Lin J. The critical role of Id2 gene in mesenchymal stem cell therapy for colitis through regulating immune response and microbiota. Int Immunopharmacol 2025; 160:114974. [PMID: 40450917 DOI: 10.1016/j.intimp.2025.114974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 05/15/2025] [Accepted: 05/26/2025] [Indexed: 06/11/2025]
Abstract
Mesenchymal stem cells (MSCs) therapy is a potential treatment strategy for ulcerative colitis (UC). The expression of the Id2 (inhibitor of differentiation factor-2) gene is closely associated with the pathogenesis and prognosis of UC. However, the role of Id2 in the therapeutic efficacy of MSCs for UC remains unclear. In this study, the MSCs that either overexpressed or knocked down the Id2 gene were employed to alleviate dextrose sodium sulfate (DSS) induced UC in mice. The results indicated that MSCs overexpressing Id2 showed no significant therapeutic advantage in MSCs for UC treatment. In contrast, MSCs with Id2 knockdown demonstrated a marked reduction in therapeutic efficacy on UC, evidenced by decreased body weight, elevated disease activity index (DAI), shortened colon length, increased histopathological damage, disruption of the colonic mucosal barrier, elevated levels of pro-inflammatory cytokines, and reduced tuft cell densities in mice. Notably, Id2 knockdown in MSCs impaired their ability to regulate intestinal microbiota in UC mice, significantly promoting the growth of potentially pathogenic bacteria such as Oscillibacter and Escherichia-Shigella, while decreasing the abundance of anti-inflammatory bacteria like Dubosiella. Transcriptome sequencing analysis revealed altered gene expression involved in immune regulation and signaling pathways (Wnt and Notch), including downregulation of CD1D, CD83, SAMHD1, PRRX1, AXIN2, JAG1, and DLL1, alongside upregulation of SPHK1. Our findings underscore the pivotal role of Id2 in the therapeutic efficacy of MSC treatments for UC.
Collapse
Affiliation(s)
- Minna Wu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan, China; College of Biological and Chemical Engineering, Changsha University, Changsha 410022, Hunan, China
| | - Yuxin Wang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Xiaomin Wei
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Xinjuan Han
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Lingyun Xu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Dong Yan
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Min Li
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Genshen Zhong
- College of Biological and Chemical Engineering, Changsha University, Changsha 410022, Hunan, China
| | - Yanli Liu
- Henan Joint International Research Laboratory of Stem Cell Medicine, School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China.
| | - Juntang Lin
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan, China; Henan Joint International Research Laboratory of Stem Cell Medicine, School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China.
| |
Collapse
|
2
|
Zhang J, Zhang D, Xu Y, Zhang J, Liu R, Gao Y, Shi Y, Cai P, Zhong Z, He B, Li X, Zhou H, Chen M, Li YX. Large-scale biosynthetic analysis of human microbiomes reveals diverse protective ribosomal peptides. Nat Commun 2025; 16:3054. [PMID: 40155374 PMCID: PMC11953309 DOI: 10.1038/s41467-025-58280-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 03/14/2025] [Indexed: 04/01/2025] Open
Abstract
The human microbiome produces diverse metabolites that influence host health, yet the chemical landscape of ribosomally synthesized and post-translationally modified peptides (RiPPs)-a versatile class of bioactive compounds-remains underexplored. Here, we conduct a large-scale biosynthetic analysis of 306,481 microbial genomes from human-associated microbiomes, uncovering a broad array of yet-to-be-discovered RiPPs. These RiPPs are distributed across various body sites but show a specific enrichment in the gut and oral microbiome. Big data omics analysis reveals that numerous RiPP families are inversely related to various diseases, suggesting their potential protective effects on health. For a proof of principle study, we apply the synthetic-bioinformatic natural product (syn-BNP) approach to RiPPs and chemically synthesize nine autoinducing peptides (AIPs) for in vitro and ex vivo assay. Our findings reveal that five AIPs effectively inhibit the biofilm formation of disease-associated pathogens. Furthermore, when ex vivo testing gut microbiota from mice with inflammatory bowel disease, we observe that two AIPs can regulate the microbial community and reduce harmful species. These findings highlight the vast potential of human microbial RiPPs in regulating microbial communities and maintaining human health, emphasizing their potential for therapeutic development.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Dengwei Zhang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yi Xu
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Junliang Zhang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Runze Liu
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Ying Gao
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yuqi Shi
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Peiyan Cai
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Zheng Zhong
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Beibei He
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Xuechen Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Hongwei Zhou
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Muxuan Chen
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
| | - Yong-Xin Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| |
Collapse
|
3
|
Chen H, Cao T, Lin C, Jiao S, He Y, Zhu Z, Guo Q, Wu R, Cai H, Zhang B. Akkermansia muciniphila ameliorates olanzapine-induced metabolic dysfunction-associated steatotic liver disease via PGRMC1/SIRT1/FOXO1 signaling pathway. Front Pharmacol 2025; 16:1550015. [PMID: 40176900 PMCID: PMC11961884 DOI: 10.3389/fphar.2025.1550015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 02/26/2025] [Indexed: 04/05/2025] Open
Abstract
Akkermansia muciniphila (AKK), classified as "lean bacteria," has emerged as a promising candidate for ameliorating metabolic disorders, including obesity, diabetes, and liver disease. In this study, we investigated the therapeutic potential of AKK to counteract metabolic dysfunctions induced by Olanzapine (OLZ), a first-class antipsychotic known for its high therapeutic efficacy but also its association with metabolic disturbances, particularly Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD). Previous studies have implicated progesterone receptor membrane component 1 (PGRMC1) as a key player in antipsychotic-induced metabolic side effects. Using male C57BL/6J mice fed a high-fat diet, we assessed the effects of AKK supplementation on OLZ-induced metabolic disturbances. Key parameters such as body weight, hepatic injury markers, glucose tolerance, insulin resistance, and lipid metabolism were analyzed. The study revealed that AKK supplementation reduced hepatic lipid accumulation, oxidative stress, and insulin resistance, while normalizing lipid and glucose metabolism. These effects are likely mediated through the restoration of PGRMC1/SIRT1/FOXO1 signaling pathway by AKK. Additionally, changes in gut microbiota composition, including a reduction in pathogenic bacteria such as Lactococcus and enrichment of beneficial bacteria, were observed. Overall, the study suggests that AKK has therapeutic potential to counteract OLZ-induced MASLD by modulating gut microbiota and key metabolic pathways, making it a promising strategy for managing metabolic side effects in patients receiving antipsychotic treatment.
Collapse
Affiliation(s)
- Hui Chen
- Department of Pharmacy, Changsha Stomatological Hospital, Changsha, Hunan, China
- Department of pharmacy, Institute of Clinical Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, Hunan, China
| | - Ting Cao
- Department of pharmacy, Institute of Clinical Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, Hunan, China
| | - ChenQuan Lin
- Department of pharmacy, Institute of Clinical Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, Hunan, China
| | - ShiMeng Jiao
- Department of pharmacy, Institute of Clinical Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, Hunan, China
| | - YiFang He
- Department of pharmacy, Institute of Clinical Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, Hunan, China
| | - ZhenYu Zhu
- Department of pharmacy, Institute of Clinical Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, Hunan, China
| | - QiuJin Guo
- Department of pharmacy, Institute of Clinical Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, Hunan, China
| | - RenRong Wu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - HuaLin Cai
- Department of pharmacy, Institute of Clinical Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, Hunan, China
| | - BiKui Zhang
- Department of pharmacy, Institute of Clinical Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, Hunan, China
| |
Collapse
|
4
|
Gong GZ, Li RT, Cui SS, Zhu YT, Duan ZZ, Yang JX, Wang YX, Chen LY, Xiao QH. Synbiotic yacon juice fermented by Lactiplantibacillus plantarum QS7T attenuates dextran sodium sulfate-induced ulcerative colitis in mice. J Food Sci 2025; 90:e17478. [PMID: 40035703 DOI: 10.1111/1750-3841.17478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 03/06/2025]
Abstract
Ulcerative colitis (UC) is a prevalent inflammatory bowel disease associated with abnormal immune responses to commensal bacteria. The study investigated the effects of synbiotic yacon juice fermented by Lactiplantibacillus plantarum QS7T (FYJ) on ameliorating UC and modulating gut microbiota in a dextran sodium sulfate (DSS)-induced colitis mouse model. FYJ intervention significantly improved body weight and colon length, reduced the disease activity index and histopathological scores, and effectively alleviated colon tissue damage compared with treatments with L. plantarum QS7T suspension or yacon juice alone. Additionally, DSS-induced colitis led to a significant decrease in occludin mRNA expression and an upregulation of genes encoding pro-inflammatory cytokines, which were normalized by FYJ treatment. These effects were accompanied by a significant inhibition of the TLR4/MyD88/NF-κB signaling pathway. Moreover, FYJ treatment reversed DSS-induced alternations in gut community beta diversity and composition. In conclusion, FYJ could reduce intestinal mucosal inflammation, repair colonic mucosa, and improve the physiological status of DSS-induced UC mice, possibly through the regulation of the TLR4/MyD88/NF-κB signaling pathway and gut microbiota composition. PRACTICAL APPLICATION: The synbiotic yacon juice significantly restores the DSS-induced imbalance in the intestinal microbiota in mice, thereby preserving mucosal immunity and intestinal barrier integrity. The insights derived from this study are expected to provide a novel perspective on the potential application of synbiotic yacon juice as a functional food agent for treating UC.
Collapse
Affiliation(s)
- Gui Zhen Gong
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Rui Tong Li
- College of Life Science, Sichuan Normal University, Chengdu, China
| | | | - Yuan Ting Zhu
- College of Life Science, Sichuan Normal University, Chengdu, China
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu, China
| | - Zhen Zhen Duan
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Jian Xia Yang
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Yi Xin Wang
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Lan Yue Chen
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Qi Huan Xiao
- College of Life Science, Sichuan Normal University, Chengdu, China
| |
Collapse
|
5
|
Guo H, Li H, Xiao Y, Wu DT, Gan RY, Kang Z, Huang Y, Gao H. Revisiting fermented buckwheat: a comprehensive examination of strains, bioactivities, and applications. Crit Rev Food Sci Nutr 2025:1-22. [PMID: 39989084 DOI: 10.1080/10408398.2025.2468367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Buckwheat, a nutrient-rich pseudocereal, is known for its various biological properties, but its antinutritional factors, such as phytic acid and tannins, can hinder nutrient absorption. Fermentation improves buckwheat's nutritional profile by enhancing bioactive compounds, increasing digestibility, and reducing antinutritional factors. This review comprehensively examines the effects of fermentation and microbial strains on the nutritional composition and functional properties of buckwheat, highlighting their impact on health benefits and potential applications in diverse food products. Fermentation significantly boosts essential nutrients, including amino acids, vitamins, minerals, and bioactive compounds, while reducing antinutritional factors like phytic acid and protease inhibitors. It also enhances antioxidant, antidiabetic, hypolipidemic, anti-inflammatory, and gut microbiota-regulating properties. However, there are notable gaps in research, including limited understanding of fermentation process control, heavy metal transformation, and pathogenic microorganism effects during fermentation. Addressing these gaps is crucial for optimizing the functional properties and ensuring the safety of fermented buckwheat in the food industry. Overall, fermented buckwheat holds significant potential as a functional ingredient for gluten-free foods, nondairy beverages, and other health-promoting products that cater to specific dietary needs.
Collapse
Affiliation(s)
- Huan Guo
- College of Biomass Science and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China
| | - Hang Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Yue Xiao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Ding-Tao Wu
- Institute for Advanced Study, Chengdu University, Chengdu, China
| | - Ren-You Gan
- Department of Food Science and Nutrition, Faculty of Science, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Zhiliang Kang
- College of Mechanical and Electrical Engineering, Sichuan Agricultural University, Ya'an, Sichuan, P. R. China
| | - Yina Huang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Hong Gao
- College of Biomass Science and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Wu C, Zhang Y, Zhou Z, Zhang K, Zhou Y, Tang J, Zhang R, Li H, Wu F, Bai S, Wang X, Lyu Y. A Novel Selenium-Based Nanozyme (GSH-Se) Ameliorates Colitis in Mice by Modulating the Nrf2/Keap1 and GPx4 Pathways. Int J Mol Sci 2025; 26:1866. [PMID: 40076493 PMCID: PMC11900211 DOI: 10.3390/ijms26051866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/14/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
Combination of selenium (Se) and glutathione peroxidase (GPx) can reduce the dose of Se used while concurrently exploiting their antioxidative performance, which can be used as a potential treatment for ulcerative colitis. Nanozymes possess higher stability, are more economical, and have more multifunctionalities than natural enzymes and thus could be an ideal approach for their combination. Therefore, this study synthesised a nanozyme using glutathione (GSH) and Se-GSH-Se-and evaluated its alleviating effects on colitis in mice induced by dextran sulphate sodium salt (DSS). Three doses of GSH-Se, 6 mM, 12 mM, and 18 mM were supplemented in DSS-induced colitis in mice. Findings showed that GSH-Se supplementation ameliorated colitis by improving the colonic mucosal integrity, reducing inflammatory responses and oxidative stress, and alleviating gut microbiota imbalance in mice with DSS-induced colitis. Moreover, an in vitro experiment was performed to unravel the molecular mechanism by which GSH-Se ameliorated colitis in mice, based on lipopolysaccharide-induced inflammation in mouse colon epithelial cells. The results suggested that the alleviating effects of GSH-Se on mouse colitis was likely mediated by the activation of the Nrf2/Keap1 (nuclear factor E2-related factor 2/Kelch-like ECH-associated protein 1) and GPx4 signalling pathways.
Collapse
Affiliation(s)
- Caimei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (C.W.)
- Key Laboratory of Animal Disease-Resistance Nutrition, Sichuan Province, Ministry of Agriculture and Rural Affairs, Ministry of Education, Chengdu 611130, China
| | - Yuwei Zhang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (C.W.)
- Key Laboratory of Animal Disease-Resistance Nutrition, Sichuan Province, Ministry of Agriculture and Rural Affairs, Ministry of Education, Chengdu 611130, China
| | - Ziyun Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (C.W.)
- Key Laboratory of Animal Disease-Resistance Nutrition, Sichuan Province, Ministry of Agriculture and Rural Affairs, Ministry of Education, Chengdu 611130, China
| | - Kun Zhang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (C.W.)
- Key Laboratory of Animal Disease-Resistance Nutrition, Sichuan Province, Ministry of Agriculture and Rural Affairs, Ministry of Education, Chengdu 611130, China
| | - Yixuan Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (C.W.)
- Key Laboratory of Animal Disease-Resistance Nutrition, Sichuan Province, Ministry of Agriculture and Rural Affairs, Ministry of Education, Chengdu 611130, China
| | - Jiayong Tang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (C.W.)
- Key Laboratory of Animal Disease-Resistance Nutrition, Sichuan Province, Ministry of Agriculture and Rural Affairs, Ministry of Education, Chengdu 611130, China
| | - Ruinan Zhang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (C.W.)
- Key Laboratory of Animal Disease-Resistance Nutrition, Sichuan Province, Ministry of Agriculture and Rural Affairs, Ministry of Education, Chengdu 611130, China
| | - Hua Li
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (C.W.)
- Key Laboratory of Animal Disease-Resistance Nutrition, Sichuan Province, Ministry of Agriculture and Rural Affairs, Ministry of Education, Chengdu 611130, China
| | - Fali Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (C.W.)
- Key Laboratory of Animal Disease-Resistance Nutrition, Sichuan Province, Ministry of Agriculture and Rural Affairs, Ministry of Education, Chengdu 611130, China
| | - Shipping Bai
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (C.W.)
- Key Laboratory of Animal Disease-Resistance Nutrition, Sichuan Province, Ministry of Agriculture and Rural Affairs, Ministry of Education, Chengdu 611130, China
| | - Xianxiang Wang
- College of Science, Sichuan Agricultural University, Chengdu 611130, China
| | - Yang Lyu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (C.W.)
- Key Laboratory of Animal Disease-Resistance Nutrition, Sichuan Province, Ministry of Agriculture and Rural Affairs, Ministry of Education, Chengdu 611130, China
| |
Collapse
|
7
|
Duan J, Sun J, Ma X, Du P, Dong P, Xue J, Lu Y, Jiang T. Association of escitalopram-induced shifts in gut microbiota and sphingolipid metabolism with depression-like behavior in wistar-kyoto rats. Transl Psychiatry 2025; 15:54. [PMID: 39962083 PMCID: PMC11833111 DOI: 10.1038/s41398-025-03277-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 01/14/2025] [Accepted: 02/07/2025] [Indexed: 02/20/2025] Open
Abstract
The microbiota-gut-brain axis plays a pivotal role in neuropsychiatric disorders, particularly in depression. Escitalopram (ESC) is a first-line antidepressant, however, its regulatory mechanisms on the microbiota-gut-brain axis in the treatment of depression remain unclear. The antidepressant effects of ESC were evaluated using the forced swim test in Wistar-Kyoto (WKY) rats, while damage in the gut and brain regions was assessed through H&E staining and immunohistochemistry. The therapeutic mechanisms in WKY rats with depression-like behavior were investigated through 16S rRNA sequencing of the gut microbiota, serum untargeted metabolomics, and hippocampal proteomics. Results indicated that ESC intervention improved depressive-like behaviors, as evidenced by increased swimming times in WKY rats, and also restored intestinal permeability and brain tissue integrity. Significant changes in the gut microbiota composition, particularly an increase in Bacteroides barnesiae, as well as increases in serum sphingolipid metabolites (Sphinganine 1-phosphate, Sphingosine, and Sphingosine-1-phosphate) and hippocampal proteins (Sptlc1, Enpp5, Enpp2), were strongly correlated. These robust correlations suggest that ESC may exert its antidepressant effects by modulating sphingolipid metabolism through the influence of gut microbiota. Accordingly, this research elucidates novel mechanisms underlying the antidepressant efficacy of ESC and highlights the pivotal importance of the microbiota-gut-brain axis in mediating these effects.
Collapse
Affiliation(s)
- Jiajia Duan
- Department of Clinical Laboratory, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Jiaxing Sun
- Department of Clinical Laboratory, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Xiao Ma
- Department of Clinical Laboratory, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Peipei Du
- Department of Clinical Laboratory, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Pengfei Dong
- Department of Clinical Laboratory, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Juan Xue
- Department of Clinical Laboratory, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Yanli Lu
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Tao Jiang
- Department of Clinical Laboratory, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China.
| |
Collapse
|
8
|
Zhao J, Tian H, Kong X, Dang D, Liu K, Su C, Lian H, Gao T, Fu T, Zhang L, Li W, Zhang W. Microbiomic and Metabolomic Insights into the Mechanisms of Alfalfa Polysaccharides and Seaweed Polysaccharides in Alleviating Diarrhea in Pre-Weaning Holstein Calves. Animals (Basel) 2025; 15:485. [PMID: 40002967 PMCID: PMC11851682 DOI: 10.3390/ani15040485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/18/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
Neonatal calves' diarrhea, which can be severe enough to cause death, has a significant impact on the global cattle industry. In this study, alfalfa polysaccharides and seaweed polysaccharides were found to significantly improve the diarrhea condition in neonatal calves. To explore the underlying mechanisms, further microbiomic and metabolomic analyses were conducted. This study investigated the impact of alfalfa polysaccharides and seaweed polysaccharides on growth performance, serum metabolites, gut microbiota, and metabolomics in neonatal Holstein calves. A total of 24 newborn calves were randomly assigned to three groups, with 8 calves per treatment group. The control (CON) group was fed a basal diet, the alfalfa polysaccharide (AP) group received a basal diet supplemented with alfalfa polysaccharides (4 g/calf/day), and the seaweed polysaccharide group (SP) received a basal diet supplemented with seaweed polysaccharides (4 g/calf/day). These polysaccharides were plant extracts. Compared to the CON group, the results indicated that SP significantly enhanced the body weight, height, chest circumference, and average daily gain of Holstein calves (p < 0.05), while also reducing the diarrhea rate and improving manure scoring (p < 0.05). Compared to the CON, AP also reduced the diarrhea rate (p < 0.05). In terms of serum biochemistry, supplementation with AP and SP increased serum alkaline phosphatase (ALP) and insulin-like growth factor 1 (IGF-1) levels compared to the CON group (p < 0.05). Both AP and SP elevated serum catalase (CAT) and Total Antioxidant Capacity (T-AOC) levels, indicating enhanced antioxidant status (p < 0.05). Regarding immune responses, supplementation with AP and SP significantly increased serum complement component 3 (C3) and immunoglobulin M (IgM) levels, while significantly reducing pro-inflammatory cytokines interleukin-18 (IL-18), tumor necrosis factor alpha (TNF-α), and interferon-gamma (IFN-γ) compared to the CON group (p < 0.05). Microbiota analysis revealed that AP modulated the abundance of Firmicutes, while SP influenced the abundance of Prevotella and Succiniclasticum. AP and SP differentially influenced intestinal metabolites compared to the CON group, leading to enrichment in pathways related to immunity, antibacterial, and anti-inflammatory functions. These pathways included the biosynthesis of alkaloids from ornithine, lysine, and nicotinic acid, glucocorticoid and mineralocorticoid receptor canothersis/antagonists, secondary metabolite biosynthesis, and alkaloid biosynthesis from histidine and purine, thus alleviating intestinal inflammation. Therefore, by supplementing with AP and SP, the diarrhea rate in calves was reduced, and the immune function of Holstein calves was enhanced, while simultaneously promoting a higher relative abundance of beneficial gut bacteria and suppressing the relative abundance of pathogenic bacteria. Additionally, gut pathways associated with immune response and inflammation were modulated by AP and SP. This study provided valuable insights and theoretical underpinnings for the use of AP and SP in preventing diarrhea in neonatal calves.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Wenqing Li
- Henan International Joint Laboratory of Nutrition Regulation and Ecological Raising of Domestic Animal, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (J.Z.); (H.T.); (X.K.); (D.D.); (K.L.); (C.S.); (H.L.); (T.G.); (T.F.); (L.Z.)
| | - Wei Zhang
- Henan International Joint Laboratory of Nutrition Regulation and Ecological Raising of Domestic Animal, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (J.Z.); (H.T.); (X.K.); (D.D.); (K.L.); (C.S.); (H.L.); (T.G.); (T.F.); (L.Z.)
| |
Collapse
|
9
|
Li X, Zhu R, Liu Q, Sun H, Sheng H, Zhu L. Effects of traditional Chinese medicine polysaccharides on chronic diseases by modulating gut microbiota: A review. Int J Biol Macromol 2024; 282:136691. [PMID: 39437951 DOI: 10.1016/j.ijbiomac.2024.136691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Intestinal tract is the largest immune system of human body. Gut microbiota (GM) can produce a large number of metabolites, such as short-chain fatty acids and bile acids, which regulate the physiological health of the host and affect the development of disease. In recent years, traditional Chinese medicine (TCM) polysaccharides have attracted extensive attention with multiple biological activities and low toxicity. TCM polysaccharides can promote the growth of intestinal beneficial bacteria and inhibit the growth of harmful bacteria by regulating the structure and function of GM, thus playing a crucial role in preventing or treating chronic diseases such as inflammatory bowel disease (IBD), obesity, type 2 diabetes mellitus (T2DM), liver diseases, cancer, etc. In this paper, the research progress of TCM polysaccharides in the treatment of chronic diseases such as inflammatory bowel disease, obesity, T2DM, liver diseases, cancer, etc. by modulating GM was reviewed. Meanwhile, this review makes an in-depth discussion on the shortcomings of the research of TCM polysaccharides on chronic diseases by modulating GM, and new valuable prospection for the future researches of TCM polysaccharides are proposed, which will provide new ideas for the further study of TCM polysaccharides.
Collapse
Affiliation(s)
- Xinyu Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Riran Zhu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Qian Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Henglai Sun
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Huagang Sheng
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Liqiao Zhu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| |
Collapse
|
10
|
Zhang Y, Yang Y, Song J, Yu W, Li Y, Liu D, Gao J, Fan B, Wang F, Zheng Y. Laoxianghuang polysaccharide promotes the anti-inflammatory cytokine interleukin-10 in colitis via gut microbial linoleic acid. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156136. [PMID: 39454376 DOI: 10.1016/j.phymed.2024.156136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/25/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024]
Abstract
BACKGROUND Our previous study found that the polysaccharide from Laoxianghuang (LP), fermented fruit of bergamot (traditional Chinese medicine and food), can alter gut microbiota and regulate short-chain fatty acids (SCFAs) in vitro. Nevertheless, there is a paucity of reports on the impact of LP on gut microbiota in vivo. PURPOSE To analyze the structures of LP, investigate the influence of LP on the damaged intestinal barrier in DSS-induced colitis mice, and further explore its potential mechanisms. METHODS We analyzed the physicochemical properties of purified LP by HPLC, SEM, and FT-IR spectrum. Then, to assess the effect of LP in DSS-induced colitis mice, we observed the damage to the colon tissue, measured inflammatory cytokines and tight junction protein expression through RT-qPCR as well as immunofluorescent staining, and investigated the influence of LP on altering gut microbiota and metabolites using 16 s rRNA sequencing and HPLC-MS/MS. Ultimately, the impact of linoleic acid on inflammatory cytokines was confirmed by the LPS-induced RAW264.7 cells. RESULTS LP, mainly galactoglucan, could inhibit weight loss and colon shortening, decrease levels of tumor necrosis factor-α (TNF-α), increase levels of interleukin-10 (IL-10) and the intestinal acetic acid and butyric acid, and promote the expression of tight junction proteins ZO-1 and Claudin-1. Meanwhile, LP enhanced the abundance of beneficial bacteria including Romboutsia, Eubacterium_coprostanoligenes_group, and Akkermansia, and regulated linoleic acid metabolism to increase the linoleic acid level. In vitro cell experiment proved that linoleic acid could elevate the level of IL-10 and inhibit inflammatory responses. CONCLUSIONS Our results suggested that LP effectively alleviated colitis by promoting the anti-inflammatory cytokine interleukin-10 via gut microbiota-mediated linoleic acid metabolism.
Collapse
Affiliation(s)
- Yuwei Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Yiren Yang
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Jiangping Song
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Wenqing Yu
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Yaqian Li
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Denghong Liu
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Jie Gao
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Bei Fan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Fengzhong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| | - Yang Zheng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| |
Collapse
|
11
|
Liu YC, Chen SY, Chen YY, Chang HY, Chiang IC, Yen GC. Polysaccharides extracted from common buckwheat (Fagopyrum esculentum) attenuate cognitive impairment via suppressing RAGE/p38/NF-κB signaling and dysbiosis in AlCl 3-treated rats. Int J Biol Macromol 2024; 276:133898. [PMID: 39019369 DOI: 10.1016/j.ijbiomac.2024.133898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/01/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024]
Abstract
Patients may find it challenging to accept several FDA-approved drugs for Alzheimer's disease (AD) treatment due to their unaffordable prices and side effects. Despite the known antioxidant, anti-inflammatory, and microbiota-regulating effects of common buckwheat (Fagopyrum esculentum) polysaccharides (FEP), their specific role in preventing AD has not been determined. Here, this study investigated the preventive effects of FEP on AD development in AlCl3-treated rats. The physical properties of FEP were evaluated using X-ray diffraction, FTIR, TGA, DSC, monosaccharide composition, molecular weight, and scanning electron microscopy. The results demonstrated that FEP administration improved memory and learning ability in AlCl3-treated rats. Additionally, AD pathological biomarkers (APP, BACE1, Aβ1-42, and p-TauSer404), inflammatory-associated proteins (IL-1β, IL-6, TNF-α, and Iba1), and MDA and the RAGE/p38/NF-κB pathway were elevated in AlCl3-treated rats. Moreover, these effects were reversed by the upregulation of LRP1, anti-inflammatory cytokines (IL-4 and IL-10), antioxidant enzymes (SOD and catalase), and autophagy proteins (Atg5, Beclin-1, and LC3B). Furthermore, FEP treatment increased the levels of short-chain fatty acids (SCFAs) and the abundance of SCFAs-producing microbes ([Eubacterium]_xylanophilum_group, Lachnospiraceae_NK4A136_group, Lactobacillus). Overall, FEP mitigated oxidative stress, RAGE/p38/NF-κB-mediated neuroinflammation, and AD-associated proteins by upregulating autophagy and SCFA levels, which led to the amelioration of cognitive impairment through microbiota-gut-brain communication in AlCl3-treated rats.
Collapse
Affiliation(s)
- Yu-Chen Liu
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan
| | - Sheng-Yi Chen
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan
| | - Ying-Ying Chen
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan
| | - Hsin-Yu Chang
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan
| | - I-Chen Chiang
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan
| | - Gow-Chin Yen
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan; Advanced Plant and Food Crop Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan.
| |
Collapse
|
12
|
Chen Z, Xu W, Luo J, Liu L, Peng X. Lonicera japonica Fermented by Lactobacillus plantarum Improve Multiple Patterns Driven Osteoporosis. Foods 2024; 13:2649. [PMID: 39272415 PMCID: PMC11393950 DOI: 10.3390/foods13172649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/08/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024] Open
Abstract
Osteoporosis (OP) represents a global health challenge. Certain functional food has the potential to mitigate OP. Honeysuckle (Lonicera japonica) solution has medicinal effects, such as anti-inflammatory and immune enhancement, and can be used in functional foods such as health drinks and functional snacks. The composition of honeysuckle changed significantly after fermentation, and 376 metabolites were enriched. In this study, we used dexamethasone to induce OP in the rat model. Research has confirmed the ability of FS (fermented Lonicera japonica solution) to enhance bone mineral density (BMD), repair bone microarchitectural damage, and increase blood calcium levels. Markers such as tartrate-resistant acid phosphatase-5b (TRACP-5b) and pro-inflammatory cytokines (TNF-α and IL-6) were notably decreased, whereas osteocalcin (OCN) levels increased after FS treatment. FS intervention in OP rats restored the abundance of 6 bacterial genera and the contents of 17 serum metabolites. The results of the Spearman correlation analysis showed that FS may alleviate OP by restoring the abundance of 6 bacterial genera and the contents of 17 serum metabolites, reducing osteoclast differentiation, promoting osteoblast differentiation, and reducing the inflammatory response. This study revealed that Lactobacillus plantarum-fermented honeysuckle alleviated OP through intestinal bacteria and serum metabolites and provided a theoretical basis for the development of related functional foods.
Collapse
Affiliation(s)
- Zimin Chen
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Weiye Xu
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Jianming Luo
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Liu Liu
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Xichun Peng
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| |
Collapse
|
13
|
Li H, Cheng Y, Cui L, Yang Z, Wang J, Zhang Z, Chen K, Zhao C, He N, Li S. Combining Gut Microbiota Modulation and Enzymatic-Triggered Colonic Delivery by Prebiotic Nanoparticles Improves Mouse Colitis Therapy. Biomater Res 2024; 28:0062. [PMID: 39140035 PMCID: PMC11321063 DOI: 10.34133/bmr.0062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 07/02/2024] [Indexed: 08/15/2024] Open
Abstract
The efficacy of ulcerative colitis (UC) therapy is closely connected to the composition of gut microbiota in the gastrointestinal tract. Prebiotic-based nanoparticles (NPs) provide a more precise approach to alleviate UC via modulating gut microbiota dysbiosis. The present study develops an efficient prebiotic-based colon-targeted drug delivery system (PCDDS) by using prebiotic pectin (Pcn) and chitosan (Csn) polysaccharides as a prebiotic shell, with the anti-inflammatory drug sulfasalazine (SAS) loaded into a poly(lactic-co-glycolic acid) (PLGA) core to construct SAS@PLGA-Csn-Pcn NPs. Then, we examine its characterization, cellular uptake, and in vivo therapeutic efficacy. The results of our study indicate that the Pcn/Csn shell confers efficient pH-sensitivity properties. The gut microbiota-secreted pectinase serves as the trigger agent for Pcn/Csn shell degradation, and the resulting Pcn oligosaccharides possess a substantial prebiotic property. Meanwhile, the formed PCDDSs exhibit robust biodistribution and accumulation in the colon tissue, rapid cellular uptake, efficient in vivo therapeutic efficacy, and modulation of gut microbiota dysbiosis in a mouse colitis model. Collectively, our synthetic PCDDSs demonstrate a promising and synergistic strategy for UC therapy.
Collapse
Affiliation(s)
- Hui Li
- School of Basic Medicine, Qingdao Medical College,
Qingdao University, Qingdao, China
| | - Yu Cheng
- School of Basic Medicine, Qingdao Medical College,
Qingdao University, Qingdao, China
| | - Luwen Cui
- School of Basic Medicine, Qingdao Medical College,
Qingdao University, Qingdao, China
| | - Zizhen Yang
- School of Basic Medicine, Qingdao Medical College,
Qingdao University, Qingdao, China
| | - Jingyi Wang
- School of Basic Medicine, Qingdao Medical College,
Qingdao University, Qingdao, China
| | - Zixuan Zhang
- School of Basic Medicine, Qingdao Medical College,
Qingdao University, Qingdao, China
| | - Kaiwei Chen
- School of Basic Medicine, Qingdao Medical College,
Qingdao University, Qingdao, China
| | - Cheng Zhao
- Department of Abdominal Ultrasound,
The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ningning He
- School of Basic Medicine, Qingdao Medical College,
Qingdao University, Qingdao, China
| | - Shangyong Li
- School of Basic Medicine, Qingdao Medical College,
Qingdao University, Qingdao, China
- Department of Abdominal Ultrasound,
The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
14
|
Chang HY, Chen SY, Lin JA, Chen YY, Chen YY, Liu YC, Yen GC. Phyllanthus emblica Fruit Improves Obesity by Reducing Appetite and Enhancing Mucosal Homeostasis via the Gut Microbiota-Brain-Liver Axis in HFD-Induced Leptin-Resistant Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10406-10419. [PMID: 38659208 PMCID: PMC11082930 DOI: 10.1021/acs.jafc.4c01226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/13/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024]
Abstract
The impact of leptin resistance on intestinal mucosal barrier integrity, appetite regulation, and hepatic lipid metabolism through the microbiota-gut-brain-liver axis has yet to be determined. Water extract of Phyllanthus emblica L. fruit (WEPE) and its bioactive compound gallic acid (GA) effectively alleviated methylglyoxal (MG)-triggered leptin resistance in vitro. Therefore, this study investigated how WEPE and GA intervention relieve leptin resistance-associated dysfunction in the intestinal mucosa, appetite, and lipid accumulation through the microbiota-gut-brain-liver axis in high-fat diet (HFD)-fed rats. The results showed that WEPE and GA significantly reduced tissues (jejunum, brain, and liver) MG-evoked leptin resistance, malondialdehyde (MDA), proinflammatory cytokines, SOCS3, orexigenic neuropeptides, and lipid accumulation through increasing leptin receptor, tight junction proteins, antimicrobial peptides, anorexigenic neuropeptides, excretion of fecal triglyceride (TG), and short-chain fatty acids (SCFAs) via a positive correlation with the Allobaculum and Bifidobacterium microbiota. These novel findings suggest that WEPE holds the potential as a functional food ingredient for alleviating obesity and its complications.
Collapse
Affiliation(s)
- Hsin-Yu Chang
- Department
of Food Science and Biotechnology, National
Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan
| | - Sheng-Yi Chen
- Department
of Food Science and Biotechnology, National
Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan
| | - Jer-An Lin
- Graduate
Institute of Food Safety, National Chung
Hsing University, 145
Xingda Road, Taichung 40227, Taiwan
| | - Ying-Yin Chen
- Department
of Food Science and Biotechnology, National
Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan
| | - Ying-Ying Chen
- Department
of Food Science and Biotechnology, National
Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan
| | - Yu-Chen Liu
- Department
of Food Science and Biotechnology, National
Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan
| | - Gow-Chin Yen
- Department
of Food Science and Biotechnology, National
Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan
| |
Collapse
|
15
|
Qin X, Nong K, Liu Z, Fang X, Zhang B, Chen W, Wang Z, Wu Y, Shi H, Wang X, Zhang H. Regulation of the intestinal flora using polysaccharides from Callicarpa nudiflora Hook to alleviate ulcerative colitis and the molecular mechanisms involved. Int J Biol Macromol 2024; 258:128887. [PMID: 38118262 DOI: 10.1016/j.ijbiomac.2023.128887] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/04/2023] [Accepted: 12/17/2023] [Indexed: 12/22/2023]
Abstract
Ulcerative colitis (UC) is a type of inflammatory bowel disease (IBD) that cannot be completely cured by current treatments. C. nudiflora Hook has antibacterial, anti-inflammatory, and hemostatic biological functions; however, the therapeutic role of C. nudiflora Hook or its extracts in IBD remains poorly understood. In this study, we extracted and purified three fractions of C. nudiflora Hook polysaccharides by hydroalcohol precipitation method, which were named as CNLP-1, CNLP-2 and CNLP-3, respectively. CNLP-2, the main component of the polysaccharides of C. nudiflora Hook is an pyranose type acidic polysaccharide composed of Fuc, Rha, Ara, Gal, Glc, Xyl, Man, Gal-UA and Glc-UA, with an Mn of 15.624 kDa; Mw of 31.375 kDa. CNLP-2 was found to have a smooth lamellar structure as observed by scanning electron microscopy. To investigate the effect of CNLP-2 (abbreviated to CNLP) on dextran sodium sulfate (DSS)-induced UC mice and its mechanism of action, we treated DSS-induced UC mice by administering CNLP at a dose of 100 mg/kg every other day. The results of the study showed that CNLP alleviated the clinical symptoms such as body weight (BW) loss, pathological damage, and systemic inflammation. The mechanism may be through the regulation of intestinal flora and its metabolism, which in turn affects the expression of NF-κB/MAPK pathway-related proteins through the metabolites of intestinal flora to further alleviate inflammation and ultimately improve the intestinal barrier function in UC mice. In conclusion, CNLP has great potential for the treatment of IBD.
Collapse
Affiliation(s)
- Xinyun Qin
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Keyi Nong
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Zhineng Liu
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Xin Fang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Bin Zhang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Wanyan Chen
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Zihan Wang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Yijia Wu
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Huiyu Shi
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Xuemei Wang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Haiwen Zhang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| |
Collapse
|
16
|
Chen YY, Chen SY, Chang HY, Liu YC, Chuang BF, Yen GC. Phyllanthus emblica L. polysaccharides ameliorate colitis via microbiota modulation and dual inhibition of the RAGE/NF-κB and MAPKs signaling pathways in rats. Int J Biol Macromol 2024; 258:129043. [PMID: 38158054 DOI: 10.1016/j.ijbiomac.2023.129043] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/10/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
Pharmacological treatments for colitis have limited efficacy and side effects. Plant polysaccharides improve colitis by modulating the gut microbiota. However, the specific benefits of Phyllanthus emblica L. polysaccharides (PEPs) in colitis remain unclear. Therefore, this study aimed to assess the physical characteristics and health advantages of PEP in rats subjected to 2,4,6-trinitrobenzene sulfonic acid (TNBS) treatment. The results showed that PEP (1.226 × 103 kDa) was an α-acidic pyran heteropolysaccharide rich in galactose and galacturonic acid. Prefeeding rats with PEP significantly decreased the levels of NO, MDA, proinflammatory cytokines (IL-6, IL-1β, TNF-α), apoptosis, and the activities of mucinase and β-glucuronidase. These changes were accompanied by increases in the levels of anti-inflammatory cytokines (IL-4, IL-10) and antioxidant enzymes (SOD, catalase, GPx) in colitis rats. Mechanistically, PEP suppressed the abundance of inflammatory-related bacteria (Bacteroides, Intestinimonas, and Parabacteroides) while promoting the growth of short-chain fatty acid (SCFA)-producing bacteria (Romboutsia, Clostridium_sensu_stricto_1, and Lactobacillus), along with an increase in SCFA secretion. SCFAs may engage with the GPR43 receptor and inhibit downstream HDAC3, consequently downregulating the activation of the RAGE/NF-κB and MAPK pathways. In conclusion, PEP demonstrated preventive effects through its antioxidant, anti-inflammatory, and microbiota modulation properties, thereby ameliorating TNBS-induced colitis in rats.
Collapse
Affiliation(s)
- Ying-Ying Chen
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan
| | - Sheng-Yi Chen
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan
| | - Hsin-Yu Chang
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan
| | - Yu-Chen Liu
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan
| | - Bing-Fan Chuang
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan
| | - Gow-Chin Yen
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan.
| |
Collapse
|
17
|
Kong H, Xu T, Wang S, Zhang Z, Li M, Qu S, Li Q, Gao P, Cong Z. The molecular mechanism of polysaccharides in combating major depressive disorder: A comprehensive review. Int J Biol Macromol 2024; 259:129067. [PMID: 38163510 DOI: 10.1016/j.ijbiomac.2023.129067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 12/10/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
Major depressive disorder (MDD) is a complex psychiatric condition with diverse etiological factors. Typical pathological features include decreased cerebral cortex, subcortical structures, and grey matter volumes, as well as monoamine transmitter dysregulation. Although medications exist to treat MDD, unmet needs persist due to limited efficacy, induced side effects, and relapse upon drug withdrawal. Polysaccharides offer promising new therapies for MDD, demonstrating antidepressant effects with minimal side effects and multiple targets. These include neurotransmitter, neurotrophin, neuroinflammation, hypothalamic-pituitary-adrenal axis, mitochondrial function, oxidative stress, and intestinal flora regulation. This review explores the latest advancements in understanding the pharmacological actions and mechanisms of polysaccharides in treating major depression. We discuss the impact of polysaccharides' diverse structures and properties on their pharmacological actions, aiming to inspire new research directions and facilitate the discovery of novel anti-depressive drugs.
Collapse
Affiliation(s)
- Hongwei Kong
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Tianren Xu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Shengguang Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zhiyuan Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Min Li
- Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Suyan Qu
- Tai 'an Taishan District People's Hospital, China
| | - Qinqing Li
- Shanxi University of Chinese Medicine, China
| | - Peng Gao
- Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Zhufeng Cong
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Affiliated Cancer Hospital of Shandong First Medical University, China.
| |
Collapse
|
18
|
Cui C, Wei Y, Wang Y, Ma W, Zheng X, Wang J, Ma Z, Wu C, Chu L, Zhang S, Guan W, Chen F. Dietary supplementation of benzoic acid and essential oils combination enhances intestinal resilience against LPS stimulation in weaned piglets. J Anim Sci Biotechnol 2024; 15:4. [PMID: 38238856 PMCID: PMC10797991 DOI: 10.1186/s40104-023-00958-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/29/2023] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND The benefits of combining benzoic acid and essential oils (BAO) to mitigate intestinal impairment during the weaning process have been well established, while the detailed underlying mechanism has not been fully elucidated. Previous research has primarily focused on the reparative effects of BAO on intestinal injury, while neglecting its potential in enhancing intestinal stress resistance. METHODS In this study, we investigated the pre-protective effect of BAO against LPS-induced stress using a modified experimental procedure. Piglets were pre-supplemented with BAO for 14 d, followed by a challenge with LPS or saline to collect blood and intestinal samples. RESULTS Our findings demonstrated that BAO supplementation led to significant improvements in piglets' final weight, average daily gain, and feed intake/body gain ratio. Additionally, BAO supplementation positively influenced the composition of intestinal microbiota, increasing beneficial Actinobacteriota and Alloprevotella while reducing harmful Desulfobacterota, Prevotella and Oscillospira. Furthermore, BAO supplementation effectively mitigated oxidative disturbances and inflammatory responses induced by acute LPS challenge. This was evidenced by elevated levels of T-AOC, SOD, and GSH, as well as decreased levels of MDA, TNF-α, and IL-6 in the plasma. Moreover, piglets subjected to LPS challenge and pre-supplemented with BAO exhibited significant improvements in intestinal morphological structure and enhanced integrity, as indicated by restored expression levels of Occludin and Claudin-1 compared to the non-supplemented counterparts. Further analysis revealed that BAO supplementation enhanced the jejunal antioxidative capacity by increasing GSH-Px levels and decreasing MDA levels under the LPS challenge and stimulated the activation of the Nrf2 signaling pathway. Additionally, the reduction of TLR4/NF-κB/MAPK signaling pathways activation and proinflammatory factor were also observed in the jejunal of those piglets fed with BAO. CONCLUSIONS In summary, our study demonstrates that pre-supplementation of BAO enhances the anti-stress capacity of weaned piglets by improving intestinal microbiota composition, reinforcing the intestinal barrier, and enhancing antioxidative and anti-inflammatory capabilities. These effects are closely associated with the activation of Nrf2 and TLR4/NF-κB/MAPK signaling pathways.
Collapse
Affiliation(s)
- Chang Cui
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yulong Wei
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yibo Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Wen Ma
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaoyu Zheng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jun Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Ziwei Ma
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Caichi Wu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Licui Chu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Shihai Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Wutai Guan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Fang Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
19
|
Ren X, Xu J, Xu Y, Wang Q, Huang K, He X. Artemether Attenuates Gut Barrier Dysfunction and Intestinal Flora Imbalance in High-Fat and High-Fructose Diet-Fed Mice. Nutrients 2023; 15:4860. [PMID: 38068719 PMCID: PMC10707945 DOI: 10.3390/nu15234860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
Intestinal inflammation is a key determinant of intestinal and systemic health, and when our intestines are damaged, there is disruption of the intestinal barrier, which in turn induces a systemic inflammatory response. However, the etiology and pathogenesis of inflammatory diseases of the intestine are still not fully understood. Artemether (ART), one of the artemisinin derivatives, has been widely used to treat malaria. Nevertheless, the effect of ART on intestinal inflammation remains unclear. The present study intended to elucidate the potential mechanism of ART in diet-induced intestinal injury. A high-fat and high-fructose (HFHF) diet-induced mouse model of intestinal injury was constructed, and the mice were treated with ART to examine their role in intestinal injury. RT-qPCR, Western blotting, immunohistochemical staining, and 16S rRNA gene sequencing were used to investigate the anti-intestinal inflammation effect and mechanism of ART. The results indicated that ART intervention may significantly ameliorate the intestinal flora imbalance caused by the HFHF diet and alleviate intestinal barrier function disorders and inflammatory responses by raising the expression of tight junction proteins ZO-1 and occludin and decreasing the expression of pro-inflammatory factors TNF-α and IL-1β. Moreover, ART intervention restrained HFHF-induced activation of the TLR4/NF-κB p65 pathway in colon tissue, which may be concerned with the potential protective effect of ART on intestinal inflammation. ART might provide new insights into further explaining the mechanism of action of other metabolic diseases caused by intestinal disorders.
Collapse
Affiliation(s)
- Xinxin Ren
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jia Xu
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Ye Xu
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Qin Wang
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Kunlun Huang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), The Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing 100083, China
| | - Xiaoyun He
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), The Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing 100083, China
| |
Collapse
|
20
|
Song B, He J, Pan X, Kong L, Xiao C, Keerqin C, Song Z. Dietary Macleaya cordata extract supplementation improves the growth performance and gut health of broiler chickens with necrotic enteritis. J Anim Sci Biotechnol 2023; 14:113. [PMID: 37674220 PMCID: PMC10483844 DOI: 10.1186/s40104-023-00916-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/06/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND The poultry industry needs effective antibiotic alternatives to control outbreaks of necrotic enteritis (NE) caused by Clostridium perfringens. METHODS The aim of this study was to investigate the effects of dietary supplementation with Macleaya cordata extract (MCE) on the immune function and gut microbiota of broilers with NE. A total of 288 1-day-old broiler chicks were randomly assigned to a 2 × 2 factorial arrangement with two concentrations of dietary MCE supplementation (0 or 350 mg/kg of diet) and two disease challenge statuses (control or NE). RESULTS The results revealed that NE significantly increased the feed conversion rate (FCR), mortality, intestinal lesion score, the levels of IL-1β, IL-17 and IFN-γ/IL-4 in serum and IL-17/IL-10 in the jejunal mucosa, mRNA levels of TLR2, IFN-γ and pIgR in the jejunum, and Clostridium perfringens concentrations in the cecum. NE significantly decreased the body weight (BW), body weight gain (BWG), jejunal villus height, V/C, mRNA level of AMPK-α1 in jejunum, IL-4 level in the jejunal mucosa and lactic acid bacteria abundance in the cecum. MCE significantly increased BW, BWG, jejunal villus height, V/C, mRNA levels of occludin, ZO-1 and AMPK-α1 in the jejunum, the levels of IgA and IgG in serum and IL-10 in the jejunal mucosa and mRNA levels of NF-κB, IL-10 and MHC-II in the jejunum. Additionally, MCE significantly decreased the FCR, mortality, intestinal lesion score, jejunal crypt depth, the levels of IFN-γ and IL-17 in serum and IL-17/IL-10 in the jejunal mucosa, Clostridium perfringens concentrations in the cecum, and mRNA levels of IL-17/IL-10 in the jejunum. Moreover, NE significantly increased the abundance of bacteria that are associated with inflammation, obesity and depression (Alistipes, Barnesiella, Intestinimonas, RF39 and UCG-005) and significantly decreased the abundance of short-chain fatty acid (SCFA)-producing bacteria (Anaerotruncus, Butyricicoccus and Bacteroides) in the cecum. MCE significantly increased the abundance of SCFA-producing bacteria (Streptococcus, Ruminococcus_torques_group and Lachnospiraceae_NK4A136_group) and significantly reduced the abundance of bacteria that are associated with inflammation and obesity (Alistipes, Barnesiella and UCG-010) in the cecum. In the cecum of broilers with NE, the relative abundance of Barnesiella and Alistipes was higher and that of Lachnoclostridium and Shuttleworthia was lower. Interestingly, these trends were reversed by the addition of MCE to the diet. Spearman correlation analysis showed that Barnesiella and Alistipes were associated with enhanced intestinal inflammation and inhibited growth performance, whereas Lachnoclostridium and Shuttleworthia were associated with anti-inflammatory effects. CONCLUSIONS MCE ameliorated the loss of growth performance in broiler chickens with NE, probably by regulating the intestinal barrier, immune function, and gut microbiota.
Collapse
Affiliation(s)
- Bochen Song
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources, College of Animal Science and Technology, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Jie He
- Center for Mitochondria and Healthy Ageing, College of Life Sciences, Yantai University, Yantai, 264005, Shandong, China
| | - Xue Pan
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources, College of Animal Science and Technology, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Linglian Kong
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources, College of Animal Science and Technology, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Chuanpi Xiao
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources, College of Animal Science and Technology, Shandong Agricultural University, Taian, 271018, Shandong, China
- Precision Livestock and Nutrition Unit, University of Liège, Gembloux Agro-Bio TechGembloux, Belgium
| | - Chake Keerqin
- Phytobiotics (Jiangsu) Biotech Co., Ltd., Jintan, 213200, China
| | - Zhigang Song
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources, College of Animal Science and Technology, Shandong Agricultural University, Taian, 271018, Shandong, China.
| |
Collapse
|
21
|
Ge C, Luo X, Wu L, Lv Y, Hu Z, Yu D, Liu B. Plant essential oils improve growth performance by increasing antioxidative capacity, enhancing intestinal barrier function, and modulating gut microbiota in Muscovy ducks. Poult Sci 2023; 102:102813. [PMID: 37343349 PMCID: PMC10404791 DOI: 10.1016/j.psj.2023.102813] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/23/2023] Open
Abstract
Essential oils (EO) are known for their antioxidant, anti-inflammatory, antimicrobial, and growth-promoting properties. However, data rgarding their impact on the intestinal health and gut microbiota of ducks remain limited. Thus, this study aimed to investigate the effects of plant EO on the growth performance, intestinal health, and gut microbiota of Muscovy ducks. A total of 360 healthy male Muscovy ducks aged 1 d were randomly divided into 4 groups with 6 replicates and 15 ducks per replicate. Ducks were fed basal diets supplemented with 0, 100, 200, or 300 mg/kg EO. The results showed that 200 mg/kg EO supplementation significantly (P < 0.05) increased the final body weight and average daily gain, while significantly (P < 0.05) decreased the feed conversion ratio during the 56-d experimental period. Furthermore, dietary 200 mg/kg EO significantly (P < 0.05) enhanced antioxidant capacity and immune function and improved the barrier function of the intestine. Additionally, 16S rDNA sequencing analysis results showed that 200 mg/kg EO favorably modulated the cecal microbial diversities and composition evidenced by the increased (P < 0.05) the abundances of short-chain fatty acid-producing bacteria (e.g., Subdoligranulum and Shuttleworthia) and decreased (P < 0.05) abundances of potential enteric pathogenic bacteria (e.g., Alistipes, Eisenbergiella, and Olsenella). The relative abundance of beneficial bacteria was positively correlated with antioxidant, immune, and barrier function biomarkers. Overall, these findings revealed that dietary supplementation with 200 mg/kg EO had several potentially beneficial effects on the growth performance of Muscovy ducks by improving antioxidant capacity, enhancing the intestinal barrier function and favorably modulating gut microbiota.
Collapse
Affiliation(s)
- Chaoyue Ge
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Hainan Institute, Zhejiang University, Yazhou Bay Sci-Tech City, Sanya 572000, China
| | - Xinyu Luo
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lianchi Wu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yujie Lv
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Hainan Institute, Zhejiang University, Yazhou Bay Sci-Tech City, Sanya 572000, China
| | - Zhaoying Hu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Dongyou Yu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Hainan Institute, Zhejiang University, Yazhou Bay Sci-Tech City, Sanya 572000, China.
| | - Bing Liu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
22
|
Shen Y, Song M, Wu S, Zhao H, Zhang Y. Plant-Based Dietary Fibers and Polysaccharides as Modulators of Gut Microbiota in Intestinal and Lung Inflammation: Current State and Challenges. Nutrients 2023; 15:3321. [PMID: 37571257 PMCID: PMC10420973 DOI: 10.3390/nu15153321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/20/2023] [Accepted: 07/23/2023] [Indexed: 08/13/2023] Open
Abstract
Recent research has underscored the significant role of gut microbiota in managing various diseases, including intestinal and lung inflammation. It is now well established that diet plays a crucial role in shaping the composition of the microbiota, leading to changes in metabolite production. Consequently, dietary interventions have emerged as promising preventive and therapeutic approaches for managing these diseases. Plant-based dietary fibers, particularly polysaccharides and oligosaccharides, have attracted attention as potential therapeutic agents for modulating gut microbiota and alleviating intestinal and lung inflammation. This comprehensive review aims to provide an in-depth overview of the current state of research in this field, emphasizing the challenges and limitations associated with the use of plant-based dietary fibers and polysaccharides in managing intestinal and lung inflammation. By shedding light on existing issues and limitations, this review seeks to stimulate further research and development in this promising area of therapeutic intervention.
Collapse
Affiliation(s)
- Yu Shen
- Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, College of Pharmacy, Jiamusi University, Jiamusi 154007, China; (Y.S.)
| | - Mingming Song
- Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, College of Pharmacy, Jiamusi University, Jiamusi 154007, China; (Y.S.)
| | - Shihao Wu
- Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, College of Pharmacy, Jiamusi University, Jiamusi 154007, China; (Y.S.)
| | - Hongbo Zhao
- College of Rehabilitation Medicine, Jiamusi University, Jiamusi 154007, China
| | - Yu Zhang
- Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, College of Pharmacy, Jiamusi University, Jiamusi 154007, China; (Y.S.)
| |
Collapse
|