1
|
Huntošová V, Benziane A, Zauška L, Ambro L, Olejárová S, Joniová J, Hlávková N, Wagnières G, Zelenková G, Diko P, Bednarčík J, Zákány F, Kovács T, Sedlák E, Vámosi G, Almáši M. The potential of metal-organic framework MIL-101(Al)-NH 2 in the forefront of antiviral protection of cells via interaction with SARS-CoV-2 spike RBD protein and their antibacterial action mediated with hypericin and photodynamic treatment. J Colloid Interface Sci 2025; 691:137454. [PMID: 40168900 DOI: 10.1016/j.jcis.2025.137454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/23/2025] [Accepted: 03/26/2025] [Indexed: 04/03/2025]
Abstract
The global pandemic of SARS-CoV-2 has highlighted the necessity for innovative therapeutic solutions. This research presents a new formulation utilising the metal-organic framework MIL-101(Al)-NH2, which is loaded with hypericin, aimed at addressing viral and bacterial challenges. Hypericin, recognised for its antiviral and antibacterial efficacy, was encapsulated to mitigate its hydrophobicity, improve bioavailability, and utilise its photodynamic characteristics. The MIL-101(Al)-NH2 Hyp complex was synthesised, characterised, and evaluated for its biological applications for the first time. The main objective of this study was to demonstrate the multimodal potential of such a construct, in particular the effect on SARS-CoV-2 protein levels and its interaction with cells. Both in vitro and in vivo experiments demonstrated the effective transport of hypericin to cells that express ACE2 receptors, thereby mimicking mechanisms of viral entry. In addition, hypericin found in the mitochondria showed selective phototoxicity when activated by light, leading to a decrease in the metabolic activity of glioblastoma cells. Importantly, the complex also showed antibacterial efficacy by selectively targeting Gram-positive Staphylococcus epidermidis compared to Gram-negative Escherichia coli under photodynamic therapy (PDT) conditions. To our knowledge, this study was the first to demonstrate the interaction between hypericin, MIL-101(Al)-NH2 and the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein, which inhibits cellular uptake and colocalises with ACE2-expressing cells. Therefore, the dual functionality of the complex - targeting the viral RBD and the antibacterial effect via PDT - emphasises its potential to mitigate complications of viral infections, such as secondary bacterial infections. In summary, these results suggest that MIL-101(Al)-NH2 Hyp is a promising multifunctional therapeutic agent for antiviral and antibacterial applications, potentially contributing to the improvement of COVID-19 treatment protocols and the treatment of co-infections.
Collapse
Affiliation(s)
- Veronika Huntošová
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, P.J. Šafárik University in Košice, Jesenná 5, SK-041 54 Košice, Slovak Republic; Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, SK-840 05 Bratislava, Slovak Republic.
| | - Anass Benziane
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Doctoral School of Molecular Medicine, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Luboš Zauška
- Department of Inorganic Chemistry, Faculty of Science, P. J. Šafárik University in Košice, Moyzesova 11, SK-041 54 Košice, Slovak Republic; BovaChem s.r.o, Laboratory-1, Kirejevská 22, SK-979 01 Rimavská Sobota, Slovak Republic
| | - Luboš Ambro
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, P.J. Šafárik University in Košice, Jesenná 5, SK-041 54 Košice, Slovak Republic
| | - Soňa Olejárová
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, P.J. Šafárik University in Košice, Jesenná 5, SK-041 54 Košice, Slovak Republic; Department of Biophysics, Faculty of Science, P. J. Šafárik University in Košice, Jesenná 5, SK-041 54 Košice, Slovak Republic
| | - Jaroslava Joniová
- Laboratory for Functional and Metabolic Imaging, Institute of Physics, Swiss Federal Institute of Technology in Lausanne (EPFL), Station 3, Building PH, CH-1015 Lausanne, Switzerland
| | - Nina Hlávková
- Department of Inorganic Chemistry, Faculty of Science, P. J. Šafárik University in Košice, Moyzesova 11, SK-041 54 Košice, Slovak Republic
| | - Georges Wagnières
- Laboratory for Functional and Metabolic Imaging, Institute of Physics, Swiss Federal Institute of Technology in Lausanne (EPFL), Station 3, Building PH, CH-1015 Lausanne, Switzerland
| | - Gabriela Zelenková
- Department of Chemistry, Faculty of Science, University of Ostrava, 30. Dubna 22, CZ-702 00 Ostrava, Czech Republic
| | - Pavel Diko
- Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, SK-040 01 Košice, Slovak Republic
| | - Jozef Bednarčík
- Depart of Condensed Matter Physics, Faculty of Science, P. J. Šafárik University in Košice, Jesenná 5, SK-041 54 Košice, Slovak Republic
| | - Florina Zákány
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Doctoral School of Molecular Medicine, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Tamás Kovács
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Doctoral School of Molecular Medicine, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Erik Sedlák
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, P.J. Šafárik University in Košice, Jesenná 5, SK-041 54 Košice, Slovak Republic; Department of Biochemistry, Faculty of Science, P. J. Šafárik University in Košice, Moyzesova 11, SK-041 54 Košice, Slovak Republic
| | - György Vámosi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Doctoral School of Molecular Medicine, Egyetem tér 1, H-4032 Debrecen, Hungary.
| | - Miroslav Almáši
- Department of Inorganic Chemistry, Faculty of Science, P. J. Šafárik University in Košice, Moyzesova 11, SK-041 54 Košice, Slovak Republic.
| |
Collapse
|
2
|
Cao C, Wang W, Zhu S, Huang S, Fan J, Li L, Pang X, Liu L. Robust Acid-Responsive AILE Luminescence Effect Nanoparticle for Drug Release Monitoring and Induction of Apoptosis in Cancer Cells. ACS APPLIED BIO MATERIALS 2025; 8:3135-3143. [PMID: 40067751 DOI: 10.1021/acsabm.4c02003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
Through the PFOEP-SO3(-) + multidrug molecules constructed nanoparticle (NP) experiments and validated by molecular simulation docking experiments, we propose a molecular interaction principle for inducing aggregation-induced locally excited emission (AILE) luminescence from fluorenone (FO)-based conjugated polymers (CPs). Based on this molecular interaction mechanism, we constructed a NP built by π-π stacking. The NPs demonstrate facile synthesis, robust stability, and high drug-loading efficiency, enabling tumor-specific drug release in acidic lysosomal environments (pH 3.8-4.7) to minimize off-target toxicity. Concurrently, the PFOEPA NPs exhibit pH-dependent fluorescence enhancement: drug incorporation induces structural reorganization into a "sandwich" configuration, amplifying fluorescence with a blue shift under neutral/alkaline conditions, while acidic-triggered protonation collapse disrupts NPs. Moreover, it can be used as an indicator for monitoring drug release, as it is accompanied by changes in fluorescence during the drug release process. This NP possesses multiple functions and is expected to serve as an effective pH-responsive drug delivery system.
Collapse
Affiliation(s)
- Chang Cao
- School of Stomatology, Southern Medical University, Guangzhou 510515, China
| | - Wen Wang
- School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Shuo Zhu
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen 518038, China
| | - Shouhui Huang
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen 518038, China
| | - JiYe Fan
- Hebei Chemical & Pharmaceutical College, No. 88, Fangxing Road, Shijiazhuang City, Hebei Province 050026, China
| | - Lili Li
- General Clinical Research Center, Anhui Wanbei Coal-Electricity Group General Hospital, Suzhou 234000, China
| | - Xinlong Pang
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen 518038, China
| | - Lisi Liu
- Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518000, China
| |
Collapse
|
3
|
Adamczyk O, Deptuch A, Tarnawski TR, Zieliński PM, Drzewicz A, Juszyńska-Gałązka E. Electrospun Fiber Mats with Metronidazole: Design, Evaluation, and Release Kinetics. J Phys Chem B 2025. [PMID: 40178488 DOI: 10.1021/acs.jpcb.5c00873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Novel drug delivery systems (DDSs) strive to eliminate or at least reduce the side effects and limitations associated with conventional medical products. Among the many potential candidates for DDSs, there are one-dimensional micro- and nanostructured materials such as electrospun fibers. In this study, two different polymers, i.e., amphiphilic block copolymer (poly(2-vinylpyridine-co-styrene)) and hydrophobic polymer (polycaprolactone), were utilized as base materials for fibers. Through the electrospinning and coaxial electrospinning techniques, fibers with diverse architectures were obtained, homogeneous or core/shell structures. An antibacterial drug (metronidazole) in varying concentrations was incorporated into the electrospun fibers. The potential application of the obtained electrospun fiber mats is as a dressing for wounds or the treatment of periodontitis. The average diameter of fibers fell within the range of 700-1300 nm, with a drug content of 7-27 wt %. The amorphization or decrease in crystallinity of metronidazole present in the fibers was achieved during the electrospinning process. In vitro drug release tests showed that burst effects can be successfully suppressed, and more sustained release can be accomplished for some formulations. Therefore, electrospun polymer fiber mats are promising candidates for the local delivery of active substances.
Collapse
Affiliation(s)
- Olga Adamczyk
- Institute of Nuclear Physics, Polish Academy of Sciences, Krakow PL-31342, Poland
| | - Aleksandra Deptuch
- Institute of Nuclear Physics, Polish Academy of Sciences, Krakow PL-31342, Poland
| | - Tomasz R Tarnawski
- Institute of Nuclear Physics, Polish Academy of Sciences, Krakow PL-31342, Poland
| | - Piotr M Zieliński
- Institute of Nuclear Physics, Polish Academy of Sciences, Krakow PL-31342, Poland
| | - Anna Drzewicz
- Institute of Nuclear Physics, Polish Academy of Sciences, Krakow PL-31342, Poland
| | - Ewa Juszyńska-Gałązka
- Institute of Nuclear Physics, Polish Academy of Sciences, Krakow PL-31342, Poland
- Research Center for Thermal and Entropic Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
4
|
Chen M, Liu X, Kong L, Yu Y, Zang J, Li X, Guo R, Zhang L, Liu Y. Efficacy assessment of glycyrrhetinic acid-modified liposomes loaded with doxorubicin hydrochloride and cucurbitine B for synergistic treatment of hepatocellular carcinoma. Int J Pharm 2025; 673:125360. [PMID: 39954971 DOI: 10.1016/j.ijpharm.2025.125360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/22/2025] [Accepted: 02/12/2025] [Indexed: 02/17/2025]
Abstract
OBJECTIVE Hepatocellular carcinoma (HCC) is characterized by a high incidence rate, aggressive invasion and metastasis, and a significant postoperative recurrence rate. Targeted therapy plays a crucial role in the precise treatment of HCC. Studies have demonstrated that Glycyrrhetinic acid (GA) specific receptors are overexpressed on the surface of HCC cells. Doxorubicin hydrochloride (Dox), a widely used chemotherapy agent for anti-tumor treatment, but is associated with substantial toxic side effects. Cucurbitacin B (CuB) also demonstrates promising anti-tumor activity, but its poor water solubility and low bioavailability limit its clinical application. The combination of Dox and CuB can exert a synergistic effect, thereby enhancing the overall anti-tumor efficacy. Therefore, we have developed GA-modified liposomes loaded with Dox and CuB (GA-Dox/CuB-Lips) to achieve synergistic therapy for HCC. METHOD In this study, GA-Dox/CuB-Lips were prepared using the thin film dispersion method and ammonium sulfate gradient method. In vitro, we evaluated the cellular uptake and cytotoxicity of the liposomes, as well as their anti-tumor effects in inhibiting tumor proliferation, promoting tumor apoptosis, and suppressing invasion and metastasis. In vivo, the targeting properties of GA-Dox/CuB-Lips were assessed through in vivo imaging. A tumor growth curve was generated by establishing a heterotopic nude mouse model. Additionally, an in-situ HCC model was established and the anti-tumor effects of liposomes were evaluated using HE staining, histological analysis and immunofluorescence staining. RESULTS We successfully prepared GA-Dox/CuB-Lips with a smooth, spherical morphology and uniform distribution. Both drugs exhibited high encapsulation efficiency, significantly enhancing the solubility of CuB. In vitro, GA-Dox/CuB-Lips demonstrated excellent targeting properties and exerted cytotoxic effects on Hepa1-6 cells, effectively inhibiting tumor cell proliferation, invasion, and metastasis while promoting tumor cell apoptosis. In vivo, GA-Dox/CuB-Lips selectively targeted tumor sites, disrupted tumor structures, inhibited tumor growth and proliferation, and promoted apoptosis. CONCLUSION GA-Dox/CuB-Lips exhibited excellent anti-HCC activity and represent a promising therapeutic approach for the treatment of HCC.
Collapse
Affiliation(s)
- Muhan Chen
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China; Shenyang Key Laboratory of Targeted Delivery of Chinese medicine, Shenyang 110000, China
| | - Xinze Liu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China; Shenyang Key Laboratory of Targeted Delivery of Chinese medicine, Shenyang 110000, China
| | - Liang Kong
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China; Shenyang Key Laboratory of Targeted Delivery of Chinese medicine, Shenyang 110000, China
| | - Yang Yu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China; Shenyang Key Laboratory of Targeted Delivery of Chinese medicine, Shenyang 110000, China; Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Shenyang 110000, China
| | - Juan Zang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China; Shenyang Key Laboratory of Targeted Delivery of Chinese medicine, Shenyang 110000, China
| | - Xuetao Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China; Shenyang Key Laboratory of Targeted Delivery of Chinese medicine, Shenyang 110000, China
| | - Ruibo Guo
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China; Shenyang Key Laboratory of Targeted Delivery of Chinese medicine, Shenyang 110000, China
| | - Lu Zhang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China; Shenyang Key Laboratory of Targeted Delivery of Chinese medicine, Shenyang 110000, China.
| | - Yang Liu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China; Shenyang Key Laboratory of Targeted Delivery of Chinese medicine, Shenyang 110000, China.
| |
Collapse
|
5
|
Wu Y, Tang M, Barsoum ML, Chen Z, Huang F. Functional crystalline porous framework materials based on supramolecular macrocycles. Chem Soc Rev 2025; 54:2906-2947. [PMID: 39931748 DOI: 10.1039/d3cs00939d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2025]
Abstract
Crystalline porous framework materials like metal-organic frameworks (MOFs) and covalent-organic frameworks (COFs) possess periodic extended structures, high porosity, tunability and designability, making them good candidates for sensing, catalysis, gas adsorption, separation, etc. Despite their many advantages, there are still problems affecting their applicability. For example, most of them lack specific recognition sites for guest uptake. Supramolecular macrocycles are typical hosts for guest uptake in solution. Macrocycle-based crystalline porous framework materials, in which macrocycles are incorporated into framework materials, are growing into an emerging area as they combine reticular chemistry and supramolecular chemistry. Organic building blocks which incorporate macrocycles endow the framework materials with guest recognition sites in the solid state through supramolecular interactions. Distinct from solution-state molecular recognition, the complexation in the solid state is ordered and structurally achievable. This allows for determination of the mechanism of molecular recognition through noncovalent interactions while that of the traditional recognition in solution is ambiguous. Furthermore, crystalline porous framework materials in the solid state are well-defined and recyclable, and can realize what is impossible in solution. In this review, we summarize the progress of the incorporation of macrocycles into functional crystalline porous frameworks (i.e., MOFs and COFs) for their solid state applications such as molecular recognition, chiral separation and catalysis. We focus on the design and synthesis of organic building blocks with macrocycles, and then illustrate the applications of framework materials with macrocycles. Finally, we propose the future directions of macrocycle-based framework materials as reliable carriers for specific molecular recognition, as well as guiding the crystalline porous frameworks with their chemistry, applications and commercialization.
Collapse
Affiliation(s)
- Yitao Wu
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, P. R. China
| | - Meiqi Tang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Michael L Barsoum
- Department of Materials Science and Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA
| | - Zhijie Chen
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, P. R. China
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, P. R. China
| |
Collapse
|
6
|
Yu Z, Lepoitevin M, Serre C. Iron-MOFs for Biomedical Applications. Adv Healthc Mater 2025; 14:e2402630. [PMID: 39388416 PMCID: PMC11937880 DOI: 10.1002/adhm.202402630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/29/2024] [Indexed: 10/12/2024]
Abstract
Over the past two decades, iron-based metal-organic frameworks (Fe-MOFs) have attracted significant research interest in biomedicine due to their low toxicity, tunable degradability, substantial drug loading capacity, versatile structures, and multimodal functionalities. Despite their great potential, the transition of Fe-MOFs-based composites from laboratory research to clinical products remains challenging. This review evaluates the key properties that distinguish Fe-MOFs from other MOFs and highlights recent advances in synthesis routes, surface engineering, and shaping technologies. In particular, it focuses on their applications in biosensing, antimicrobial, and anticancer therapies. In addition, the review emphasizes the need to develop scalable, environmentally friendly, and cost-effective production methods for additional Fe-MOFs to meet the specific requirements of various biomedical applications. Despite the ability of Fe-MOFs-based composites to combine therapies, significant hurdles still remain, including the need for a deeper understanding of their therapeutic mechanisms and potential risks of resistance and overdose. Systematically addressing these challenges could significantly enhance the prospects of Fe-MOFs in biomedicine and potentially facilitate their integration into mainstream clinical practice.
Collapse
Affiliation(s)
- Zhihao Yu
- Institut des Matériaux Poreux de ParisENSESPCI ParisCNRSPSL UniversityParisFrance
| | - Mathilde Lepoitevin
- Institut des Matériaux Poreux de ParisENSESPCI ParisCNRSPSL UniversityParisFrance
| | - Christian Serre
- Institut des Matériaux Poreux de ParisENSESPCI ParisCNRSPSL UniversityParisFrance
| |
Collapse
|
7
|
Feng Y, Chen H, Chen S, Zhang K, Yun D, Liu D, Zeng J, Yang C, Xie Q. Disulfiram-Loaded PLGA nanoparticles modified with a Phenyl borate chitosan Conjugate enhance hepatic carcinoma treatment. Int J Pharm 2025; 671:125293. [PMID: 39880140 DOI: 10.1016/j.ijpharm.2025.125293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/14/2025] [Accepted: 01/26/2025] [Indexed: 01/31/2025]
Abstract
Disulfiram (DSF), which has been traditionally used to treat alcoholism, has been shown to inhibit tumor growth, indicating its potential as an anticancer agent. However, its development and application are hindered by its poor water solubility, instability in physiological environments, and low bioavailability. In this study, phenylboronic acid-chitosan (PBA-CS) grafts were synthesized using the carbodiimide method. PBA-CS-modified DSF PLGA nanoparticles (DSF@PBA-CS-PLGA NPs) were constructed by coating the nanoparticle surfaces with PBA-CS to improve the stability of DSF in physiological environments and enhance its anti-tumor effects. The structures of PBA-CS and the DSF@PBA-CS-PLGA NPs were confirmed using FTIR UVs, DLS, ELS, TEM, 1HNMR, DSC. Our in vitro degradation experiments showed that PBA-CS-PLGA NPs significantly improved the stability of DSF in physiological environments. Cell experiments showed that PBA-CS-PLGA NPs improved drug uptake and strongly inhibited HepG2 cell migration. A mouse tumor model was established using Dutch H22 cells. DSF@PBA-CS-PLGA NPs showed better tumor-targeting ability than DSF@PLGA NPs, with a tumor inhibition rate of more than 60%, and they induced apoptosis and inhibited neovascularization in mouse tumor tissues. Both the in vitro and in vivo experiments indicated that the DSF@PBA-CS-PLGA NPs overcame the limitations of DSF, improving the dissolution rate and stability of the drug, ultimately offering low toxicity, sustained release, and targeted delivery. These findings demonstrated the potential of DSF@PBA-CS-PLGA NPs for hepatic carcinoma therapy.
Collapse
Affiliation(s)
- Yanyi Feng
- Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006 China
| | - Hongyu Chen
- Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006 China
| | - Simiao Chen
- Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006 China
| | - Kaijun Zhang
- Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006 China
| | - Dan Yun
- Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006 China
| | - Dengyuan Liu
- Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006 China
| | - Jinxin Zeng
- Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006 China
| | - Chutong Yang
- Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006 China
| | - Qingchun Xie
- Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006 China; Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, Guangdong Pharmaceutical University, Guangzhou 510006 China; Guangdong Provincial Engineering Center of Topical Precision Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006 China.
| |
Collapse
|
8
|
Zhao N, Shi Y, Liu P, Lv C. pH-responsive carbohydrate polymer-based nanoparticles in cancer therapy. Int J Biol Macromol 2025:141236. [PMID: 39978518 DOI: 10.1016/j.ijbiomac.2025.141236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/01/2025] [Accepted: 02/16/2025] [Indexed: 02/22/2025]
Abstract
Using the specific features of the tumor microenvironment (TME) for the development and design of novel nanomaterials can improve the capacity in tumor suppression. One of the prominent features of the TME is the mild acidic pH. Therefore, the development of pH-responsive nanoparticles can lead to the release of cargo and therapeutics at the tumor site, improving the selectivity and specificity. The materials used for the development of nanoparticles should possess a number of unique features including biocompatibility and anti-cancer activity. Hence, a special attention has been directed towards the use of carbohydrate polymers in the development of nanoparticles. The carbohydrate polymers can develop smart nanoparticles respond to the pH in TME to increase targeting ability and provide controlled drug release. Such approach is also beneficial in decreasing the side effects of systemic chemotherapy. The pH-responsive nanoparticles developed from carbohydrate polymers can be also used for the combination chemotherapy/immunotherapy/phototherapy of cancer. Furthermore, these nanoparticles demonstrate theranostic application capable of cancer diagnosis and therapy. Further attention to the large-scale production, biocompatibility and long-term safety of carbohydrate polymer-based pH-responsive nanoparticles should be directed to improve the clinical translation in the treatment of cancer patients.
Collapse
Affiliation(s)
- Nanxi Zhao
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, China
| | - Yang Shi
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Pai Liu
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Chengzhou Lv
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
9
|
Shang J, Chen Y, Wang F, Yang J, Li Y, Yang L, Liu X, Zhong Z, Yue C, Zhou M. A Multifunctional MIL-101-NH 2(Fe) Nanoplatform for Synergistic Melanoma Therapy. Int J Nanomedicine 2025; 20:969-988. [PMID: 39867313 PMCID: PMC11766718 DOI: 10.2147/ijn.s502089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/13/2025] [Indexed: 01/28/2025] Open
Abstract
Background Melanoma is an aggressive form of skin cancer, and single-modality treatments often fail to prevent tumor recurrence and metastasis. Combination therapy has emerged as an effective approach to improve treatment outcomes. Methods In this study, we developed a multifunctional nanoplatform, MIL@DOX@ICG, utilizing MIL-101-NH2(Fe) as a carrier to co-deliver the chemotherapeutic agent doxorubicin (DOX) and the photosensitizer indocyanine green (ICG). MIL-101-NH2(Fe) was synthesized via a hydrothermal method. Drug release was evaluated under different pH conditions, and the photothermal effect was tested under near-infrared (NIR) laser irradiation. Hydroxyl radical and reactive oxygen species generation capacities were quantified. Cellular studies using B16F10 cells assessed cytotoxicity, cellular uptake, migration inhibition, and colony formation suppression. In vivo experiments in melanoma-bearing mice evaluated antitumor efficacy and systemic safety through tumor growth inhibition, histological analyses, and toxicity assessments. Results MIL@DOX@ICG exhibited a uniform octahedral structure with a particle size of approximately 139 nm and high drug loading efficiencies for DOX (33.70%) and ICG (30.59%). The nanoplatform demonstrated pH-responsive drug release and potent photothermal effects. The generation of hydroxyl radicals via the Fenton reaction and reactive oxygen species production under NIR laser irradiation by MIL@DOX@ICG were confirmed. In vitro assessments revealed significant cytotoxicity of MIL@DOX@ICG against B16F10 cells under NIR laser irradiation, with improved efficacy in inhibiting cell proliferation and migration. In vivo studies confirmed the superior antitumor efficacy of MIL@DOX@ICG + NIR treatment, synergistically harnessing chemotherapy, photothermal therapy, photodynamic therapy, and chemodynamic therapy effects while maintaining excellent biocompatibility. Conclusion Our findings underscore the potential of MIL-101-NH2(Fe) nanoparticles as a versatile and effective platform for synergistic melanoma therapy, offering a promising strategy for overcoming the limitations of conventional treatment modalities.
Collapse
Affiliation(s)
- Jinlu Shang
- Department of Pharmacy, West China Hospital Sichuan University Jintang Hospital, Chengdu, Sichuan, 610400, People’s Republic of China
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
| | - Yongjun Chen
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
| | - Fangliang Wang
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, College of Pharmacy Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Jing Yang
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
| | - Yi Li
- Department of Nuclear Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
| | - Liuxuan Yang
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
| | - Xiuqiong Liu
- Department of Pharmacy, West China Hospital Sichuan University Jintang Hospital, Chengdu, Sichuan, 610400, People’s Republic of China
| | - Zhirong Zhong
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
| | - Chaochi Yue
- Department of Traditional Chinese Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
| | - Meiling Zhou
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
| |
Collapse
|
10
|
Beiranvand M, Dehghan G. An analytical review of the therapeutic application of recent trends in MIL-based delivery systems in cancer therapy. Mikrochim Acta 2025; 192:89. [PMID: 39821354 DOI: 10.1007/s00604-024-06944-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 12/30/2024] [Indexed: 01/19/2025]
Abstract
MILs (Materials Institute Lavoisier), as nanocarriers based on metal-organic frameworks (MOFs), are one of the most advanced drug delivery vehicles that are now a major part of cancer treatment research. This review article highlights the key features and components of MIL nanocarriers for the development and improvement of these nanocarriers for drug delivery. Surface coatings are one of the key components of MIL nanocarriers, which play the role of stabilizing the nanocarrier, pH-dependent drug release, increasing the half-life of the drug, and targeting the carrier. MIL nanocarriers have been synthesized mainly by thermal and hydrothermal methods due to their single-step nature and the ability to produce individual crystals with tunable sizes. According to the data available in the literature, MIL-53 and MIL-101 are the best MILs for drug delivery. These MILs have a high ability to release drugs under acidic conditions, indicating their high efficiency compared to other MILs. In addition to drugs, these nanocarriers can also carry fluorescent, photothermal, and photodynamic agents. These agents allow the MIL nanocarriers to benefit from the therapeutic potential of photothermal and photodynamic agents in addition to the therapeutic capacity of the drug. Furthermore, the fluorescent active ingredient gives these nanocarriers a further tracking capability in addition to the inherent tracking capability of MRI. Therefore, MIL nanocarriers as theranostic carriers have the potential to revolutionize both drug delivery and imaging.
Collapse
Affiliation(s)
- Mohammad Beiranvand
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Gholamreza Dehghan
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| |
Collapse
|
11
|
Guo Z, Li H, Ma J, Xu G, Jia Q. pH-sensitive metal-organic framework carrier decorated with chitosan for controlled drug release. Int J Pharm 2024; 667:124933. [PMID: 39528142 DOI: 10.1016/j.ijpharm.2024.124933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Satisfactory chemotherapeutic efficiency depends on improving the insufficient selectivity of chemotherapeutic drugs and decreasing damages to healthy tissues/cells, hence, the reasonable design and construction of drug carriers are of great significance in tumor treatment. Herein, the pH-sensitive MOF carrier was developed via the decoration of 4-formylphenylboronic acid (4-FPBA) for controlled 5'-deoxy-5-fluorocytidine (DFCR) release with selectivity. Besides, chitosan (CS) was introduced as the "gatekeeper" for the prevention of drug leakage. In vitro tests prove the good biocompatibility of the MOF carrier and desired tumor cells killing efficiency. Notably, the designed drug carrier decorated with CS in our work demonstrates a prospective candidate in tumor microenvironment-triggered DFCR release in tumor therapy.
Collapse
Affiliation(s)
- Zimeng Guo
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Hongbin Li
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Jiutong Ma
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Guoxing Xu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.
| | - Qiong Jia
- College of Chemistry, Jilin University, Changchun 130012, China.
| |
Collapse
|
12
|
Taheri-Ledari R, Ghafori-Gorab M, Ramezanpour S, Mahdavi M, Safavi M, Akbarzadeh AR, Maleki A. MIL-101 magnetic nanocarrier for solid-phase delivery of doxorubicin to breast and lung cancer cells. Int J Biol Macromol 2024; 283:137615. [PMID: 39551314 DOI: 10.1016/j.ijbiomac.2024.137615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 11/04/2024] [Accepted: 11/11/2024] [Indexed: 11/19/2024]
Abstract
An efficient strategy for passive delivery of doxorubicin (DOX) to the breast (MDA-MB-231) and lung (A-549) cancer cells is presented and compared with MCF-10A normal breast cells. Two versions of a peptide structure (linear and cyclic) have been designed and assessed. The molecular dynamic simulations in Material Studio2017 exhibited a higher adsorption capacity for L2 (cyclic version) compared with the adsorption capacity of L1 (linear version) on the PG surface by electrostatic interactions between guanidine of arginine and -OH of PG. The prepared final product based on iron oxide nanoparticles and MIL-101(Fe) (formulated as DOX@Fe3O4/MIL-101-(C,L)C[RW]3) is characterized and the drug content has been estimated. The release profiles revealed an ultra-fast stimulus-sensitive model in acidic media, which corroborates a pH-triggered release. The in vitro assessments disclosed that aggregation of nanocargo around the cancer cells and resulted toxicity are more than the neat DOX in the same dosage as DOX@Fe3O4/MIL-101-CC[RW]3. The obtained distinguished features lie in ability to utilize a biocompatible nanocargo structure to release an appropriate dose of DOX in a controlled manner in the cancer cell environment. Moreover, the functionalization of MIL-101 using cyclic and linear peptides and their comparison is one of the important features of this project.
Collapse
Affiliation(s)
- Reza Taheri-Ledari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Mostafa Ghafori-Gorab
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Sorour Ramezanpour
- Department of Chemistry, K. N. Toosi University of Technology, P.O. Box 15875-4416, Tehran, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maliheh Safavi
- Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), P. O. Box 3353-5111, Tehran, Iran.
| | - Ali Reza Akbarzadeh
- Department of Chemistry, Iran University of Science and Technology, PO Box: 16846-13114, Tehran, Iran.
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| |
Collapse
|
13
|
Soman S, Kulkarni S, John J, Vineeth P, Ahmad SF, George SD, Nandakumar K, Mutalik S. Transferrin-conjugated UiO-66 metal organic frameworks loaded with doxorubicin and indocyanine green: A multimodal nanoplatform for chemo-photothermal-photodynamic approach in cancer management. Int J Pharm 2024; 665:124665. [PMID: 39236772 DOI: 10.1016/j.ijpharm.2024.124665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/21/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
Stimuli-responsive nanoplatforms have been popular in controlled drug delivery research because of their ability to differentiate the tumor microenvironment from the normal tissue environment in a spatiotemporally controllable manner. The synergistic therapeutic approach of combining cancer chemotherapy with photothermal tumor ablation has improved the therapeutic efficacy of cancer therapeutics. In this study, a UiO-66 metal organic framework (MOF)-based system loaded with doxorubicin (DOX), surface decorated with the photothermal agents indocyanine green (ICG) and polydopamine (PDA), and conjugated with transferrin (TF) was successfully designed to operate as a responsive system to pH changes, featuring photothermal capabilities and target specificity for the purpose of treating breast cancer. The synthesized nanoplatform benefits from its uniform size, excellent DOX encapsulation efficiency (91.66 %), and efficient pH/NIR-mediated controlled release of the drug. In vitro photothermal studies indicate excellent photothermal stability of the formulation even after 6 on-off cycles of NIR irradiation. The in vitro cytotoxicity assessment using an NIR laser (808 nm) revealed that the DOX-loaded functionalized UiO-66 nanocarriers had outstanding inhibitory effects on 4T1 cells because of synergistic chemo-photo therapies, with no substantial toxicity by the carriers. In addition, cellular uptake evaluations revealed that UiO-DOX-ICG@PDA-TF could specifically target 4T1 cells on the basis of receptor-mediated internalization of transferrin receptors. Additionally, in vivo toxicity studies in Wistar rats indicated no signs of significant toxicity. The UiO-based nanoformulations effectively inhibited and destroyed cancer cells under 808 nm laser irradiation because of their minimal toxicity, strong biocompatibility, and outstanding synergistic chemo/photothermal/photodynamic treatment.
Collapse
Affiliation(s)
- Soji Soman
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sanjay Kulkarni
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Jeena John
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - P Vineeth
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sajan D George
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Krishnadas Nandakumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
14
|
Nayak M, Das RP, Kumbhare LB, Singh BG, Iwaoka M, Kunwar A. Diseleno-albumin, a native bio-inspired drug free therapeutic protein induces apoptosis in lung cancer cells through mitochondrial oxidation. Int J Biol Macromol 2024; 279:135141. [PMID: 39208899 DOI: 10.1016/j.ijbiomac.2024.135141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Macromolecular therapeutic is the emerging concept in the fields of drug delivery and drug discovery. The present study reports the design and development of a serum albumin based macromolecular chemotherapeutic by conjugating bovine serum albumin (BSA) with 3,3'-diselenodipropionic acid (DSePA), a pharmacologically active organo-diselenide (R-Se-Se-R). The reaction conditions were optimised to achieve the controlled conjugation of BSA with DSePA without causing any significant alteration in its physico-chemical properties or secondary structure and crosslinking. The chemical characterisation of the reaction product through various spectroscopic techniques viz., FT-IR, Raman, XPS, AAS and MALDI-TOF-MS, established the conjugation of about ∼5 DSePA molecules per BSA molecule. The DSePA conjugated BSA (Se-Se-BSA) showed considerable stability in aqueous and lyophilized forms. The cytotoxicity studies by involving cell lines of cancerous and non-cancerous origins indicated that Se-Se-BSA selectively inhibited the proliferation of cancerous cells. The cellular uptake studies by physically labelling Se-Se-BSA with curcumin and following its intracellular fluorescence confirmed that uptake efficiency of Se-Se-BSA was almost similar to that of native BSA. Finally, studies on the mechanism of action of Se-Se-BSA in the A549 (lung adenocarcinoma) cells revealed that it induced mitochondrial ROS generation followed by mitochondrial dysfunction, activation of caspases and apoptosis. Together, these results demonstrate a bio-inspired approach of exploring diselenide (-Se-Se-) grafted serum albumin as the potential drug free therapeutic for anticancer application.
Collapse
Affiliation(s)
- Minati Nayak
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Ram Pada Das
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Liladhar B Kumbhare
- Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Beena G Singh
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Michio Iwaoka
- Department of Chemistry, Tokai University, 4-1-1 Kitakaname, Hiratsuka-shi, Kanagawa 259-1292, Japan
| | - Amit Kunwar
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.
| |
Collapse
|
15
|
Li Z, Wang X, Wan W, Zhang N, Zhang L, Wang X, Lin K, Yang J, Hao J, Tian F. Rational design of pH-responsive nano-delivery system with improved biocompatibility and targeting ability from cellulose nanocrystals via surface polymerization for intracellular drug delivery. Int J Biol Macromol 2024; 281:136435. [PMID: 39414191 DOI: 10.1016/j.ijbiomac.2024.136435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/25/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024]
Abstract
Cellulose nanocrystals (CNCs), derived from diverse sources and distinguished by their inherent biodegradability, excellent biocompatibility, and facile cellular engulfment due to their rod-like structure, hold great promise as carriers for the development of nano-delivery systems. In this work, highly efficient rod-like CNCs were employed as substrates for grafting glycidyl onto their surfaces through ring-opening polymerization, forming hyperbranched polymers with superior cell uptake properties. Subsequently, 4-vinylbenzeneboronic acid (VB) and poly (ethylene glycol) methyl ether methacrylate (PEGMA) were employed as monomers in the polymerization process to fabricate a pH-responsive targeted nano-delivery system, denoted as CNCs-VB-PEGMA, via single electron transfer reactive radical polymerization (SET-LRP) reaction. The CNCs-VB-PEGMA was successfully prepared and used for the loading of curcumin (Cur) to form a pH-responsive nano-delivery system (CNCs-VB-PEGMA-Cur), and the loading rate of Cur was as high as 70.0 %. Studies showed that this drug delivery system could actively targeting liver cancer cells with the 2D cells model and 3D tumor microsphere model, showing efficient liver cancer cell-killing ability. Collectively, the CNCs-VB-PEGMA drug delivery system has potential applications in liver cancer therapy as an actively targeting and pH-responsive drug delivery system.
Collapse
Affiliation(s)
- Ziqi Li
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China; Department of Pharmacy, Jiangxi Maternal and Child Health Hospital, Jiangxi 330103, PR China
| | - Xi Wang
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China
| | - Weimin Wan
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China
| | - Na Zhang
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China
| | - Limeng Zhang
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China
| | - Xiaoye Wang
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Kui Lin
- Analytical Instrumentation Centre, Tianjin University, Tianjin 300072, PR China
| | - Jian Yang
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China
| | - Jia Hao
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China
| | - Fei Tian
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China.
| |
Collapse
|
16
|
Li Z, Han J, Yan S, Lei J, Meng L, Tian C, Wu Y. Carboxymethyl chitosan-modified folate-targeted carbon nanotubes-baicalin complexes for cancer progression and metastasis. Int J Biol Macromol 2024; 282:136896. [PMID: 39471926 DOI: 10.1016/j.ijbiomac.2024.136896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/12/2024] [Accepted: 10/23/2024] [Indexed: 11/01/2024]
Abstract
Achieving desirable clinical outcomes is difficult given the rising number of cases and mortality of oral squamous cell carcinoma. Consequently, developing an efficient drug delivery system for managing cancer progression and metastasis with relatively low toxicity has proven to be highly promising. Initially, carboxymethyl chitosan was covalently modified and partially substituted with folic acid, and subsequently encapsulated as a shell to deliver carboxylated multiwalled carbon nanotubes and their coupled baicalin to form carboxymethyl chitosan-modified folate-targeted carbon nanotubes-baicalein complexes. The impact on the normal cell line HOK and the oral squamous cell carcinoma cell line CAL27 was assessed using CCK8, live-dead cell assay, colony formation assay, flow cytometry, wound healing assay, and transwell migration and invasion assays. These analyses confirmed that the complexes induced apoptosis in cancer cells and reduced the migration and invasion of CAL27 cells. Additionally, the complexes demonstrated enhanced biosafety, significantly inhibited the growth of xenograft tumors and tissue metastasis, and altered the expression of proteins associated with epithelial-mesenchymal transition. The results mentioned above imply that the complexes may offer novel applications and serve as an effective strategy for preventing cancer spread and metastasis.
Collapse
Affiliation(s)
- Zhou Li
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi Province, China; Department of Stomatology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Jiao Han
- Department of Stomatology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Shaofu Yan
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi Province, China; Shanxi Oral Health Prevention and Control Technology Innovation Center, the Stomatology Department of Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Jianhua Lei
- Department of Stomatology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Lulu Meng
- Department of Stomatology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Chun Tian
- Department of Stomatology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Yunxia Wu
- Department of Stomatology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China.
| |
Collapse
|
17
|
Nasra S, Pramanik S, Oza V, Kansara K, Kumar A. Advancements in wound management: integrating nanotechnology and smart materials for enhanced therapeutic interventions. DISCOVER NANO 2024; 19:159. [PMID: 39354172 PMCID: PMC11445205 DOI: 10.1186/s11671-024-04116-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/23/2024] [Indexed: 10/03/2024]
Abstract
Wound management spans various techniques and materials tailored to address acute and chronic non-healing wounds, with the primary objective of achieving successful wound closure. Chronic wounds pose additional challenges, often necessitating dressings to prepare the wound bed for subsequent surgical procedures like skin grafting. Ideal dressing materials should not only expedite wound healing but also mitigate protein, electrolyte, and fluid loss while minimizing pain and infection risk. Nanotechnology has emerged as a transformative tool in wound care, revolutionizing the landscape of biomedical dressings. Its application offers remarkable efficacy in accelerating wound healing and combating bacterial infections, representing a significant advancement in wound care practices. Integration of nanotechnology into dressings has resulted in enhanced properties, including improved mechanical strength and controlled drug release, facilitating tailored therapeutic interventions. This review article comprehensively explores recent breakthroughs in wound healing therapies, with a focus on innovative medical dressings such as nano-enzymes. Additionally, the utilization of smart materials, like hydrogels and electroactive polymers, in wound dressings offers dynamic functionalities to promote tissue regeneration. Emerging concepts such as bio-fabrication, microfluidic systems, bio-responsive scaffolds, and personalized therapeutics show promise in expediting wound healing and minimizing scarring. Through an in-depth exploration of these advancements, this review aims to catalyze a paradigm shift in wound care strategies, promoting a patient-centric approach to therapeutic interventions.
Collapse
Affiliation(s)
- Simran Nasra
- Biological and Life Sciences, School of Arts a Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Sanjali Pramanik
- Biological and Life Sciences, School of Arts a Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Vidhi Oza
- Biological and Life Sciences, School of Arts a Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Krupa Kansara
- Biological Engineering Discipline, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, 382355, India.
| | - Ashutosh Kumar
- Biological and Life Sciences, School of Arts a Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad, Gujarat, 380009, India.
| |
Collapse
|
18
|
Wang H, Dai K, Xiang H, Kou J, Guo H, Ying H, Wu J. High adsorption capacities for dyes by a pH-responsive sodium alginate/sodium lignosulfonate/carboxylated chitosan/polyethyleneimine adsorbent. Int J Biol Macromol 2024; 278:135005. [PMID: 39181351 DOI: 10.1016/j.ijbiomac.2024.135005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/13/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Dyes are indispensable for the rapid development of society, but untreated dye wastewater can threaten human health. In this study, an adsorbent (SA/SL/CCS/PEI@MNPs) was synthesized by one-pot method using magnetic nanoparticles (MNPs), sodium alginate (SA), sodium lignosulfonate (SL), carboxylated chitosan (CCS) and polyethyleneimine (PEI). The adsorbent was mesoporous micrometer-sized particles with pore size of 34.92 nm, which was favorable for dynamic column experiments. SA/SL/CCS/PEI@MNPs possessed pH-responsive performance. Under acidic condition, the maximum adsorption capacities for anionic dyes (tartrazine, reactive black-5, indigo carmine) reached >550 mg/g. Under alkaline condition, those for cationic dyes (methylene blue, methyl violet, neutral red) exceeded 1900 mg/g. The function of the various modifiers was investigated. The results indicated that the incorporation of SL, CCS and PEI was able to provide plenty of sulfonate, carboxylate and amino/imine reactive groups so that adsorption capacities of dyes were improved. The adsorption mechanism was explored by FTIR and XPS. At the same time, the adsorption mechanism was more deeply analyzed using molecular dynamics simulations and radial distribution function. It was demonstrated that the dyes adsorption on the SA/SL/CCS/PEI@MNPs was mainly due to electrostatic attraction and π-π interaction. In addition, the adsorbent had good reusability, and the removal still reached over 90 % after five cycles. In conclusion, the adsorbent displayed a broad prospect for the adsorption of organic dyes.
Collapse
Affiliation(s)
- Hui Wang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Kun Dai
- School of Materials and Chemical Engineering, Chuzhou University, Chuzhou, China.
| | - Houle Xiang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Jingwei Kou
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Han Guo
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Hanjie Ying
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Jinglan Wu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China.
| |
Collapse
|
19
|
Alsaikhan F, Farhood B. Recent advances on chitosan/hyaluronic acid-based stimuli-responsive hydrogels and composites for cancer treatment: A comprehensive review. Int J Biol Macromol 2024; 280:135893. [PMID: 39317275 DOI: 10.1016/j.ijbiomac.2024.135893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024]
Abstract
Cancer, as leading cause of death, has a high rate of mortality worldwide. Although there is a wide variety of conventional approaches for the treatment of cancer (such as surgery and chemotherapy), they have considerable drawbacks in terms of practicality, treatment efficiency, and cost-effectiveness. Therefore, there is a fundamental requirement for the development of safe and efficient treatment modalities based on breakthrough technologies to suppress cancer. Chitosan (CS) and hyaluronic acid (HA) polysaccharides, as FDA-approved biomaterials for some biomedical applications, are potential biopolymers for the efficient treatment of cancer. CS and HA have high biocompatibility, bioavailability, biodegradability, and immunomodulatory function which guarantee their safety and non-toxicity. CS-/HA-based hydrogels (HGs)/composites stand out for their potential anticancer function, versatile preparation and modification, ease of administration, controlled/sustained drug release, and active and passive drug internalization into target cells which is crucial for efficient treatment of cancer compared with conventional treatment approaches. These HGs/composites can respond to external (magnetic, ultrasound, light, and thermal) and internal (pH, enzyme, redox, and ROS) stimuli as well which further paves the way to their manipulation, targeted drug delivery, practicality, and efficient treatment. The above-mentioned properties of CS-/HA-based HGs/composites are unique and practical in cancer treatment which can ignore the deficiencies of conventional approaches. The present manuscript comprehensively highlights the advances in the practical application of stimuli-responsive HGs/composites based on CS/HA polysaccharides.
Collapse
Affiliation(s)
- Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia; School of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
20
|
Jiao W, Li H, Wu Y, Wen Q, Wang W, Tian J, Ren Y, Ma J, Zhao D, Zhao J, Zhang Y, Han G. Dual Targeted Nanoparticles Encapsulating Cantharidin for Treatment of Hepatocellular Carcinoma and Lymphatic Metastasis. ACS APPLIED NANO MATERIALS 2024; 7:20609-20625. [DOI: 10.1021/acsanm.4c03587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Affiliation(s)
- Wenwen Jiao
- Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, School of Pharmacy, Henan University, Kaifeng 475004, China
- Department of Pharmacy, The First Affiliated Hospital of Henan University, Kaifeng 475004, China
- State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng 475004, China
- Kaifeng Key Lab for Application of Local Chrysanthemum Morifolium in Food & Drug, Kaifeng 475004, China
| | - Hao Li
- Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, School of Pharmacy, Henan University, Kaifeng 475004, China
- State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng 475004, China
- Kaifeng Key Lab for Application of Local Chrysanthemum Morifolium in Food & Drug, Kaifeng 475004, China
| | - Yingjie Wu
- Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, School of Pharmacy, Henan University, Kaifeng 475004, China
- State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng 475004, China
- Kaifeng Key Lab for Application of Local Chrysanthemum Morifolium in Food & Drug, Kaifeng 475004, China
| | - Qing Wen
- Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, School of Pharmacy, Henan University, Kaifeng 475004, China
- State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng 475004, China
- Kaifeng Key Lab for Application of Local Chrysanthemum Morifolium in Food & Drug, Kaifeng 475004, China
| | - Wenzhen Wang
- Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, School of Pharmacy, Henan University, Kaifeng 475004, China
- State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng 475004, China
- Kaifeng Key Lab for Application of Local Chrysanthemum Morifolium in Food & Drug, Kaifeng 475004, China
| | - Jia Tian
- Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, School of Pharmacy, Henan University, Kaifeng 475004, China
- State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng 475004, China
- Kaifeng Key Lab for Application of Local Chrysanthemum Morifolium in Food & Drug, Kaifeng 475004, China
| | - Yulong Ren
- Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, School of Pharmacy, Henan University, Kaifeng 475004, China
- State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng 475004, China
- Kaifeng Key Lab for Application of Local Chrysanthemum Morifolium in Food & Drug, Kaifeng 475004, China
| | - Jinyuan Ma
- Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, School of Pharmacy, Henan University, Kaifeng 475004, China
- State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng 475004, China
- Kaifeng Key Lab for Application of Local Chrysanthemum Morifolium in Food & Drug, Kaifeng 475004, China
| | - Danxiang Zhao
- Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, School of Pharmacy, Henan University, Kaifeng 475004, China
- State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng 475004, China
- Kaifeng Key Lab for Application of Local Chrysanthemum Morifolium in Food & Drug, Kaifeng 475004, China
| | - Junli Zhao
- Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, School of Pharmacy, Henan University, Kaifeng 475004, China
- State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng 475004, China
- Kaifeng Key Lab for Application of Local Chrysanthemum Morifolium in Food & Drug, Kaifeng 475004, China
| | - Yu Zhang
- Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, School of Pharmacy, Henan University, Kaifeng 475004, China
- State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng 475004, China
- Kaifeng Key Lab for Application of Local Chrysanthemum Morifolium in Food & Drug, Kaifeng 475004, China
| | - Guang Han
- Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, School of Pharmacy, Henan University, Kaifeng 475004, China
- State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng 475004, China
- Kaifeng Key Lab for Application of Local Chrysanthemum Morifolium in Food & Drug, Kaifeng 475004, China
| |
Collapse
|
21
|
Lu Y, Sui L, Dai C, Zheng W, Zhao Y, Li Q, Liang X, Li Q, Zhang Z. Immobilization of Bacillus thuringiensis Cry1Ac in metal-organic frameworks through biomimetic mineralization for sustainable pest management. Int J Biol Macromol 2024; 274:133388. [PMID: 38925193 DOI: 10.1016/j.ijbiomac.2024.133388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/03/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024]
Abstract
Traditional chemical pesticide dosage forms and crude application methods have resulted in low pesticide utilization, increased environmental pollution, and the development of resistance. Compared to traditional pesticides, nanopesticides enhance the efficiency of pesticide utilization and reduce the quantity required, thereby decreasing environmental pollution. Herein, Cry1Ac insecticidal crystal protein from Bacillus thuringiensis Subsp. Kurstaki HD-73 was encapsulated in a metal-organic framework (zeolite imidazolate framework-8, ZIF-8) through biomimetic mineralization to obtain Cry1Ac@ZIF-8 nanopesticides. The Cry1Ac@ZIF-8 nanopesticides exhibited a dodecahedral porous structure, and the introduction of Cry1Ac did not affect the intrinsic crystal structure of ZIF-8. The indoor toxicity analysis revealed that the toxicity of Cry1Ac towards Ostrinia furnacalis (Guenée), Helicoverpa armigera Hubner, and Spodoptera litura Fabricius was not affected by ZIF-8 encapsulation. Surprisingly, Cry1Ac@ZIF-8 still exhibited excellent pest management efficacy even after exposure to heat, UV irradiation, and long-term storage. More importantly, the encapsulation of ZIF-8 significantly enhanced the internal absorption performance of Cry1Ac in maize leaves and extended its persistence period. Thus, ZIF-8 could potentially serve as a promising carrier for the preparation of nanopesticides with enhanced applicability, stability, and persistence period, providing a powerful strategy to improve the application of Cry1Ac in future agricultural pest management.
Collapse
Affiliation(s)
- Yang Lu
- Institute of Plant Protection, Jilin Academy of Agricultural Science/Jilin Key Laboratory of Agricultural Microbiology/Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Gongzhuling 136100, China
| | - Li Sui
- Institute of Plant Protection, Jilin Academy of Agricultural Science/Jilin Key Laboratory of Agricultural Microbiology/Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Gongzhuling 136100, China
| | - Chunyan Dai
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun 130000, China
| | - Wenjing Zheng
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Yu Zhao
- Institute of Plant Protection, Jilin Academy of Agricultural Science/Jilin Key Laboratory of Agricultural Microbiology/Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Gongzhuling 136100, China
| | - Quanshun Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Xiao Liang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Qiyun Li
- Institute of Plant Protection, Jilin Academy of Agricultural Science/Jilin Key Laboratory of Agricultural Microbiology/Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Gongzhuling 136100, China; Jilin Agricultural Science and Technology University, Jilin 132109, China.
| | - Zhengkun Zhang
- Institute of Plant Protection, Jilin Academy of Agricultural Science/Jilin Key Laboratory of Agricultural Microbiology/Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Gongzhuling 136100, China.
| |
Collapse
|
22
|
Ma N, Li R, You S, Zhang DJ. Preparation of novel sulfated polysaccharide-carboxymethyl-5-fluorouracil-folic acid conjugates for targeted anticancer drug delivery. Int J Biol Macromol 2024; 273:133121. [PMID: 38876229 DOI: 10.1016/j.ijbiomac.2024.133121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 06/09/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024]
Abstract
GFP1, a sulfated polysaccharide extracted from Grateloupia filicina, exhibits remarkable immunomodulatory activity. To reduce the side effects of 5-fluorouracil (5-FU), GFP1 was employed as a macromolecular carrier to synthesize of GFP1-C-5-FU by reacting with carboxymethyl-5-fluorouracil (C-5-FU). Subsequently, this new compound was reacted with folic acid (FA) through an ester bond, forming novel conjugates named GFP1-C-5-FU-FA. Nuclear magnetic resonance analysis confirmed the formation of GFP1-C-5-FU-FA. In vitro drug release studies revealed that the cumulative release rate of C-5-FU reached 46.9 % in phosphate buffer (pH 7.4) after 96 h, a rate significantly higher than that of the control groups, indicating the controlled drug release behavior of GFP1-C-5-FU-FA. Additionally, in vitro anticancer assays demonstrated the potent anticancer activity of GFP1-C-5-FU-FA conjugates, as evidenced by the reduced viability of HeLa and AGS cancer cells, along with increased levels of apoptosis and cellular uptake. Western blot analysis indicated that the GFP1-C-5-FU-FA conjugate effectively enhanced phosphorylation in cancer cells through the NF-kB and MAPK pathways, thereby promoting apoptosis. These findings highlight the potential of folate-targeted conjugates in efficiently treating HeLa and AGS cancer cells in vitro and lay a robust theoretical groundwork for future in vivo anti-cancer research involving these cells.
Collapse
Affiliation(s)
- Nan Ma
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, China; Daqing Center of Inspection and Testing for Rural Affairs Agricultural Products and Processed Products, Ministry of Agriculture and Rural Affairs, Heilongjiang Bayi Agricultural University, Daqing 163319, China; National Coarse Cereals Engineering Research Center, Daqing 163319, China
| | - Rong Li
- Natural Product Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea; Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120 Gangneung, Gangwon 210-702, Republic of Korea
| | - SangGuan You
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120 Gangneung, Gangwon 210-702, Republic of Korea; East Coast Research Institute of Life Science, Gangneung-Wonju National University, 120 Gangneung, Gangwon 210-702, Republic of Korea.
| | - Dong-Jie Zhang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, China; Daqing Center of Inspection and Testing for Rural Affairs Agricultural Products and Processed Products, Ministry of Agriculture and Rural Affairs, Heilongjiang Bayi Agricultural University, Daqing 163319, China; National Coarse Cereals Engineering Research Center, Daqing 163319, China; Key Laboratory of Agro-Products Processing and Quality Safety of Heilongjiang Province, Daqing 163319, China.
| |
Collapse
|
23
|
Solanki R, Parmar B, Jadav M, Pooja D, Kulhari H, Patel S. Berberine encapsulated phenylboronic acid-conjugated pullulan nanoparticles: Synthesis, characterization and anticancer activity validated in A431 skin cancer cells and 3D spheroids. Int J Biol Macromol 2024; 273:132737. [PMID: 38825265 DOI: 10.1016/j.ijbiomac.2024.132737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/18/2024] [Accepted: 05/27/2024] [Indexed: 06/04/2024]
Abstract
Polysaccharide-based drug delivery systems are in high demand due to their biocompatibility, non-toxicity, and low-cost. In this study, sialic acid receptor targeted 4-carboxy phenylboronic acid modified pullulan-stearic acid conjugate (4-cPBA-PUL-SA) was synthesized and characterized for the delivery of Berberine (BBR). BBR-loaded 4-cPBA-PUL-SA nanoparticles (BPPNPs) were monodispersed (PDI: 0.238 ± 0.07), with an average hydrodynamic particle size of 191.6 nm and 73.6 % encapsulation efficiency. BPPNPs showed controlled BBR release and excellent colloidal stability, indicating their potential for drug delivery application. The cytotoxicity results indicated that BPPNPs exhibited dose and time-dependent cytotoxicity against human epidermoid carcinoma cells (A431) as well as 3D spheroids. Targeted BPPNPs demonstrated significantly higher anticancer activity compared to BBR and non-targeted BPNPs. The IC50 values for BPPNPs (2.29 μg/ml) were significantly lower than BPNPs (4.13 μg/ml) and BBR (19.61 μg/ml), indicating its potential for skin cancer treatment. Furthermore, CSLM images of A431 cells and 3D spheroids demonstrated that BPPNPs have higher cellular uptake and induced apoptosis compared to free BBR and BPNPs. In conclusion, BPPNPs demonstrate promising potential as an effective drug delivery system for skin cancer therapy.
Collapse
Affiliation(s)
- Raghu Solanki
- School of Life Sciences, Central University of Gujarat, Gandhinagar 382030, India
| | - Bhavik Parmar
- School of Nano Sciences, Central University of Gujarat, Gandhinagar 382030, India
| | - Mahima Jadav
- School of Nano Sciences, Central University of Gujarat, Gandhinagar 382030, India
| | - Deep Pooja
- Parul Institute of Pharmacy & Research, Parul University, Vadodara- 391760, India
| | - Hitesh Kulhari
- School of Nano Sciences, Central University of Gujarat, Gandhinagar 382030, India.
| | - Sunita Patel
- School of Life Sciences, Central University of Gujarat, Gandhinagar 382030, India.
| |
Collapse
|
24
|
Huang X, Li G, Li H, Zhong W, Jiang G, Cai J, Xiong Q, Wu C, Su K, Huang R, Xu S, Liu Z, Wang M, Wang H. Glycyrrhetinic Acid as a Hepatocyte Targeting Ligand-Functionalized Platinum(IV) Complexes for Hepatocellular Carcinoma Therapy and Overcoming Multidrug Resistance. J Med Chem 2024; 67:8020-8042. [PMID: 38727048 DOI: 10.1021/acs.jmedchem.4c00144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Promising targeted therapy options to overcome drug resistance and side effects caused by platinum(II) drugs for treatment in hepatocellular carcinoma are urgently needed. Herein, six novel multifunctional platinum(IV) complexes through linking platinum(II) agents and glycyrrhetinic acid (GA) were designed and synthesized. Among them, complex 20 showed superior antitumor activity against tested cancer cells including cisplatin resistance cells than cisplatin and simultaneously displayed good liver-targeting ability. Moreover, complex 20 can significantly cause DNA damage and mitochondrial dysfunction, promote reactive oxygen species generation, activate endoplasmic reticulum stress, and eventually induce apoptosis. Additionally, complex 20 can effectively inhibit cell migration and invasion and trigger autophagy and ferroptosis in HepG-2 cells. More importantly, complex 20 demonstrated stronger tumor inhibition ability than cisplatin or the combo of cisplatin/GA with almost no systemic toxicity in HepG-2 or A549 xenograft models. Collectively, complex 20 could be developed as a potential anti-HCC agent for cancer treatment.
Collapse
Affiliation(s)
- Xiaochao Huang
- Institute of Green Chemistry and Process Enhancement Technology, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an 223003, China
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, China
| | - Guimei Li
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, China
| | - Huifang Li
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, China
| | - Wentian Zhong
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, China
| | - Guiyang Jiang
- Institute of Green Chemistry and Process Enhancement Technology, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Jinyuan Cai
- Institute of Green Chemistry and Process Enhancement Technology, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Qingping Xiong
- Institute of Green Chemistry and Process Enhancement Technology, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Chuang Wu
- Institute of Green Chemistry and Process Enhancement Technology, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Kangning Su
- Institute of Green Chemistry and Process Enhancement Technology, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Rizhen Huang
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Shiliu Xu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, China
| | - Zhikun Liu
- Institute of Green Chemistry and Process Enhancement Technology, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Meng Wang
- Institute of Green Chemistry and Process Enhancement Technology, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an 223003, China
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, China
| | - Hengshan Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, China
| |
Collapse
|
25
|
Xu T, Fan L, Wang L, Ren H, Zhang Q, Sun W. Hierarchical mesoporous silicon and albumin composite microparticles delivering DOX and FU for liver cancer treatment. Int J Biol Macromol 2024; 268:131732. [PMID: 38649078 DOI: 10.1016/j.ijbiomac.2024.131732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/11/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
Drug delivery systems based on hydrogel microcarriers have shown enormous achievements in tumor treatment. Current research direction mainly concentrated on the improvement of the structure and function of the microcarriers to effectively deliver drugs for enhanced cancer treatment with decreased general toxicity. Herein, we put forward novel hierarchical mesoporous silicon nanoparticles (MSNs) and bovine serum albumin (BSA) composite microparticles (MPMSNs@DOX/FU) delivering doxorubicin (DOX) and 5-fluorouracil (FU) for effective tumor therapy with good safety. The DOX and FU could be efficiently loaded in the MSNs, which were further encapsulated into methacrylate BSA (BSAMA) microparticles by applying a microfluidic technique. When transported to the tumor area, DOX and FU will be persistently released from the MPMSNs@DOX/FU and kept locally to lessen general toxicity. Based on these advantages, MPMSNs@DOX/FU could observably kill liver cancer cells in vitro, and evidently suppress the tumor development of liver cancer nude mice model in vivo. These results suggest that such hierarchical hydrogel microparticles are perfect candidates for liver cancer treatment, holding promising expectations for impactful cancer therapy.
Collapse
Affiliation(s)
- Tianyuan Xu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210008, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China; State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Lu Fan
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Li Wang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Haozhen Ren
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210008, China.
| | - Qingfei Zhang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China; The Key Laboratory of Pediatric Hematology and Oncology Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
| | - Weijian Sun
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China.
| |
Collapse
|
26
|
Zhu Y, Wang N, Ling J, Yang L, Omer AM, Ouyang XK, Yang G. In situ generation of copper(Ⅱ)/diethyldithiocarbamate complex through tannic acid/copper(Ⅱ) network coated hollow mesoporous silica for enhanced cancer chemodynamic therapy. J Colloid Interface Sci 2024; 660:637-646. [PMID: 38266345 DOI: 10.1016/j.jcis.2024.01.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/13/2024] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
The Cu2+ complex formed by the coordination of disulfiram (DSF) metabolite diethyldithiocarbamate (DTC), Cu(DTC)2, can effectively inhibit tumor growth. However, insufficient Cu2+ levels in the tumor microenvironment can impact tumor-suppressive effects of DTC. In this study, we proposed a Cu2+ and DSF tumor microenvironment-targeted delivery system. This system utilizes hollow mesoporous silica (HMSN) as a carrier, after loading with DSF, encases it using a complex of tannic acid (TA) and Cu2+ on the outer layer. In the slightly acidic tumor microenvironment, TA/Cu undergoes hydrolysis, releasing Cu2+ and DSF, which further form Cu(DTC)2 to inhibit tumor growth. Additionally, Cu2+ can engage in a Fenton-like reaction with H2O2 in the tumor microenvironment to form OH, therefore, chemodynamic therapy (CDT) and Cu(DTC)2 are used in combination for tumor therapy. In vivo tumor treatment results demonstrated that AHD@TA/Cu could accumulate at the tumor site, achieving a tumor inhibition rate of up to 77.6 %. This study offers a novel approach, circumventing the use of traditional chemotherapy drugs, and provides valuable insights into the development of in situ tumor drug therapies.
Collapse
Affiliation(s)
- Yanfei Zhu
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Nan Wang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Junhong Ling
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Lianlian Yang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - A M Omer
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P. O. Box: 21934, Alexandria, Egypt
| | - Xiao-Kun Ouyang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China.
| | - Guocai Yang
- Department of Cardiothoracic Surgery, Zhoushan Hospital, Wenzhou Medical University, Zhoushan 316000, PR China.
| |
Collapse
|
27
|
Zhang MR, Fang LL, Guo Y, Wang Q, Li YJ, Sun HF, Xie SY, Liang Y. Advancements in Stimulus-Responsive Co-Delivery Nanocarriers for Enhanced Cancer Immunotherapy. Int J Nanomedicine 2024; 19:3387-3404. [PMID: 38617801 PMCID: PMC11012697 DOI: 10.2147/ijn.s454004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/14/2024] [Indexed: 04/16/2024] Open
Abstract
Cancer immunotherapy has emerged as a novel therapeutic approach against tumors, with immune checkpoint inhibitors (ICIs) making significant clinical practice. The traditional ICIs, PD-1 and PD-L1, augment the cytotoxic function of T cells through the inhibition of tumor immune evasion pathways, ultimately leading to the initiation of an antitumor immune response. However, the clinical implementation of ICIs encounters obstacles stemming from the existence of an immunosuppressive tumor microenvironment and inadequate infiltration of CD8+T cells. Considerable attention has been directed towards advancing immunogenic cell death (ICD) as a potential solution to counteract tumor cell infiltration and the immunosuppressive tumor microenvironment. This approach holds promise in transforming "cold" tumors into "hot" tumors that exhibit responsiveness to antitumor. By combining ICD with ICIs, a synergistic immune response against tumors can be achieved. However, the combination of ICD inducers and PD-1/PD-L1 inhibitors is hindered by issues such as poor targeting and uncontrolled drug release. An advantageous solution presented by stimulus-responsive nanocarrier is integrating the physicochemical properties of ICD inducers and PD-1/PD-L1 inhibitors, facilitating precise delivery to specific tissues for optimal combination therapy. Moreover, these nanocarriers leverage the distinct features of the tumor microenvironment to accomplish controlled drug release and regulate the kinetics of drug delivery. This article aims to investigate the advancement of stimulus-responsive co-delivery nanocarriers utilizing ICD and PD-1/PD-L1 inhibitors. Special focus is dedicated to exploring the advantages and recent advancements of this system in enabling the combination of ICIs and ICD inducers. The molecular mechanisms of ICD and ICIs are concisely summarized. In conclusion, we examine the potential research prospects and challenges that could greatly enhance immunotherapeutic approaches for cancer treatment.
Collapse
Affiliation(s)
- Meng-Ru Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Binzhou Medical University, YanTai, ShanDong, 264003, People’s Republic of China
- Department of Clinical Medicine, Binzhou Medical University, YanTai, ShanDong, 264003, People’s Republic of China
| | - Lin-Lin Fang
- RemeGen Co., Ltd, YanTai, ShanDong, 264000, People’s Republic of China
| | - Yang Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Binzhou Medical University, YanTai, ShanDong, 264003, People’s Republic of China
| | - Qin Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Binzhou Medical University, YanTai, ShanDong, 264003, People’s Republic of China
| | - You-Jie Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Binzhou Medical University, YanTai, ShanDong, 264003, People’s Republic of China
| | - Hong-Fang Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Binzhou Medical University, YanTai, ShanDong, 264003, People’s Republic of China
| | - Shu-Yang Xie
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Binzhou Medical University, YanTai, ShanDong, 264003, People’s Republic of China
| | - Yan Liang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Binzhou Medical University, YanTai, ShanDong, 264003, People’s Republic of China
| |
Collapse
|
28
|
Ai S, Li Y, Zheng H, Zhang M, Tao J, Liu W, Peng L, Wang Z, Wang Y. Collision of herbal medicine and nanotechnology: a bibliometric analysis of herbal nanoparticles from 2004 to 2023. J Nanobiotechnology 2024; 22:140. [PMID: 38556857 PMCID: PMC10983666 DOI: 10.1186/s12951-024-02426-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/18/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Herbal nanoparticles are made from natural herbs/medicinal plants, their extracts, or a combination with other nanoparticle carriers. Compared to traditional herbs, herbal nanoparticles lead to improved bioavailability, enhanced stability, and reduced toxicity. Previous research indicates that herbal medicine nanomaterials are rapidly advancing and making significant progress; however, bibliometric analysis and knowledge mapping for herbal nanoparticles are currently lacking. We performed a bibliometric analysis by retrieving publications related to herbal nanoparticles from the Web of Science Core Collection (WoSCC) database spanning from 2004 to 2023. Data processing was performed using the R package Bibliometrix, VOSviewers, and CiteSpace. RESULTS In total, 1876 articles related to herbal nanoparticles were identified, originating from various countries, with China being the primary contributing country. The number of publications in this field increases annually. Beijing University of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, and Saveetha University in India are prominent research institutions in this domain. The Journal "International Journal of Nanomedicine" has the highest number of publications. The number of authors of these publications reached 8234, with Yan Zhao, Yue Zhang, and Huihua Qu being the most prolific authors and Yan Zhao being the most frequently cited author. "Traditional Chinese medicine," "drug delivery," and "green synthesis" are the main research focal points. Themes such as "green synthesis," "curcumin," "wound healing," "drug delivery," and "carbon dots" may represent emerging research areas. CONCLUSIONS Our study findings assist in identifying the latest research frontiers and hot topics, providing valuable references for scholars investigating the role of nanotechnology in herbal medicine.
Collapse
Affiliation(s)
- Sinan Ai
- China-Japan Friendship Hospital, Beijing, China
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Medical Science, China-Japan Friendship Hospital, Beijing, China
| | - Yake Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Huijuan Zheng
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Meiling Zhang
- Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jiayin Tao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Weijing Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Liang Peng
- China-Japan Friendship Hospital, Beijing, China.
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Medical Science, China-Japan Friendship Hospital, Beijing, China.
| | - Zhen Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.
| | - Yaoxian Wang
- Henan University of Chinese Medicine, Zhengzhou, Henan, China.
| |
Collapse
|
29
|
Kuna K, Baddam SR, Kalagara S, Akkiraju PC, Tade RS, Enaganti S. Emerging natural polymer-based architectured nanotherapeutics for the treatment of cancer. Int J Biol Macromol 2024; 262:129434. [PMID: 38232877 DOI: 10.1016/j.ijbiomac.2024.129434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/20/2023] [Accepted: 01/10/2024] [Indexed: 01/19/2024]
Abstract
The field of cancer therapy is advancing rapidly, placing a crucial emphasis on innovative drug delivery systems. The increasing global impact of cancer highlights the need for creative therapeutic strategies. Natural polymer-based nanotherapeutics have emerged as a captivating avenue in this pursuit, drawing substantial attention due to their inherent attributes. These attributes include biodegradability, biocompatibility, negligible toxicity, extended circulation time, and a wide range of therapeutic payloads. The unique size, shape, and morphological characteristics of these systems facilitate profound tissue penetration, complementing active and passive targeting strategies. Moreover, these nanotherapeutics exploit specific cellular and subcellular trafficking pathways, providing precise control over drug release kinetics. This comprehensive review emphasizes the utilization of naturally occurring polymers such as polysaccharides (e.g., chitosan, hyaluronic acid, alginates, dextran, and cyclodextrin) and protein-based polymers (e.g., ferritin, gelatin, albumin) as the foundation for nanoparticle development. The paper meticulously examines their in vitro characteristics alongside in vivo efficacy, particularly focusing on their pivotal role in ameliorating diverse types of solid tumors within cancer therapy. The amalgamation of material science ingenuity and biological insight has led to the formulation of these nanoparticles, showcasing their potential to reshape the landscape of cancer treatment.
Collapse
Affiliation(s)
- Krishna Kuna
- Department of Chemistry, University College of Science, Saifabad, Osmania University, Hyderabad, Telangana, India.
| | - Sudhakar Reddy Baddam
- University of Massachusetts Chan Medical School, RNA Therapeutics Institute, Worcester, MA 01655, United States of America
| | - Sudhakar Kalagara
- Department of Chemistry and Biochemistry, University of Texas at El Paso, 500 W University Ave, El Paso, TX 79968, United States of America
| | - Pavan C Akkiraju
- Department of Biotechnology, School of Allied Healthcare Sciences, Malla Reddy University, Hyderabad, India
| | - Rahul S Tade
- Department of Pharmaceutics, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra 425405, India
| | - Sreenivas Enaganti
- Department of Bioinformatics, Averinbiotech Laboratories, Nallakunta, Hyderabad, Telangana, India
| |
Collapse
|
30
|
Wang X, Li Y, Pu X, Liu G, Qin H, Wan W, Wang Y, Zhu Y, Yang J. Macrophage-related therapeutic strategies: Regulation of phenotypic switching and construction of drug delivery systems. Pharmacol Res 2024; 199:107022. [PMID: 38043691 DOI: 10.1016/j.phrs.2023.107022] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/05/2023]
Abstract
Macrophages, as highly phenotypic plastic immune cells, play diverse roles in different pathological conditions. Changing and controlling the phenotypes of macrophages is considered a novel potential therapeutic intervention. Meanwhile, specific transmembrane proteins anchoring on the surface of the macrophage membrane are relatively conserved, supporting its functional properties, such as inflammatory chemotaxis and tumor targeting. Thus, a series of drug delivery systems related to specific macrophage membrane proteins are commonly used to treat chronic inflammatory diseases. This review summarizes macrophages-based strategies for chronic diseases, discusses the regulation of macrophage phenotypes and their polarization processes, and presents how to design and apply the site-specific targeted drug delivery systems in vivo based on the macrophages and their derived membrane receptors. It aims to provide a better understanding of macrophages in immunoregulation and proposes macrophages-based targeted therapeutic approaches for chronic diseases.
Collapse
Affiliation(s)
- Xi Wang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Yixuan Li
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Xueyu Pu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Guiquan Liu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Honglin Qin
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Weimin Wan
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Yuying Wang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Yan Zhu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Jian Yang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
31
|
Liu Z, Wang X, Zhang C, Lin K, Yang J, Zhang Y, Hao J, Tian F. Folic acid-coupled bovine serum albumin-modified magnetic nanocomposites from quantum-sized Fe 3O 4 and layered double hydroxide for actively targeted delivery of 5-fluorouracil. Int J Biol Macromol 2024; 256:128385. [PMID: 38000576 DOI: 10.1016/j.ijbiomac.2023.128385] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/15/2023] [Accepted: 11/21/2023] [Indexed: 11/26/2023]
Abstract
The development of multifunctional magnetic nanocomposites as a drug delivery system for cancer therapy is highly desirable in current nanomedicine. Herein, folic acid-bovine serum albumin conjugate (FA-BSA) was modified on nanocomposites by combining quantum-sized Fe3O4 and layered double hydroxide (LDH) to obtain a novel FA-BSA/Fe3O4@LDH for the delivery of the anticancer drug 5-Fluorouracil (5-Fu). The prepared nanocomposites showed good dispersibility, colloidal stability, magnetic property and erythrocyte compatibility. FA-BSA/Fe3O4@LDH/5-Fu showed pH responsiveness, with both the amount and duration of release of FA-BSA/Fe3O4@LDH/5-Fu being significantly higher in pH 5.0 release medium than in pH 7.4 release medium. The cellular experiments implied that no significant cytotoxicity of FA-BSA/Fe3O4@LDH, particularly due to the presence of FA-BSA, which further enhanced the biocompatibility of the nanocomposite. Furthermore, FA-BSA/Fe3O4@LDH/5-Fu could specifically target the 2D HepG2 cells model and 3D hepatoma cell microspheres model in vitro, and efficient internalization through folate receptor-mediated endocytosis, showing excellent anti-cancer cell activity in a concentration-dependent manner. Therefore, the constructed FA-BSA/Fe3O4@LDH was able to provide a potential novel multifunctional nanocomposite for magnetic-targeting drug delivery and pH-responsive release of drugs to enhance the efficiency of cancer therapy.
Collapse
Affiliation(s)
- Zhaoyun Liu
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China
| | - Xi Wang
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China
| | - Chen Zhang
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China
| | - Kui Lin
- Analytical Instrumentation Centre, Tianjin University, Tianjin 300072, PR China
| | - Jian Yang
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China
| | - Yi Zhang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Jia Hao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| | - Fei Tian
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China.
| |
Collapse
|
32
|
Imran H, Tang Y, Wang S, Yan X, Liu C, Guo L, Wang E, Xu C. Optimized DOX Drug Deliveries via Chitosan-Mediated Nanoparticles and Stimuli Responses in Cancer Chemotherapy: A Review. Molecules 2023; 29:31. [PMID: 38202616 PMCID: PMC10780101 DOI: 10.3390/molecules29010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024] Open
Abstract
Chitosan nanoparticles (NPs) serve as useful multidrug delivery carriers in cancer chemotherapy. Chitosan has considerable potential in drug delivery systems (DDSs) for targeting tumor cells. Doxorubicin (DOX) has limited application due to its resistance and lack of specificity. Chitosan NPs have been used for DOX delivery because of their biocompatibility, biodegradability, drug encapsulation efficiency, and target specificity. In this review, various types of chitosan derivatives are discussed in DDSs to enhance the effectiveness of cancer treatments. Modified chitosan-DOX NP drug deliveries with other compounds also increase the penetration and efficiency of DOX against tumor cells. We also highlight the endogenous stimuli (pH, redox, enzyme) and exogenous stimuli (light, magnetic, ultrasound), and their positive effect on DOX drug delivery via chitosan NPs. Our study sheds light on the importance of chitosan NPs for DOX drug delivery in cancer treatment and may inspire the development of more effective approaches for cancer chemotherapy.
Collapse
Affiliation(s)
- HafizMuhammad Imran
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.I.); (Y.T.); (S.W.); (X.Y.); (C.L.); (L.G.)
| | - Yixin Tang
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.I.); (Y.T.); (S.W.); (X.Y.); (C.L.); (L.G.)
| | - Siyuan Wang
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.I.); (Y.T.); (S.W.); (X.Y.); (C.L.); (L.G.)
| | - Xiuzhang Yan
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.I.); (Y.T.); (S.W.); (X.Y.); (C.L.); (L.G.)
| | - Chang Liu
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.I.); (Y.T.); (S.W.); (X.Y.); (C.L.); (L.G.)
| | - Lei Guo
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.I.); (Y.T.); (S.W.); (X.Y.); (C.L.); (L.G.)
| | - Erlei Wang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Caina Xu
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.I.); (Y.T.); (S.W.); (X.Y.); (C.L.); (L.G.)
| |
Collapse
|
33
|
Fu X, Ni Y, Wang G, Nie R, Wang Y, Yao R, Yan D, Guo M, Li N. Synergistic and Long-Lasting Wound Dressings Promote Multidrug-Resistant Staphylococcus Aureus-Infected Wound Healing. Int J Nanomedicine 2023; 18:4663-4679. [PMID: 37605733 PMCID: PMC10440117 DOI: 10.2147/ijn.s418671] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/09/2023] [Indexed: 08/23/2023] Open
Abstract
Background Multidrug-resistant staphylococcus aureus infected wounds can lead to nonhealing, systemic infections, and even death. Although advanced dressings are effective in protecting, disinfecting, and maintaining moist microenvironments, they often have limitations such as single functionality, inadequate drug release, poor biosafety, or high rates of drug resistance. Methods Here, a novel wound dressing comprising glycyrrhizic acid (GA) and tryptophan-sorbitol carbon quantum dots (WS-CQDs) was developed, which exhibit synergistic and long-lasting antibacterial and anti-inflammatory effects. We investigated the characterization, mechanical properties, synergistic antibacterial effects, sustained-release properties, and cytotoxicity of GA/WS-CQDs hydrogels in vitro. Additionally, we performed transcriptome sequence analysis to elucidate the antibacterial mechanism. Furthermore, we evaluated the biosafety, anti-inflammatory effects, and wound healing ability of GA/WS-CQDs dressings using an in vivo mouse model of methicillin-resistant staphylococcus aureus (MRSA)-infected wounds. Results The prepared GA/WS-CQDs hydrogels demonstrated superior anti-MRSA effects compared to common antibiotics in vitro. Furthermore, the sustained release of WS-CQDs from GA/WS-CQDs hydrogels lasted for up to 60 h, with a cumulative release of exceeding 90%. The sustained-released WS-CQDs exhibited excellent anti-MRSA effects, with low drug resistance attributed to DNA damage and inhibition of bacterial biofilm formation. Notably, in vivo experiments showed that GA/WS-CQDs dressings reduced the expression of inflammatory factors (TNF-α, IL-1β, and IL-6) and significantly promoted the healing of MRSA-infected wounds with almost no systemic toxicity. Importantly, the dressings did not require replacement during the treatment process. Conclusion These findings emphasize the high suitability of GA/WS-CQDs dressings for MRSA-infected wound healing and their potential for clinical translation.
Collapse
Affiliation(s)
- Xiangjie Fu
- Department of Blood Transfusion, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
| | - Yaqiong Ni
- Hunan Provincial Key Laboratory of Micro&Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People’s Republic of China
| | - Guanchen Wang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, People’s Republic of China
| | - Runda Nie
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, People’s Republic of China
| | - Yang Wang
- Institute of Integrative Medicine, Key Laboratory of Hunan Province for Liver Manifestation of Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
| | - Run Yao
- Department of Blood Transfusion, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
| | - Danyang Yan
- Department of Blood Transfusion, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
| | - Mingming Guo
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, People’s Republic of China
| | - Ning Li
- Department of Blood Transfusion, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
| |
Collapse
|
34
|
Jiang Z, Zheng Z, Yu S, Gao Y, Ma J, Huang L, Yang L. Nanofiber Scaffolds as Drug Delivery Systems Promoting Wound Healing. Pharmaceutics 2023; 15:1829. [PMID: 37514015 PMCID: PMC10384736 DOI: 10.3390/pharmaceutics15071829] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/22/2023] [Accepted: 06/24/2023] [Indexed: 07/30/2023] Open
Abstract
Nanofiber scaffolds have emerged as a revolutionary drug delivery platform for promoting wound healing, due to their unique properties, including high surface area, interconnected porosity, excellent breathability, and moisture absorption, as well as their spatial structure which mimics the extracellular matrix. However, the use of nanofibers to achieve controlled drug loading and release still presents many challenges, with ongoing research still exploring how to load drugs onto nanofiber scaffolds without loss of activity and how to control their release in a specific spatiotemporal manner. This comprehensive study systematically reviews the applications and recent advances related to drug-laden nanofiber scaffolds for skin-wound management. First, we introduce commonly used methods for nanofiber preparation, including electrostatic spinning, sol-gel, molecular self-assembly, thermally induced phase separation, and 3D-printing techniques. Next, we summarize the polymers used in the preparation of nanofibers and drug delivery methods utilizing nanofiber scaffolds. We then review the application of drug-loaded nanofiber scaffolds for wound healing, considering the different stages of wound healing in which the drug acts. Finally, we briefly describe stimulus-responsive drug delivery schemes for nanofiber scaffolds, as well as other exciting drug delivery systems.
Collapse
Affiliation(s)
- Ziwei Jiang
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, China
| | - Zijun Zheng
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, China
| | - Shengxiang Yu
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, China
| | - Yanbin Gao
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, China
| | - Jun Ma
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, China
| | - Lei Huang
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, China
| | - Lei Yang
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, China
| |
Collapse
|