1
|
Wen C, Tang J, Liu D, Fan M, Lin X, Liu G, Liang L, Liu X, Zhang J, Li Y, Duan Y, Xu X. Selenium release during the simulated gastrointestinal digestion and antioxidant activity of selenium nanoparticles stabilized by Grifola frondosa polysaccharides and gallic acid conjugates. Int J Biol Macromol 2025; 315:144620. [PMID: 40414400 DOI: 10.1016/j.ijbiomac.2025.144620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 05/17/2025] [Accepted: 05/22/2025] [Indexed: 05/27/2025]
Abstract
In the study, Grifola frondosa polysaccharides (GFPs) and gallic acid (GA) were utilized to synthesize selenium nanoparticles (GFPs-GA-SeNPs) through a redox reaction involving sodium selenite and ascorbic acid. The morphological changes of GFPs-GA-SeNPs and their antioxidant activities during simulated gastrointestinal digestion were investigated. The results revealed that the antioxidant capacity of GFPs-GA-SeNPs was significantly enhanced compared to SeNPs and GFPs-SeNPs, with IC₅₀ values for scavenging DPPH, superoxide anion, and hydroxyl radical of 0.45, 0.55, and 0.63 mg/mL, respectively. In addition, GFPs-GA-SeNPs showed a two-stage release pattern in in vitro digestion and had a stronger selenium release capacity. At the cellular level, oxidative stress and apoptosis were aggravated in the model group compared with the control group. Interestingly, compared with SeNPs and GFPs-SeNPs, GFPs-GA-SeNPs can more effectively restore mitochondrial membrane potential, reduce ROS levels, and improve apoptosis. Besides, GFPs-GA-SeNPs can up-regulate the expression of Nrf2 protein (p < 0.05) which can induce the expression of HO-1, SOD, GSH-Px, CAT, decrease the MDA content. Moreover, GFPs-GA-SeNPs can downregulate NF-κB protein, which can decrease the expression of TNF-α and increase the expression of IL-10. GFPs-GA-SeNPs demonstrated exceptional antioxidant activity and could benefit various industries, including food and health products, and have enormous potential application values.
Collapse
Affiliation(s)
- Chaoting Wen
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Jialuo Tang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Dongming Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Meidi Fan
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Xinying Lin
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Guoyan Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Li Liang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Xiaofang Liu
- School of Tourism and Cuisine, Yangzhou University, Yangzhou 225127, China
| | - Jixian Zhang
- Guangling College, Yangzhou University, Yangzhou 225127, China; College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China.
| | - Youdong Li
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Yuqing Duan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xin Xu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China.
| |
Collapse
|
2
|
Subhash A, Bamigbade G, Jarusheh H, Palmisano G, Ali A, Kamal-Eldin A, Abu-Jdayil B, Liu SQ, Ayyash M. Characterization, biofunctionalities, and in vitro gut microbiota modulation of nanoparticles polysaccharides ultrasonically extracted from date seeds. Int J Biol Macromol 2025; 310:143120. [PMID: 40253042 DOI: 10.1016/j.ijbiomac.2025.143120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/24/2025] [Accepted: 04/10/2025] [Indexed: 04/21/2025]
Abstract
Selenium nanoparticles (UP-SeNPs) were synthesized from ultrasonically extracted date seed polysaccharides (UP) using a redox reaction between sodium selenite and ascorbic acid. The UP-SeNPs were effectively characterized for their particles size and surface, elemental compositions; in-vitro digestibility and antioxidant, antimicrobial, prebiotic and gut microbiota modulating potential of the bio accessible fractions. Glucooligosaccharide (GP-NPs) and selenium SeNPs nanoparticles were prepared as controls for biological activities and fecal fermentation. The resulted UP-SeNPs were uniform, spherical, and amorphous with a stable dispersion for 42 days and an average size of 90.5 nm. Compared to native UP and selenite, UP-SeNPs displayed increased antioxidant capacities, including dose-dependent radical scavenging (89 %), DPPH (76.4 %), ABTS (83.3 %), reducing power (809.5 μg/mL), FRAP (798.7 μg/mL), and metal chelating ability (12,230 μg/mL). Additionally, UP-SeNPs exhibited superior α-amylase (74.3 %), α-glucosidase (87 %), and ACE (64 %) inhibitions potential and significant antibacterial effects against several major foodborne pathogens. Probiotic investigations demonstrated the prebiotic impact of UP-SeNPs, supporting in vitro fecal fermentation while maintaining natural gut microbiota diversity. UP-SeNPs effectively reduced the Bacillota-to-Bacteroidota ratio, limiting pathogenic microorganisms and promoting a healthier gut environment. Functional predictions highlighted upregulated metabolic pathways, including SCFA biosynthesis (acetate, propionate, and butyrate) that are essential for preventing gut dysbiosis and maintaining energy homeostasis. UP-SeNPs also improved carbohydrate metabolism and fatty acid biosynthesis, making them readily bioavailable for colonic microbiota. Overall polysaccharide conjugation with selenium nanoparticles delivered resultant NP with improved stability, functionality and bioactive potentials compared to SeNPs on their own. The conjugation was also able to further deliver UP-SeNPs that had prominent prebiotic and gut microbiota modulation potentials.
Collapse
Affiliation(s)
- Athira Subhash
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), PO Box 15551, Al-Ain, United Arab Emirates
| | - Gafar Bamigbade
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), PO Box 15551, Al-Ain, United Arab Emirates
| | - Hebah Jarusheh
- Department of Chemical and Petroleum Engineering, Research and Innovation on CO(2) and Hydrogen (RICH), Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Giovanni Palmisano
- Department of Chemical and Petroleum Engineering, Research and Innovation on CO(2) and Hydrogen (RICH), Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Abdelmoneim Ali
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), PO Box 15551, Al-Ain, United Arab Emirates
| | - Afaf Kamal-Eldin
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), PO Box 15551, Al-Ain, United Arab Emirates
| | - Basim Abu-Jdayil
- Chemical and Petroleum Engineering Department, College of Engineering, United Arab Emirates University (UAEU), PO Box 15551, Al Ain, United Arab Emirates
| | - Shao-Quan Liu
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, S14 Level 5, Science Drive 2, 117542 Singapore, Singapore
| | - Mutamed Ayyash
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), PO Box 15551, Al-Ain, United Arab Emirates.
| |
Collapse
|
3
|
Wang J, Wang X, Xiu W, Li C, Yu S, Zhu H, Yang C, Zhou K, Ma Y. Ultrasound-assisted preparation of sweet corn cob polysaccharide selenium nanoparticles alleviates symptoms of chronic fatigue syndrome. Food Funct 2025; 16:133-146. [PMID: 39635725 DOI: 10.1039/d4fo04195j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Chronic fatigue syndrome (CFS) is a long-term chronic condition that predisposes individuals to oxidative stress and disruption of the gut microbiota. In this study, sweet corn cob polysaccharide selenium nanoparticles (U-SCPSeNPs) with relatively small particle sizes were prepared using an ultrasound-assisted method. Transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffractometry (XRD), Fourier transform infrared spectroscopy (FTIR), and ultraviolet-visible spectroscopy (UV-Vis) were used to characterize the U-SCPSeNPs and determine the monosaccharide composition of the U-SCPSeNPs. The U-SCPSeNPs were used to improve the CFS of the mice. The results showed that the ultrasound-assisted method reduced the particle size of the SeNPs, and U-SCPSeNPs with a particle size of 76.74 nm and a selenium content of 186.83 ± 7.80 mg g-1 were obtained at an ultrasonication time of 40 min. Sweet corn cob (SCP) bound to the SeNPs through hydrogen bonding. In terms of energy production, the production capacity of Na+-K+-ATP, Mg2+-ATP, and Ca2+-ATP was enhanced by U-SCPSeSCP in CFS mice; In terms of oxidative stress, the levels of SOD and MDA were decreased and CAT and GSH-Px were increased by SCPSeSCP. U-SCPSeSCP improved the diversity and abundance of the gut microbiota in CFS mice, and decreasing the relative abundance of Firmicutes increased the relative abundance of Bacteroidota at the phylum level. This study provides a reference for synthesizing polysaccharide SeNPs and assessing the ability of U-SCPSeNPs to alleviate CFS.
Collapse
Affiliation(s)
- Jingyang Wang
- Key Laboratory of Cereal Food and Cereal Resources in Heilongjiang Province, School of Food Engineering, Harbin University of Commerce, Harbin 150028, China.
| | - Xin Wang
- Key Laboratory of Cereal Food and Cereal Resources in Heilongjiang Province, School of Food Engineering, Harbin University of Commerce, Harbin 150028, China.
| | - Weiye Xiu
- Key Laboratory of Cereal Food and Cereal Resources in Heilongjiang Province, School of Food Engineering, Harbin University of Commerce, Harbin 150028, China.
| | - Chenchen Li
- Key Laboratory of Cereal Food and Cereal Resources in Heilongjiang Province, School of Food Engineering, Harbin University of Commerce, Harbin 150028, China.
| | - Shiyou Yu
- Key Laboratory of Cereal Food and Cereal Resources in Heilongjiang Province, School of Food Engineering, Harbin University of Commerce, Harbin 150028, China.
| | - Haobin Zhu
- Key Laboratory of Cereal Food and Cereal Resources in Heilongjiang Province, School of Food Engineering, Harbin University of Commerce, Harbin 150028, China.
| | - Chenxi Yang
- Key Laboratory of Cereal Food and Cereal Resources in Heilongjiang Province, School of Food Engineering, Harbin University of Commerce, Harbin 150028, China.
| | - Kechi Zhou
- Keshan Branch of Heilongjiang Academy of Agricultural Sciences, Keshan 161601, Heilongjiang, China
| | - Yongqiang Ma
- Key Laboratory of Cereal Food and Cereal Resources in Heilongjiang Province, School of Food Engineering, Harbin University of Commerce, Harbin 150028, China.
| |
Collapse
|
4
|
Hu Y, Cao Y, Shen Y, Shan Y, Liu J, Song Y, Yang Y, Zhao J. Research progress of edible mushroom polysaccharide-metal trace element complexes. Food Chem X 2024; 24:101711. [PMID: 39310894 PMCID: PMC11414690 DOI: 10.1016/j.fochx.2024.101711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 09/25/2024] Open
Abstract
Metal trace elements are crucial for human health, and the complexes of edible mushroom polysaccharides with metal trace elements are currently a research hotspot in the field of food science. This article reviews the preparation methods, structural characterization, and physiological activities of edible mushroom polysaccharide-metal trace element complexes, including iron, selenium, and zinc. Research has shown that iron complexes obtained through Co-thermal synthesis of the FeCl3 method exhibit excellent antioxidant and anti-anemia functions; selenium complexes prepared via selenium-enriched cultivation significantly enhance immunological and anti-cancer properties; zinc complexes improve lipid-lowering, liver protection, and antioxidant capabilities. However, there is an imbalance in research among different metal elements, particularly with a high density of studies on selenium complexes. These studies provide a foundation for the future development of edible mushroom polysaccharide-metal trace element complexes.
Collapse
Affiliation(s)
- Yanbo Hu
- School of Food Sciences and Engineering, Changchun University, Changchun 130024, China
| | - Yi Cao
- School of Food Sciences and Engineering, Changchun University, Changchun 130024, China
| | - Yuzhu Shen
- School of Food Sciences and Engineering, Changchun University, Changchun 130024, China
| | - Yakun Shan
- School of Food Sciences and Engineering, Changchun University, Changchun 130024, China
| | - Jiaxin Liu
- Jilin Province Product Quality Supervision and Inspection Institute, Changchun, 130012, China
| | - Yudi Song
- School of Food Sciences and Engineering, Changchun University, Changchun 130024, China
| | - Yue Yang
- School of Food Sciences and Engineering, Changchun University, Changchun 130024, China
| | - Jun Zhao
- School of Food Sciences and Engineering, Changchun University, Changchun 130024, China
| |
Collapse
|
5
|
Yan Z, Chen HQ. Anti-liver cancer effects and mechanisms and its application in nano DDS of polysaccharides: A review. Int J Biol Macromol 2024; 279:135181. [PMID: 39218183 DOI: 10.1016/j.ijbiomac.2024.135181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/23/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Liver cancer is the third leading cause of cancer death, with high incidence and poor treatment effect. In recent years, polysaccharides have attracted more and more attention in the research field of anti-liver cancer because of their high efficiency, low toxicity, good biocompatibility, wide sources and low cost. Polysaccharides have been proven to have good anti-liver cancer activity. In this paper, the pathways and molecular mechanisms of polysaccharides against liver cancer were reviewed in detail. Polysaccharides exert anti-liver cancer activity by blocking cell cycle, inducing apoptosis, regulating immunity, inhibiting cancer cell metastasis, inhibiting tumor angiogenesis and so on. The primary structure and chain conformation of polysaccharides have an important influence on their anti-liver cancer activity. Structural modification enhanced the anti-liver cancer activity of polysaccharides. Polysaccharides have good attenuated and synergistic effects on chemotherapy drugs. Polysaccharides can be used as functional carriers to construct intelligent nano drug delivery systems (DDS) targeting liver cancer. This review can provide theoretical support for the further development and application of polysaccharides in the field of anti-liver cancer, and provide theoretical reference and clues for relevant researchers in food, nutrition, medicine and other fields.
Collapse
Affiliation(s)
- Zheng Yan
- School of Food and Biological Engineering, Hefei University of Technology, 420 Feicui Road, Hefei, Anhui 230601, PR China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 420 Feicui Road, Hefei, Anhui 230601, PR China
| | - Han-Qing Chen
- School of Food and Biological Engineering, Hefei University of Technology, 420 Feicui Road, Hefei, Anhui 230601, PR China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 420 Feicui Road, Hefei, Anhui 230601, PR China.
| |
Collapse
|
6
|
Zhang J, Liu D, Liang X, Liu G, Wen C, Liang L, Liu X, Li Y, Xu X. Synthesis and characterization of selenium nanoparticles stabilized by Grifola frondosa polysaccharides and gallic acid conjugates. Int J Biol Macromol 2024; 278:134787. [PMID: 39153675 DOI: 10.1016/j.ijbiomac.2024.134787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 08/01/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Selenium nanoparticles (SeNPs) are of interest for their versatility and low toxicity, but bare SeNPs are unstable and tend to aggregate and precipitate as black elemental Se, which limits the application of SeNPs. This study evaluated the physicochemical properties, physical stability, antioxidant activities and cytotoxicity of SeNPs stabilized by Grifola frondosa polysaccharides (GFPs) and GFPs-gallic acid conjugates (GFPs-GA). The results showed that the particle size (PZ), polymer index (PDI) and zeta potential (ZP) of the GFPs-SeNPs and GFPs-GA-SeNPs were 58.72 ± 0.53 nm, 0.11, -8.36 ± 0.21 mV and 61.80 ± 0.16 nm, 0.12, -9.37 ± 0.13 mV, respectively. Besides, the GFPs-SeNPs and GFPs-GA-SeNPs remained stable when stored at 4 °C for 70 days in darkness. SeNPs stabilized with GFPs have improved the antioxidant activity and selective toxicity to tumour cells. Interestingly, SeNPs stabilized with GFPs-GA further enhanced these biological activities. This work provided a simple and effective method to construct well-dispersed SeNPs in aqueous systems, demonstrating the important roles of GFPs and GFPs-GA in the size control, dispersion and stabilization of SeNPs. The prepared GFPs-SeNPs and GFPs-GA-SeNPs can serve as good selenium supplements and have potential prospects for antioxidant activity and tumour inhibition.
Collapse
Affiliation(s)
- Jixian Zhang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; Guangling College, Yangzhou University, Yangzhou 225000, China
| | - Dongming Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Xia Liang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Guoyan Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Chaoting Wen
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China.
| | - Li Liang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Xiaofang Liu
- School of Tourism and Cuisine, Yangzhou University, Yangzhou 225127, China
| | - Youdong Li
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Xin Xu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China.
| |
Collapse
|
7
|
Zhang S, Wang Y, Wang M, Jiang L, Ma X, Huang Y, Liu T, Zheng L, Li Y. Construction and anti-pancreatic cancer activity of selenium nanoparticles stabilized by Prunella vulgaris polysaccharide. Int J Biol Macromol 2024; 278:134924. [PMID: 39173800 DOI: 10.1016/j.ijbiomac.2024.134924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 08/03/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
Selenium nanoparticles (SeNPs), as a potential cancer therapeutic agent, have attracted extensive attention due to their high anticancer activity and low toxicity. Polysaccharides could be the modifiers and stabilizers to improve the stability and dispersibility of SeNPs in aqueous solution. This study aimed to investigate the physicochemical characterization, stability, and anti-pancreatic cancer cell activities of SeNPs stabilized by a heteroxylan PVP3-1 extracted from the clusters of Prunella vulgaris Linn. Our results showed that PVP3-1 with Mw of 154 kDa was composed of →4)-β-D-Xylp(1→, →2, 4)-β-D-Xylp(1→, t-α-L-Araf(1→ and 4-MeO-α-D-GlcpA(1→. Red, zero-valent, and uniform spherical SeNPs with an average diameter of about 60 nm and high stability in aqueous solution were constructed successfully by polysaccharide PVP3-1. Anti-pancreatic cancer cell activity assays showed that PVP3-1-SeNPs could inhibit the proliferation and migration of pancreatic cancer cells in vitro. Furthermore, PVP3-1-SeNPs induced apoptosis and autophagy of pancreatic cancer cells through inhibiting mTOR signaling pathway. In conclusion, these results indicated that PVP3-1-SeNPs could be potential anti-tumor nanoparticles for treating pancreatic cancer.
Collapse
Affiliation(s)
- Shihai Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China
| | - Yang Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China
| | - Meiqin Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China
| | - Li Jiang
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Guizhou Medical University, Guiyang 550004, China
| | - Xue Ma
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Guizhou Medical University, Guiyang 550004, China
| | - Yong Huang
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Guizhou Medical University, Guiyang 550004, China
| | - Ting Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China.
| | - Lin Zheng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China; National Engineering Research Center of Miao's Medicines, Guizhou Medical University, Guiyang 550004, China.
| | - Yongjun Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China; National Engineering Research Center of Miao's Medicines, Guizhou Medical University, Guiyang 550004, China.
| |
Collapse
|
8
|
Nag S, Kar S, Mishra S, Stany B, Seelan A, Mohanto S, Haryini S S, Kamaraj C, Subramaniyan V. Unveiling Green Synthesis and Biomedical Theranostic paradigms of Selenium Nanoparticles (SeNPs) - A state-of-the-art comprehensive update. Int J Pharm 2024; 662:124535. [PMID: 39094922 DOI: 10.1016/j.ijpharm.2024.124535] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/15/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024]
Abstract
The advancements in nanotechnology, pharmaceutical sciences, and healthcare are propelling the field of theranostics, which combines therapy and diagnostics, to new heights; emphasizing the emergence of selenium nanoparticles (SeNPs) as versatile theranostic agents. This comprehensive update offers a holistic perspective on recent developments in the synthesis and theranostic applications of SeNPs, underscoring their growing importance in nanotechnology and healthcare. SeNPs have shown significant potential in multiple domains, including antioxidant, anti-inflammatory, anticancer, antimicrobial, antidiabetic, wound healing, and cytoprotective therapies. The review highlights the adaptability and biocompatibility of SeNPs, which are crucial for advanced disease detection, monitoring, and personalized treatment. Special emphasis is placed on advancements in green synthesis techniques, underscoring their eco-friendly and cost-effective benefits in biosensing, diagnostics, imaging and therapeutic applications. Additionally, the appraisal scrutinizes the progressive trends in smart stimuli-responsive SeNPs, conferring their role in innovative solutions for disease management and diagnostics. Despite their promising therapeutic and prophylactic potential, SeNPs also present several challenges, particularly regarding toxicity concerns. These challenges and their implications for clinical translation are thoroughly explored, providing a balanced view of the current state and prospects of SeNPs in theranostic applications.
Collapse
Affiliation(s)
- Sagnik Nag
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia.
| | - Shinjini Kar
- Department of Life Science and Biotechnology, Jadavpur University (JU), 188 Raja S.C. Mallick Road, Kolkata 700032, India; Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Shatakshi Mishra
- Department of Bio-Sciences, School of Bio-Sciences & Technology (SBST), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India; Department of Applied Microbiology, School of Bio-Sciences & Technology (SBST), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - B Stany
- Department of Bio-Sciences, School of Bio-Sciences & Technology (SBST), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India; Department of Applied Microbiology, School of Bio-Sciences & Technology (SBST), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Anmol Seelan
- Department of Biological Sciences, Sunandan Divatia School of Science, Narsee Monjee Institute of Management Studies (NMIMS), Pherozeshah Mehta Rd., Mumbai 400056, India
| | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018, India
| | - Sree Haryini S
- Department of Bio-Sciences, School of Bio-Sciences & Technology (SBST), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India; Department of Applied Microbiology, School of Bio-Sciences & Technology (SBST), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Chinnaperumal Kamaraj
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology (SRMIST), Chennai, India; Interdisciplinary Institute of Indian System of Medicine, Directorate of Research, SRM Institute of Science and Technology, Chennai, India.
| | - Vetriselvan Subramaniyan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia; Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, 47500 Selangor, Darul Ehsan, Malaysia
| |
Collapse
|
9
|
Hua Z, Li Y, Chen T, Wu D, Xu Y, Hu JN. Morin-Based Nanoparticles for Regulation of Blood Glucose. ACS APPLIED MATERIALS & INTERFACES 2024; 16:21400-21414. [PMID: 38640094 DOI: 10.1021/acsami.3c17642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
Morin, a naturally occurring bioactive compound shows great potential as an antioxidant, anti-inflammatory agent, and regulator of blood glucose levels. However, its low water solubility, poor lipid solubility, limited bioavailability, and rapid clearance in vivo hinder its application in blood glucose regulation. To address these limitations, we report an enzymatically synthesized nanosized morin particle (MNs) encapsulated in sodium alginate microgels (M@SA). This approach significantly enhances morin's delivery efficiency and therapeutic efficacy in blood glucose regulation. Utilizing horseradish peroxidase, we synthesized MNs averaging 305.7 ± 88.7 nm in size. These MNs were then encapsulated via electrohydrodynamic microdroplet spraying to form M@SA microgels. In vivo studies revealed that M@SA microgels demonstrated prolonged intestinal retention and superior efficacy compared with unmodified morin and MNs alone. Moreover, MNs notably improved glucose uptake in HepG2 cells. Furthermore, M@SA microgels effectively regulated blood glucose, lipid profiles, and oxidative stress in diabetic mice while mitigating liver, kidney, and pancreatic damage and enhancing anti-inflammatory responses. Our findings propose a promising strategy for the oral administration of natural compounds for blood glucose regulation, with implications for broader therapeutic applications.
Collapse
Affiliation(s)
- Ziqi Hua
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yanfei Li
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Tao Chen
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Di Wu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yu Xu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Jiang-Ning Hu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
10
|
Tian J, Zhang Z, Shang Y, Zheng Y. Extraction, structure and antioxidant activity of the polysaccharides from morels (Morchella spp.): A review. Int J Biol Macromol 2024; 264:130656. [PMID: 38453116 DOI: 10.1016/j.ijbiomac.2024.130656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 01/28/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
Morels (Morchella spp.), which are cultivated only in a few regions of the world, are edible mushrooms known for their various properties including antioxidation, immune regulation, antiinflammation, and antitumor effects. Polysaccharides from Morchella are principally responsible for its antioxidant activity. This paper reviews the extraction, purification, structural analysis and antioxidant activity of Morchella polysaccharides (MPs), providing updated research progress. Meanwhile, the structural-property relationships of MPs were further discussed. In addition, based on in vitro and in vivo studies, the major factors responsible for the antioxidant activity of MPs were summarized including scavenging free radicals, reduction capacity, inhibitory lipid peroxidation activity, regulating the signal transduction pathway, reducing the production of ROS and NO, etc. Finally, we hope that our research can provide a reference for further research and development of MPs.
Collapse
Affiliation(s)
- Jinfeng Tian
- College of Basic Medicine, Panzhihua University, Panzhihua 617000, PR China
| | - Zhe Zhang
- College of Biological and Chemical Engineering, Panzhihua University, Panzhihua 617000, PR China
| | - Yuanhong Shang
- College of Biological and Chemical Engineering, Panzhihua University, Panzhihua 617000, PR China.
| | - Yi Zheng
- College of Biological and Chemical Engineering, Panzhihua University, Panzhihua 617000, PR China
| |
Collapse
|
11
|
Zhang Q, Xu Y, Xie L, Shu X, Zhang S, Wang Y, Wang H, Dong Q, Peng W. The function and application of edible fungal polysaccharides. ADVANCES IN APPLIED MICROBIOLOGY 2024; 127:45-142. [PMID: 38763529 DOI: 10.1016/bs.aambs.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Edible fungi, commonly known as mushrooms, are precious medicinal and edible homologous gifts from nature to us. Edible fungal polysaccharides (EFPs) are a variety of bioactive macromolecular which isolated from fruiting bodies, mycelia or fermentation broths of edible or medicinal fungus. Increasing researches have confirmed that EFPs possess multiple biological activities both in vitro and in vivo settings, including antioxidant, antiviral, anti-inflammatory, immunomodulatory, anti-tumor, hypoglycemic, hypolipidemic, and regulating intestinal flora activities. As a result, they have emerged as a prominent focus in the healthcare, pharmaceutical, and cosmetic industries. Fungal EFPs have safe, non-toxic, biodegradable, and biocompatible properties with low immunogenicity, bioadhesion ability, and antibacterial activities, presenting diverse potential applications in the food industries, cosmetic, biomedical, packaging, and new materials. Moreover, varying raw materials, extraction, purification, chemical modification methods, and culture conditions can result in variances in the structure and biological activities of EFPs. The purpose of this review is to provide comprehensively and systematically organized information on the structure, modification, biological activities, and potential applications of EFPs to support their therapeutic effects and health functions. This review provides new insights and a theoretical basis for prospective investigations and advancements in EFPs in fields such as medicine, food, and new materials.
Collapse
Affiliation(s)
- Qian Zhang
- Sichuan Institute of Edible Fungi, Chengdu, P.R. China; National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, P.R. China; Scientifc Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, P.R. China.
| | - Yingyin Xu
- Sichuan Institute of Edible Fungi, Chengdu, P.R. China; National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, P.R. China; Scientifc Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, P.R. China.
| | - Liyuan Xie
- Sichuan Institute of Edible Fungi, Chengdu, P.R. China; National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, P.R. China; Scientifc Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, P.R. China.
| | - Xueqin Shu
- Sichuan Institute of Edible Fungi, Chengdu, P.R. China; National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, P.R. China; Scientifc Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, P.R. China.
| | - Shilin Zhang
- Sichuan Institute of Edible Fungi, Chengdu, P.R. China; National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, P.R. China; Scientifc Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, P.R. China.
| | - Yong Wang
- Sichuan Institute of Edible Fungi, Chengdu, P.R. China; National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, P.R. China; Scientifc Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, P.R. China.
| | - Haixia Wang
- Horticulture Institute of Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, P.R. China.
| | - Qian Dong
- Sichuan Institute of Edible Fungi, Chengdu, P.R. China; National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, P.R. China; Scientifc Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, P.R. China.
| | - Weihong Peng
- Sichuan Institute of Edible Fungi, Chengdu, P.R. China; National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, P.R. China; Scientifc Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, P.R. China.
| |
Collapse
|