1
|
Hibbitts AJ, Kočí Z, Kneafsey S, Matsiko A, Žilić L, Dervan A, Hinton P, Chen G, Cavanagh B, Dowling J, McCoy C, Buckley CT, Archibald SJ, O'Brien FJ. Multi-Factorial Nerve Guidance Conduit Engineering Improves Outcomes in Inflammation, Angiogenesis and Large Defect Nerve Repair. Matrix Biol 2022; 106:34-57. [PMID: 35032612 DOI: 10.1016/j.matbio.2022.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 11/13/2021] [Accepted: 01/05/2022] [Indexed: 12/20/2022]
Abstract
Nerve guidance conduits (NGCs) are sub-optimal for long-distance injuries with inflammation and poor vascularization related to poor axonal repair. This study used a multi-factorial approach to create an optimized biomaterial NGC to address each of these issues. Through stepwise optimization, a collagen-chondroitin-6-sulphate (Coll-CS) biomaterial was functionalized with extracellular matrix (ECM) components; fibronectin, laminin 1 and laminin 2 (FibL1L2) in specific ratios. A snap-cooled freeze-drying process was then developed with optimal pore architecture and alignment to guide axonal bridging. Culture of adult rat dorsal root ganglia on NGCs demonstrated significant improvements in inflammation, neurogenesis and angiogenesis in the specific Fib:L1:L2 ratio of 1:4:1. In clinically relevant, large 15 mm rat sciatic nerve defects, FibL1L2-NGCs demonstrated significant improvements in axonal density and angiogenesis compared to unmodified NGCs with functional equivalence to autografts. Therefore, a multiparameter ECM-driven strategy can significantly improve axonal repair across large defects, without exogenous cells or growth factors.
Collapse
Affiliation(s)
- Alan J Hibbitts
- Tissue Engineering Research Group, Dept. of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity College Dublin, The University of Dublin, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| | - Zuzana Kočí
- Tissue Engineering Research Group, Dept. of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity College Dublin, The University of Dublin, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| | - Simone Kneafsey
- Tissue Engineering Research Group, Dept. of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity College Dublin, The University of Dublin, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| | - Amos Matsiko
- Tissue Engineering Research Group, Dept. of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity College Dublin, The University of Dublin, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| | - Leyla Žilić
- Tissue Engineering Research Group, Dept. of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity College Dublin, The University of Dublin, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| | - Adrian Dervan
- Tissue Engineering Research Group, Dept. of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity College Dublin, The University of Dublin, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| | - Paige Hinton
- Tissue Engineering Research Group, Dept. of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity College Dublin, The University of Dublin, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| | - Gang Chen
- Department of Physiology and Medical Physics, Centre for the Study of Neurological Disorders, Microsurgical Research and Training Facility (MRTF), RCSI, Dublin, Ireland
| | | | - Jennifer Dowling
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, D02 YN77 Dublin, Ireland
| | - Claire McCoy
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, D02 YN77 Dublin, Ireland
| | - Conor T Buckley
- Tissue Engineering Research Group, Dept. of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity College Dublin, The University of Dublin, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| | | | - Fergal J O'Brien
- Tissue Engineering Research Group, Dept. of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity College Dublin, The University of Dublin, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| |
Collapse
|
2
|
McGrady NR, Pasini S, Baratta RO, Del Buono BJ, Schlumpf E, Calkins DJ. Restoring the Extracellular Matrix: A Neuroprotective Role for Collagen Mimetic Peptides in Experimental Glaucoma. Front Pharmacol 2021; 12:764709. [PMID: 34795592 PMCID: PMC8592892 DOI: 10.3389/fphar.2021.764709] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/19/2021] [Indexed: 11/24/2022] Open
Abstract
Optic neuropathies are a major cause of visual disabilities worldwide, causing irreversible vision loss through the degeneration of retinal ganglion cell (RGC) axons, which comprise the optic nerve. Chief among these is glaucoma, in which sensitivity to intraocular pressure (IOP) leads to RGC axon dysfunction followed by outright degeneration of the optic projection. Current treatments focus entirely on lowering IOP through topical hypotensive drugs, surgery to facilitate aqueous fluid outflow, or both. Despite this investment in time and resources, many patients continue to lose vision, underscoring the need for new therapeutics that target neurodegeneration directly. One element of progression in glaucoma involves matrix metalloproteinase (MMP) remodeling of the collagen-rich extracellular milieu of RGC axons as they exit the retina through the optic nerve head. Thus, we investigated the ability of collagen mimetic peptides (CMPs) representing various single strand fractions of triple helix human type I collagen to protect RGC axons in an inducible model of glaucoma. First, using dorsal root ganglia maintained in vitro on human type I collagen, we found that multiple CMPs significantly promote neurite outgrowth (+35%) compared to vehicle following MMP-induced fragmentation of the α1(I) and α2(I) chains. We then applied CMP to adult mouse eyes in vivo following microbead occlusion to elevate IOP and determined its influence on anterograde axon transport to the superior colliculus, the primary RGC projection target in rodents. In glaucoma models, sensitivity to IOP causes early degradation in axon function, including anterograde transport from retina to central brain targets. We found that CMP treatment rescued anterograde transport following a 3-week +50% elevation in IOP. These results suggest that CMPs generally may represent a novel therapeutic to supplement existing treatments or as a neuroprotective option for patients who do not respond to IOP-lowering regimens.
Collapse
Affiliation(s)
- Nolan R McGrady
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Silvia Pasini
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, United States
| | | | | | - Eric Schlumpf
- Stuart Therapeutics, Inc., Stuart, FL, United States
| | - David J Calkins
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
3
|
Abstract
Preparations of peripheral sensory neurons from rodents are essential for studying the molecular mechanism of neuronal survival and physiology. Although, isolating and culturing these neurons proves difficult, often these preparations are contaminated with nonneuronal proliferating cells. Here, we describe an isolation method using a Percoll gradient and an antimitotic reagent to significantly reduce the nonneuronal cell contamination while maintaining the integrity of the rodent sensory dorsal root ganglia (DRG) neurons.
Collapse
|
4
|
Preferential Enhancement of Sensory and Motor Axon Regeneration by Combining Extracellular Matrix Components with Neurotrophic Factors. Int J Mol Sci 2016; 18:ijms18010065. [PMID: 28036084 PMCID: PMC5297700 DOI: 10.3390/ijms18010065] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/28/2016] [Accepted: 12/24/2016] [Indexed: 11/29/2022] Open
Abstract
After peripheral nerve injury, motor and sensory axons are able to regenerate but inaccuracy of target reinnervation leads to poor functional recovery. Extracellular matrix (ECM) components and neurotrophic factors (NTFs) exert their effect on different neuronal populations creating a suitable environment to promote axonal growth. Here, we assessed in vitro and in vivo the selective effects of combining different ECM components with NTFs on motor and sensory axons regeneration and target reinnervation. Organotypic cultures with collagen, laminin and nerve growth factor (NGF)/neurotrophin-3 (NT3) or collagen, fibronectin and brain-derived neurotrophic factor (BDNF) selectively enhanced sensory neurite outgrowth of DRG neurons and motor neurite outgrowth from spinal cord slices respectively. For in vivo studies, the rat sciatic nerve was transected and repaired with a silicone tube filled with a collagen and laminin matrix with NGF/NT3 encapsulated in poly(lactic-co-glycolic acid) (PLGA) microspheres (MP) (LM + MP.NGF/NT3), or a collagen and fibronectin matrix with BDNF in PLGA MPs (FN + MP.BDNF). Retrograde labeling and functional tests showed that LM + MP.NGF/NT3 increased the number of regenerated sensory neurons and improved sensory functional recovery, whereas FN + MP.BDNF preferentially increased regenerated motoneurons and enhanced motor functional recovery. Therefore, combination of ECM molecules with NTFs may be a good approach to selectively enhance motor and sensory axons regeneration and promote appropriate target reinnervation.
Collapse
|
5
|
Chen SL, Chen ZG, Dai HL, Ding JX, Guo JS, Han N, Jiang BG, # HJ, Li J, Li SP, Li WJ, Liu J, Liu Y, Ma JX, Peng J, Shen YD, Sun GW, Tang PF, Wang GH, Wang XH, Xiang LB, Xie RG, Xu JG, Yu B, Zhang LC, Zhang PX, Zhou SL. Repair, protection and regeneration of peripheral nerve injury. Neural Regen Res 2015; 10:1777-98. [PMID: 26807113 PMCID: PMC4705790 DOI: 10.4103/1673-5374.170301] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
6
|
Madl CM, Heilshorn SC. Matrix interactions modulate neurotrophin-mediated neurite outgrowth and pathfinding. Neural Regen Res 2015; 10:514-7. [PMID: 26170800 PMCID: PMC4424732 DOI: 10.4103/1673-5374.155426] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2015] [Indexed: 11/30/2022] Open
Abstract
Both matrix biochemistry and neurotrophic factors are known to modulate neurite outgrowth and pathfinding; however, the interplay between these two factors is less studied. While previous work has shown that the biochemical identity of the matrix can alter the outgrowth of neurites in response to neurotrophins, the importance of the concentration of cell-adhesive ligands is unknown. Using engineered elastin-like protein matrices, we recently demonstrated a synergistic effect between matrix-bound cell-adhesive ligand density and soluble nerve growth factor treatment on neurite outgrowth from dorsal root ganglia. This synergism was mediated by Schwann cell-neurite contact through L1CAM. Cell-adhesive ligand density was also shown to alter the pathfinding behavior of dorsal root ganglion neurites in response to a gradient of nerve growth factor. While more cell-adhesive matrices promoted neurite outgrowth, less cell-adhesive matrices promoted more faithful neurite pathfinding. These studies emphasize the importance of considering both matrix biochemistry and neurotrophic factors when designing biomaterials for peripheral nerve regeneration.
Collapse
Affiliation(s)
- Christopher M Madl
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Sarah C Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
7
|
Embryonic neural stem cells in a 3D bioassay for trophic stimulation studies. Brain Res Bull 2015; 115:37-44. [DOI: 10.1016/j.brainresbull.2015.04.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 04/13/2015] [Accepted: 04/17/2015] [Indexed: 01/19/2023]
|
8
|
Romano NH, Lampe KJ, Xu H, Ferreira MM, Heilshorn SC. Microfluidic gradients reveal enhanced neurite outgrowth but impaired guidance within 3D matrices with high integrin ligand densities. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:722-30. [PMID: 25315156 PMCID: PMC4528974 DOI: 10.1002/smll.201401574] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 08/11/2014] [Indexed: 05/08/2023]
Abstract
The density of integrin-binding ligands in an extracellular matrix (ECM) is known to regulate cell migration speed by imposing a balance of traction forces between the leading and trailing edges of the cell, but the effect of cell-adhesive ligands on neurite chemoattraction is not well understood. A platform is presented here that combines gradient-generating microfluidic devices with 3D protein-engineered hydrogels to study the effect of RGD ligand density on neurite pathfinding from chick dorsal root ganglia-derived spheroids. Spheroids are encapsulated in elastin-like polypeptide (ELP) hydrogels presenting either 3.2 or 1.6 mM RGD ligands and exposed to a microfluidic gradient of nerve growth factor (NGF). While the higher ligand density matrix enhanced neurite initiation and persistence of neurite outgrowth, the lower ligand density matrix significantly improved neurite pathfinding and increased the frequency of growth cone turning up the NGF gradient. The apparent trade-off between neurite extension and neurite guidance is reminiscent of the well-known trade-off between adhesive forces at the leading and trailing edges of a migrating cell, implying that a similar matrix-mediated balance of forces regulates neurite elongation and growth cone turning. These results have implications in the design of engineered materials for in vitro models of neural tissue and in vivo nerve guidance channels.
Collapse
Affiliation(s)
| | | | - Hui Xu
- 476 Lomita Mall, McCullough 246, Stanford, CA 94305
| | | | | |
Collapse
|
9
|
Romano NH, Madl CM, Heilshorn SC. Matrix RGD ligand density and L1CAM-mediated Schwann cell interactions synergistically enhance neurite outgrowth. Acta Biomater 2015; 11:48-57. [PMID: 25308870 DOI: 10.1016/j.actbio.2014.10.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 10/01/2014] [Accepted: 10/04/2014] [Indexed: 11/26/2022]
Abstract
The innate biological response to peripheral nerve injury involves a complex interplay of multiple molecular cues to guide neurites across the injury gap. Many current strategies to stimulate regeneration take inspiration from this biological response. However, little is known about the balance of cell-matrix and Schwann cell-neurite dynamics required for regeneration of neural architectures. We present an engineered extracellular matrix (eECM) microenvironment with tailored cell-matrix and cell-cell interactions to study their individual and combined effects on neurite outgrowth. This eECM regulates cell-matrix interactions by presenting integrin-binding RGD (Arg-Gly-Asp) ligands at specified densities. Simultaneously, the addition or exclusion of nerve growth factor (NGF) is used to modulate L1CAM-mediated Schwann cell-neurite interactions. Individually, increasing the RGD ligand density from 0.16 to 3.2mM resulted in increasing neurite lengths. In matrices presenting higher RGD ligand densities, neurite outgrowth was synergistically enhanced in the presence of soluble NGF. Analysis of Schwann cell migration and co-localization with neurites revealed that NGF enhanced cooperative outgrowth between the two cell types. Interestingly, neurites in NGF-supplemented conditions were unable to extend on the surrounding eECM without the assistance of Schwann cells. Blocking studies revealed that L1CAM is primarily responsible for these Schwann cell-neurite interactions. Without NGF supplementation, neurite outgrowth was unaffected by L1CAM blocking or the depletion of Schwann cells. These results underscore the synergistic interplay between cell-matrix and cell-cell interactions in enhancing neurite outgrowth for peripheral nerve regeneration.
Collapse
|
10
|
Neural cell adhesion molecule NrCAM is expressed in the mammalian inner ear and modulates spiral ganglion neurite outgrowth in an in vitro alternate choice assay. J Mol Neurosci 2014; 55:836-44. [PMID: 25407819 DOI: 10.1007/s12031-014-0436-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 09/30/2014] [Indexed: 12/17/2022]
Abstract
Neuron-glial-related cell adhesion molecule (NrCAM) is a neuronal cell adhesion molecule involved in neuron-neuron and neuron-glial adhesion as well as directional signaling during axonal cone growth. NrCAM has been shown to be involved in several cellular processes in the central and peripheral nervous systems, including neurite outgrowth, axonal pathfinding and myelination, fasciculation of nerve fibers, and cell migration. This includes sensory systems such as the eye and olfactory system. However, there are no reports on the expression/function of NrCAM in the auditory system. The aim of the present study was to elucidate the occurrence of NrCAM in the mammalian cochlea and its role in innervation of the auditory end organ. Our work indicates that NrCAM is highly expressed in the developing mammalian cochlea (position consistent with innervation). Moreover, we found that NrCAM, presented in stripe micropatterns, provide directional cues to neonatal rat inner ear spiral ganglion neurites in vitro. Our results are consistent with a role for NrCAM in the pathfinding of spiral ganglion dendrites toward their hair cell targets in the sensory epithelium.
Collapse
|
11
|
Hu W, Guan FX, Li Y, Tang YJ, Yang F, Yang B. New methods for inducing the differentiation of amniotic-derived mesenchymal stem cells into motor neuron precursor cells. Tissue Cell 2013; 45:295-305. [DOI: 10.1016/j.tice.2013.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 02/23/2013] [Accepted: 03/13/2013] [Indexed: 01/01/2023]
|
12
|
Kuihua Z, Chunyang W, Cunyi F, Xiumei M. Aligned SF/P(LLA-CL)-blended nanofibers encapsulating nerve growth factor for peripheral nerve regeneration. J Biomed Mater Res A 2013; 102:2680-91. [PMID: 23963979 DOI: 10.1002/jbm.a.34922] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 05/16/2013] [Accepted: 08/11/2013] [Indexed: 12/11/2022]
Abstract
Artificial nerve guidance conduits (NGCs) containing bioactive neurotrophic factors and topographical structure to biomimic native tissues are essential for efficient regeneration of nerve gaps. In this study, aligned SF/P(LLA-CL) nanofibers encapsulating nerve growth factor (NGF), which was stabilized by SF in core, were fabricated via a coaxial electrospinning technique. The controlled release of NGF from the nanofibers was evaluated using enzyme-linked immune sorbent assay (ELISA) and PC12 cell-based bioassay over a 60-day time period. The results demonstrated that NGF presented a sustained release and remained biological activity over 60 days. Nerve guidance conduits (NGCs) were fabricated by reeling the aligned SF/P(LLA-CL) nanofibrous scaffolds encapsulating NGF and then used as a bridge implanted across a 15-mm defect in the sciatic nerve of rats to promote nerve regeneration. The outcome in terms of regenerated nerve at 12 weeks was evaluated by a combination of electrophysiological assessment, histochemistry, and electron microscopy. All results clarified that the NGF-encapsulated-aligned SF/P(LLA-CL) NGCs promoted peripheral nerve regeneration significantly better than the aligned SF/P(LLA-CL) NGCs, suggesting that the released NGF from nanofibers could effectively promote the regeneration of peripheral nerve.
Collapse
Affiliation(s)
- Zhang Kuihua
- Department of Polymer Materials and Engineering, College of Materials and Textile Engineering, Jiaxing University, Zhejiang, 314001, China
| | | | | | | |
Collapse
|
13
|
Yao L, Daly W, Newland B, Yao S, Wang W, Chen BKK, Madigan N, Windebank A, Pandit A. Improved axonal regeneration of transected spinal cord mediated by multichannel collagen conduits functionalized with neurotrophin-3 gene. Gene Ther 2013; 20:1149-57. [DOI: 10.1038/gt.2013.42] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Revised: 04/16/2013] [Accepted: 06/17/2013] [Indexed: 11/09/2022]
|
14
|
Rabinowitz L, Monnerie H, Shashidhara S, Le Roux PD. Growth of rat cortical neurons on DuraGen, a collagen-based dural graft matrix. Neurol Res 2013; 27:887-94. [PMID: 16354551 DOI: 10.1179/016164105x49364] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVES DuraGen, a collagen-based dural graft matrix, is frequently used in clinical neurosurgery. In the present study we examined whether DuraGen influenced neuron survival of or process growth from cerebral cortex neurons in culture. METHODS Dissociated E19 rat cerebral cortical neurons were cultured at low density on poly-L-lysine or on cryostat-sectioned DuraGen. Neuron survival was assessed using morphological criteria, fluorescein diacetate (FDA) and propidium iodide (PI), nuclear staining and TUNEL labeling. Process growth was analysed using specific antibodies against MAP2 and the 200 kDa neurofilament subunit (NF-H) to identify dendrites and axons, respectively. RESULTS In immature cultures (3 days in vitro, DIV), nearly 70% of the neurons remained viable in control and DuraGen-exposed cells. In mature cultures (10 DIV), approximately 45% of the neurons were viable. Survival was similar in DuraGen cultures and controls. Cell viability also was similar when DuraGen conditioned the medium, but was not in contact with the neurons. When 10-day-old cultures were treated with glutamate (100 mumol/l for 24 hours) to elicit excitotoxic injury, a 40% decrease in neuron survival was observed. DuraGen's presence neither exacerbated nor attenuated glutamate-induced excitotoxic neuron death. The amount of necrotic or apoptotic cells also was similar in control and DuraGen cultures. Finally, DuraGen had an equal ability to support both axon and dendrite growth as poly-L-lysine. CONCLUSION Our findings demonstrate that DuraGen has no adverse effect on survival of or process growth from cerebral cortical neurons in vitro. These data support DuraGen's biosafety as a dural substitute in clinical neurosurgery.
Collapse
Affiliation(s)
- Lee Rabinowitz
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
| | | | | | | |
Collapse
|
15
|
Abstract
The theory of chemotaxis has been widely accepted, but its mechanisms are disputed. Chemotactic growth of peripheral nerves may be tissue, topographic and end-organ specific. Recent studies indicated that peripheral nerve regeneration lacks topographic specificity, but whether it has end-organ specificity is disputed. Chemotaxis in nerve regeneration is affected by the distance between stumps, volume, and neurotrophic support, as well as the structure of distal nerve stumps. It can be applied to achieve precise repair of nerves and complete recovery of end organ function. Small gap sleeve bridging technique, which is based on this theory shows promising effects but it is still challenging to find the perfect combination of nerve conduits, cells and neurotrophic factors to put it intoits best use. In this paper, we made a comprehensive review of mechanisms, effect factors and applications of chemotaxis.
Collapse
|
16
|
Abstract
Collagen XVI, by structural analogy a member of the FACIT- (fibril-associated collagens with interrupted triple helices) family of collagens, is described as a minor collagen component of connective tissues. Collagen XVI is expressed in various cells and tissues without known occurrence of splice variants or isoforms. For skin and cartilage tissues its suprastructure is known. Presumably, there it acts as an adaptor protein connecting and organizing large fibrillar networks and thus modulates integrity and stability of the extracellular matrix (ECM). Collagen XVI is produced by myofibroblasts in the normal intestine and its synthesis is increased in the inflamed bowel wall where myofibroblasts develop increased numbers of focal adhesion contacts on collagen XVI. Consequently, recruitment of α1 integrin into the focal adhesions at the tip of the cells is induced followed by increased cell spreading on collagen XVI. This presumably adds to the maintenance of myofibroblasts in the inflamed intestinal regions and thus promotes fibrotic responses of the tissue. Notably, α1/α2 integrins interact with collagen XVI through an α1/α2β1 integrin binding site located in the COL 1-3 domains. Collagen XVI may act as a substrate for adhesion and invasion of connective tissue tumor cells. In glioblastoma it induces tumor invasiveness by modification of the β1-integrin activation pattern. Thus, altering the cell-matrix interaction through collagen XVI might be a molecular mechanism to further augment the invasive phenotype of glioma cells. In this line, in oral squamous cell carcinoma collagen XVI expression is induced which results in an upregulation of Kindlin-1 followed by an increased interaction with beta1-integrin. Consequently, collagen XVI induces a proliferative tumor phenotype by promoting an early S-phase entry. In summary, collagen XVI plays a decisive role in the interaction of connective tissue cells with their ECM, which is impaired in pathological situations. Alteration of tissue location and expression level of collagen XVI appears to promote tumorigenesis and to perpetuate inflammatory reactions.
Collapse
Affiliation(s)
- Susanne Grässel
- Orthopaedic Surgery, University of Regensburg, Centre for Medical Biotechnology, Oral and Maxillofacial Surgery, University Hospital Regensburg, BioPark 1, Regensburg, Germany.
| | | |
Collapse
|
17
|
Donnelly EM, Madigan NN, Rooney GE, Knight A, Chen B, Ball B, Kinnavane L, Garcia Y, Dockery P, Fraher J, Strappe PM, Windebank AJ, O'Brien T, McMahon SS. Lentiviral vector delivery of short hairpin RNA to NG2 and neurotrophin-3 promotes locomotor recovery in injured rat spinal cord. Cytotherapy 2012; 14:1235-44. [DOI: 10.3109/14653249.2012.714865] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
18
|
McMahon SS, Nikolskaya N, Choileáin SN, Hennessy N, O'Brien T, Strappe PM, Gorelov A, Rochev Y. Thermosensitive hydrogel for prolonged delivery of lentiviral vector expressing neurotrophin-3 in vitro. J Gene Med 2011; 13:591-601. [DOI: 10.1002/jgm.1613] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Siobhan S McMahon
- Discipline of Anatomy; National University of Ireland; Galway; Ireland
| | - Natalia Nikolskaya
- National Centre for Biomedical Engineering Science; National University of Ireland; Galway; Ireland
| | - Siobhan Ní Choileáin
- National Centre for Biomedical Engineering Science; National University of Ireland; Galway; Ireland
| | - Niamh Hennessy
- National Centre for Biomedical Engineering Science; National University of Ireland; Galway; Ireland
| | - Timothy O'Brien
- Regenerative Medicine Institute; National University of Ireland; Galway; Ireland
| | - Padraig M Strappe
- School of Biomedical Sciences; Charles Sturt University; Wagga Wagga; NSW; Australia
| | - Alexander Gorelov
- School of Chemistry & Chemical Biology; University College Dublin; Ireland
| | - Yury Rochev
- National Centre for Biomedical Engineering Science; National University of Ireland; Galway; Ireland
| |
Collapse
|
19
|
Myers JP, Santiago-Medina M, Gomez TM. Regulation of axonal outgrowth and pathfinding by integrin-ECM interactions. Dev Neurobiol 2011; 71:901-23. [PMID: 21714101 PMCID: PMC3192254 DOI: 10.1002/dneu.20931] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Developing neurons use a combination of guidance cues to assemble a functional neural network. A variety of proteins immobilized within the extracellular matrix (ECM) provide specific binding sites for integrin receptors on neurons. Integrin receptors on growth cones associate with a number of cytosolic adaptor and signaling proteins that regulate cytoskeletal dynamics and cell adhesion. Recent evidence suggests that soluble growth factors and classic axon guidance cues may direct axon pathfinding by controlling integrin-based adhesion. Moreover, because classic axon guidance cues themselves are immobilized within the ECM and integrins modulate cellular responses to many axon guidance cues, interactions between activated receptors modulate cell signals and adhesion. Ultimately, growth cones control axon outgrowth and pathfinding behaviors by integrating distinct biochemical signals to promote the proper assembly of the nervous system. In this review, we discuss our current understanding how ECM proteins and their associated integrin receptors control neural network formation.
Collapse
Affiliation(s)
- Jonathan P Myers
- Department of Neuroscience, Neuroscience Training Program, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
20
|
Féréol S, Fodil R, Barnat M, Georget V, Milbreta U, Nothias F. Micropatterned ECM substrates reveal complementary contribution of low and high affinity ligands to neurite outgrowth. Cytoskeleton (Hoboken) 2011; 68:373-88. [DOI: 10.1002/cm.20518] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2010] [Revised: 04/28/2011] [Accepted: 05/24/2011] [Indexed: 12/12/2022]
|
21
|
Henderson J, Terenghi G, Ferguson MWJ. The reinnervation and revascularisation pattern of scarless murine fetal wounds. J Anat 2011; 218:660-7. [PMID: 21434911 DOI: 10.1111/j.1469-7580.2011.01366.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Fetal wounds can heal without scarring. There is evidence that the sensory nervous system plays a role in mediating inflammation and healing, and that the reinnervation pattern of adult wounds differs from that of unwounded skin. Ectoderm is required for development of the cutaneous nerve plexus in early gestation. It was hypothesised that scarless fetal wounds might completely regenerate their neural and vascular architecture. Wounds were made on mouse fetuses at embryonic day 16.5 of a 19.5-day gestation, which healed without visible scars. Immunohistochemical analysis of wound sites was performed to assess reinnervation, using antibodies to the pan neuronal marker PGP9.5 as well as to the neuropeptides calcitonin gene-related peptide (CGRP) and substance P (SP). Staining for the endothelial marker von Willebrand factor (VWF) allowed comparison of reinnervation and revascularisation. Wounds were harvested at timepoints from day 1 after wounding to postnatal day 6. Quantification of wound reinnervation and revascularisation was performed for timepoints up to 6 days post-wounding. Hypervascularisation of the wounds occurred within 24 h, and blood vessel density within the wounds remained significantly elevated until postnatal day 2 (4 days post- wounding), after which VWF immunoreactivity was similar between wound and control groups. Wound nerve density returned to a level similar to that of unwounded skin within 48 h of wounding, and PGP9.5 immunoreactive nerve fibre density remained similar to control skin thereafter. CGRP and SP immunoreactivity followed a similar pattern to that of PGP9.5, although wound levels did not return to those of control skin until postnatal day 1. Scarless fetal wounds appeared to regenerate their nerve and blood vessel microanatomy perfectly after a period of hypervascularisation.
Collapse
Affiliation(s)
- James Henderson
- Department of Plastic and Reconstructive Surgery, Norfolk and Norwich University Hospital NHS Trust, Norwich, UK
| | | | | |
Collapse
|
22
|
Donnelly EM, Strappe PM, McGinley LM, Madigan NN, Geurts E, Rooney GE, Windebank AJ, Fraher J, Dockery P, O'Brien T, McMahon SS. Lentiviral vector-mediated knockdown of the NG2 [corrected] proteoglycan or expression of neurotrophin-3 promotes neurite outgrowth in a cell culture model of the glial scar. J Gene Med 2010; 12:863-72. [PMID: 21105148 DOI: 10.1002/jgm.1509] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 09/06/2010] [Accepted: 09/23/2010] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Following spinal cord injury, a highly inhibitory environment for axonal regeneration develops. One of the main sources of this inhibition is the glial scar that is formed after injury by reactive astrocytes. The inhibitory environment is mainly a result of chondroitin sulphate proteoglycans (CSPGs). NG2, [corrected] one of the main inhibitory CSPGs, is up-regulated following spinal cord injury. METHODS Small interfering RNA (siRNA) was designed to target NG2 and this short hairpin RNA (shRNA) was cloned into a lentiviral vector (LV). The neurotrophic factor neurotrophin-3 (NT-3) promotes the growth and survival of developing neurites and has also been shown to aid regeneration. NT-3 was also cloned into a LV. In vitro assessment of these vectors using a coculture system of dorsal root ganglia (DRG) neurones and Neu7 astrocytes was carried out. The Neu7 cell line is a rat astrocyte cell line that overexpresses NG2, thereby mimicking the inhibitory environment following spinal cord injury. RESULTS AND DISCUSSION These experiments show that both the knockdown of NG2 via shRNA and over-expression of NT-3 can significantly increase neurite growth, although a combination of both vectors did not confer any additional benefit over the vectors used individually. These LVs show promising potential for growth and survival of neurites in injured central nervous system tissue (CNS).
Collapse
|
23
|
Eberhardt M, Hoffmann T, Sauer SK, Messlinger K, Reeh PW, Fischer MJM. Calcitonin gene-related peptide release from intact isolated dorsal root and trigeminal ganglia. Neuropeptides 2008; 42:311-7. [PMID: 18328558 DOI: 10.1016/j.npep.2008.01.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Revised: 12/31/2007] [Accepted: 01/27/2008] [Indexed: 10/22/2022]
Abstract
Neuropeptides like calcitonin gene-related peptide (CGRP) and substance P are found in significant proportions of primary afferent neurons. Release of these neuropeptides as well as prostaglandin E(2) is an approved index for the activation of these primary afferents. Previous studies have used cultures of enzyme-treated and mechanically dissociated primary afferent neurons, fresh tissue slices or cubes. In the present study we demonstrate CGRP and prostaglandin E(2) release from intact isolated dorsal root and trigeminal ganglia. Stimulation with noxious heat, low pH, inflammatory mediators and high potassium concentration increased CGRP release. In conclusion, neuropeptide release from intact isolated ganglia is a reliable method to study the responsiveness of sensory neurons in situ in comparison with neuronal cell cultures.
Collapse
Affiliation(s)
- Mirjam Eberhardt
- Institute of Physiology and Pathophysiology, University of Erlangen-Nuernberg, Erlangen, Germany
| | | | | | | | | | | |
Collapse
|
24
|
Neurite outgrowth and in vivo sensory innervation mediated by a Ca(V)2.2-laminin beta 2 stop signal. J Neurosci 2008; 28:2366-74. [PMID: 18322083 DOI: 10.1523/jneurosci.3828-07.2008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Axons and dendrites of developing neurons establish distributed innervation patterns enabling precise discrimination in sensory systems. We describe the role of the extracellular matrix molecule, laminin beta2, interacting with the Ca(V)2.2 calcium channel in establishing appropriate sensory innervation. In vivo, Ca(V)2.2 is expressed on the growth cones of Xenopus laevis sensory neurites and laminin beta2 is expressed in the skin. Culturing neurons on a laminin beta2 substrate inhibits neurite outgrowth in a specific and calcium-dependent manner. Blocking signaling between laminin beta2 and Ca(V)2.2 leads to increased numbers of sensory terminals in vivo. These findings suggest that interactions between extracellular matrix molecules and calcium channels regulate connectivity in the developing nervous system.
Collapse
|
25
|
Farrar NR, Spencer GE. Pursuing a 'turning point' in growth cone research. Dev Biol 2008; 318:102-11. [PMID: 18436201 DOI: 10.1016/j.ydbio.2008.03.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Revised: 03/05/2008] [Accepted: 03/06/2008] [Indexed: 01/13/2023]
Abstract
Growth cones are highly motile structures found at the leading edge of developing and regenerating nerve processes. Their role in axonal pathfinding has been well established and many guidance cues that influence growth cone behavior have now been identified. Many studies are now providing insights into the transduction and integration of signals in the growth cone, though a full understanding of growth cone behavior still eludes us. This review focuses on recent studies adding to the growing body of literature on growth cone behavior, focusing particularly on the level of autonomy the growth cone possesses and the role of local protein synthesis.
Collapse
Affiliation(s)
- Nathan R Farrar
- Department of Biological Sciences, Brock University, 500 Glenridge Avenue, St. Catharines, Ontario, Canada L2S 3A1
| | | |
Collapse
|
26
|
Hou ST, Jiang SX, Smith RA. Permissive and repulsive cues and signalling pathways of axonal outgrowth and regeneration. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 267:125-81. [PMID: 18544498 DOI: 10.1016/s1937-6448(08)00603-5] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Successful axonal outgrowth in the adult central nervous system (CNS) is central to the process of nerve regeneration and brain repair. To date, much of the knowledge on axonal guidance and outgrowth comes from studies on neuritogenesis and patterning during development where distal growth cones constantly sample the local environment and respond to specific physical and trophic influences. Opposing permissive (e.g., growth factors) and hostile signals (e.g., repulsive cues) are processed, leading to growth cone remodelling, and a concomitant restructuring of the cytoskeleton, thereby permitting pioneering extension and a potential for establishing synaptic connections. Repulsive cues, such as semaphorins, ephrins and myelin-secreted inhibitory glycoproteins, act through their respective receptors to affect the collapsing or turning of growth cones via several pathways, such as the Rho GTPases signalling which precipitates the cytoskeletal changes. One of the direct modulators of microtubules is the family of brain-specific proteins, collapsin response mediator protein (CRMP). Exciting evidence emerged recently that cleavage of CRMPs in response to injury-activated proteases, such as calpain, signals axonal retraction and neuronal death in adult post-mitotic neurons, while blocking this signal transduction prevents axonal retraction and death following excitotoxic insult and cerebral ischemia. Regeneration is minimal in injured postnatal CNS, albeit the occurrence of some limited remodelling in areas where synaptic plasticity is prevalent. Frequently in the absence of axonal regeneration, there is not only an inevitable loss of functional connections, but also a loss of neurons, such as through the actions of dependence receptors. Deciphering the cues and signalling pathways of axonal guidance and outgrowth may hold the key to fully understanding nerve regeneration and brain repair, thereby opening the way for developing potential therapeutics.
Collapse
Affiliation(s)
- Sheng T Hou
- Institute for Biological Sciences, National Research Council of Canada, Ottawa, Ontario, K1A 0R6, Canada
| | | | | |
Collapse
|
27
|
Gołka B, Swiech-Sabuda E, Gołka D, Marcol W, Górka D, Pietrucha-Dutczak M, Lewin-Kowalik J. The changes in neurotrophic properties of the peripheral nerves extracts following blocking of BDNF activity. Neurol Res 2007; 29:500-5. [PMID: 17535564 DOI: 10.1179/016164107x164111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVES Retinal ganglion cells (RGCs) of adult rats are unable to regenerate their axons after optic nerve injury and soon after they enter the pathway of apoptosis. They may, however, survive and regenerate new axons in response to application of specific peripheral nerve extracts that presumably contain a range of neurotrophic substances. One of the recognized substances of proven neurotrophic activity is brain-derived neurotrophic factor (BDNF). We have investigated whether blocking the BDNF activity in post-microsomal fractions obtained from 7 day pre-degenerated peripheral nerves would affect its neurotrophic properties towards RGCs after optic nerve transection in adult rats. METHODS Autologous connective tissue chambers sutured to the distal end of transected optic nerve served as active substances containers. Surviving RGCs were visualized using Dil. The number of myelinated outgrowing fibers within the chambers was evaluated in histologic sections. RESULTS BDNF and 7 day pre-degenerated nerve extracts, and also extracts with blocked BDNF activity, enhanced RGC fibers outgrowth. The regeneration was significantly weaker in the control group. Blocking the BDNF activity in the 7 day pre-degenerated peripheral nerve extract reduced its neurotrophic effects but the differences were insignificant in comparison with non-blocked extracts. DISCUSSION The regeneration intensities in groups receiving 7 day pre-degenerated peripheral nerve extracts (PD7) and BDNF were comparable. The number of surviving cells was higher in the PD7 group and there were more regenerating fibers in the BDNF group, which may be explained by the strong BDNF effect on axonal collateralization and sprouting.
Collapse
Affiliation(s)
- Beata Gołka
- Department of Physiology, Medical University of Silesia, ul. Medyków 16, 40-752 Katowice, Poland.
| | | | | | | | | | | | | |
Collapse
|
28
|
Hubert T, Grimal S, Ratzinger S, Mechaly I, Grassel S, Fichard-Carroll A. Collagen XVI is a neural component of the developing and regenerating dorsal root ganglia extracellular matrix. Matrix Biol 2006; 26:206-10. [PMID: 17169544 DOI: 10.1016/j.matbio.2006.10.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Revised: 10/06/2006] [Accepted: 10/23/2006] [Indexed: 12/27/2022]
Affiliation(s)
- Thomas Hubert
- INSERM U583, Institut des Neurosciences de Montpellier, Université Montpellier II, Hôpital Saint Eloi, 80 rue Augustin Fliche, BP 74103, 34091 Montpellier Cedex 5, France
| | | | | | | | | | | |
Collapse
|
29
|
Tucker BA, Rahimtula M, Mearow KM. Laminin and growth factor receptor activation stimulates differential growth responses in subpopulations of adult DRG neurons. Eur J Neurosci 2006; 24:676-90. [PMID: 16930399 DOI: 10.1111/j.1460-9568.2006.04963.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Neurons in the adult rat dorsal root ganglion (DRG) can be classified into at least three separate subpopulations based on morphologic and phenotypic differences. In this study we have focused on the growth response of these specific subpopulations in vitro with respect to laminin (LN) and growth factor receptor activation. Using a cell selection approach we show that LN-induced neurite growth occurs in the absence of added trophic factors only in heavy-chain neurofilament-positive and calcitonin gene-related peptide-positive DRG neurons [nerve growth factor (NGF)-responsive population]. In contrast, LN alone is not sufficient to stimulate significant neurite growth from lectin Griffonia simplicifolia IB4-positive neurons (IB4+ve), although it is still required to elicit a growth response from these cells in the presence of glial-derived neurotrophic factor (GDNF, e.g. neurite growth occurred only when cells were plated on LN in the presence of GDNF). By using chemical inhibitors we demonstrate that only the phosphatidylinositol 3 kinase (PI 3-K)/Akt pathway is required for neurite growth from the NGF-responsive cell population. However, both the PI 3-K/Akt and MEK/mitogen-activated protein kinase signaling pathways are required for neurite growth from the IB4+ve cell population. Thus, we have identified specific signaling events and environmental requirements associated with neurite growth for different subpopulations of adult DRG neurons, pointing to potential therapeutic targets while identifying an inability for any one treatment alone to repair peripheral nerve damage.
Collapse
MESH Headings
- Animals
- Calcitonin Gene-Related Peptide/metabolism
- Cell Differentiation/drug effects
- Cell Differentiation/physiology
- Cells, Cultured
- Enzyme Inhibitors/pharmacology
- Ganglia, Spinal/cytology
- Ganglia, Spinal/drug effects
- Ganglia, Spinal/metabolism
- Glial Cell Line-Derived Neurotrophic Factor/metabolism
- Glial Cell Line-Derived Neurotrophic Factor/pharmacology
- Growth Cones/drug effects
- Growth Cones/metabolism
- Growth Cones/ultrastructure
- Immunohistochemistry
- Laminin/metabolism
- Laminin/pharmacology
- MAP Kinase Signaling System/drug effects
- MAP Kinase Signaling System/physiology
- Nerve Regeneration/drug effects
- Nerve Regeneration/physiology
- Neurites/drug effects
- Neurites/metabolism
- Neurites/ultrastructure
- Neurofilament Proteins/drug effects
- Neurofilament Proteins/metabolism
- Neurons, Afferent/cytology
- Neurons, Afferent/drug effects
- Neurons, Afferent/metabolism
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphoinositide-3 Kinase Inhibitors
- Plant Lectins/metabolism
- Proto-Oncogene Proteins c-akt/antagonists & inhibitors
- Proto-Oncogene Proteins c-akt/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Growth Factor/agonists
- Receptors, Growth Factor/metabolism
Collapse
Affiliation(s)
- Budd A Tucker
- Division of Basic Medical Sciences, Memorial University of Newfoundland, St. John's, NL, Canada A1B 3V6
| | | | | |
Collapse
|
30
|
Ryan AF, Wittig J, Evans A, Dazert S, Mullen L. Environmental Micropatterning for the Study of Spiral Ganglion Neurite Guidance. ACTA ACUST UNITED AC 2006; 11:134-43. [PMID: 16439836 DOI: 10.1159/000090686] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The projection of neuronal processes is guided by a variety of soluble and insoluble factors, which are sensed by a fiber's growth cone. It is the differential distribution of such guidance cues that determine the direction in which neurites grow. The growth cone senses these cues on a fine scale, using extensible filopodia that range from a few to tens of mum in length. In order to study the effects of guidance cues on spiral ganglion (SG) neurites, we have used methods for distributing both soluble and insoluble cues on a scale appropriate for sensing by growth filopodia. The scale of these methods are at the micro, rather than nano, level to match the sensing range of the growth cone. Microfluidics and transfected cells were used to spatially localize tropic factors within the fluid environment of extending neurites. Micro-patterning was used to present neurites with stripes of insoluble factors. The results indicate that differentially distributed permissive, repulsive and stop signals can control the projection of SG neurites. Implications for future micro-patterning studies, for SG development and for the growth of deafferented SG dendrites toward a cochlear implant are discussed.
Collapse
Affiliation(s)
- Allen F Ryan
- Department of Surgery/Otolaryngology, UCSD School of Medicine, La Jolla, CA 92093, USA.
| | | | | | | | | |
Collapse
|
31
|
Gaillard S, Nasarre C, Gonthier B, Bagnard D. Mécanismes cellulaires et moléculaires de la croissance axonale. Rev Neurol (Paris) 2005; 161:153-72. [PMID: 15798515 DOI: 10.1016/s0035-3787(05)85019-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION During embryonic and post-natal development, numerous axonal connections are formed establishing a functional nervous system. Knowledge of the underlying molecular and cellular mechanisms controlling this phenomenon is improving. STATE OF THE ART In this review, we present the general principles of axon guidance together with the major families of guidance signals. This includes the tyrosine kinase receptors Eph and their ligands Ephrins, the netrins, the semaphorins, the slits and other major components of the extracellular matrix. These types of guidance signals share common functional properties leading to actin cytoskeleton remodelling. The direct or indirect interactions between the receptors of these guidance cues and actin modulators is the final step of the signalling cascade constituting the fundamental mechanism defining the orientation and extension of the axonal growth cone. These factors are involved in the formation of many, if not all, axonal projections for which they act as repulsive (inhibitory) or attractive (promoting) signals. PERSPECTIVES the knowledge of these mechanisms is particularly interesting since the inhibition of axonal outgrowth is considered to be one of the major obstacles to nerve regeneration in the central nervous system. Indeed, most of the guidance signals expressed during brain development are up-regulated in lesion sites where they contribute to the lack of nerve re-growth. Here, we present the nature of the mechanical barrier, the so called glial scar, and we describe the major inhibitory molecules preventing axonal extension. CONCLUSION the comprehension of the molecular mechanisms involved in axon growth and guidance represents a major advance towards the definition of novel therapeutic strategies improving nerve regeneration. The path to the clinical application of these molecular factors remains long. Nevertheless, the next decade will undoubtedly provide challenging data that will modify the current therapeutic approaches.
Collapse
Affiliation(s)
- S Gaillard
- INSERM U575, Physiopathologie du Système Nerveux, Groupe de Physiologie Moléculaire de la Régénération Nerveuse, 67084 Strasbourg
| | | | | | | |
Collapse
|
32
|
Dubový P. Schwann cells and endoneurial extracellular matrix molecules as potential cues for sorting of regenerated axons: a review. Anat Sci Int 2005; 79:198-208. [PMID: 15633458 DOI: 10.1111/j.1447-073x.2004.00090.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Besides very well elaborated microsurgical management of severed peripheral nerves, the clinical results of functional recovery following surgical repair of mixed nerves are disappointing. An improvement of functional recovery after peripheral nerve lesion requires the accurate regeneration of axons to their original target tissues and structures. Therefore, better clinical results could be obtained by a greater understanding of the cellular and molecular biology of selective nerve regeneration. The studies concerning Schwann cells and their endoneurial extracellular matrix as potent cues for selective promotion and influence of regenerating motor and sensory axons are reviewed. Knowledge of the sorting mechanisms of regenerated motor and sensory axons is needed not only for improvement of functional recovery, but also for the development of biocompatible nerve prostheses.
Collapse
Affiliation(s)
- Petr Dubový
- Department of Anatomy, Division of Neuroanatomy, Medical Faculty, Masaryk University Brno, Czech Republic.
| |
Collapse
|