1
|
Liang Z, Jin N, Guo W. Neural stem cell heterogeneity in adult hippocampus. CELL REGENERATION (LONDON, ENGLAND) 2025; 14:6. [PMID: 40053275 DOI: 10.1186/s13619-025-00222-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/07/2025] [Accepted: 02/11/2025] [Indexed: 03/10/2025]
Abstract
Adult neurogenesis is a unique cellular process of the ongoing generation of new neurons throughout life, which primarily occurs in the subgranular zone (SGZ) of the dentate gyrus (DG) and the subventricular zone (SVZ) of the lateral ventricle. In the adult DG, newly generated granule cells from neural stem cells (NSCs) integrate into existing neural circuits, significantly contributing to cognitive functions, particularly learning and memory. Recently, more and more studies have shown that rather than being a homogeneous population of identical cells, adult NSCs are composed of multiple subpopulations that differ in their morphology and function. In this study, we provide an overview of the origin, regional characteristics, prototypical morphology, and molecular factors that contribute to NSC heterogeneity. In particular, we discuss the molecular mechanisms underlying the balance between activation and quiescence of NSCs. In summary, this review highlights that deciphering NSC heterogeneity in the adult brain is a challenging but critical step in advancing our understanding of tissue-specific stem cells and the process of neurogenesis in the adult brain.
Collapse
Affiliation(s)
- Ziqi Liang
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100093, China
| | - Nuomeng Jin
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100093, China
| | - Weixiang Guo
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100093, China.
| |
Collapse
|
2
|
Fukuda M, Fujita Y, Hino Y, Nakao M, Shirahige K, Yamashita T. Inhibition of HDAC8 Reduces the Proliferation of Adult Neural Stem Cells in the Subventricular Zone. Int J Mol Sci 2024; 25:2540. [PMID: 38473789 DOI: 10.3390/ijms25052540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/14/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
In the adult mammalian brain, neurons are produced from neural stem cells (NSCs) residing in two niches-the subventricular zone (SVZ), which forms the lining of the lateral ventricles, and the subgranular zone in the hippocampus. Epigenetic mechanisms contribute to maintaining distinct cell fates by suppressing gene expression that is required for deciding alternate cell fates. Several histone deacetylase (HDAC) inhibitors can affect adult neurogenesis in vivo. However, data regarding the role of specific HDACs in cell fate decisions remain limited. Herein, we demonstrate that HDAC8 participates in the regulation of the proliferation and differentiation of NSCs/neural progenitor cells (NPCs) in the adult mouse SVZ. Specific knockout of Hdac8 in NSCs/NPCs inhibited proliferation and neural differentiation. Treatment with the selective HDAC8 inhibitor PCI-34051 reduced the neurosphere size in cultures from the SVZ of adult mice. Further transcriptional datasets revealed that HDAC8 inhibition in adult SVZ cells disturbs biological processes, transcription factor networks, and key regulatory pathways. HDAC8 inhibition in adult SVZ neurospheres upregulated the cytokine-mediated signaling and downregulated the cell cycle pathway. In conclusion, HDAC8 participates in the regulation of in vivo proliferation and differentiation of NSCs/NPCs in the adult SVZ, which provides insights into the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Momoko Fukuda
- Department of Anatomy and Developmental Biology, School of Medicine, Shimane University, 89-1, Enya-cho, Izumo-shi 693-8501, Japan
| | - Yuki Fujita
- Department of Anatomy and Developmental Biology, School of Medicine, Shimane University, 89-1, Enya-cho, Izumo-shi 693-8501, Japan
| | - Yuko Hino
- Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Mitsuyoshi Nakao
- Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Katsuhiko Shirahige
- Laboratory of Genome Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
- Department of Cell and Molecular Biology, Karolinska Institutet, Biomedicum, Quarter A6, 171 77 Stockholm, Sweden
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita 565-0871, Japan
- WPI Immunology Frontier Research Center, Osaka University, 3-1, Yamadaoka, Suita 565-0871, Japan
- Graduate School of Frontier Biosciences, Osaka University, 1-3, Yamadaoka, Suita 565-0871, Japan
- Department of Neuro-Medical Science, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita 565-0871, Japan
| |
Collapse
|
3
|
Radiotherapy Side Effects: Comprehensive Proteomic Study Unraveled Neural Stem Cell Degenerative Differentiation upon Ionizing Radiation. Biomolecules 2022; 12:biom12121759. [PMID: 36551187 PMCID: PMC9775306 DOI: 10.3390/biom12121759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022] Open
Abstract
Cranial radiation therapy is one of the most effective treatments for childhood brain cancers. Despite the ameliorated survival rate of juvenile patients, radiation exposure-induced brain neurogenic region injury could markedly impair patients' cognitive functions and even their quality of life. Determining the mechanism underlying neural stem cells (NSCs) response to irradiation stress is a crucial therapeutic strategy for cognitive impairment. The present study demonstrated that X-ray irradiation arrested NSCs' cell cycle and impacted cell differentiation. To further characterize irradiation-induced molecular alterations in NSCs, two-dimensional high-resolution mass spectrometry-based quantitative proteomics analyses were conducted to explore the mechanism underlying ionizing radiation's influence on stem cell differentiation. We observed that ionizing radiation suppressed intracellular protein transport, neuron projection development, etc., particularly in differentiated cells. Redox proteomics was performed for the quantification of cysteine thiol modifications in order to profile the oxidation-reduction status of proteins in stem cells that underwent ionizing radiation treatment. Via conjoint screening of protein expression abundance and redox status datasets, several significantly expressed and oxidized proteins were identified in differentiating NSCs subjected to X-ray irradiation. Among these proteins, succinate dehydrogenase [ubiquinone] flavoprotein subunit, mitochondrial (sdha) and the acyl carrier protein, mitochondrial (Ndufab1) were highly related to neurodegenerative diseases such as Parkinson's disease, Alzheimer's disease, and Huntington's disease, illustrating the dual-character of NSCs in cell differentiation: following exposure to ionizing radiation, the normal differentiation of NSCs was compromised, and the upregulated oxidized proteins implied a degenerative differentiation trajectory. These findings could be integrated into research on neurodegenerative diseases and future preventive strategies.
Collapse
|
4
|
Giacoman-Lozano M, Meléndez-Ramírez C, Martinez-Ledesma E, Cuevas-Diaz Duran R, Velasco I. Epigenetics of neural differentiation: Spotlight on enhancers. Front Cell Dev Biol 2022; 10:1001701. [PMID: 36313573 PMCID: PMC9606577 DOI: 10.3389/fcell.2022.1001701] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 10/03/2022] [Indexed: 11/28/2022] Open
Abstract
Neural induction, both in vivo and in vitro, includes cellular and molecular changes that result in phenotypic specialization related to specific transcriptional patterns. These changes are achieved through the implementation of complex gene regulatory networks. Furthermore, these regulatory networks are influenced by epigenetic mechanisms that drive cell heterogeneity and cell-type specificity, in a controlled and complex manner. Epigenetic marks, such as DNA methylation and histone residue modifications, are highly dynamic and stage-specific during neurogenesis. Genome-wide assessment of these modifications has allowed the identification of distinct non-coding regulatory regions involved in neural cell differentiation, maturation, and plasticity. Enhancers are short DNA regulatory regions that bind transcription factors (TFs) and interact with gene promoters to increase transcriptional activity. They are of special interest in neuroscience because they are enriched in neurons and underlie the cell-type-specificity and dynamic gene expression profiles. Classification of the full epigenomic landscape of neural subtypes is important to better understand gene regulation in brain health and during diseases. Advances in novel next-generation high-throughput sequencing technologies, genome editing, Genome-wide association studies (GWAS), stem cell differentiation, and brain organoids are allowing researchers to study brain development and neurodegenerative diseases with an unprecedented resolution. Herein, we describe important epigenetic mechanisms related to neurogenesis in mammals. We focus on the potential roles of neural enhancers in neurogenesis, cell-fate commitment, and neuronal plasticity. We review recent findings on epigenetic regulatory mechanisms involved in neurogenesis and discuss how sequence variations within enhancers may be associated with genetic risk for neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Mayela Giacoman-Lozano
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, NL, Mexico
| | - César Meléndez-Ramírez
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”, Mexico City, Mexico
| | - Emmanuel Martinez-Ledesma
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, NL, Mexico
- Tecnologico de Monterrey, The Institute for Obesity Research, Monterrey, NL, Mexico
| | - Raquel Cuevas-Diaz Duran
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, NL, Mexico
- *Correspondence: Raquel Cuevas-Diaz Duran, ; Iván Velasco,
| | - Iván Velasco
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”, Mexico City, Mexico
- *Correspondence: Raquel Cuevas-Diaz Duran, ; Iván Velasco,
| |
Collapse
|
5
|
Park J, Lee K, Kim K, Yi SJ. The role of histone modifications: from neurodevelopment to neurodiseases. Signal Transduct Target Ther 2022; 7:217. [PMID: 35794091 PMCID: PMC9259618 DOI: 10.1038/s41392-022-01078-9] [Citation(s) in RCA: 130] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/11/2022] [Accepted: 06/21/2022] [Indexed: 12/24/2022] Open
Abstract
Epigenetic regulatory mechanisms, including DNA methylation, histone modification, chromatin remodeling, and microRNA expression, play critical roles in cell differentiation and organ development through spatial and temporal gene regulation. Neurogenesis is a sophisticated and complex process by which neural stem cells differentiate into specialized brain cell types at specific times and regions of the brain. A growing body of evidence suggests that epigenetic mechanisms, such as histone modifications, allow the fine-tuning and coordination of spatiotemporal gene expressions during neurogenesis. Aberrant histone modifications contribute to the development of neurodegenerative and neuropsychiatric diseases. Herein, recent progress in understanding histone modifications in regulating embryonic and adult neurogenesis is comprehensively reviewed. The histone modifications implicated in neurodegenerative and neuropsychiatric diseases are also covered, and future directions in this area are provided.
Collapse
Affiliation(s)
- Jisu Park
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Kyubin Lee
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Kyunghwan Kim
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.
| | - Sun-Ju Yi
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.
| |
Collapse
|
6
|
Nieto-Estevez V, Changarathil G, Adeyeye AO, Coppin MO, Kassim RS, Zhu J, Hsieh J. HDAC1 Regulates Neuronal Differentiation. Front Mol Neurosci 2022; 14:815808. [PMID: 35095417 PMCID: PMC8789757 DOI: 10.3389/fnmol.2021.815808] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/21/2021] [Indexed: 11/13/2022] Open
Abstract
In adult hippocampal neurogenesis, chromatin modification plays an important role in neural stem cell self-renewal and differentiation by regulating the expression of multiple genes. Histone deacetylases (HDACs), which remove acetyl groups from histones, create a non-permissive chromatin that prevents transcription of genes involved in adult neurogenesis. HDAC inhibitors have been shown to promote adult neurogenesis and have also been used to treat nervous system disorders, such as epilepsy. However, most HDAC inhibitors are not specific and may have other targets. Therefore, it is important to decipher the role of individual HDACs in adult hippocampal neurogenesis. HDACs 1, 2, and 3 have been found expressed at different cellular stages during neurogenesis. Conditional deletion of HDAC2 in neural stem cells impairs neuronal differentiation in adult hippocampus. HDAC3 supports proliferation of adult hippocampal neural stem/progenitor cells. The role of HDAC1 in adult neurogenesis remains still open. Here, we used a conditional knock-out mouse to block HDAC1 expression in neural stem cells (Nestin+ cells) during hippocampal neurogenesis. Our results showed that both HDAC1 and HDAC2 are expressed in all cellular stages during hippocampal neurogenesis. Moreover, we found that deletion of HDAC1 by viral infection of neural stem cells is sufficient to compromise neuronal differentiation in vitro. However, we were unable to reduce the expression of HDAC1 in vivo using Nestin-CreERT2 mice. Understanding the role of HDAC1 may lead to ways to control stem cell proliferation and neuronal regeneration in the adult hippocampus, and to more specific HDAC therapeutics for neurological disorders.
Collapse
Affiliation(s)
- Vanesa Nieto-Estevez
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, TX, United States
- Brain Health Consortium, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Gopakumar Changarathil
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, TX, United States
- Brain Health Consortium, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Adebayo Olukayode Adeyeye
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, TX, United States
- Brain Health Consortium, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Marissa Olga Coppin
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, TX, United States
- Brain Health Consortium, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Rawan Serena Kassim
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, TX, United States
- Brain Health Consortium, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Jingfei Zhu
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, United States
| | - Jenny Hsieh
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, TX, United States
- Brain Health Consortium, The University of Texas at San Antonio, San Antonio, TX, United States
- *Correspondence: Jenny Hsieh,
| |
Collapse
|
7
|
Zhou C, Luo D, Xia W, Gu C, Lahm T, Xu X, Qiu Q, Zhang Z. Nuclear Factor (Erythroid-Derived 2)-Like 2 (Nrf2) Contributes to the Neuroprotective Effects of Histone Deacetylase Inhibitors In Retinal Ischemia-Reperfusion Injury. Neuroscience 2019; 418:25-36. [PMID: 31442569 DOI: 10.1016/j.neuroscience.2019.08.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 12/25/2022]
Abstract
Histone deacetylase inhibitors (HDACis) have displayed neuroprotective effects in animal models of retinal ischemia/reperfusion (I/R) injury. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is a redox-sensitive transcription factor responds to oxidative damage. We investigated the role of Nrf2 in retinal I/R injury, and further explored the mechanisms underlying Nrf2-mediated neuroprotection exerted by HDACi. High intraocular pressure was used to establish retinal I/R model in wild type (WT) and Nrf2 knockout (KO) mice. Nrf2 KO mice displayed more severe retinal damage after I/R. Trichostatin A (TSA) was administered to both WT and Nrf2 KO mice with retinal I/R damage. TSA significantly diminished the retinal ganglion cell degeneration in WT mice but offered no notable protection in Nrf2 KO mice. TSA markedly promoted Nrf2 nuclear translocation and its acetylation. In addition, TSA upregulated Nrf2 downstream proteins, such as Ho-1 and Nqo1, in retinal tissues. In the retinal neuronal cell line 661W, TSA reduced the expression of proinflammatory cytokines, Il-1β, Il-6, Tnf-α and Mmp-9, and it upregulated Bdnf under oxidative stress. However, this trend was not continued after silencing Nrf2. Chromatin immunoprecipitation assay demonstrated that Nrf2 at the Ho-1 promoter significantly increased transcriptional activity after oxidative stress induction. Nrf2, which is dispensable in HDACi-mediated neuroprotection, plays a major neuroprotective role in retinal I/R injury.
Collapse
Affiliation(s)
- Chuandi Zhou
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, China
| | - Dawei Luo
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, China
| | - Wenwen Xia
- Department of Pathology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chufeng Gu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, China
| | - Tashi Lahm
- Department of Ophthalmology, Shigatse People's Hospital, China
| | - Xiaofang Xu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Qinghua Qiu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, China; Department of Ophthalmology, Shigatse People's Hospital, China.
| | - Zhenzhen Zhang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
8
|
Falomir-Lockhart LJ, Cavazzutti GF, Giménez E, Toscani AM. Fatty Acid Signaling Mechanisms in Neural Cells: Fatty Acid Receptors. Front Cell Neurosci 2019; 13:162. [PMID: 31105530 PMCID: PMC6491900 DOI: 10.3389/fncel.2019.00162] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/08/2019] [Indexed: 12/15/2022] Open
Abstract
Fatty acids (FAs) are typically associated with structural and metabolic roles, as they can be stored as triglycerides, degraded by β-oxidation or used in phospholipids’ synthesis, the main components of biological membranes. It has been shown that these lipids exhibit also regulatory functions in different cell types. FAs can serve as secondary messengers, as well as modulators of enzymatic activities and substrates for cytokines synthesis. More recently, it has been documented a direct activity of free FAs as ligands of membrane, cytosolic, and nuclear receptors, and cumulative evidence has emerged, demonstrating its participation in a wide range of physiological and pathological conditions. It has been long known that the central nervous system is enriched with poly-unsaturated FAs, such as arachidonic (C20:4ω-6) or docosohexaenoic (C22:6ω-3) acids. These lipids participate in the regulation of membrane fluidity, axonal growth, development, memory, and inflammatory response. Furthermore, a whole family of low molecular weight compounds derived from FAs has also gained special attention as the natural ligands for cannabinoid receptors or key cytokines involved in inflammation, largely expanding the role of FAs as precursors of signaling molecules. Nutritional deficiencies, and alterations in lipid metabolism and lipid signaling have been associated with developmental and cognitive problems, as well as with neurodegenerative diseases. The molecular mechanism behind these effects still remains elusive. But in the last two decades, different families of proteins have been characterized as receptors mediating FAs signaling. This review focuses on different receptors sensing and transducing free FAs signals in neural cells: (1) membrane receptors of the family of G Protein Coupled Receptors known as Free Fatty Acid Receptors (FFARs); (2) cytosolic transport Fatty Acid-Binding Proteins (FABPs); and (3) transcription factors Peroxisome Proliferator-Activated Receptors (PPARs). We discuss how these proteins modulate and mediate direct regulatory functions of free FAs in neural cells. Finally, we briefly discuss the advantages of evaluating them as potential targets for drug design in order to manipulate lipid signaling. A thorough characterization of lipid receptors of the nervous system could provide a framework for a better understanding of their roles in neurophysiology and, potentially, help for the development of novel drugs against aging and neurodegenerative processes.
Collapse
Affiliation(s)
- Lisandro Jorge Falomir-Lockhart
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Centro Científico Tecnológico - La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata, Argentina.,Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| | - Gian Franco Cavazzutti
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Centro Científico Tecnológico - La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata, Argentina.,Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| | - Ezequiel Giménez
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Centro Científico Tecnológico - La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata, Argentina.,Facultad de Ciencias Médicas, Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| | - Andrés Martín Toscani
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Centro Científico Tecnológico - La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata, Argentina.,Facultad de Ciencias Médicas, Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| |
Collapse
|
9
|
Dai X, Yan X, Xie P, Lian J. [Sodium valprovate suppresses autophagy in SH-SY5Y cells via activating miR-34c-5p/ATG4B signaling pathway]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:1415-1420. [PMID: 30613007 DOI: 10.12122/j.issn.1673-4254.2018.12.03] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the effect of sodium valproate (VPA) on activation of miR-34c-5p/ATG4B signaling pathway and autophagy in SH-SY5Y cells. METHODS Routinely cultured SH-SY5Y cells were treated with VPA at different doses for 24 h, and the changes in the mRNA levels of ATG4B and miR-34c-5p and the protein expression of ATG4B were assessed using qRTPCR and immunoblotting, respectively. The effect of transfection with a plasmid containing ATG4B promoter on the promoter activity of ATG4B in VPA-treated SH-SY5Y cells was assessed using the reporter gene assay. The stability of ATG4B mRNA was analyzed with qPCR in SH-SY5Y cells treated with VPA alone or with VPA combined with the transcription inhibitor actinomycin D. The expression level of miR-34c-5p was detected using qPCR in SH-SY5Y cells treated with VPA alone or with VPA combined with miR-34c-5p mimics or antagonist, and the role of miR-34c-5p in VPA-induced ATG4B down-regulation was evaluated. The changes in the level of autophagy were evaluated by detecting LC3-Ⅱ expression in the cells after treatment with VPA or VPA combined with miR-34c-5p antagonist. RESULTS VPA dose-dependently down-regulated the expression of ATG4B at both the mRNA and protein levels in SH-SY5Y cells. VPA treatment did not significantly affect the promoter activity of ATG4B, but obviously lowered the mRNA stability of ATG4B in SH-SY5Y cells. VPA treatment up-regulated the expression of miR-34c-5p, and the miR-34c-5p antagonist reversed VPA-induced down-regulation of ATG4B in SH-SY5Y cells. VPA also down-regulated the expression level of LC3-Ⅱ in SH-SY5Y cells. CONCLUSIONS VPA suppresses autophagy in SH-SY5Y cells possibly via activating miR-34c-5p/ATG4B signaling pathway.
Collapse
Affiliation(s)
- Xufang Dai
- Chongqing Key Laboratory of Psychological Diagnosis and Educational Technology for Children with Special Needs.,Facultiy of Educationfor Children with Special Needs, College of Education Science, Chongqing Normal University, Chongqing 400047, China
| | - Xiaojing Yan
- Department ofBiochemistry and Molecular Biology, Army Medical University, Chongqing 400038, China
| | - Peng Xie
- Department ofBiochemistry and Molecular Biology, Army Medical University, Chongqing 400038, China
| | - Jiqin Lian
- Department ofBiochemistry and Molecular Biology, Army Medical University, Chongqing 400038, China
| |
Collapse
|
10
|
Spatial Determination of Neuronal Diversification in the Olfactory Epithelium. J Neurosci 2018; 39:814-832. [PMID: 30530861 DOI: 10.1523/jneurosci.3594-17.2018] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 11/21/2018] [Accepted: 11/23/2018] [Indexed: 01/31/2023] Open
Abstract
Neurons in the murine olfactory epithelium (OE) differ by the olfactory receptor they express as well as other molecular phenotypes that are regionally restricted. These patterns can be precisely regenerated following epithelial injury, suggesting that spatial cues within the tissue can direct neuronal diversification. Nonetheless, the permanency and mechanism of this spatial patterning remain subject to debate. Via transplantation of stem and progenitor cells from dorsal OE into ventral OE, we demonstrate that, in mice of both sexes, nonautonomous spatial cues can direct the spatially circumscribed differentiation of olfactory sensory neurons. The vast majority of dorsal transplant-derived neurons express the ventral marker OCAM (NCAM2) and lose expression of NQO1 to match their new location. Single-cell analysis also demonstrates that OSNs adopt a fate defined by their new position following progenitor cell transplant, such that a ventral olfactory receptor is expressed after stem and progenitor cell engraftment. Thus, spatially constrained differentiation of olfactory sensory neurons is plastic, and any bias toward an epigenetic memory of place can be overcome.SIGNIFICANCE STATEMENT Spatially restricted differentiation of olfactory sensory neurons is both key to normal olfactory function and a challenging example of biological specificity. That the stem cells of the olfactory epithelium reproduce the organization of the olfactory periphery to a very close approximation during lesion-induced regeneration begs the question of whether stem cell-autonomous genomic architecture or environmental cues are responsible. The plasticity demonstrated after transfer to a novel location suggests that cues external to the transplanted stem and progenitor cells confer neuronal identity. Thus, a necessary prerequisite is satisfied for using engraftment of olfactory stem and progenitor cells as a cellular therapeutic intervention to reinvigorate neurogenesis whose exhaustion contributes to the waning of olfaction with age.
Collapse
|
11
|
Zhou H, Wang B, Sun H, Xu X, Wang Y. Epigenetic Regulations in Neural Stem Cells and Neurological Diseases. Stem Cells Int 2018; 2018:6087143. [PMID: 29743892 PMCID: PMC5878882 DOI: 10.1155/2018/6087143] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 01/08/2018] [Indexed: 12/17/2022] Open
Abstract
Among the regulatory mechanisms of the renewal and differentiation of neural stem cells, recent evidences support that epigenetic modifications such as DNA methylation, histone modification, and noncoding RNAs play critical roles in the regulation on the proliferation and differentiation of neural stem cells. In this review, we discussed recent advances of DNA modifications on the regulative mechanisms of neural stem cells. Among these epigenetic modifications, DNA 5-hydroxymethylcytosine (5hmC) modification is emerging as an important modulator on the proliferation and differentiation of neural stem cells. At the same time, Ten-eleven translocation (Tet) methylcytosine dioxygenases, the rate-limiting enzyme for the 5-hydroxymethylation reaction from 5-methylcytosine to 5-hydroxymethylcytosine, play a critical role in the tumorigenesis and the proliferation and differentiation of stem cells. The functions of 5hmC and TET proteins on neural stem cells and their roles in neurological diseases are discussed.
Collapse
Affiliation(s)
- Hang Zhou
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Neuroscience, Soochow University, Suzhou, China
| | - Bin Wang
- Institute of Neuroscience, Soochow University, Suzhou, China
| | - Hao Sun
- Department of Orthopedics, Clinical Medical School, Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou 225001, China
| | - Xingshun Xu
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Neuroscience, Soochow University, Suzhou, China
| | - Yongxiang Wang
- Department of Orthopedics, Clinical Medical School, Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou 225001, China
| |
Collapse
|
12
|
Fueta Y, Sekino Y, Yoshida S, Kanda Y, Ueno S. Prenatal exposure to valproic acid alters the development of excitability in the postnatal rat hippocampus. Neurotoxicology 2018; 65:1-8. [DOI: 10.1016/j.neuro.2018.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 12/03/2017] [Accepted: 01/04/2018] [Indexed: 11/16/2022]
|
13
|
Bal-Price A, Hogberg HT, Crofton KM, Daneshian M, FitzGerald RE, Fritsche E, Heinonen T, Hougaard Bennekou S, Klima S, Piersma AH, Sachana M, Shafer TJ, Terron A, Monnet-Tschudi F, Viviani B, Waldmann T, Westerink RHS, Wilks MF, Witters H, Zurich MG, Leist M. Recommendation on test readiness criteria for new approach methods in toxicology: Exemplified for developmental neurotoxicity. ALTEX-ALTERNATIVES TO ANIMAL EXPERIMENTATION 2018; 35:306-352. [PMID: 29485663 DOI: 10.14573/altex.1712081] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 01/29/2018] [Indexed: 01/06/2023]
Abstract
Multiple non-animal-based test methods have never been formally validated. In order to use such new approach methods (NAMs) in a regulatory context, criteria to define their readiness are necessary. The field of developmental neurotoxicity (DNT) testing is used to exemplify the application of readiness criteria. The costs and number of untested chemicals are overwhelming for in vivo DNT testing. Thus, there is a need for inexpensive, high-throughput NAMs, to obtain initial information on potential hazards, and to allow prioritization for further testing. A background on the regulatory and scientific status of DNT testing is provided showing different types of test readiness levels, depending on the intended use of data from NAMs. Readiness criteria, compiled during a stakeholder workshop, uniting scientists from academia, industry and regulatory authorities are presented. An important step beyond the listing of criteria, was the suggestion for a preliminary scoring scheme. On this basis a (semi)-quantitative analysis process was assembled on test readiness of 17 NAMs with respect to various uses (e.g. prioritization/screening, risk assessment). The scoring results suggest that several assays are currently at high readiness levels. Therefore, suggestions are made on how DNT NAMs may be assembled into an integrated approach to testing and assessment (IATA). In parallel, the testing state in these assays was compiled for more than 1000 compounds. Finally, a vision is presented on how further NAM development may be guided by knowledge of signaling pathways necessary for brain development, DNT pathophysiology, and relevant adverse outcome pathways (AOP).
Collapse
Affiliation(s)
- Anna Bal-Price
- European Commission, Joint Research Centre (EC JRC), Ispra (VA), Italy
| | - Helena T Hogberg
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins University, Baltimore, MD, USA
| | - Kevin M Crofton
- National Centre for Computational Toxicology, US EPA, RTP, Washington, NC, USA
| | - Mardas Daneshian
- Center for Alternatives to Animal Testing, CAAT-Europe, University of Konstanz, Konstanz, Germany
| | - Rex E FitzGerald
- Swiss Centre for Human Applied Toxicology, SCAHT, University of Basle, Switzerland
| | - Ellen Fritsche
- IUF - Leibniz Research Institute for Environmental Medicine & Heinrich-Heine-University, Düsseldorf, Germany
| | - Tuula Heinonen
- Finnish Centre for Alternative Methods (FICAM), University of Tampere, Tampere, Finland
| | | | - Stefanie Klima
- In vitro Toxicology and Biomedicine, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Aldert H Piersma
- RIVM, National Institute for Public Health and the Environment, Bilthoven, and Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Magdalini Sachana
- Organisation for Economic Co-operation and Development (OECD), Paris, France
| | - Timothy J Shafer
- National Centre for Computational Toxicology, US EPA, RTP, Washington, NC, USA
| | | | - Florianne Monnet-Tschudi
- Swiss Centre for Human Applied Toxicology, SCAHT, University of Basle, Switzerland.,Department of Physiology, University of Lausanne, Lausanne, Switzerland
| | - Barbara Viviani
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Italy
| | - Tanja Waldmann
- In vitro Toxicology and Biomedicine, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Remco H S Westerink
- Neurotoxicology Research Group, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Martin F Wilks
- Swiss Centre for Human Applied Toxicology, SCAHT, University of Basle, Switzerland
| | - Hilda Witters
- VITO, Flemish Institute for Technological Research, Unit Environmental Risk and Health, Mol, Belgium
| | - Marie-Gabrielle Zurich
- Swiss Centre for Human Applied Toxicology, SCAHT, University of Basle, Switzerland.,Department of Physiology, University of Lausanne, Lausanne, Switzerland
| | - Marcel Leist
- Center for Alternatives to Animal Testing, CAAT-Europe, University of Konstanz, Konstanz, Germany.,In vitro Toxicology and Biomedicine, Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
14
|
Antila CJM, Rraklli V, Blomster HA, Dahlström KM, Salminen TA, Holmberg J, Sistonen L, Sahlgren C. Sumoylation of Notch1 represses its target gene expression during cell stress. Cell Death Differ 2018; 25:600-615. [PMID: 29305585 PMCID: PMC5864205 DOI: 10.1038/s41418-017-0002-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 09/08/2017] [Accepted: 09/11/2017] [Indexed: 02/06/2023] Open
Abstract
The Notch signaling pathway is a key regulator of stem cells during development, and its deregulated activity is linked to developmental defects and cancer. Transcriptional activation of Notch target genes requires cleavage of the Notch receptor in response to ligand binding, production of the Notch intracellular domain (NICD1), NICD1 migration into the nucleus, and assembly of a transcriptional complex. Post-translational modifications of Notch regulate its trafficking, turnover, and transcriptional activity. Here, we show that NICD1 is modified by small ubiquitin-like modifier (SUMO) in a stress-inducible manner. Sumoylation occurs in the nucleus where NICD1 is sumoylated in the RBPJ-associated molecule (RAM) domain. Although stress and sumoylation enhance nuclear localization of NICD1, its transcriptional activity is attenuated. Molecular modeling indicates that sumoylation can occur within the DNA-bound ternary transcriptional complex, consisting of NICD1, the transcription factor Suppressor of Hairless (CSL), and the co-activator Mastermind-like (MAML) without its disruption. Mechanistically, sumoylation of NICD1 facilitates the recruitment of histone deacetylase 4 (HDAC4) to the Notch transcriptional complex to suppress Notch target gene expression. Stress-induced sumoylation decreases the NICD1-mediated induction of Notch target genes, which was abrogated by expressing a sumoylation-defected mutant in cells and in the developing central nervous system of the chick in vivo. Our findings of the stress-inducible sumoylation of NICD1 reveal a novel context-dependent regulatory mechanism of Notch target gene expression.
Collapse
Affiliation(s)
- Christian J M Antila
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland.,Faculty of Science and Engineering, Åbo Akademi University, FI-20520, Turku, Finland
| | - Vilma Rraklli
- Department of Cell and Molecular Biology, Karolinska Institutet, 285 SE-171 77, Stockholm, Sweden
| | - Henri A Blomster
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland.,Faculty of Science and Engineering, Åbo Akademi University, FI-20520, Turku, Finland
| | - Käthe M Dahlström
- Faculty of Science and Engineering, Åbo Akademi University, FI-20520, Turku, Finland
| | - Tiina A Salminen
- Faculty of Science and Engineering, Åbo Akademi University, FI-20520, Turku, Finland
| | - Johan Holmberg
- Department of Cell and Molecular Biology, Karolinska Institutet, 285 SE-171 77, Stockholm, Sweden
| | - Lea Sistonen
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland.,Faculty of Science and Engineering, Åbo Akademi University, FI-20520, Turku, Finland
| | - Cecilia Sahlgren
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland. .,Faculty of Science and Engineering, Åbo Akademi University, FI-20520, Turku, Finland. .,Department of Biomedical Engineering, Technical University of Eindhoven, 5613 DR, Eindhoven, The Netherlands.
| |
Collapse
|
15
|
Adnani L, Han S, Li S, Mattar P, Schuurmans C. Mechanisms of Cortical Differentiation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 336:223-320. [DOI: 10.1016/bs.ircmb.2017.07.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
16
|
Večeřa J, Bártová E, Krejčí J, Legartová S, Komůrková D, Rudá-Kučerová J, Štark T, Dražanová E, Kašpárek T, Šulcová A, Dekker FJ, Szymanski W, Seiser C, Weitzer G, Mechoulam R, Micale V, Kozubek S. HDAC1 and HDAC3 underlie dynamic H3K9 acetylation during embryonic neurogenesis and in schizophrenia-like animals. J Cell Physiol 2018; 233:530-548. [PMID: 28300292 PMCID: PMC7615847 DOI: 10.1002/jcp.25914] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 03/14/2017] [Indexed: 12/21/2022]
Abstract
Although histone acetylation is one of the most widely studied epigenetic modifications, there is still a lack of information regarding how the acetylome is regulated during brain development and pathophysiological processes. We demonstrate that the embryonic brain (E15) is characterized by an increase in H3K9 acetylation as well as decreases in the levels of HDAC1 and HDAC3. Moreover, experimental induction of H3K9 hyperacetylation led to the overexpression of NCAM in the embryonic cortex and depletion of Sox2 in the subventricular ependyma, which mimicked the differentiation processes. Inducing differentiation in HDAC1-deficient mouse ESCs resulted in early H3K9 deacetylation, Sox2 downregulation, and enhanced astrogliogenesis, whereas neuro-differentiation was almost suppressed. Neuro-differentiation of (wt) ESCs was characterized by H3K9 hyperacetylation that was associated with HDAC1 and HDAC3 depletion. Conversely, the hippocampi of schizophrenia-like animals showed H3K9 deacetylation that was regulated by an increase in both HDAC1 and HDAC3. The hippocampi of schizophrenia-like brains that were treated with the cannabinoid receptor-1 inverse antagonist AM251 expressed H3K9ac at the level observed in normal brains. Together, the results indicate that co-regulation of H3K9ac by HDAC1 and HDAC3 is important to both embryonic brain development and neuro-differentiation as well as the pathophysiology of a schizophrenia-like phenotype.
Collapse
MESH Headings
- Acetylation
- Animals
- Antipsychotic Agents/pharmacology
- Brain/drug effects
- Brain/embryology
- Brain/enzymology
- Brain/pathology
- Cannabinoid Receptor Antagonists/pharmacology
- Disease Models, Animal
- Epigenesis, Genetic
- Gene Expression Regulation, Developmental
- Gestational Age
- Histone Deacetylase 1/antagonists & inhibitors
- Histone Deacetylase 1/genetics
- Histone Deacetylase 1/metabolism
- Histone Deacetylase Inhibitors/pharmacology
- Histone Deacetylases/genetics
- Histone Deacetylases/metabolism
- Histones/metabolism
- Methylazoxymethanol Acetate
- Mice, Inbred C57BL
- Neural Cell Adhesion Molecules/genetics
- Neural Cell Adhesion Molecules/metabolism
- Neurogenesis/drug effects
- Neurons/drug effects
- Neurons/enzymology
- Neurons/pathology
- Protein Processing, Post-Translational
- Rats, Sprague-Dawley
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/metabolism
- SOXB1 Transcription Factors/genetics
- SOXB1 Transcription Factors/metabolism
- Schizophrenia/chemically induced
- Schizophrenia/drug therapy
- Schizophrenia/enzymology
- Schizophrenia/genetics
- Signal Transduction
- Time Factors
Collapse
Affiliation(s)
- Josef Večeřa
- Faculty of Science, Department of Experimental Biology, Masaryk University, Brno, Czech Republic
| | - Eva Bártová
- Institute of Biophysics of the Czech Academy of Sciences, v.v.i., Brno, Czech Republic
| | - Jana Krejčí
- Institute of Biophysics of the Czech Academy of Sciences, v.v.i., Brno, Czech Republic
| | - Soňa Legartová
- Institute of Biophysics of the Czech Academy of Sciences, v.v.i., Brno, Czech Republic
| | - Denisa Komůrková
- Institute of Biophysics of the Czech Academy of Sciences, v.v.i., Brno, Czech Republic
| | - Jana Rudá-Kučerová
- Faculty of Medicine, Department of Pharmacology, Masaryk University, Brno, Czech Republic
| | - Tibor Štark
- Faculty of Medicine, Department of Pharmacology, Masaryk University, Brno, Czech Republic
| | - Eva Dražanová
- Faculty of Medicine, Department of Pharmacology, Masaryk University, Brno, Czech Republic
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Brno, Czech Republic
| | - Tomáš Kašpárek
- Behavioral and Social Neuroscience Group, CEITEC—Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Alexandra Šulcová
- Behavioral and Social Neuroscience Group, CEITEC—Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Frank J. Dekker
- Chemical and Pharmaceutical Biology, University of Groningen, Groningen, The Netherlands
| | - Wiktor Szymanski
- Department of Radiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Christian Seiser
- Max F. Perutz Laboratories, Vienna Biocenter (VBC), Vienna, Austria
| | - Georg Weitzer
- Max F. Perutz Laboratories, Vienna Biocenter (VBC), Vienna, Austria
| | - Raphael Mechoulam
- Faculty of Medicine, Institute for Drug Research, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Vincenzo Micale
- Behavioral and Social Neuroscience Group, CEITEC—Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, School of Medicine, University of Catania, Catania, Italy
| | - Stanislav Kozubek
- Faculty of Science, Department of Experimental Biology, Masaryk University, Brno, Czech Republic
| |
Collapse
|
17
|
Chen D, Xu M, Wu B, Chen L. Histone deacetylases in hearing loss: Current perspectives for therapy. J Otol 2017; 12:47-54. [PMID: 29937837 PMCID: PMC5963466 DOI: 10.1016/j.joto.2017.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 04/21/2017] [Accepted: 04/26/2017] [Indexed: 12/25/2022] Open
Abstract
Hearing loss is one of the most frequent health issues in industrialized countries. The pathogenesis and molecular mechanisms of hearing loss are still unclear. Histone deacetylases (HDACs) are emerging as key enzymes in many physiological processes, including chromatin remodeling, regulation of transcription, DNA repair, metabolism, genome stability and protein secretion. Recent studies indicated that HDACs are associated with the development and progression of hearing loss. Dysfunction of HDACs could promote the oxidative stress and aging in the inner ear. In light of considering the current stagnation in the development of therapeutic options, the need for new strategies in the treatment of hearing loss has never been so pressing. In this review, we will summarize the reported literatures for HDACs in hearing loss and discuss how HDAC family members show different performances for the possibility of process of diseases development. The possibility of pharmacological intervention on hearing loss opens a novel path in the treatment of hearing loss.
Collapse
Affiliation(s)
- Daishi Chen
- Department of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, 100853 Beijing, China
| | - Ming Xu
- Department of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, 100853 Beijing, China.,Department of Otorhinolaryngology, The Affiliated Hospital of Ningbo University Medical College, 315020 Ningbo, China
| | - Beibei Wu
- Department of Biomateriallien, Universitätsklinikum Erlangen, Friedrich-Alexander University of Erlangen - Nürnberg (FAU), 91054 Erlangen, Germany
| | - Lei Chen
- Department of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, 100853 Beijing, China
| |
Collapse
|
18
|
Fila-Danilow A, Borkowska P, Paul-Samojedny M, Kowalczyk M, Kowalski J. The influence of TSA and VPA on the in vitro differentiation of bone marrow mesenchymal stem cells into neuronal lineage cells: Gene expression studies. POSTEP HIG MED DOSW 2017; 71:236-242. [PMID: 28397704 DOI: 10.5604/01.3001.0010.3809] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Epigenetic mechanisms regulate the transcription of genes, which can affect the differentiation of MSCs. The aim of the current work is to determine how the histone deacetylase inhibitors TSA and VPA affect the expression of neuronal lineage genes in a culture of rat MSCs (rMSCs). MATERIALS AND METHODS We analyzed the expression of early neuron marker gene (Tubb3), mature neuron markers genes (Vacht, Th, Htr2a) and the oligodendrocyte progenitor marker gene (GalC). Moreover, changes in the gene expression after three different periods of exposure to TSA and VPA were investigated for the first time. RESULTS After six days of exposition to TSA and VPA, the expression of Tubb3 and GalC decreased, while the expression of Th increased. The highest increase of VAChT expression was observed after three days of TSA and VPA treatment. A decrease in Htr2a gene expression was observed after TSA treatment and an increase was observed after VPA treatment. We also observed that TSA and VPA inhibited cell proliferation and the formation of neurospheres in the rMSCs culture. DISCUSSION The central findings of our study are that TSA and VPA affect the expression of neuronal lineage genes in an rMSCs culture. After exposure to TSA or VPA, the expression of early neuronal gene decreases but equally the expression of mature neuron genes increases. After TSA and VPA treatment ER of the oligodendrocyte progenitor marker decreased. TSA and VPA inhibit cell proliferation and the formation of neurospheres in rMSCs culture.
Collapse
Affiliation(s)
- Anna Fila-Danilow
- Department of Medical Genetics, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Sosnowiec, Poland
| | - Paulina Borkowska
- Department of Medical Genetics, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Sosnowiec, Poland
| | - Monika Paul-Samojedny
- Department of Medical Genetics, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Sosnowiec, Poland
| | - Malgorzata Kowalczyk
- Department of Medical Genetics, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Sosnowiec, Poland
| | - Jan Kowalski
- Department of Medical Genetics, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Sosnowiec, Poland
| |
Collapse
|
19
|
Podobinska M, Szablowska-Gadomska I, Augustyniak J, Sandvig I, Sandvig A, Buzanska L. Epigenetic Modulation of Stem Cells in Neurodevelopment: The Role of Methylation and Acetylation. Front Cell Neurosci 2017; 11:23. [PMID: 28223921 PMCID: PMC5293809 DOI: 10.3389/fncel.2017.00023] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 01/23/2017] [Indexed: 12/11/2022] Open
Abstract
The coordinated development of the nervous system requires fidelity in the expression of specific genes determining the different neural cell phenotypes. Stem cell fate decisions during neurodevelopment are strictly correlated with their epigenetic status. The epigenetic regulatory processes, such as DNA methylation and histone modifications discussed in this review article, may impact both neural stem cell (NSC) self-renewal and differentiation and thus play an important role in neurodevelopment. At the same time, stem cell decisions regarding fate commitment and differentiation are highly dependent on the temporospatial expression of specific genes contingent on the developmental stage of the nervous system. An interplay between the above, as well as basic cell processes, such as transcription regulation, DNA replication, cell cycle regulation and DNA repair therefore determine the accuracy and function of neuronal connections. This may significantly impact embryonic health and development as well as cognitive processes such as neuroplasticity and memory formation later in the adult.
Collapse
Affiliation(s)
- Martyna Podobinska
- Stem Cell Bioengineering Unit, Mossakowski Medical Research Centre, Polish Academy of Sciences Warsaw, Poland
| | | | - Justyna Augustyniak
- Stem Cell Bioengineering Unit, Mossakowski Medical Research Centre, Polish Academy of Sciences Warsaw, Poland
| | - Ioanna Sandvig
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU) Trondheim, Norway
| | - Axel Sandvig
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU) Trondheim, Norway
| | - Leonora Buzanska
- Stem Cell Bioengineering Unit, Mossakowski Medical Research Centre, Polish Academy of Sciences Warsaw, Poland
| |
Collapse
|
20
|
Lysine Acetylation and Deacetylation in Brain Development and Neuropathies. GENOMICS PROTEOMICS & BIOINFORMATICS 2017; 15:19-36. [PMID: 28161493 PMCID: PMC5339409 DOI: 10.1016/j.gpb.2016.09.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 09/11/2016] [Accepted: 09/13/2016] [Indexed: 12/31/2022]
Abstract
Embryonic development is critical for the final functionality and maintenance of the adult brain. Brain development is tightly regulated by intracellular and extracellular signaling. Lysine acetylation and deacetylation are posttranslational modifications that are able to link extracellular signals to intracellular responses. A wealth of evidence indicates that lysine acetylation and deacetylation are critical for brain development and functionality. Indeed, mutations of the enzymes and cofactors responsible for these processes are often associated with neurodevelopmental and psychiatric disorders. Lysine acetylation and deacetylation are involved in all levels of brain development, starting from neuroprogenitor survival and proliferation, cell fate decisions, neuronal maturation, migration, and synaptogenesis, as well as differentiation and maturation of astrocytes and oligodendrocytes, to the establishment of neuronal circuits. Hence, fluctuations in the balance between lysine acetylation and deacetylation contribute to the final shape and performance of the brain. In this review, we summarize the current basic knowledge on the specific roles of lysine acetyltransferase (KAT) and lysine deacetylase (KDAC) complexes in brain development and the different neurodevelopmental disorders that are associated with dysfunctional lysine (de)acetylation machineries.
Collapse
|
21
|
Sajan SA, Jhangiani SN, Muzny DM, Gibbs RA, Lupski JR, Glaze DG, Kaufmann WE, Skinner SA, Anese F, Friez MJ, Jane L, Percy AK, Neul JL. Enrichment of mutations in chromatin regulators in people with Rett syndrome lacking mutations in MECP2. Genet Med 2017; 19:13-19. [PMID: 27171548 PMCID: PMC5107176 DOI: 10.1038/gim.2016.42] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 02/24/2016] [Indexed: 02/08/2023] Open
Abstract
PURPOSE Rett syndrome (RTT) is a neurodevelopmental disorder caused primarily by de novo mutations in MECP2 and sometimes in CDKL5 and FOXG1. However, some RTT patients lack mutations in these genes. METHODS Twenty-two RTT patients without apparent MECP2, CDKL5, and FOXG1 mutations were subjected to both whole-exome sequencing and single-nucleotide polymorphism array-based copy-number variant (CNV) analyses. RESULTS Three patients had MECP2 mutations initially missed by clinical testing. Of the remaining 19, 17 (89.5%) had 29 other likely pathogenic intragenic mutations and/or CNVs (10 patients had 2 or more). Interestingly, 13 patients had mutations in a gene/region previously reported in other neurodevelopmental disorders (NDDs), thereby providing a potential diagnostic yield of 68.4%. These mutations were significantly enriched in chromatin regulators (corrected P = 0.0068) and moderately enriched in postsynaptic cell membrane molecules (corrected P = 0.076), implicating glutamate receptor signaling. CONCLUSION The genetic etiology of RTT without MECP2, CDKL5, and FOXG1 mutations is heterogeneous, overlaps with other NDDs, and complicated by a high mutation burden. Dysregulation of chromatin structure and abnormal excitatory synaptic signaling may form two common pathological bases of RTT.Genet Med 19 1, 13-19.
Collapse
Affiliation(s)
- Samin A. Sajan
- Section of Child Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, USA
| | | | - Donna M. Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| | - Richard A. Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - James R. Lupski
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas, USA
| | - Daniel G. Glaze
- Section of Child Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Walter E. Kaufmann
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, USA
| | | | - Fran Anese
- Greenwood Genetic Center, Greenwood, South Carolina, USA
| | | | - Lane Jane
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Alan K. Percy
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jeffrey L. Neul
- Section of Child Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
22
|
Li X, Bao X, Wang R. Neurogenesis-based epigenetic therapeutics for Alzheimer's disease (Review). Mol Med Rep 2016; 14:1043-53. [DOI: 10.3892/mmr.2016.5390] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 04/14/2016] [Indexed: 11/06/2022] Open
|
23
|
Lim DA, Alvarez-Buylla A. The Adult Ventricular-Subventricular Zone (V-SVZ) and Olfactory Bulb (OB) Neurogenesis. Cold Spring Harb Perspect Biol 2016; 8:cshperspect.a018820. [PMID: 27048191 DOI: 10.1101/cshperspect.a018820] [Citation(s) in RCA: 439] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A large population of neural stem/precursor cells (NSCs) persists in the ventricular-subventricular zone (V-SVZ) located in the walls of the lateral brain ventricles. V-SVZ NSCs produce large numbers of neuroblasts that migrate a long distance into the olfactory bulb (OB) where they differentiate into local circuit interneurons. Here, we review a broad range of discoveries that have emerged from studies of postnatal V-SVZ neurogenesis: the identification of NSCs as a subpopulation of astroglial cells, the neurogenic lineage, new mechanisms of neuronal migration, and molecular regulators of precursor cell proliferation and migration. It has also become evident that V-SVZ NSCs are regionally heterogeneous, with NSCs located in different regions of the ventricle wall generating distinct OB interneuron subtypes. Insights into the developmental origins and molecular mechanisms that underlie the regional specification of V-SVZ NSCs have also begun to emerge. Other recent studies have revealed new cell-intrinsic molecular mechanisms that enable lifelong neurogenesis in the V-SVZ. Finally, we discuss intriguing differences between the rodent V-SVZ and the corresponding human brain region. The rapidly expanding cellular and molecular knowledge of V-SVZ NSC biology provides key insights into postnatal neural development, the origin of brain tumors, and may inform the development regenerative therapies from cultured and endogenous human neural precursors.
Collapse
Affiliation(s)
- Daniel A Lim
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research at UCSF, Department of Neurological Surgery, University of California, San Francisco, California 94143
| | - Arturo Alvarez-Buylla
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research at UCSF, Department of Neurological Surgery, University of California, San Francisco, California 94143
| |
Collapse
|
24
|
Desai M, Han G, Ross MG. Programmed hyperphagia in offspring of obese dams: Altered expression of hypothalamic nutrient sensors, neurogenic factors and epigenetic modulators. Appetite 2016; 99:193-199. [PMID: 26785315 DOI: 10.1016/j.appet.2016.01.023] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 01/13/2016] [Accepted: 01/14/2016] [Indexed: 01/08/2023]
Abstract
Maternal overnutrition results in programmed offspring obesity, mediated in part, by hyperphagia. This is remarkably similar to the effects of maternal undernutrition on offspring hyperphagia and obesity. In view of the marked differences in the energy environment of the over and under-nutrition exposures, we studied the expression of select epigenetic modifiers associated with energy imbalance including neurogenic factors and appetite/satiety neuropeptides which are indicative of neurogenic differentiation. HF offspring were exposed to maternal overnutrition (high fat diet; HF) during pregnancy and lactation. We determined the protein expression of energy sensors (mTOR, pAMPK), epigenetic factors (DNA methylase, DNMT1; histone deacetylase, SIRT1/HDAC1), neurogenic factors (Hes1, Mash1, Ngn3) and appetite/satiety neuropeptides (AgRP/POMC) in newborn hypothalamus and adult arcuate nucleus (ARC). Despite maternal obesity, male offspring born to obese dams had similar body weight at birth as Controls. However, when nursed by the same dams, male offspring of obese dams exhibited marked adiposity. At 1 day of age, HF newborn males had significantly decreased energy sensors, DNMT1 including Hes1 and Mash1, which may impact neuroprogenitor cell proliferation and differentiation. This is consistent with increased AgRP in HF newborns. At 6 months of age, HF adult males had significantly increased energy sensors and decreased histone deactylases. In addition, the persistent decreased Hes1, Mash1 as well as Ngn3 are consistent with increased AgRP and decreased POMC. Thus, altered energy sensors and epigenetic responses which modulate gene expression and adult neuronal differentiation may contribute to hyperphagia and obesity in HF male offspring.
Collapse
Affiliation(s)
- Mina Desai
- Perinatal Research Laboratories, Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA and Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA.
| | - Guang Han
- Perinatal Research Laboratories, Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA and Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Michael G Ross
- Perinatal Research Laboratories, Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA and Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| |
Collapse
|
25
|
Oikawa H, Sng JCG. Valproic acid as a microRNA modulator to promote neurite outgrowth. Neural Regen Res 2016; 11:1564-1565. [PMID: 27904479 PMCID: PMC5116827 DOI: 10.4103/1673-5374.193227] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Hirotaka Oikawa
- Neuroepigenetics Laboratory, Singapore Institute for Clinical Sciences, Agency for Science and Technology (ASTAR), Singapore, Singapore
| | - Judy C G Sng
- Neuroepigenetics Laboratory, Singapore Institute for Clinical Sciences, Agency for Science and Technology (ASTAR), Singapore, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
26
|
Venø MT, Hansen TB, Venø ST, Clausen BH, Grebing M, Finsen B, Holm IE, Kjems J. Spatio-temporal regulation of circular RNA expression during porcine embryonic brain development. Genome Biol 2015; 16:245. [PMID: 26541409 PMCID: PMC4635978 DOI: 10.1186/s13059-015-0801-3] [Citation(s) in RCA: 376] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 10/07/2015] [Indexed: 12/28/2022] Open
Abstract
Background Recently, thousands of circular RNAs (circRNAs) have been discovered in various tissues and cell types from human, mouse, fruit fly and nematodes. However, expression of circRNAs across mammalian brain development has never been examined. Results Here we profile the expression of circRNA in five brain tissues at up to six time-points during fetal porcine development, constituting the first report of circRNA in the brain development of a large animal. An unbiased analysis reveals a highly complex regulation pattern of thousands of circular RNAs, with a distinct spatio-temporal expression profile. The amount and complexity of circRNA expression was most pronounced in cortex at day 60 of gestation. At this time-point we find 4634 unique circRNAs expressed from 2195 genes out of a total of 13,854 expressed genes. Approximately 20 % of the porcine splice sites involved in circRNA production are functionally conserved between mouse and human. Furthermore, we observe that “hot-spot” genes produce multiple circRNA isoforms, which are often differentially expressed across porcine brain development. A global comparison of porcine circRNAs reveals that introns flanking circularized exons are longer than average and more frequently contain proximal complementary SINEs, which potentially can facilitate base pairing between the flanking introns. Finally, we report the first use of RNase R treatment in combination with in situ hybridization to show dynamic subcellular localization of circRNA during development. Conclusions These data demonstrate that circRNAs are highly abundant and dynamically expressed in a spatio-temporal manner in porcine fetal brain, suggesting important functions during mammalian brain development. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0801-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Morten T Venø
- Department of Molecular Biology and Genetics, Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
| | - Thomas B Hansen
- Department of Molecular Biology and Genetics, Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
| | - Susanne T Venø
- Department of Molecular Biology and Genetics, Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
| | - Bettina H Clausen
- Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Manuela Grebing
- Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Bente Finsen
- Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Ida E Holm
- Laboratory for Experimental Neuropathology, Department of Pathology, Randers Hospital, Randers, Denmark
| | - Jørgen Kjems
- Department of Molecular Biology and Genetics, Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark.
| |
Collapse
|
27
|
Benoit J, Ayoub A, Rakic P. Epigenetic stability in the adult mouse cortex under conditions of pharmacologically induced histone acetylation. Brain Struct Funct 2015; 221:3963-3978. [PMID: 26526554 DOI: 10.1007/s00429-015-1138-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 10/23/2015] [Indexed: 11/27/2022]
Abstract
Histone acetylation is considered a major epigenetic process that affects brain development and synaptic plasticity, as well as learning and memory. The transcriptional effectors and morphological changes responsible for plasticity as a result of long-term modifications to histone acetylation are not fully understood. To this end, we pharmacologically inhibited histone deacetylation using Trichostatin A in adult (6-month-old) mice and found significant increases in the levels of the acetylated histone marks H3Lys9, H3Lys14 and H4Lys12. High-resolution transcriptome analysis of diverse brain regions uncovered few differences in gene expression between treated and control animals, none of which were plasticity related. Instead, after increased histone acetylation, we detected a large number of novel transcriptionally active regions, which correspond to long non-coding RNAs (lncRNAs). We also surprisingly found no significant changes in dendritic spine plasticity in layers 1 and 2/3 of the visual cortex using long-term in vivo two-photon imaging. Our results indicate that chronic pharmacologically induced histone acetylation can be decoupled from gene expression and instead, may potentially exert a post-transcriptional effect through the differential production of lncRNAs.
Collapse
Affiliation(s)
- Jamie Benoit
- Department of Psychology, Yale University, New Haven, CT, 06520, USA. .,Department of Brain and Cognitive Sciences, Picower Institute of Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Albert Ayoub
- Department of Neurobiology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Pasko Rakic
- Department of Neurobiology, Yale University School of Medicine, New Haven, CT, 06520, USA.,Kavli Institute for Neuroscience Yale University, New Haven, CT, 06520, USA
| |
Collapse
|
28
|
Oikawa H, Goh WWB, Lim VKJ, Wong L, Sng JCG. Valproic acid mediates miR-124 to down-regulate a novel protein target, GNAI1. Neurochem Int 2015; 91:62-71. [PMID: 26519098 DOI: 10.1016/j.neuint.2015.10.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/17/2015] [Accepted: 10/23/2015] [Indexed: 01/07/2023]
Abstract
Valproic acid (VPA) is an anti-convulsant drug that is recently shown to have neuroregenerative therapeutic actions. In this study, we investigate the underlying molecular mechanism of VPA and its effects on Bdnf transcription through microRNAs (miRNAs) and their corresponding target proteins. Using in silico algorithms, we predicted from our miRNA microarray and iTRAQ data that miR-124 is likely to target at guanine nucleotide binding protein alpha inhibitor 1 (GNAI1), an adenylate cyclase inhibitor. With the reduction of GNAI1 mediated by VPA, the cAMP is enhanced to increase Bdnf expression. The levels of GNAI1 protein and Bdnf mRNA can be manipulated with either miR-124 mimic or inhibitor. In summary, we have identified a novel molecular mechanism of VPA that induces miR-124 to repress GNAI1. The implication of miR-124→GNAI1→BDNF pathway with valproic acid treatment suggests that we could repurpose an old drug, valproic acid, as a clinical application to elevate neurotrophin levels in treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Hirotaka Oikawa
- Neuroepigenetics Laboratory, Singapore Institute for Clinical Sciences, Agency for Science and Technology (A*STAR), Singapore
| | - Wilson W B Goh
- School of Pharmaceutical Science and Technology, Tianjin University, China; School of Computing, National University of Singapore, Singapore
| | - Vania K J Lim
- Neuroepigenetics Laboratory, Singapore Institute for Clinical Sciences, Agency for Science and Technology (A*STAR), Singapore
| | - Limsoon Wong
- School of Computing, National University of Singapore, Singapore
| | - Judy C G Sng
- Neuroepigenetics Laboratory, Singapore Institute for Clinical Sciences, Agency for Science and Technology (A*STAR), Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
29
|
Cai D, Yin S, Yang J, Jiang Q, Cao W. Histone deacetylase inhibition activates Nrf2 and protects against osteoarthritis. Arthritis Res Ther 2015; 17:269. [PMID: 26408027 PMCID: PMC4583998 DOI: 10.1186/s13075-015-0774-3] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 09/04/2015] [Indexed: 12/22/2022] Open
Abstract
Introduction Osteoarthritis (OA) is a common joint disease that can cause gradual disability among the aging population. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is a key transcription factor that regulates the expression of phase II antioxidant enzymes that provide protection against oxidative stress and tissue damage. The use of histone deacetylase inhibitors (HDACi) has emerged as a potential therapeutic strategy for various diseases. They have displayed chondroprotective effects in various animal models of arthritis. Previous studies have established that Nrf2 acetylation enhances Nrf2 functions. Here we explore the role of Nrf2 in the development of OA and the involvement of Nrf2 acetylation in HDACi protection of OA. Methods Two OA models—monosodium iodoacetate (MIA) articular injection and destabilization of the medial meniscus (DMM)—were used with wild-type (WT) and Nrf2-knockout (Nrf2-KO) mice to demonstrate the role of Nrf2 in OA progression. A pan-HDACi, trichostatin A (TSA), was administered to examine the effectiveness of HDACi on protection from cartilage damage. The histological sections were scored. The expression of OA-associated matrix metalloproteinases (MMPs) 1, 3, and 13 and proinflammatory cytokines tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 were assayed. The effectiveness of HDACi on OA protection was compared between WT and Nrf2-KO mice. Results Nrf2-KO mice displayed more severe cartilage damage in both the MIA and DMM models. TSA promoted the induction of Nrf2 downstream proteins in SW1353 chondrosarcoma cells and in mouse joint tissues. TSA also reduced the expression of OA-associated proteins MMP1, MMP3, and MMP13 and proinflammatory cytokines TNF-α, IL-1β, and IL-6. TSA markedly reduced the cartilage damage in both OA models but offered no significant protection in Nrf2-KO mice. Conclusions Nrf2 has a major chondroprotective role in progression of OA and is a critical molecule in HDACi-mediated OA protection.
Collapse
Affiliation(s)
- Dawei Cai
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Nanjing, 210093, People's Republic of China. .,Center of Diagnosis and Treatment for Joint Disease, Nanjing Drum Tower Hospital Affiliated with Nanjing University School of Medicine, Nanjing, 210008, People's Republic of China.
| | - Shasha Yin
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Nanjing, 210093, People's Republic of China.
| | - Jun Yang
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Nanjing, 210093, People's Republic of China.
| | - Qing Jiang
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Nanjing, 210093, People's Republic of China. .,Center of Diagnosis and Treatment for Joint Disease, Nanjing Drum Tower Hospital Affiliated with Nanjing University School of Medicine, Nanjing, 210008, People's Republic of China. .,Model Animal Research Center of Nanjing University, Nanjing, 210032, People's Republic of China.
| | - Wangsen Cao
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Nanjing, 210093, People's Republic of China. .,National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210016, People's Republic of China.
| |
Collapse
|
30
|
Valproic acid enhances neuronal differentiation of sympathoadrenal progenitor cells. Mol Psychiatry 2015; 20:941-50. [PMID: 25707399 DOI: 10.1038/mp.2015.3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 11/28/2014] [Accepted: 12/19/2014] [Indexed: 02/08/2023]
Abstract
The antiepileptic drug valproic acid (VPA) has been shown to influence the neural differentiation and neurite outgrowth of neural stem cells. Sympathoadrenal progenitor cells share properties with neural stem cells and are considered a potential cell source in the treatment of neurodegenerative diseases. The present study therefore aims at modulating the neural differentiation potential of these cells by treatment with the histone deacetylase inhibitor VPA. We studied the epigenetic effects of VPA in two culture conditions: suspension conditions aimed to expand adrenomedullary sympathoadrenal progenitors within free-floating chromospheres and adherent cell cultures optimized to derive neurons. Treatment of chromospheres with VPA may launch neuronal differentiation mechanisms and improve their neurogenic potential upon transplantation. However, also transplantation of differentiated functional neurons could be beneficial. Treating chromospheres for 7 days with clinically relevant concentrations of VPA (2 mm) revealed a decrease of neural progenitor markers Nestin, Notch2 and Sox10. Furthermore, VPA initiated catecholaminergic neuronal differentiation indicated by upregulation of the neuronal marker β-III-tubulin, the dopaminergic transcription factor Pitx3 and the catecholaminergic enzymes TH and GTPCH. In adherent neural differentiation conditions, VPA treatment improved the differentiation of sympathoadrenal progenitor cells into catecholaminergic neurons with significantly elevated levels of nor- and epinephrine. In conclusion, similar to neural stem cells, VPA launches differentiation mechanisms in sympathoadrenal progenitor cells that result in increased generation of functional neurons. Thus, data from this study will be relevant to the potential use of chromaffin progenitors in transplantation therapies of neurodegenerative diseases.
Collapse
|
31
|
Comparative human and rat neurospheres reveal species differences in chemical effects on neurodevelopmental key events. Arch Toxicol 2015. [DOI: 10.1007/s00204-015-1568-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
32
|
Soriano‐Cantón R, Perez‐Villalba A, Morante‐Redolat JM, Marqués‐Torrejón MÁ, Pallás M, Pérez‐Sánchez F, Fariñas I. Regulation of the p19(Arf)/p53 pathway by histone acetylation underlies neural stem cell behavior in senescence-prone SAMP8 mice. Aging Cell 2015; 14:453-62. [PMID: 25728253 PMCID: PMC4406674 DOI: 10.1111/acel.12328] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2015] [Indexed: 01/24/2023] Open
Abstract
Brain aging is associated with increased neurodegeneration and reduced neurogenesis. B1/neural stem cells (B1-NSCs) of the mouse subependymal zone (SEZ) support the ongoing production of olfactory bulb interneurons, but their neurogenic potential is progressively reduced as mice age. Although age-related changes in B1-NSCs may result from increased expression of tumor suppressor proteins, accumulation of DNA damage, metabolic alterations, and microenvironmental or systemic changes, the ultimate causes remain unclear. Senescence-accelerated-prone mice (SAMP8) relative to senescence-accelerated-resistant mice (SAMR1) exhibit signs of hastened senescence and can be used as a model for the study of aging. We have found that the B1-NSC compartment is transiently expanded in young SAMP8 relative to SAMR1 mice, resulting in disturbed cytoarchitecture of the SEZ, B1-NSC hyperproliferation, and higher yields of primary neurospheres. These unusual features are, however, accompanied by premature loss of B1-NSCs. Moreover, SAMP8 neurospheres lack self-renewal and enter p53-dependent senescence after only two passages. Interestingly, in vitro senescence of SAMP8 cells could be prevented by inhibition of histone acetyltransferases and mimicked in SAMR1 cells by inhibition of histone deacetylases (HDAC). Our data indicate that expression of the tumor suppressor p19, but not of p16, is increased in SAMP8 neurospheres, as well as in SAMR1 neurospheres upon HDAC inhibition, and suggest that the SAMP8 phenotype may, at least in part, be due to changes in chromatin status. Interestingly, acute HDAC inhibition in vivo resulted in changes in the SEZ of SAMR1 mice that resembled those found in young SAMP8 mice.
Collapse
Affiliation(s)
- Raúl Soriano‐Cantón
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED) Universidad de Valencia Burjassot 46100 Spain
- Departamento de Biología Celular Universidad de Valencia Burjassot 46100Spain
| | - Ana Perez‐Villalba
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED) Universidad de Valencia Burjassot 46100 Spain
- Departamento de Biología Celular Universidad de Valencia Burjassot 46100Spain
| | - José Manuel Morante‐Redolat
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED) Universidad de Valencia Burjassot 46100 Spain
- Departamento de Biología Celular Universidad de Valencia Burjassot 46100Spain
| | - María Ángeles Marqués‐Torrejón
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED) Universidad de Valencia Burjassot 46100 Spain
- Departamento de Biología Celular Universidad de Valencia Burjassot 46100Spain
| | - Mercé Pallás
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED) Universidad de Valencia Burjassot 46100 Spain
- Departamento de Farmacología y Química Terapéutica Instituto de Biomedicina de la Universidad de Barcelona Barcelona 08028Spain
| | - Francisco Pérez‐Sánchez
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED) Universidad de Valencia Burjassot 46100 Spain
- Departamento de Biología Celular Universidad de Valencia Burjassot 46100Spain
| | - Isabel Fariñas
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED) Universidad de Valencia Burjassot 46100 Spain
- Departamento de Biología Celular Universidad de Valencia Burjassot 46100Spain
| |
Collapse
|
33
|
Montalbán-Loro R, Domingo-Muelas A, Bizy A, Ferrón SR. Epigenetic regulation of stemness maintenance in the neurogenic niches. World J Stem Cells 2015; 7:700-710. [PMID: 26029342 PMCID: PMC4444611 DOI: 10.4252/wjsc.v7.i4.700] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 12/12/2014] [Accepted: 03/20/2015] [Indexed: 02/06/2023] Open
Abstract
In the adult mouse brain, the subventricular zone lining the lateral ventricles and the subgranular zone in the dentate gyrus of the hippocampus are two zones that contain neural stem cells (NSCs) with the capacity to give rise to neurons and glia during the entire life of the animal. Spatial and temporal regulation of gene expression in the NSCs population is established and maintained by the coordinated interaction between transcription factors and epigenetic regulators which control stem cell fate. Epigenetic mechanisms are heritable alterations in genome function that do not involve changes in DNA sequence itself but that modulate gene expression, acting as mediators between the environment and the genome. At the molecular level, those epigenetic mechanisms comprise chemical modifications of DNA such as methylation, hydroxymethylation and histone modifications needed for the maintenance of NSC identity. Genomic imprinting is another normal epigenetic process leading to parental-specific expression of a gene, known to be implicated in the control of gene dosage in the neurogenic niches. The generation of induced pluripotent stem cells from NSCs by expression of defined transcription factors, provide key insights into fundamental principles of stem cell biology. Epigenetic modifications can also occur during reprogramming of NSCs to pluripotency and a better understanding of this process will help to elucidate the mechanisms required for stem cell maintenance. This review takes advantage of recent studies from the epigenetic field to report knowledge regarding the mechanisms of stemness maintenance of neural stem cells in the neurogenic niches.
Collapse
|
34
|
Azim K, Hurtado-Chong A, Fischer B, Kumar N, Zweifel S, Taylor V, Raineteau O. Transcriptional Hallmarks of Heterogeneous Neural Stem Cell Niches of the Subventricular Zone. Stem Cells 2015; 33:2232-42. [PMID: 25827345 DOI: 10.1002/stem.2017] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 02/19/2015] [Indexed: 12/13/2022]
Abstract
Throughout postnatal life in mammals, neural stem cells (NSCs) are located in the subventricular zone (SVZ) of the lateral ventricles. The greatest diversity of neuronal and glial lineages they generate occurs during early postnatal life in a region-specific manner. In order to probe heterogeneity of the postnatal SVZ, we microdissected its dorsal and lateral walls at different postnatal ages and isolated NSCs and their immediate progeny based on their expression of Hes5-EGFP/Prominin1 and Ascl1-EGFP, respectively. Whole genome comparative transcriptome analysis revealed transcriptional regulators as major hallmarks that sustain postnatal SVZ regionalization. Manipulation of single genes encoding for locally enriched transcription factors (loss-of-function or ectopic gain-of-function in vivo) influenced NSC specification indicating that the fate of regionalized postnatal SVZ-NSCs can be readily modified. These findings reveal the pronounced transcriptional heterogeneity of the postnatal SVZ and provide targets to recruit region-specific lineages in regenerative contexts. Stem Cells 2015;33:2232-2242.
Collapse
Affiliation(s)
- Kasum Azim
- Brain Research Institute, University of Zurich/ETH Zurich, Zurich, Switzerland
| | - Anahí Hurtado-Chong
- Brain Research Institute, University of Zurich/ETH Zurich, Zurich, Switzerland
| | - Bruno Fischer
- Brain Research Institute, University of Zurich/ETH Zurich, Zurich, Switzerland
| | - Nitin Kumar
- Brain Research Institute, University of Zurich/ETH Zurich, Zurich, Switzerland
| | - Stefan Zweifel
- Inserm U846, Stem Cell and Brain Research Institute, Université de Lyon, Université Lyon 1, Bron, France
| | - Verdon Taylor
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Olivier Raineteau
- Brain Research Institute, University of Zurich/ETH Zurich, Zurich, Switzerland
- Inserm U846, Stem Cell and Brain Research Institute, Université de Lyon, Université Lyon 1, Bron, France
| |
Collapse
|
35
|
Fritsche E, Alm H, Baumann J, Geerts L, Håkansson H, Masjosthusmann S, Witters H. Literature review on in vitro and alternative Developmental Neurotoxicity (DNT) testing methods. ACTA ACUST UNITED AC 2015. [DOI: 10.2903/sp.efsa.2015.en-778] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ellen Fritsche
- Leibniz Research Institute for Environmental Medicine (IUF), Group of Sphere Models and Risk Assessment, Auf'm Hennekamp 50, 40225 Düsseldorf, Germany
| | - Henrik Alm
- Leibniz Research Institute for Environmental Medicine (IUF), Group of Sphere Models and Risk Assessment, Auf'm Hennekamp 50, 40225 Düsseldorf, Germany
| | - Jenny Baumann
- Leibniz Research Institute for Environmental Medicine (IUF), Group of Sphere Models and Risk Assessment, Auf'm Hennekamp 50, 40225 Düsseldorf, Germany
| | - Lieve Geerts
- Flemish Institute for Technological Research (VITO), Environmental Risk & Health, Boeretang 200, B‐2400 Mol, Belgium
| | - Helen Håkansson
- Karolinska Institute (KI), Institute of Environmental Medicine (IMM), Unit of Environmental Health Risk Assessment, SE‐171 77 Stockholm, Sweden
| | - Stefan Masjosthusmann
- Leibniz Research Institute for Environmental Medicine (IUF), Group of Sphere Models and Risk Assessment, Auf'm Hennekamp 50, 40225 Düsseldorf, Germany
| | - Hilda Witters
- Flemish Institute for Technological Research (VITO), Environmental Risk & Health, Boeretang 200, B‐2400 Mol, Belgium
| |
Collapse
|
36
|
Baumann J, Dach K, Barenys M, Giersiefer S, Goniwiecha J, Lein PJ, Fritsche E. Application of the Neurosphere Assay for DNT Hazard Assessment: Challenges and Limitations. METHODS IN PHARMACOLOGY AND TOXICOLOGY 2015. [DOI: 10.1007/7653_2015_49] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
37
|
Lim DA, Alvarez-Buylla A. Adult neural stem cells stake their ground. Trends Neurosci 2014; 37:563-71. [PMID: 25223700 DOI: 10.1016/j.tins.2014.08.006] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/19/2014] [Accepted: 08/21/2014] [Indexed: 02/07/2023]
Abstract
The birth of new neurons in the walls of the adult brain lateral ventricles has captured the attention of many neuroscientists for over 2 decades, yielding key insights into the identity and regulation of neural stem cells (NSCs). In the adult ventricular-subventricular zone (V-SVZ), NSCs are a specialized form of astrocyte that generates several types of neurons for the olfactory bulb. In this review, we discuss recent findings regarding the unique organization of the V-SVZ NSC niche, the multiple regulatory controls of neuronal production, the distinct regional identities of adult NSCs, and the epigenetic mechanisms that maintain adult neurogenesis. Understanding how V-SVZ NSCs establish and maintain lifelong neurogenesis continues to provide surprising insights into the cellular and molecular regulation of neural development.
Collapse
Affiliation(s)
- Daniel A Lim
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Veterans Affairs Medical Center, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Arturo Alvarez-Buylla
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
38
|
Hu Z, Wang J. Histone deacetylase inhibitor induces the expression of select epithelial genes in mouse utricle sensory epithelia-derived progenitor cells. Cell Reprogram 2014; 16:266-75. [PMID: 24945595 DOI: 10.1089/cell.2013.0086] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Mouse utricle sensory epithelial cell-derived progenitor cells (MUCs), which have hair cell progenitor and mesenchymal features via epithelial-to-mesenchymal transition (EMT) as previously described, provide a potential approach for hair cell regeneration via cell transplantation. In this study, we treated MUCs with trichostatin A (TSA) to determine whether histone deacetylase inhibitor is able to stimulate the expression of epithelial genes in MUCs, an essential step for guiding mesenchymal-like MUCs to become sensory epithelial cells. After 72 h of TSA treatment, MUCs acquired epithelial-like features, which were indicated by increased expression of epithelial markers such as Cdh1, Krt18, and Dsp. Additionally, TSA decreased the expression of mesenchymal markers, including Zeb1, Zeb2, Snai1, and Snai2, and prosensory genes Lfng, Six1, and Dlx5. Moreover, the expression of the hair cell genes Atoh1 and Myo6 was increased in TSA-treated MUCs. We also observed significantly decreased expression of Hdac2 and Hdac3 in TSA-treated MUCs. However, no remarkable change was detected in protein expression using immunofluorescence, indicating that TSA-induced HDAC inhibition may contribute to the initial stage of the mesenchymal-to-epithelial phenotypic change. In the future, more work is needed to induce hair cell regeneration using inner ear tissue-derived progenitors to achieve an entire mesenchymal-to-epithelial transition.
Collapse
Affiliation(s)
- Zhengqing Hu
- Department of Otolaryngology-HNS, Wayne State University School of Medicine , Detroit, MI, 48201
| | | |
Collapse
|
39
|
El Waly B, Macchi M, Cayre M, Durbec P. Oligodendrogenesis in the normal and pathological central nervous system. Front Neurosci 2014; 8:145. [PMID: 24971048 PMCID: PMC4054666 DOI: 10.3389/fnins.2014.00145] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 05/23/2014] [Indexed: 12/26/2022] Open
Abstract
Oligodendrocytes (OLGs) are generated late in development and myelination is thus a tardive event in the brain developmental process. It is however maintained whole life long at lower rate, and myelin sheath is crucial for proper signal transmission and neuronal survival. Unfortunately, OLGs present a high susceptibility to oxidative stress, thus demyelination often takes place secondary to diverse brain lesions or pathologies. OLGs can also be the target of immune attacks, leading to primary demyelination lesions. Following oligodendrocytic death, spontaneous remyelination may occur to a certain extent. In this review, we will mainly focus on the adult brain and on the two main sources of progenitor cells that contribute to oligodendrogenesis: parenchymal oligodendrocyte precursor cells (OPCs) and subventricular zone (SVZ)-derived progenitors. We will shortly come back on the main steps of oligodendrogenesis in the postnatal and adult brain, and summarize the key factors involved in the determination of oligodendrocytic fate. We will then shed light on the main causes of demyelination in the adult brain and present the animal models that have been developed to get insight on the demyelination/remyelination process. Finally, we will synthetize the results of studies searching for factors able to modulate spontaneous myelin repair.
Collapse
Affiliation(s)
- Bilal El Waly
- CNRS, Institut de Biologie du Développement de Marseille UMR 7288, Aix Marseille Université Marseille, France
| | - Magali Macchi
- CNRS, Institut de Biologie du Développement de Marseille UMR 7288, Aix Marseille Université Marseille, France
| | - Myriam Cayre
- CNRS, Institut de Biologie du Développement de Marseille UMR 7288, Aix Marseille Université Marseille, France
| | - Pascale Durbec
- CNRS, Institut de Biologie du Développement de Marseille UMR 7288, Aix Marseille Université Marseille, France
| |
Collapse
|
40
|
Cho Y, Cavalli V. HDAC signaling in neuronal development and axon regeneration. Curr Opin Neurobiol 2014; 27:118-26. [PMID: 24727244 DOI: 10.1016/j.conb.2014.03.008] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 03/13/2014] [Accepted: 03/14/2014] [Indexed: 12/13/2022]
Abstract
The development and repair of the nervous system requires the coordinated expression of a large number of specific genes. Epigenetic modifications of histones represent an essential principle by which neurons regulate transcriptional responses and adapt to environmental cues. The post-translational modification of histones by chromatin-modifying enzymes histone acetyltransferases (HATs) and histone deacetylases (HDACs) shapes chromatin to adjust transcriptional profiles during neuronal development. Recent observations also point to a critical role for histone acetylation and deacetylation in the response of neurons to injury. While HDACs are mostly known to attenuate transcription through their deacetylase activity and their interaction with co-repressors, these enzymes are also found in the cytoplasm where they display transcription-independent activities by regulating the function of diverse proteins. Here we discuss recent studies that go beyond the traditional use of HDAC inhibitors and have begun to dissect the roles of individual HDAC isoforms in neuronal development and repair after injury.
Collapse
Affiliation(s)
- Yongcheol Cho
- Department of Anatomy and Neurobiology, Washington University in St. Louis, School of Medicine, St. Louis 63110, MO, USA
| | - Valeria Cavalli
- Department of Anatomy and Neurobiology, Washington University in St. Louis, School of Medicine, St. Louis 63110, MO, USA.
| |
Collapse
|
41
|
Varol N, Konac E, Onen IH, Gurocak S, Alp E, Yilmaz A, Menevse S, Sozen S. The epigenetically regulated effects of Wnt antagonists on the expression of genes in the apoptosis pathway in human bladder cancer cell line (T24). DNA Cell Biol 2014; 33:408-17. [PMID: 24665856 DOI: 10.1089/dna.2013.2285] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The epigenetic suppression of Wnt antagonists (sFRPs, DKKs, and WIF-1) causes the activation of both β-catenin and target genes, which play an important role in cell proliferation, metastasis, and angiogenesis. This study is aimed to investigate, on transcriptional and protein levels, the synergic effects of unaccompanied and/or combined use of 5-aza-2'-deoxycytidine (DAC, 5-aza-dC), trichostatin A (TSA), and gemcitabine+cisplatin chemotherapeutic agents on the apoptotic pathway of human bladder cancer cell line T24. The anti-tumor effects of gemcitabine (0-500 nM), cisplatin (0-10 μM), DAC (10 μM), and TSA (300 nM) alone and/or together on T24 cells were determined by WST-1. ELISA method was used to analyze the effects of unaccompanied and combined use of gemcitabine+cisplatin, DAC, and TSA on cell proliferation and determine the cytotoxic and apoptotic dosages at the level of H3 histone acetylation. Methylation-specific PCR was used to evaluate methylation profiles of Wnt antagonist gene (WIF-1). In the case of unaccompanied and/or combined use of specified drugs, the variations in the expression levels of CTNNB1, GSK3β, c-MYC, CCND1, CASP-3, CASP-8, CASP-9, BCL2L1, and WIF-1 genes were determined by quantitative real-time PCR. Our results indicate that through inhibition of DNA methylation, expression of β-catenin and Wnt antagonist re-activation and expressions of canonical Wnt/β-catenin pathway target genes, c-myc and cyclin D1 (CCND1), have decreased. In addition, DAC, TSA, and gemcitabine+cisplatin combination caused an increase in GSK3β mRNA levels, which in turn significantly decreased CCND1 mRNA levels. Moreover, BCL2L1, an anti-apoptotic gene, was downregulated significantly. Meanwhile, both CASP-3 mRNA and active caspase-3 protein levels increased with respect to control (p<0.01). The results revealed that use of quadruplicate gemcitabine+cisplatin+DAC+TSA combination led to a reduced inhibition of canonical Wnt/β-catenin pathway and reduced cell proliferation. Our findings may offer a new approach to consider in the treatment of bladder cancer.
Collapse
Affiliation(s)
- Nuray Varol
- 1 Department of Medical Biology and Genetics, Faculty of Medicine, Gazi University , Besevler, Ankara, Turkey
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Leone L, Fusco S, Mastrodonato A, Piacentini R, Barbati SA, Zaffina S, Pani G, Podda MV, Grassi C. Epigenetic Modulation of Adult Hippocampal Neurogenesis by Extremely Low-Frequency Electromagnetic Fields. Mol Neurobiol 2014; 49:1472-86. [DOI: 10.1007/s12035-014-8650-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 01/22/2014] [Indexed: 12/22/2022]
|
43
|
Gonzales-Roybal G, Lim DA. Chromatin-based epigenetics of adult subventricular zone neural stem cells. Front Genet 2013; 4:194. [PMID: 24115953 PMCID: PMC3792351 DOI: 10.3389/fgene.2013.00194] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 09/12/2013] [Indexed: 01/30/2023] Open
Abstract
In specific regions of the adult mammalian brain, neural stem cells (NSCs) generate new neurons throughout life. Emerging evidence indicate that chromatin-based transcriptional regulation is a key epigenetic mechanism for the life-long function of adult NSCs. In the adult mouse brain, NSCs in the subventricular zone (SVZ) retain the ability to produce both neurons and glia for the life of the animal. In this review, we discuss the origin and function of SVZ NSCs as they relate to key epigenetic concepts of development and potential underlying mechanism of chromatin-based transcriptional regulation. A central point of discussion is how SVZ NSCs - which possess many characteristics of mature, non-neurogenic astrocytes - maintain a "youthful" ability to produce both neuronal and glial lineages. In addition to reviewing data regarding the function of chromatin-modifying factors in SVZ neurogenesis, we incorporate our growing understanding that long non-coding RNAs serve as an important element to chromatin-based transcriptional regulation, including that of SVZ NSCs. Discoveries regarding the epigenetic mechanisms of adult SVZ NSCs may provide key insights into fundamental principles of adult stem cell biology as well as the more complex and dynamic developmental environment of the embryonic brain.
Collapse
Affiliation(s)
- Gabriel Gonzales-Roybal
- Department of Neurological Surgery, University of California at San FranciscoSan Francisco, CA, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San FranciscoSan Francisco, CA, USA
| | - Daniel A. Lim
- Department of Neurological Surgery, University of California at San FranciscoSan Francisco, CA, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San FranciscoSan Francisco, CA, USA
- Veterans Affairs Medical Center, University of California at San FranciscoSan Francisco, CA, USA
| |
Collapse
|
44
|
Abstract
Spinal cord injury results from an insult inflicted on the spinal cord that usually encompasses its 4 major functions (motor, sensory, autonomic, and reflex). The type of deficits resulting from spinal cord injury arise from primary insult, but their long-term severity is due to a multitude of pathophysiological processes during the secondary phase of injury. The failure of the mammalian spinal cord to regenerate and repair is often attributed to the very feature that makes the central nervous system special-it becomes so highly specialized to perform higher functions that it cannot effectively reactivate developmental programs to re-build novel circuitry to restore function after injury. Added to this is an extensive gliotic and immune response that is essential for clearance of cellular debris, but also lays down many obstacles that are detrimental to regeneration. Here, we discuss how the mature chromatin state of different central nervous system cells (neural, glial, and immune) may contribute to secondary pathophysiology, and how restoring silenced developmental gene expression by altering histone acetylation could stall secondary damage and contribute to novel approaches to stimulate endogenous repair.
Collapse
Affiliation(s)
- Elisa M. York
- Department of Zoology (Life Sciences Institute), Brain Research Institute and International Collaboration on Repair Discoveries (iCORD), University of British Columbia, 2350 Health Sciences Blvd, V6T 1Z3 Vancouver, Canada
| | - Audrey Petit
- Department of Zoology (Life Sciences Institute), Brain Research Institute and International Collaboration on Repair Discoveries (iCORD), University of British Columbia, 2350 Health Sciences Blvd, V6T 1Z3 Vancouver, Canada
| | - A. Jane Roskams
- Department of Zoology (Life Sciences Institute), Brain Research Institute and International Collaboration on Repair Discoveries (iCORD), University of British Columbia, 2350 Health Sciences Blvd, V6T 1Z3 Vancouver, Canada
| |
Collapse
|
45
|
Visualizing epigenetics: current advances and advantages in HDAC PET imaging techniques. Neuroscience 2013; 264:186-97. [PMID: 24051365 DOI: 10.1016/j.neuroscience.2013.09.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Revised: 08/27/2013] [Accepted: 09/09/2013] [Indexed: 12/19/2022]
Abstract
Abnormal gene regulation as a consequence of flawed epigenetic mechanisms may be central to the initiation and persistence of many human diseases. However, the association of epigenetic dysfunction with disease and the development of therapeutic agents for treatment are slow. Developing new methodologies used to visualize chromatin-modifying enzymes and their function in the human brain would be valuable for the diagnosis of brain disorders and drug discovery. We provide an overview of current invasive and noninvasive techniques for measuring expression and functions of chromatin-modifying enzymes in the brain, emphasizing tools applicable to histone deacetylase (HDAC) enzymes as a leading example. The majority of current techniques are invasive and difficult to translate to what is happening within a human brain in vivo. However, recent progress in molecular imaging provides new, noninvasive ways to visualize epigenetics in the human brain. Neuroimaging tool development presents a unique set of challenges in order to identify and validate CNS radiotracers for HDACs and other histone-modifying enzymes. We summarize advances in the effort to image HDACs and HDAC inhibitory effects in the brain using positron emission tomography (PET) and highlight generalizable techniques that can be adapted to investigate other specific components of epigenetic machinery. Translational tools like neuroimaging by PET and magnetic resonance imaging provide the best way to link our current understanding of epigenetic changes with in vivo function in normal and diseased brains. These tools will be a critical addition to ex vivo methods to evaluate - and intervene - in CNS dysfunction.
Collapse
|