1
|
Geertsema J, Juncker HG, Wilmes L, Burchell GL, de Rooij SR, van Goudoever JB, O'Riordan KJ, Clarke G, Cryan JF, Korosi A. Nutritional interventions to counteract the detrimental consequences of early-life stress. Mol Psychiatry 2025:10.1038/s41380-025-03020-1. [PMID: 40289212 DOI: 10.1038/s41380-025-03020-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 03/19/2025] [Accepted: 04/07/2025] [Indexed: 04/30/2025]
Abstract
Exposure to stress during sensitive developmental periods comes with long term consequences for neurobehavioral outcomes and increases vulnerability to psychopathology later in life. While we have advanced our understanding of the mechanisms underlying the programming effects of early-life stress (ES), these are not yet fully understood and often hard to target, making the development of effective interventions challenging. In recent years, we and others have suggested that nutrition might be instrumental in modulating and possibly combatting the ES-induced increased risk to psychopathologies and neurobehavioral impairments. Nutritional strategies are very promising as they might be relatively safe, cheap and easy to implement. Here, we set out to comprehensively review the existing literature on nutritional interventions aimed at counteracting the effects of ES on neurobehavioral outcomes in preclinical and clinical settings. We identified eighty six rodent and ten human studies investigating a nutritional intervention to ameliorate ES-induced impairments. The human evidence to date, is too few and heterogeneous in terms of interventions, thus not allowing hard conclusions, however the preclinical studies, despite their heterogeneity in terms of designs, interventions used, and outcomes measured, showed nutritional interventions to be promising in combatting ES-induced impairments. Furthermore, we discuss the possible mechanisms involved in the beneficial effects of nutrition on the brain after ES, including neuroinflammation, oxidative stress, hypothalamus-pituitary-adrenal axis regulation and the microbiome-gut-brain axis. Lastly, we highlight the critical gaps in our current knowledge and make recommendations for future research to move the field forward.
Collapse
Affiliation(s)
- Jorine Geertsema
- Brain Plasticity group, Centre for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Hannah G Juncker
- Brain Plasticity group, Centre for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam UMC, University of Amsterdam, Vrije Universiteit, Emma Children's Hospital, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development, Amsterdam, The Netherlands
| | - Lars Wilmes
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - George L Burchell
- Medical Library, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Susanne R de Rooij
- Amsterdam Reproduction and Development, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Department of Epidemiology and Data Science, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Public Health research institute, Aging and Later Life, Health Behaviors and Chronic Diseases, Amsterdam, The Netherlands
| | - J B van Goudoever
- Amsterdam UMC, University of Amsterdam, Vrije Universiteit, Emma Children's Hospital, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development, Amsterdam, The Netherlands
| | | | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Aniko Korosi
- Brain Plasticity group, Centre for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
2
|
De Stasi AM, Zorrilla de San Martin J, Soto N, Aguirre A, Olusakin J, Lourenço J, Gaspar P, Bacci A. Alterations of Adult Prefrontal Circuits Induced by Early Postnatal Fluoxetine Treatment Mediated by 5-HT7 Receptors. J Neurosci 2025; 45:e2393232024. [PMID: 39909574 PMCID: PMC11800747 DOI: 10.1523/jneurosci.2393-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 02/07/2025] Open
Abstract
The prefrontal cortex (PFC) plays a key role in high-level cognitive functions and emotional behaviors, and PFC alterations correlate with different brain disorders including major depression and anxiety. In mice, the first two postnatal weeks represent a critical period of high sensitivity to environmental changes. In this temporal window, serotonin (5-HT) levels regulate the wiring of PFC cortical neurons. Early-life insults and postnatal exposure to the selective serotonin reuptake inhibitor fluoxetine (FLX) affect PFC development leading to depressive and anxiety-like phenotypes in adult mice. However, the mechanisms responsible for these dysfunctions remain obscure. We found that early postnatal FLX exposure (PNFLX) results in reduced overall firing and high-frequency bursting of putative pyramidal neurons (PNs) of deep layers of the medial PFC of adult mice of both sexes in vivo. Ex vivo, patch-clamp recordings revealed that PNFLX abolished high-frequency firing in a distinct subpopulation of deep-layer mPFC PNs, which transiently express the serotonin transporter SERT during the first 2 postnatal weeks. SERT+ and SERT- PNs exhibit distinct morphofunctional properties. Genetic deletion of 5-HT7Rs and pharmacological 5-HT7R blockade partially rescued both the PNFLX-induced reduction of PN firing in vivo and the altered firing of SERT+ PNs in vitro. This indicates a pivotal role of this 5-HTR subtype in mediating 5-HT-dependent maturation of PFC circuits that are susceptible to early-life insults. Overall, our results suggest potential novel neurobiological mechanisms, underlying detrimental neurodevelopmental consequences induced by early-life alterations of 5-HT levels.
Collapse
Affiliation(s)
| | | | - Nina Soto
- Sorbonne Université, ICM-Paris Brain Institute, CNRS, INSERM, Paris 75013, France
| | - Andrea Aguirre
- Sorbonne Université, ICM-Paris Brain Institute, CNRS, INSERM, Paris 75013, France
| | - Jimmy Olusakin
- INSERM UMRS-839 Institut du Fer à Moulin, Paris 75005, France
| | - Joana Lourenço
- Sorbonne Université, ICM-Paris Brain Institute, CNRS, INSERM, Paris 75013, France
| | - Patricia Gaspar
- Sorbonne Université, ICM-Paris Brain Institute, CNRS, INSERM, Paris 75013, France
| | - Alberto Bacci
- Sorbonne Université, ICM-Paris Brain Institute, CNRS, INSERM, Paris 75013, France
| |
Collapse
|
3
|
Mahmoudian M, Lorigooini Z, Rahimi-Madiseh M, Shabani S, Amini-Khoei H. Protective effects of rosmarinic acid against autistic-like behaviors in a mouse model of maternal separation stress: behavioral and molecular amendments. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:7819-7828. [PMID: 38730077 DOI: 10.1007/s00210-024-03143-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 05/02/2024] [Indexed: 05/12/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder with worldwide increasing incidence. Maternal separation (MS) stress at the beginning of life with its own neuroendocrine changes can provide the basis for development of ASD. Rosmarinic acid (RA) is a phenolic compound with a protective effect in neurodegenerative diseases. The aim of this study was to determine the effect of RA on autistic-like behaviors in maternally separated mice focusing on its possible effects on neuroimmune response and nitrite levels in the hippocampus. In this study, 40 mice were randomly divided into five groups of control (received normal saline (1 ml/kg)) and MS that were treated with normal saline (1 ml/kg) or doses of 1, 2, and 4 mg/kg RA, respectively, for 14 days. Three-chamber sociability, shuttle box, and marble burying tests were used to investigate autistic-like behaviors. Nitrite level and gene expression of inflammatory cytokines including TNF-α, IL-1β, TLR4, and iNOS were assessed in the hippocampus. The results showed that RA significantly increased the social preference and social novelty indexes, as well as attenuated impaired passive avoidance memory and the occurrence of repetitive and obsessive behaviors in the MS mice. RA reduced the nitrite level and gene expression of inflammatory cytokines in the hippocampus. RA, probably via attenuation of the nitrite level as well as of the neuroimmune response in the hippocampus, mitigated autistic-like behaviors in maternally separated mice.
Collapse
Affiliation(s)
- Maziar Mahmoudian
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Zahra Lorigooini
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad Rahimi-Madiseh
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Sahreh Shabani
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hossein Amini-Khoei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
4
|
Lee KKY, Chattopadhyaya B, do Nascimento ASF, Moquin L, Rosa-Neto P, Amilhon B, Di Cristo G. Neonatal hypoxia impairs serotonin release and cognitive functions in adult mice. Neurobiol Dis 2024; 193:106465. [PMID: 38460800 DOI: 10.1016/j.nbd.2024.106465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024] Open
Abstract
Children who experienced moderate perinatal asphyxia (MPA) are at risk of developing long lasting subtle cognitive and behavioral deficits, including learning disabilities and emotional problems. The prefrontal cortex (PFC) regulates cognitive flexibility and emotional behavior. Neurons that release serotonin (5-HT) project to the PFC, and compounds modulating 5-HT activity influence emotion and cognition. Whether 5-HT dysregulations contribute to MPA-induced cognitive problems is unknown. We established a MPA mouse model, which displays recognition and spatial memory impairments and dysfunctional cognitive flexibility. We found that 5-HT expression levels, quantified by immunohistochemistry, and 5-HT release, quantified by in vivo microdialysis in awake mice, are reduced in PFC of adult MPA mice. MPA mice also show impaired body temperature regulation following injection of the 5-HT1A receptor agonist 8-OH-DPAT, suggesting the presence of deficits in 5-HT auto-receptor function on raphe neurons. Finally, chronic treatment of adult MPA mice with fluoxetine, an inhibitor of 5-HT reuptake transporter, or the 5-HT1A receptor agonist tandospirone rescues cognitive flexibility and memory impairments. All together, these data demonstrate that the development of 5-HT system function is vulnerable to moderate perinatal asphyxia. 5-HT hypofunction might in turn contribute to long-term cognitive impairment in adulthood, indicating a potential target for pharmacological therapies.
Collapse
Affiliation(s)
- Karen Ka Yan Lee
- Neurosciences Department, Université de Montréal, Montréal, Canada; CHU Sainte-Justine Azrieli Research Center, Montréal, Canada
| | | | | | - Luc Moquin
- Department of Psychiatry, McGill University, Douglas Hospital Research Center, Canada
| | - Pedro Rosa-Neto
- Department of Psychiatry, McGill University, Douglas Hospital Research Center, Canada
| | - Bénédicte Amilhon
- Neurosciences Department, Université de Montréal, Montréal, Canada; CHU Sainte-Justine Azrieli Research Center, Montréal, Canada.
| | - Graziella Di Cristo
- Neurosciences Department, Université de Montréal, Montréal, Canada; CHU Sainte-Justine Azrieli Research Center, Montréal, Canada.
| |
Collapse
|
5
|
De Santa F, Strimpakos G, Marchetti N, Gargari G, Torcinaro A, Arioli S, Mora D, Petrella C, Farioli-Vecchioli S. Effect of a multi-strain probiotic mixture consumption on anxiety and depression symptoms induced in adult mice by postnatal maternal separation. MICROBIOME 2024; 12:29. [PMID: 38369490 PMCID: PMC10875865 DOI: 10.1186/s40168-024-01752-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 01/04/2024] [Indexed: 02/20/2024]
Abstract
BACKGROUND Intestinal microbial composition not only affects the health of the gut but also influences centrally mediated systems involved in mood, through the "gut-brain" axis, a bidirectional communication between gut microbiota and the brain. In this context, the modulation of intestinal microbiota and its metabolites through the administration of probiotics seems to represent a very promising approach in the treatment of the central nervous system alterations. Early postnatal life is a critical period during which the brain undergoes profound and essential modulations in terms of maturation and plasticity. Maternal separation (MS), i.e., the disruption of the mother-pup interaction, represents a pivotal paradigm in the study of stress-related mood disorders, by inducing persistent changes in the immune system, inflammatory processes, and emotional behavior in adult mammals. RESULTS We conducted experiments to investigate whether sustained consumption of a multi-strain probiotic formulation by adult male mice could mitigate the effects of maternal separation. Our data demonstrated that the treatment with probiotics was able to totally reverse the anxiety- and depressive-like behavior; normalize the neuro-inflammatory state, by restoring the resting state of microglia; and finally induce a proneurogenic effect. Mice subjected to maternal separation showed changes in microbiota composition compared to the control group that resulted in permissive colonization by the administered multi-strain probiotic product. As a consequence, the probiotic treatment also significantly affected the production of SCFA and in particular the level of butyrate. CONCLUSION Gut microbiota and its metabolites mediate the therapeutic action of the probiotic mix on MS-induced brain dysfunctions. Our findings extend the knowledge on the use of probiotics as a therapeutic tool in the presence of alterations of the emotional sphere that significantly impact on gut microbiota composition. Video Abstract.
Collapse
Affiliation(s)
- Francesca De Santa
- Institute of Biochemistry and Cell Biology, IBBC, CNR, Via E. Ramarini, 32, Monterotondo, Rome, 00015, Italy
| | - Georgios Strimpakos
- Institute of Biochemistry and Cell Biology, IBBC, CNR, Via E. Ramarini, 32, Monterotondo, Rome, 00015, Italy
| | - Nicole Marchetti
- Institute of Biochemistry and Cell Biology, IBBC, CNR, Via E. Ramarini, 32, Monterotondo, Rome, 00015, Italy
- Sciences of Nutrition, Aging, Metabolism and Gender Pathologies, Catholic University of Roma, Rome, 00100, Italy
| | - Giorgio Gargari
- Department of Food Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Alessio Torcinaro
- Institute of Biochemistry and Cell Biology, IBBC, CNR, Via E. Ramarini, 32, Monterotondo, Rome, 00015, Italy
| | - Stefania Arioli
- Department of Food Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Diego Mora
- Department of Food Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Carla Petrella
- Institute of Biochemistry and Cell Biology, IBBC, CNR, Policlinico Umberto I, Rome, Italy
| | - Stefano Farioli-Vecchioli
- Institute of Biochemistry and Cell Biology, IBBC, CNR, Via E. Ramarini, 32, Monterotondo, Rome, 00015, Italy.
| |
Collapse
|
6
|
Irie K, Ohta KI, Ujihara H, Araki C, Honda K, Suzuki S, Warita K, Otabi H, Kumei H, Nakamura S, Koyano K, Miki T, Kusaka T. An enriched environment ameliorates the reduction of parvalbumin-positive interneurons in the medial prefrontal cortex caused by maternal separation early in life. Front Neurosci 2024; 17:1308368. [PMID: 38292903 PMCID: PMC10825025 DOI: 10.3389/fnins.2023.1308368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/11/2023] [Indexed: 02/01/2024] Open
Abstract
Early child maltreatment, such as child abuse and neglect, is well known to affect the development of social skills. However, the mechanisms by which such an adverse environment interrupts the development of social skills remain unelucidated. Identifying the period and brain regions that are susceptible to adverse environments can lead to appropriate developmental care later in life. We recently reported an excitatory/inhibitory imbalance and low activity during social behavior in the medial prefrontal cortex (mPFC) of the maternal separation (MS) animal model of early life neglect after maturation. Based on these results, in the present study, we investigated how MS disturbs factors related to excitatory and inhibitory neurons in the mPFC until the critical period of mPFC development. Additionally, we evaluated whether the effects of MS could be recovered in an enriched environment after MS exposure. Rat pups were separated from their dams on postnatal days (PDs) 2-20 (twice daily, 3 h each) and compared with the mother-reared control (MRC) group. Gene expression analysis revealed that various factors related to excitatory and inhibitory neurons were transiently disturbed in the mPFC during MS. A similar tendency was found in the sensory cortex; however, decreased parvalbumin (PV) expression persisted until PD 35 only in the mPFC. Moreover, the number of PV+ interneurons decreased in the ventromedial prefrontal cortex (vmPFC) on PD 35 in the MS group. Additionally, perineural net formation surrounding PV+ interneurons, which is an indicator of maturity and critical period closure, was unchanged, indicating that the decreased PV+ interneurons were not simply attributable to developmental delay. This reduction of PV+ interneurons improved to the level observed in the MRC group by the enriched environment from PD 21 after the MS period. These results suggest that an early adverse environment disturbs the development of the mPFC but that these abnormalities allow room for recovery depending on the subsequent environment. Considering that PV+ interneurons in the mPFC play an important role in social skills such as empathy, an early rearing environment is likely a very important factor in the subsequent acquisition of social skills.
Collapse
Affiliation(s)
- Kanako Irie
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Ken-ichi Ohta
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Hidetoshi Ujihara
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Chihiro Araki
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Kodai Honda
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Shingo Suzuki
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Katsuhiko Warita
- Department of Veterinary Anatomy, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Hikari Otabi
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Haruki Kumei
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Shinji Nakamura
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Kosuke Koyano
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Takanori Miki
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Takashi Kusaka
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan
| |
Collapse
|
7
|
Ohta KI, Araki C, Ujihara H, Iseki K, Suzuki S, Otabi H, Kumei H, Warita K, Kusaka T, Miki T. Maternal separation early in life induces excessive activity of the central amygdala related to abnormal aggression. J Neurochem 2023; 167:778-794. [PMID: 38037675 DOI: 10.1111/jnc.16020] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/05/2023] [Accepted: 11/14/2023] [Indexed: 12/02/2023]
Abstract
Epidemiological studies have indicated that child maltreatment, such as neglect, is a risk factor of escalated aggression, potentially leading to delinquency and violent crime in the future. However, little is known about the mechanisms by which an early adverse environment may later cause violent behavior. In this study, we aimed to thoroughly examine the association between aggression against conspecific animals and the activity of amygdala subnuclei using the maternal separation (MS) model, which is a common model of early life stress. In the MS group, pups of Sprague-Dawley rats were separated from their dam during postnatal days 2-20 (twice a day, 3 h each). We only included 9-week-old male offspring for each analysis and compared the MS group with the mother-reared control group; both groups were raised by the same dam during postnatal days 2-20. The results revealed that the MS group exhibited higher aggression and excessive activity of only the central amygdala (CeA) among the amygdala subnuclei during the aggressive behavior test. Moreover, a significant positive correlation was observed between higher aggression and CeA activation. While CeA activity is known to be involved in hunting behavior for prey, some previous studies have also indicated a relationship between CeA and intraspecific aggression. It remains unclear, however, whether excessive CeA activity directly induces intraspecific aggression. Therefore, we stimulated the CeA using optogenetics with 8-week-old rats to clarify the relationship between intraspecific aggression and CeA activity. Notably, CeA activation resulted in higher aggression, even when the opponent was a conspecific animal. In particular, bilateral CeA activation resulted in more severe displays of aggressive behavior than necessary, such as biting a surrendered opponent. These findings suggest that an adverse environment during early development intensifies aggression through excessive CeA activation, which can increase the risk of escalating to violent behavior in the future.
Collapse
Affiliation(s)
- Ken-Ichi Ohta
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa, Japan
| | - Chihiro Araki
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa, Japan
| | - Hidetoshi Ujihara
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa, Japan
| | - Keizo Iseki
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa, Japan
| | - Shingo Suzuki
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa, Japan
| | - Hikari Otabi
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa, Japan
| | - Haruki Kumei
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa, Japan
| | - Katsuhiko Warita
- Department of Veterinary Anatomy, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Takashi Kusaka
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa, Japan
| | - Takanori Miki
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa, Japan
| |
Collapse
|
8
|
Rusch JA, Layden BT, Dugas LR. Signalling cognition: the gut microbiota and hypothalamic-pituitary-adrenal axis. Front Endocrinol (Lausanne) 2023; 14:1130689. [PMID: 37404311 PMCID: PMC10316519 DOI: 10.3389/fendo.2023.1130689] [Citation(s) in RCA: 103] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/25/2023] [Indexed: 07/06/2023] Open
Abstract
Cognitive function in humans depends on the complex and interplay between multiple body systems, including the hypothalamic-pituitary-adrenal (HPA) axis. The gut microbiota, which vastly outnumbers human cells and has a genetic potential that exceeds that of the human genome, plays a crucial role in this interplay. The microbiota-gut-brain (MGB) axis is a bidirectional signalling pathway that operates through neural, endocrine, immune, and metabolic pathways. One of the major neuroendocrine systems responding to stress is the HPA axis which produces glucocorticoids such as cortisol in humans and corticosterone in rodents. Appropriate concentrations of cortisol are essential for normal neurodevelopment and function, as well as cognitive processes such as learning and memory, and studies have shown that microbes modulate the HPA axis throughout life. Stress can significantly impact the MGB axis via the HPA axis and other pathways. Animal research has advanced our understanding of these mechanisms and pathways, leading to a paradigm shift in conceptual thinking about the influence of the microbiota on human health and disease. Preclinical and human trials are currently underway to determine how these animal models translate to humans. In this review article, we summarize the current knowledge of the relationship between the gut microbiota, HPA axis, and cognition, and provide an overview of the main findings and conclusions in this broad field.
Collapse
Affiliation(s)
- Jody A. Rusch
- Division of Chemical Pathology, Department of Pathology, University of Cape Town, Cape Town, South Africa
- C17 Chemical Pathology Laboratory, Groote Schuur Hospital, National Health Laboratory Service, Cape Town, South Africa
| | - Brian T. Layden
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
- Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, United States
| | - Lara R. Dugas
- Division of Epidemiology and Biostatistics, School of Public Health, University of Cape Town, Cape Town, South Africa
- Public Health Sciences, Parkinson School of Health Sciences and Public Health, Loyola University Chicago, Maywood, IL, United States
| |
Collapse
|
9
|
Mavrenkova PV, Khlebnikova NN, Alchinova IB, Demorzhi MS, Shoibonov BB, Karganov MY. Effects of Maternal Separation and Subsequent Stress on Behaviors and Brain Monoamines in Rats. Brain Sci 2023; 13:956. [PMID: 37371434 DOI: 10.3390/brainsci13060956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/04/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Childhood adversity can induce maladaptive behaviors and increase risk for affective disorders, post-traumatic stress disorder, personality disorders, and vulnerability to stress in adulthood. Deprivation of maternal care interrupts brain development through the disturbance of various neurotransmitters, however, the details remain unclear. The features of the symptoms of disorders are largely determined by early stress protocol, genetic characteristics (line), and the sex of the animals. The purpose of current study was (1) to assess behavioral changes in adult Wistar rats of both sexes after early life stress; (2) to determine the levels of monoamines in brain structures involved in the motor, emotional, and social reactions in rats aged 1 and 2 months; and (3) to determine the level of monoamines after physical or emotional stress in adult rats. The rat pups were separated from their dams and isolated from siblings in tight boxes at a temperature of 22-23 °C for 6 h during postnatal days 2-18. The data were processed predominantly using two-way analysis of variance and the Newman-Keys test as the post hoc analysis. The adult rats demonstrated an increase in motor activity and aggressiveness and a decrease in levels of anxiety and sociability. Behavioral disturbances were accompanied by region-, sex-, and age-dependent changes in the levels of monoamines and their metabolites. The dopaminergic and noradrenergic systems were found to be sensitive to psycho-emotional stress.
Collapse
Affiliation(s)
- Polina V Mavrenkova
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya St., 125315 Moscow, Russia
| | - Nadezhda N Khlebnikova
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya St., 125315 Moscow, Russia
| | - Irina B Alchinova
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya St., 125315 Moscow, Russia
| | - Marina S Demorzhi
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya St., 125315 Moscow, Russia
| | - Batozhab B Shoibonov
- P. K. Anokhin Institute of Normal Physiology, 8 Baltiyskaya St., 125315 Moscow, Russia
| | - Mikhail Yu Karganov
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya St., 125315 Moscow, Russia
| |
Collapse
|
10
|
Bartlett EA, Zanderigo F, Stanley B, Choo TH, Galfalvy HC, Pantazatos SP, Sublette ME, Miller JM, Oquendo MA, Mann JJ. In vivo serotonin transporter and 1A receptor binding potential and ecological momentary assessment (EMA) of stress in major depression and suicidal behavior. Eur Neuropsychopharmacol 2023; 70:1-13. [PMID: 36780841 PMCID: PMC10121874 DOI: 10.1016/j.euroneuro.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 01/17/2023] [Accepted: 01/24/2023] [Indexed: 02/13/2023]
Abstract
We examined relationships between the serotonin system and stress in major depression and suicidal behavior. Twenty-five medication-free depressed participants (13 suicide attempters) underwent same-day [11C]DASB and [11C]CUMI-101 positron emission tomography (PET) imaging. Binding potential (BPND) to the serotonin transporter (5-HTT) and serotonin 1A (5-HT1A) receptor, respectively, was quantified using the NRU 5-HT atlas, reflecting distinct spatial distributions of multiple serotonin targets. Ecological momentary assessment (EMA) measured current stress over one week proximal to imaging. EMA stress did not differ between attempters and non-attempters. In all depressed participants, 5-HTT and 5-HT1A BPND were unrelated to EMA stress. There were region-specific effects of 5-HTT (p=0.002) and 5-HT1A BPND (p=0.03) in attempters vs. nonattempters. In attempters, region-specific associations between 5-HTT (p=0.03) and 5-HT1A (p=0.005) BPND and EMA stress emerged. While no post-hoc 5-HTT BPND correlations were significant, 5-HT1A BPND correlated positively with EMA stress in attempters in 9/10 regions (p-values<0.007), including the entire cortex except the largely occipital region 5. Brodmann-based regional analyses found diminished effects for 5-HTT and subcortically localized positive corrrelations between 5-HT1A and EMA stress, in attempters only. Given comparable depression severity and childhood and current stress between attempters and nonattempters, lower 5-HTT binding in attempters vs. nonattempters may suggest a biological risk marker. Localized lower 5-HTT and widespread higher 5-HT1A binding with stress among attempters specifically may suggest that a serotonergic phenotype might be a key determinant of risk or resiliency for suicidal behavior.
Collapse
Affiliation(s)
- Elizabeth A Bartlett
- Molecular Imaging and Neuropathology Area, New York State Psychiatric Institute, New York, USA; Department of Psychiatry, Columbia University Irving Medical Center, New York, USA.
| | - Francesca Zanderigo
- Molecular Imaging and Neuropathology Area, New York State Psychiatric Institute, New York, USA; Department of Psychiatry, Columbia University Irving Medical Center, New York, USA
| | - Barbara Stanley
- Molecular Imaging and Neuropathology Area, New York State Psychiatric Institute, New York, USA; Department of Psychiatry, Columbia University Irving Medical Center, New York, USA
| | - Tse-Hwei Choo
- Molecular Imaging and Neuropathology Area, New York State Psychiatric Institute, New York, USA; Department of Psychiatry, Columbia University Irving Medical Center, New York, USA
| | - Hanga C Galfalvy
- Molecular Imaging and Neuropathology Area, New York State Psychiatric Institute, New York, USA; Department of Psychiatry, Columbia University Irving Medical Center, New York, USA
| | - Spiro P Pantazatos
- Molecular Imaging and Neuropathology Area, New York State Psychiatric Institute, New York, USA; Department of Psychiatry, Columbia University Irving Medical Center, New York, USA
| | - M Elizabeth Sublette
- Molecular Imaging and Neuropathology Area, New York State Psychiatric Institute, New York, USA; Department of Psychiatry, Columbia University Irving Medical Center, New York, USA
| | - Jeffrey M Miller
- Molecular Imaging and Neuropathology Area, New York State Psychiatric Institute, New York, USA; Department of Psychiatry, Columbia University Irving Medical Center, New York, USA
| | - Maria A Oquendo
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - J John Mann
- Molecular Imaging and Neuropathology Area, New York State Psychiatric Institute, New York, USA; Department of Psychiatry, Columbia University Irving Medical Center, New York, USA; Department of Radiology, Columbia University Irving Medical Center, New York, USA
| |
Collapse
|
11
|
Zhou X, Xu X, Lu D, Chen K, Wu Y, Yang X, Xiong W, Chen X, Lan L, Li W, Shen S, He W, Feng X. Repeated early-life exposure to anaesthesia and surgery causes subsequent anxiety-like behaviour and gut microbiota dysbiosis in juvenile rats. Br J Anaesth 2023; 130:191-201. [PMID: 36088134 PMCID: PMC11541082 DOI: 10.1016/j.bja.2022.06.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 05/19/2022] [Accepted: 06/10/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Early exposure to general anaesthetics for multiple surgeries or procedures might negatively affect brain development. Recent studies indicate the importance of microbiota in the development of stress-related behaviours. We determined whether repeated anaesthesia and surgery in early life cause gut microbiota dysbiosis and anxiety-like behaviours in rats. METHODS Sprague Dawley rats received skin incisions under sevoflurane 2.3 vol% three times during the first week of life. After 4 weeks, gut microbiota, anxiety-related behaviours, hippocampal serotonergic activity, and plasma stress hormones were tested. Subsequently, we explored the effect of faecal microbiota transplantation from multiple anaesthesia/surgery exposed rats after administration of a cocktail of antibiotics on anxiety-related behaviours. RESULTS Anxiety-like behaviours were observed in rats with repeated anaesthesia/surgery exposures: In the OF test, multiple anaesthesia/surgery exposures induced a decrease in the time spent in the centre compared to the Control group (P<0.05, t=3.05, df=16, Cohen's d=1.44, effect size=0.58). In the EPM test, rats in Multiple AS group travelled less (P<0.05, t=5.09, df=16, Cohen's d=2.40, effective size=0.77) and spent less time (P<0.05, t=3.58, df=16, Cohen's d=1.69, effect size=0.65) in the open arms when compared to the Control group. Repeated exposure caused severe gut microbiota dysbiosis, with exaggerated stress response (P<0.01, t=4.048, df=16, Cohen's d=-1.91, effect size=-0.69), a significant increase in the hippocampal concentration of 5-hydroxytryptamine (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) (P<0.05; for 5-HT: t=3.33, df=18, Cohen's d=-1.49, effect size=-0.60; for 5-HIAA: t=3.12, df=18, Cohen's d=-1.40, effect size=-0.57), and changes in gene expression of serotonergic receptors later in life (for Htr1a: P<0.001, t=4.49, df=16, Cohen's d=2.24, effect size=0.75; for Htr2c: P<0.01, t=3.72, df=16, Cohen's d=1.86, effect size=0.68; for Htr6: P<0.001, t=7.76, df=16, Cohen's d=3.88, effect size=0.89). Faecal microbiota transplantation led to similar anxiety-like behaviours and changes in the levels of 5-hydroxytryptamine and 5-hydroxyindoleacetic acid. CONCLUSIONS Gut microbiota dysbiosis caused by early repeated exposure to anaesthesia and surgery affects long-term anxiety emotion behaviours in rats.
Collapse
Affiliation(s)
- Xue Zhou
- Department of Anaesthesiology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
- MGH Centre for Translational Pain Research, Department of Anaesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Xuanxian Xu
- Department of Anaesthesiology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Dihan Lu
- Department of Anaesthesiology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Keyu Chen
- Department of Anaesthesiology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Yan Wu
- Department of Anaesthesiology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Xiaoyu Yang
- Department of Anaesthesiology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Wei Xiong
- Department of Anaesthesiology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Xi Chen
- Department of Anaesthesiology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, PR China
| | - Liangtian Lan
- Department of Anaesthesiology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Wenda Li
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Shiqian Shen
- MGH Centre for Translational Pain Research, Department of Anaesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Wen He
- Department of Geriatrics, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Xia Feng
- Department of Anaesthesiology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| |
Collapse
|
12
|
Bartlett EA, Yttredahl AA, Boldrini M, Tyrer AE, Hill KR, Ananth MR, Milak MS, Oquendo MA, Mann JJ, DeLorenzo C, Parsey RV. In vivo serotonin 1A receptor hippocampal binding potential in depression and reported childhood adversity. Eur Psychiatry 2023; 66:e17. [PMID: 36691786 PMCID: PMC9970152 DOI: 10.1192/j.eurpsy.2023.4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Reported childhood adversity (CA) is associated with development of depression in adulthood and predicts a more severe course of illness. Although elevated serotonin 1A receptor (5-HT1AR) binding potential, especially in the raphe nuclei, has been shown to be a trait associated with major depression, we did not replicate this finding in an independent sample using the partial agonist positron emission tomography tracer [11C]CUMI-101. Evidence suggests that CA can induce long-lasting changes in expression of 5-HT1AR, and thus, a history of CA may explain the disparate findings. METHODS Following up on our initial report, 28 unmedicated participants in a current depressive episode (bipolar n = 16, unipolar n = 12) and 19 non-depressed healthy volunteers (HVs) underwent [11C]CUMI-101 imaging to quantify 5-HT1AR binding potential. Participants in a depressive episode were stratified into mild/moderate and severe CA groups via the Childhood Trauma Questionnaire. We hypothesized higher hippocampal and raphe nuclei 5-HT1AR with severe CA compared with mild/moderate CA and HVs. RESULTS There was a group-by-region effect (p = 0.011) when considering HV, depressive episode mild/moderate CA, and depressive episode severe CA groups, driven by significantly higher hippocampal 5-HT1AR binding potential in participants in a depressive episode with severe CA relative to HVs (p = 0.019). Contrary to our hypothesis, no significant binding potential differences were detected in the raphe nuclei (p-values > 0.05). CONCLUSIONS With replication in larger samples, elevated hippocampal 5-HT1AR binding potential may serve as a promising biomarker through which to investigate the neurobiological link between CA and depression.
Collapse
Affiliation(s)
- Elizabeth A Bartlett
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York10032, USA.,Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, New York10032, USA
| | - Ashley A Yttredahl
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York10032, USA.,Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, New York10032, USA
| | - Maura Boldrini
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York10032, USA
| | - Andrea E Tyrer
- Department of Psychiatry, Stony Brook Medicine, Stony Brook, NY11794, USA.,Clinical Genetics Research Program, Centre for Addiction and Mental Health, University of Toronto, Toronto, OntarioM5S, Canada
| | - Kathryn R Hill
- Department of Psychiatry, Stony Brook Medicine, Stony Brook, NY11794, USA
| | - Mala R Ananth
- National Institute of Neurological Disorders and Stroke, National Institute of Health, Bethesda, Maryland20892, USA
| | - Matthew S Milak
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York10032, USA.,Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, New York10032, USA
| | - Maria A Oquendo
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania19104, USA
| | - J John Mann
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York10032, USA.,Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, New York10032, USA.,Department of Radiology, Columbia University, New York, New York10027, USA
| | - Christine DeLorenzo
- Department of Psychiatry, Stony Brook Medicine, Stony Brook, NY11794, USA.,Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York11794, USA
| | - Ramin V Parsey
- Department of Psychiatry, Stony Brook Medicine, Stony Brook, NY11794, USA.,Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York11794, USA.,Department of Radiology, Stony Brook University, Stony Brook, New York11794, USA
| |
Collapse
|
13
|
5-HT-dependent synaptic plasticity of the prefrontal cortex in postnatal development. Sci Rep 2022; 12:21015. [PMID: 36470912 PMCID: PMC9723183 DOI: 10.1038/s41598-022-23767-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 11/04/2022] [Indexed: 12/12/2022] Open
Abstract
Important functions of the prefrontal cortex (PFC) are established during early life, when neurons exhibit enhanced synaptic plasticity and synaptogenesis. This developmental stage drives the organization of cortical connectivity, responsible for establishing behavioral patterns. Serotonin (5-HT) emerges among the most significant factors that modulate brain activity during postnatal development. In the PFC, activated 5-HT receptors modify neuronal excitability and interact with intracellular signaling involved in synaptic modifications, thus suggesting that 5-HT might participate in early postnatal plasticity. To test this hypothesis, we employed intracellular electrophysiological recordings of PFC layer 5 neurons to study the modulatory effects of 5-HT on plasticity induced by theta-burst stimulation (TBS) in two postnatal periods of rats. Our results indicate that 5-HT is essential for TBS to result in synaptic changes during the third postnatal week, but not later. TBS coupled with 5-HT2A or 5-HT1A and 5-HT7 receptors stimulation leads to long-term depression (LTD). On the other hand, TBS and synergic activation of 5-HT1A, 5-HT2A, and 5-HT7 receptors lead to long-term potentiation (LTP). Finally, we also show that 5-HT dependent synaptic plasticity of the PFC is impaired in animals that are exposed to early-life chronic stress.
Collapse
|
14
|
Early life adversity shapes neural circuit function during sensitive postnatal developmental periods. Transl Psychiatry 2022; 12:306. [PMID: 35915071 PMCID: PMC9343623 DOI: 10.1038/s41398-022-02092-9] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 11/24/2022] Open
Abstract
Early life adversity (ELA) is a major risk factor for mental illness, but the neurobiological mechanisms by which ELA increases the risk for future psychopathology are still poorly understood. Brain development is particularly malleable during prenatal and early postnatal life, when complex neural circuits are being formed and refined through an interplay of excitatory and inhibitory neural input, synaptogenesis, synaptic pruning, myelination, and neurogenesis. Adversity that influences these processes during sensitive periods of development can thus have long-lasting and pervasive effects on neural circuit maturation. In this review, we will discuss clinical and preclinical evidence for the impact of ELA on neural circuit formation with a focus on the early postnatal period, and how long-lasting impairments in these circuits can affect future behavior. We provide converging evidence from human and animal studies on how ELA alters the functional development of brain regions, neural circuits, and neurotransmitter systems that are crucial for cognition and affective behavior, including the hippocampus, the hypothalamus-pituitary-adrenal (HPA) axis, neural networks of fear responses and cognition, and the serotonin (5-HT) system. We also discuss how gene-by-environment (GxE) interactions can determine individual differences in susceptibility and resilience to ELA, as well as molecular pathways by which ELA regulates neural circuit development, for which we emphasize epigenetic mechanisms. Understanding the molecular and neurobiological mechanisms underlying ELA effects on brain function and psychopathology during early postnatal sensitive periods may have great potential to advance strategies to better treat or prevent psychiatric disorders that have their origin early in life.
Collapse
|
15
|
Cattane N, Vernon AC, Borsini A, Scassellati C, Endres D, Capuron L, Tamouza R, Benros ME, Leza JC, Pariante CM, Riva MA, Cattaneo A. Preclinical animal models of mental illnesses to translate findings from the bench to the bedside: Molecular brain mechanisms and peripheral biomarkers associated to early life stress or immune challenges. Eur Neuropsychopharmacol 2022; 58:55-79. [PMID: 35235897 DOI: 10.1016/j.euroneuro.2022.02.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 02/07/2023]
Abstract
Animal models are useful preclinical tools for studying the pathogenesis of mental disorders and the effectiveness of their treatment. While it is not possible to mimic all symptoms occurring in humans, it is however possible to investigate the behavioral, physiological and neuroanatomical alterations relevant for these complex disorders in controlled conditions and in genetically homogeneous populations. Stressful and infection-related exposures represent the most employed environmental risk factors able to trigger or to unmask a psychopathological phenotype in animals. Indeed, when occurring during sensitive periods of brain maturation, including pre, postnatal life and adolescence, they can affect the offspring's neurodevelopmental trajectories, increasing the risk for mental disorders. Not all stressed or immune challenged animals, however, develop behavioral alterations and preclinical animal models can explain differences between vulnerable or resilient phenotypes. Our review focuses on different paradigms of stress (prenatal stress, maternal separation, social isolation and social defeat stress) and immune challenges (immune activation in pregnancy) and investigates the subsequent alterations in several biological and behavioral domains at different time points of animals' life. It also discusses the "double-hit" hypothesis where an initial early adverse event can prime the response to a second negative challenge. Interestingly, stress and infections early in life induce the activation of the hypothalamic-pituitary-adrenal (HPA) axis, alter the levels of neurotransmitters, neurotrophins and pro-inflammatory cytokines and affect the functions of microglia and oxidative stress. In conclusion, animal models allow shedding light on the pathophysiology of human mental illnesses and discovering novel molecular drug targets for personalized treatments.
Collapse
Affiliation(s)
- Nadia Cattane
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Anthony C Vernon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom; MRC Centre for Neurodevelopmental Disorders, King's College London, United Kingdom
| | - Alessandra Borsini
- Stress, Psychiatry and Immunology Laboratory, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, King's College London, United Kingdom
| | - Catia Scassellati
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Dominique Endres
- Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lucile Capuron
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000, Bordeaux, France
| | - Ryad Tamouza
- Département Medico-Universitaire de Psychiatrie et d'Addictologie (DMU ADAPT), Laboratoire Neuro-psychiatrie translationnelle, AP-HP, UniversitéParis Est Créteil, INSERM U955, IMRB, Hôpital Henri Mondor, Fondation FondaMental, F-94010 Créteil, France
| | - Michael Eriksen Benros
- Biological and Precision Psychiatry, Copenhagen Research Centre for Mental Health, Copenhagen University Hospital, Gentofte Hospitalsvej 15, 4th floor, 2900 Hellerup, Denmark; Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Juan C Leza
- Department of Pharmacology & Toxicology, Faculty of Medicine, Universidad Complutense de Madrid (UCM), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Investigación Hospital 12 de Octubre (i+12), IUIN-UCM. Spain
| | - Carmine M Pariante
- Stress, Psychiatry and Immunology Laboratory, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, King's College London, United Kingdom
| | - Marco A Riva
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy; Department of Pharmacological and Biomolecular Sciences, University of Milan, Italy
| | - Annamaria Cattaneo
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy; Department of Pharmacological and Biomolecular Sciences, University of Milan, Italy.
| |
Collapse
|
16
|
MicroRNA Regulates Early-Life Stress–Induced Depressive Behavior via Serotonin Signaling in a Sex-Dependent Manner in the Prefrontal Cortex of Rats. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2021; 1:180-189. [PMID: 36325302 PMCID: PMC9616342 DOI: 10.1016/j.bpsgos.2021.05.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/06/2021] [Accepted: 05/23/2021] [Indexed: 01/01/2023] Open
Abstract
Background The underlying neurobiology of early-life stress (ELS)-induced major depressive disorder is not clearly understood. Methods In this study, we used maternal separation (MS) as a rodent model of ELS and tested whether microRNAs (miRNAs) target serotonin genes to regulate ELS-induced depression-like behavior and whether this effect is sex dependent. We also examined whether environmental enrichment prevents susceptibility to depression- and anxiety-like behavior following MS and whether enrichment effects are mediated through serotonin genes and their corresponding miRNAs. Results MS decreased sucrose preference, which was reversed by enrichment. Males also exhibited greater changes in forced swim climbing and escape latency tests only following enrichment. Slc6a4 and Htr1a were upregulated in the frontal cortex following MS. In male MS rats, enrichment slightly reversed Htr1a expression to levels similar to control rats. miR-200a-3p and miR-322-5p, which target SLC6A4, were decreased by MS, but not significantly. An HTR1A-targeting miRNA, miR-320-5p, was also downregulated by MS and showed slight reversal by enrichment in male animals. miR-320-5p targeting of Htr1a was validated in vitro using SHSY neuroblastoma cell lines. Conclusions Altogether, this study implicates miRNA interaction with the serotonin pathway in ELS-induced susceptibility to depression-related reward deficits. Furthermore, because of its recovery by enrichment in males, miR-320 may represent a viable sex-specific target for reward-related deficits in major depressive disorder.
Collapse
|
17
|
Bianco CD, Hübner IC, Bennemann B, de Carvalho CR, Brocardo PS. Effects of postnatal ethanol exposure and maternal separation on mood, cognition and hippocampal arborization in adolescent rats. Behav Brain Res 2021; 411:113372. [PMID: 34022294 DOI: 10.1016/j.bbr.2021.113372] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 04/24/2021] [Accepted: 05/17/2021] [Indexed: 11/25/2022]
Abstract
Ethanol exposure and early life stress during brain development are associated with an increased risk of developing psychiatric disorders. We used a third-trimester equivalent model of fetal alcohol spectrum disorders combined with a maternal separation (MS) protocol to evaluate whether these stressors cause sexually dimorphic behavioral and hippocampal dendritic arborization responses in adolescent rats. Wistar rat pups were divided into four experimental groups: 1) Control; 2) MS (MS, for 3 h/day from postnatal (PND) 2 to PND14); 3) EtOH (EtOH, 5 g/kg/day, i.p., PND2, 4, 6, 8, and 10); 4) EtOH + MS. All animals were divided into two cohorts and subjected to a battery of behavioral tests when they reached adolescence (PND37-44). Animals from cohort 1 were submitted to: 1) the open field test; 2) self-cleaning behavior (PND38); and 3) the motivation test (PND39-41). Animals from cohort 2 were submitted to: 1) the novel object recognition (PND37-39); 2) social investigation test (PND40); and 3) Morris water maze test (PND41-44). At PND45, the animals were euthanized, and the brains were collected for subsequent dendritic analysis. Postnatal ethanol exposure (PEE) caused anxiety-like behavior in females and reduced motivation, and increased hippocampal dendritic arborization in both sexes. MS reduced body weight, increased locomotor activity in females, and increased motivation, and hippocampal dendritic arborization in both sexes. We found that males from the EtOH + MS groups are more socially engaged than females, who were more interested in sweets than males. Altogether, these data suggest that early life adverse conditions may alter behavior in a sex-dependent manner in adolescent rats.
Collapse
Affiliation(s)
- Claudia Daniele Bianco
- Neuroscience Graduate Program, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Ian Carlos Hübner
- Neuroscience Graduate Program, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Bianca Bennemann
- Department of Morphological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Cristiane Ribeiro de Carvalho
- Neuroscience Graduate Program, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Patricia S Brocardo
- Neuroscience Graduate Program, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, SC, Brazil; Department of Morphological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, SC, Brazil.
| |
Collapse
|
18
|
Klune CB, Jin B, DeNardo LA. Linking mPFC circuit maturation to the developmental regulation of emotional memory and cognitive flexibility. eLife 2021; 10:e64567. [PMID: 33949949 PMCID: PMC8099425 DOI: 10.7554/elife.64567] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/28/2021] [Indexed: 12/12/2022] Open
Abstract
The medial prefrontal cortex (mPFC) and its abundant connections with other brain regions play key roles in memory, cognition, decision making, social behaviors, and mood. Dysfunction in mPFC is implicated in psychiatric disorders in which these behaviors go awry. The prolonged maturation of mPFC likely enables complex behaviors to emerge, but also increases their vulnerability to disruption. Many foundational studies have characterized either mPFC synaptic or behavioral development without establishing connections between them. Here, we review this rich body of literature, aligning major events in mPFC development with the maturation of complex behaviors. We focus on emotional memory and cognitive flexibility, and highlight new work linking mPFC circuit disruption to alterations of these behaviors in disease models. We advance new hypotheses about the causal connections between mPFC synaptic development and behavioral maturation and propose research strategies to establish an integrated understanding of neural architecture and behavioral repertoires.
Collapse
Affiliation(s)
- Cassandra B Klune
- Physiology Department, David Geffen School of Medicine, UCLALos AngelesUnited States
- Neuroscience Interdepartmental Graduate Program, UCLALos AngelesUnited States
| | - Benita Jin
- Physiology Department, David Geffen School of Medicine, UCLALos AngelesUnited States
- Molecular, Cellular and Integrative Physiology Graduate Program, UCLALos AngelesUnited States
| | - Laura A DeNardo
- Physiology Department, David Geffen School of Medicine, UCLALos AngelesUnited States
| |
Collapse
|
19
|
Abstract
This paper introduces a new construct, the 'pivotal mental state', which is defined as a hyper-plastic state aiding rapid and deep learning that can mediate psychological transformation. We believe this new construct bears relevance to a broad range of psychological and psychiatric phenomena. We argue that pivotal mental states serve an important evolutionary function, that is, to aid psychological transformation when actual or perceived environmental pressures demand this. We cite evidence that chronic stress and neurotic traits are primers for a pivotal mental state, whereas acute stress can be a trigger. Inspired by research with serotonin 2A receptor agonist psychedelics, we highlight how activity at this particular receptor can robustly and reliably induce pivotal mental states, but we argue that the capacity for pivotal mental states is an inherent property of the human brain itself. Moreover, we hypothesize that serotonergic psychedelics hijack a system that has evolved to mediate rapid and deep learning when its need is sensed. We cite a breadth of evidences linking stress via a variety of inducers, with an upregulated serotonin 2A receptor system (e.g. upregulated availability of and/or binding to the receptor) and acute stress with 5-HT release, which we argue can activate this primed system to induce a pivotal mental state. The pivotal mental state model is multi-level, linking a specific molecular gateway (increased serotonin 2A receptor signaling) with the inception of a hyper-plastic brain and mind state, enhanced rate of associative learning and the potential mediation of a psychological transformation.
Collapse
Affiliation(s)
- Ari Brouwer
- Centre for Psychedelic Research, Imperial College London, London, United Kingdom
| | | |
Collapse
|
20
|
Sanchez CM, Titus DJ, Wilson NM, Freund JE, Atkins CM. Early Life Stress Exacerbates Outcome after Traumatic Brain Injury. J Neurotrauma 2021; 38:555-565. [PMID: 32862765 PMCID: PMC8020564 DOI: 10.1089/neu.2020.7267] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The neurocognitive impairments associated with mild traumatic brain injury (TBI) often resolve within 1-2 weeks; however, a subset of people exhibit persistent cognitive dysfunction for weeks to months after injury. The factors that contribute to these persistent deficits are unknown. One potential risk factor for worsened outcome after TBI is a history of stress experienced by a person early in life. Early life stress (ELS) includes maltreatment such as neglect, and interferes with the normal construction of cortical and hippocampal circuits. We hypothesized that a history of ELS contributes to persistent learning and memory dysfunction following a TBI. To explore this interaction, we modeled ELS by separating Sprague Dawley pups from their nursing mothers from post-natal days 2-14 for 3 h daily. At 2 months of age, male rats received sham surgery or mild to moderate parasagittal fluid-percussion brain injury. We found that the combination of ELS with TBI in adulthood impaired hippocampal-dependent learning, as assessed with contextual fear conditioning, the water maze task, and spatial working memory. Cortical atrophy was significantly exacerbated in TBI animals exposed to ELS compared with normal-reared TBI animals. Changes in corticosterone in response to restraint stress were prolonged in TBI animals that received ELS compared with TBI animals that were normally reared or sham animals that received ELS. Our findings indicate that ELS is a risk factor for worsened outcome after TBI, and results in persistent learning and memory deficits, worsened cortical pathology, and an exacerbation of the hormonal stress response.
Collapse
Affiliation(s)
- Chantal M. Sanchez
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - David J. Titus
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Nicole M. Wilson
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Julie E. Freund
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Coleen M. Atkins
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
21
|
Tiwari P, Fanibunda SE, Kapri D, Vasaya S, Pati S, Vaidya VA. GPCR signaling: role in mediating the effects of early adversity in psychiatric disorders. FEBS J 2021; 288:2602-2621. [DOI: 10.1111/febs.15738] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/11/2021] [Accepted: 01/27/2021] [Indexed: 12/14/2022]
Affiliation(s)
- Praachi Tiwari
- Department of Biological Sciences Tata Institute of Fundamental Research Mumbai India
| | - Sashaina E. Fanibunda
- Department of Biological Sciences Tata Institute of Fundamental Research Mumbai India
- Medical Research Centre Kasturba Health Society Mumbai India
| | - Darshana Kapri
- Department of Biological Sciences Tata Institute of Fundamental Research Mumbai India
| | - Shweta Vasaya
- Department of Biological Sciences Tata Institute of Fundamental Research Mumbai India
| | - Sthitapranjya Pati
- Department of Biological Sciences Tata Institute of Fundamental Research Mumbai India
| | - Vidita A. Vaidya
- Department of Biological Sciences Tata Institute of Fundamental Research Mumbai India
| |
Collapse
|
22
|
Babicola L, Ventura R, D'Addario SL, Ielpo D, Andolina D, Di Segni M. Long term effects of early life stress on HPA circuit in rodent models. Mol Cell Endocrinol 2021; 521:111125. [PMID: 33333214 DOI: 10.1016/j.mce.2020.111125] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/23/2020] [Accepted: 12/10/2020] [Indexed: 01/06/2023]
Abstract
Adaptation to environmental challenges represents a critical process for survival, requiring the complex integration of information derived from both external cues and internal signals regarding current conditions and previous experiences. The Hypothalamic-pituitary-adrenal axis plays a central role in this process inducing the activation of a neuroendocrine signaling cascade that affects the delicate balance of activity and cross-talk between areas that are involved in sensorial, emotional, and cognitive processing such as the hippocampus, amygdala, Prefrontal Cortex, Ventral Tegmental Area, and dorsal raphe. Early life stress, especially early critical experiences with caregivers, influences the functional and structural organization of these areas, affects these processes in a long-lasting manner and may result in long-term maladaptive and psychopathological outcomes, depending on the complex interaction between genetic and environmental factors. This review summarizes the results of studies that have modeled this early postnatal stress in rodents during the first 2 postnatal weeks, focusing on the long-term effects on molecular and structural alteration in brain areas involved in Hypothalamic-pituitary-adrenal axis function. Moreover, a brief investigation of epigenetic mechanisms and specific genetic targets mediating the long-term effects of these early environmental manipulations and at the basis of differential neurobiological and behavioral effects during adulthood is provided.
Collapse
Affiliation(s)
- Lucy Babicola
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, 00184, Rome, Italy; IRCCS Fondazione Santa Lucia, Via Del Fosso di Fiorano, 64, 00143, Rome, Italy
| | - Rossella Ventura
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, 00184, Rome, Italy; IRCCS Fondazione Santa Lucia, Via Del Fosso di Fiorano, 64, 00143, Rome, Italy.
| | - Sebastian Luca D'Addario
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, 00184, Rome, Italy; IRCCS Fondazione Santa Lucia, Via Del Fosso di Fiorano, 64, 00143, Rome, Italy; Behavioral Neuroscience PhD Programme, Sapienza University, Piazzale Aldo Moro 5, 00184, Rome, Italy
| | - Donald Ielpo
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, 00184, Rome, Italy; IRCCS Fondazione Santa Lucia, Via Del Fosso di Fiorano, 64, 00143, Rome, Italy; Behavioral Neuroscience PhD Programme, Sapienza University, Piazzale Aldo Moro 5, 00184, Rome, Italy
| | - Diego Andolina
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, 00184, Rome, Italy; IRCCS Fondazione Santa Lucia, Via Del Fosso di Fiorano, 64, 00143, Rome, Italy
| | - Matteo Di Segni
- IRCCS Fondazione Santa Lucia, Via Del Fosso di Fiorano, 64, 00143, Rome, Italy.
| |
Collapse
|
23
|
Neves BHS, Barbosa GPDR, Rosa ACDS, Picua SS, Gomes GM, Sosa PM, Mello-Carpes PB. On the role of the dopaminergic system in the memory deficits induced by maternal deprivation. Neurobiol Learn Mem 2020; 173:107272. [DOI: 10.1016/j.nlm.2020.107272] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 05/11/2020] [Accepted: 06/28/2020] [Indexed: 01/22/2023]
|
24
|
Tenkumo C, Ohta KI, Suzuki S, Warita K, Irie K, Teradaya S, Kusaka T, Kanenishi K, Hata T, Miki T. Repeated maternal separation causes transient reduction in BDNF expression in the medial prefrontal cortex during early brain development, affecting inhibitory neuron development. Heliyon 2020; 6:e04781. [PMID: 32923721 PMCID: PMC7475105 DOI: 10.1016/j.heliyon.2020.e04781] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/08/2020] [Accepted: 08/14/2020] [Indexed: 01/25/2023] Open
Abstract
It is widely accepted that maternal separation (MS) induces stress in children and disrupts neural circuit formation during early brain development. Even though such disruption occurs transiently early in life, its influence persists after maturation, and could lead to various neurodevelopmental disorders. Our recent study revealed that repeated MS reduces the number of inhibitory neurons and synapses in the medial prefrontal cortex (mPFC) and causes mPFC-related social deficits after maturation. However, how MS impedes mPFC development during early brain development remains poorly understood. Here, we focused on brain-derived neurotrophic factor (BDNF) involved in the development of inhibitory neurons, and examined time-dependent BDNF expression in the mPFC during the pre-weaning period in male rats exposed to MS. Our results show that MS attenuates BDNF expression only around the end of the first postnatal week. Likewise, mRNA expression of activity-regulated cytoskeleton-associated protein (Arc), an immediate-early gene whose expression is partly regulated by BDNF, also decreased in the MS group along with the reduction in BDNF expression. On the contrary, mRNA expression of tropomyosin-related kinase B (TrkB), which is a BDNF receptor, was scarcely altered, while its protein expression decreased in the MS group only during the weaning period. In addition, MS reduced mRNA levels of glutamic acid decarboxylase (GAD) 65, a GABA synthesizing enzyme, only during the weaning period. Our results suggest that repeated MS temporarily attenuates BDNF signaling in the mPFC during early brain development. BDNF plays a crucial role in the development of inhibitory neurons; therefore, transient attenuation of BDNF signaling may cause delays in GABAergic neuron development in the mPFC.
Collapse
Affiliation(s)
- Chiaki Tenkumo
- Department of Perinatology and Gynecology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Ken-ichi Ohta
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
- Corresponding author.
| | - Shingo Suzuki
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Katsuhiko Warita
- Department of Veterinary Anatomy, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Kanako Irie
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Saki Teradaya
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Takashi Kusaka
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Kenji Kanenishi
- Department of Perinatology and Gynecology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Toshiyuki Hata
- Department of Perinatology and Gynecology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Takanori Miki
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| |
Collapse
|
25
|
González-Pardo H, Arias JL, Gómez-Lázaro E, López Taboada I, Conejo NM. Sex-Specific Effects of Early Life Stress on Brain Mitochondrial Function, Monoamine Levels and Neuroinflammation. Brain Sci 2020; 10:brainsci10070447. [PMID: 32674298 PMCID: PMC7408325 DOI: 10.3390/brainsci10070447] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/05/2020] [Accepted: 07/08/2020] [Indexed: 12/14/2022] Open
Abstract
Sex differences have been reported in the susceptibility to early life stress and its neurobiological correlates in humans and experimental animals. However, most of the current research with animal models of early stress has been performed mainly in males. In the present study, prolonged maternal separation (MS) paradigm was applied as an animal model to resemble the effects of adverse early experiences in male and female rats. Regional brain mitochondrial function, monoaminergic activity, and neuroinflammation were evaluated as adults. Mitochondrial energy metabolism was greatly decreased in MS females as compared with MS males in the prefrontal cortex, dorsal hippocampus, and the nucleus accumbens shell. In addition, MS males had lower serotonin levels and increased serotonin turnover in the prefrontal cortex and the hippocampus. However, MS females showed increased dopamine turnover in the prefrontal cortex and increased norepinephrine turnover in the striatum, but decreased dopamine turnover in the hippocampus. Sex differences were also found for pro-inflammatory cytokine levels, with increased levels of TNF-α and IL-6 in the prefrontal cortex and hippocampus of MS males, and increased IL-6 levels in the striatum of MS females. These results evidence the complex sex- and brain region-specific long-term consequences of early life stress.
Collapse
Affiliation(s)
- Héctor González-Pardo
- Laboratory of Neuroscience, Department of Psychology, Institute of Neuroscience of the Principality of Asturias (INEUROPA), University of Oviedo, Plaza Feijóo, s/n E-33003 Oviedo, Spain; (H.G.-P.); (J.L.A.); (I.L.T.)
| | - Jorge L. Arias
- Laboratory of Neuroscience, Department of Psychology, Institute of Neuroscience of the Principality of Asturias (INEUROPA), University of Oviedo, Plaza Feijóo, s/n E-33003 Oviedo, Spain; (H.G.-P.); (J.L.A.); (I.L.T.)
| | - Eneritz Gómez-Lázaro
- Department of Basic Psychological Processes and their Development, Basque Country University, Avda. Tolosa 70, s/n E-20018 San Sebastian, Spain;
| | - Isabel López Taboada
- Laboratory of Neuroscience, Department of Psychology, Institute of Neuroscience of the Principality of Asturias (INEUROPA), University of Oviedo, Plaza Feijóo, s/n E-33003 Oviedo, Spain; (H.G.-P.); (J.L.A.); (I.L.T.)
| | - Nélida M. Conejo
- Laboratory of Neuroscience, Department of Psychology, Institute of Neuroscience of the Principality of Asturias (INEUROPA), University of Oviedo, Plaza Feijóo, s/n E-33003 Oviedo, Spain; (H.G.-P.); (J.L.A.); (I.L.T.)
- Correspondence:
| |
Collapse
|
26
|
Malcon LMC, Wearick-Silva LE, Zaparte A, Orso R, Luft C, Tractenberg SG, Donadio MVF, de Oliveira JR, Grassi-Oliveira R. Maternal separation induces long-term oxidative stress alterations and increases anxiety-like behavior of male Balb/cJ mice. Exp Brain Res 2020; 238:2097-2107. [PMID: 32656651 DOI: 10.1007/s00221-020-05859-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 06/20/2020] [Indexed: 01/23/2023]
Abstract
Early life stress (ELS) exposure is a well-known risk factor for the development of psychiatric conditions, including anxiety disorder. Preclinical studies show that maternal separation (MS), a classical model of ELS, causes hypothalamic-pituitary-adrenal (HPA) axis alterations, a key contributor to the stress response modulation. Given that HPA axis activation has been shown to induce oxidative stress, it is possible to hypothesize that oxidative stress mediates the relationship between chronic ELS exposure and the development of several disorders. Here, we investigate the effects of MS in the oxidative status [plasma and brain reduced glutathione, catalase and thiobarbituric acid reactive substances (TBARS)], metabolism (glucose, triglycerides and cholesterol) and anxiety-like behaviors in adult Balb/cJ mice. In short, we found that MS increased anxiety-like behaviors in the open field, light/dark test but not in the elevated-plus maze. Animals also presented increased circulating cholesterol, increased TBARS in the plasma and decreased catalase in the hippocampus. Our findings suggest that MS induces long-term alterations in oxidative stress and increased anxiety-like behaviors.
Collapse
Affiliation(s)
- Luiza Martins Costa Malcon
- Developmental Cognitive Neuroscience Lab (DCNL), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Avenida Ipiranga, 6681, prédio 11, sala 936-Partenon, Porto Alegre, RS, 90619-900, Brazil.,Brain Institute (InsCer), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Luis Eduardo Wearick-Silva
- Developmental Cognitive Neuroscience Lab (DCNL), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Avenida Ipiranga, 6681, prédio 11, sala 936-Partenon, Porto Alegre, RS, 90619-900, Brazil.,Brain Institute (InsCer), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Aline Zaparte
- Developmental Cognitive Neuroscience Lab (DCNL), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Avenida Ipiranga, 6681, prédio 11, sala 936-Partenon, Porto Alegre, RS, 90619-900, Brazil.,Brain Institute (InsCer), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Rodrigo Orso
- Developmental Cognitive Neuroscience Lab (DCNL), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Avenida Ipiranga, 6681, prédio 11, sala 936-Partenon, Porto Alegre, RS, 90619-900, Brazil.,Brain Institute (InsCer), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Carolina Luft
- Laboratory of Cellular Biophysics and Inflammation, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Saulo Gantes Tractenberg
- Developmental Cognitive Neuroscience Lab (DCNL), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Avenida Ipiranga, 6681, prédio 11, sala 936-Partenon, Porto Alegre, RS, 90619-900, Brazil.,Brain Institute (InsCer), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Márcio Vinicius Fagundes Donadio
- Laboratory of Pediatric Physical Activity, Infant Center, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Jarbas Rodrigues de Oliveira
- Laboratory of Cellular Biophysics and Inflammation, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Rodrigo Grassi-Oliveira
- Developmental Cognitive Neuroscience Lab (DCNL), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Avenida Ipiranga, 6681, prédio 11, sala 936-Partenon, Porto Alegre, RS, 90619-900, Brazil. .,Brain Institute (InsCer), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil.
| |
Collapse
|
27
|
N-3 PUFA Have Antidepressant-like Effects Via Improvement of the HPA-Axis and Neurotransmission in Rats Exposed to Combined Stress. Mol Neurobiol 2020; 57:3860-3874. [PMID: 32613466 DOI: 10.1007/s12035-020-01980-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 06/08/2020] [Indexed: 01/05/2023]
Abstract
Early life and adulthood stress increase vulnerability for mental illness, and eventually trigger depression. N-3 polyunsaturated fatty acids (PUFA) have antidepressant effects, but their effect on rats exposed to combined stress has been not investigated. This study aimed to investigate whether n-3 PUFA supplementation had antidepressant-like effects in rat models of depression induced by a combination of chronic mild stress (CMS) and maternal separation (MS) through the modulation of the hypothalamic-pituitary-adrenal (HPA) axis and neurotransmission. Rats were fed the n-3 PUFA diet during the pre-weaning or post-weaning period or for lifetime, and allocated to different groups based on the type of induced stress: non-stress (NS), CMS + MS, or CMS alone. N-3 PUFA improved the depressive behaviors of the CMS alone and CMS + MS groups and modulated the HPA-axis by reducing the circulating adrenocorticotropic hormone, corticosterone, and corticotropin-releasing factor expression, and increasing glucocorticoid receptor expression. N-3 PUFA also modulated brain phospholipid fatty acid concentration, thus reducing inflammatory cytokines; improved the serotonergic pathway, thus increasing the expression of the brain-derived neurotrophic factor (BDNF), cAMP response element-binding protein (CREB), serotonin-1A receptor, and serum levels of serotonin; but did not affect glutamatergic neurotransmission. Furthermore, n-3 PUFA decreased the hippocampal expression of microRNA-218 and -132, increased that of microRNA-155, and its lifetime supplementation was more beneficial than pre- or post-weaning supplementation. This study suggests that n-3 PUFA has an antidepressant effect in rats exposed to combined stress, through the improvement of the HPA-axis abnormalities, the BDNF-serotonergic pathway, and the modulation of microRNAs.
Collapse
|
28
|
Ohta KI, Suzuki S, Warita K, Sumitani K, Tenkumo C, Ozawa T, Ujihara H, Kusaka T, Miki T. The effects of early life stress on the excitatory/inhibitory balance of the medial prefrontal cortex. Behav Brain Res 2019; 379:112306. [PMID: 31629835 DOI: 10.1016/j.bbr.2019.112306] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/03/2019] [Accepted: 10/15/2019] [Indexed: 12/15/2022]
Abstract
Aversive environmental conditions during early life are known to cause long-lasting social deficits, similar to those observed in patients with neurodevelopmental disorders. However, the mechanism of how early life stress can cause social deficits is not well understood. To clarify how being in an aversive environment during development affects sociability, we conducted various analyses focusing on the excitatory and inhibitory (E/I) balance in the medial prefrontal cortex (mPFC) and how it is related to social deficits, with young adult male rats that had been exposed to maternal separation (MS). In our MS procedure, part of the pups were separated from each dam for 3 h, twice a day, during postnatal days 2-20, and then were used for each analysis at 9 weeks old. We identified that MS mainly reduced pre- and post-synaptic protein expression of inhibitory neurons in the mPFC, and that decreased the number of GAD67-positive interneurons and inhibitory synapses in the mPFC. Furthermore, MS impaired social behavior related to social recognition, which is closely linked to the mPFC, in the three-chamber sociability and social novelty test (3-CST). With relation to this social deficit, immunohistological analysis revealed that c-fos-positive cells in the mPFC of rats exposed to MS decreased during the 3-CST. Considering that inhibitory neurons in the mPFC play a role in synchronizing neural activation for information processing, our findings demonstrate that MS-induced E/I imbalance associated with cell activity in the mPFC leads to deficits in social recognition.
Collapse
Affiliation(s)
- Ken-Ichi Ohta
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Kagawa, Japan.
| | - Shingo Suzuki
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Katsuhiko Warita
- Department of Veterinary Anatomy, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Kazunori Sumitani
- Department of Medical Education, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Chiaki Tenkumo
- Department of Perinatology and Gynecology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Toru Ozawa
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Hidetoshi Ujihara
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Takashi Kusaka
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Takanori Miki
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| |
Collapse
|
29
|
Repeated three-hour maternal deprivation as a model of early-life stress alters maternal behavior, olfactory learning and neural development. Neurobiol Learn Mem 2019; 163:107040. [DOI: 10.1016/j.nlm.2019.107040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 07/01/2019] [Accepted: 07/10/2019] [Indexed: 12/30/2022]
|
30
|
Sakamoto T, Ishio Y, Ishida Y, Mogi K, Kikusui T. Low maternal care enhances the skin barrier resistance of offspring in mice. PLoS One 2019; 14:e0219674. [PMID: 31295326 PMCID: PMC6624014 DOI: 10.1371/journal.pone.0219674] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 06/30/2019] [Indexed: 01/25/2023] Open
Abstract
Deprivation of maternal care via lack of somatosensory input causes offspring to experience adverse consequences, especially in the central nervous system. However, little is known about the developmental effect of maternal care on peripheral tissues such as the skin, which includes cutaneous sensory neurons. In the present study, we examined the involvement of maternal care in the development of the skin. We investigated offspring reared by early-weaned mother mice who spontaneously showed lower frequency of licking/grooming on nursing. Offspring of early-weaned mothers showed higher resistance against skin barrier disruption than did offspring of normally-weaned mothers, and had normal skin barrier function in the intact trunk skin. In the dorsal root ganglion of early-weaned mother offspring, we also found up-regulation of mRNA levels of the Mas-related G-protein coupled receptor B4 (MrgprB4), which is a marker of sensory neurons that detect gentle stroking. We further found that levels of MrgprB4 mRNA were correlated with the enhancement of skin resistance. The present findings suggest that maternal somatosensory inputs have a developmental impact on the cutaneous sensory neurons of the skin in offspring. Interestingly, the present results suggest that lower maternal care has a benefit on the skin resistance. This provides important information for understanding the development of peripheral tissues in offspring reared under severe conditions such as lower maternal care in the wild.
Collapse
Affiliation(s)
- Takashi Sakamoto
- Department of Animal Science and Biotechnology, Azabu University, Sagamihara, Kanagawa, Japan
| | - Yukino Ishio
- Department of Animal Science and Biotechnology, Azabu University, Sagamihara, Kanagawa, Japan
| | - Yuiko Ishida
- Department of Animal Science and Biotechnology, Azabu University, Sagamihara, Kanagawa, Japan
| | - Kazutaka Mogi
- Department of Animal Science and Biotechnology, Azabu University, Sagamihara, Kanagawa, Japan
- * E-mail:
| | - Takefumi Kikusui
- Department of Animal Science and Biotechnology, Azabu University, Sagamihara, Kanagawa, Japan
| |
Collapse
|
31
|
Abstract
The developmental period constitutes a critical window of sensitivity to stress. Indeed, early-life adversity increases the risk to develop psychiatric diseases, but also gastrointestinal disorders such as the irritable bowel syndrome at adulthood. In the past decade, there has been huge interest in the gut-brain axis, especially as regards stress-related emotional behaviours. Animal models of early-life adversity, in particular, maternal separation (MS) in rodents, demonstrate lasting deleterious effects on both the gut and the brain. Here, we review the effects of MS on both systems with a focus on stress-related behaviours. In addition, we discuss more recent findings showing the impact of gut-directed interventions, including nutrition with pre- and probiotics, illustrating the role played by gut microbiota in mediating the long-term effects of MS. Overall, preclinical studies suggest that nutritional approaches with pro- and prebiotics may constitute safe and efficient strategies to attenuate the effects of early-life stress on the gut-brain axis. Further research is required to understand the complex mechanisms underlying gut-brain interaction dysfunctions after early-life stress as well as to determine the beneficial impact of gut-directed strategies in a context of early-life adversity in human subjects.
Collapse
|
32
|
Di Segni M, Andolina D, Ventura R. Long-term effects of early environment on the brain: Lesson from rodent models. Semin Cell Dev Biol 2018; 77:81-92. [DOI: 10.1016/j.semcdb.2017.09.039] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/20/2017] [Accepted: 09/29/2017] [Indexed: 12/21/2022]
|
33
|
Wei Y, Wang G, Wang H, He J, Zhang N, Wu Z, Xiao L, Yang C. Sex-dependent impact of different degrees of maternal separation experience on OFT behavioral performances after adult chronic unpredictable mild stress exposure in rats. Physiol Behav 2018; 194:153-161. [PMID: 29723593 DOI: 10.1016/j.physbeh.2018.04.034] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 04/16/2018] [Accepted: 04/26/2018] [Indexed: 12/15/2022]
Abstract
Early-life social-environmental factors are important for normal development, and different degrees of early-life stress experience have different impacts on adult behaviors and stress responsiveness. The aim of present study was to investigate the long-term effects of different degrees of maternal separation (MS) on male and female rats and subsequent responsiveness to chronic unpredictable mild stress (CUMS) exposure in adults. Sprague-Dawley (SD) newborn pups were exposed to either 15 min/day of MS (MS15), 360 min/day of MS (MS360) or no separation (NS) during postnatal day (PND)4-PND10. At PND56, behavioral tasks, including sucrose preference test (SPT), forced swimming test (FST) and open field test (OFT), were used to explore depressive and anxiety-like behaviors. Then the rats received a series of CUMS for 28 days, behavioral tasks were recorded after CUMS. Prior to CUMS, the behavioral performances in male and female rats were consistent, MS360 led to increased immobile time in FST and decreased activity in OFT, while MS15 rats exhibited behavioral performances similar to NS group. After CUMS, sexual dimorphism was observed in the OFT behavioral responses to adult stress re-exposure, but no differences in FST were observed. CUMS male rats with MS360 experiences showed the worst behavioral performances in OFT compared to those of the other male rats groups, while CUMS female rats without MS experience showed the worst behavioral performances in OFT compared to those of the other female rats groups. Both CUMS male and female rats with MS15 experiences showed better trend in OFT performances than those of CUMS rats with MS360 experience and without MS experiences. These results suggest that brief MS experiences increase the OFT behavioral resilience of rats to adult stress re-exposure, and prolonged MS promotes OFT behavioral resilience of female rats to adult stress re-exposure, while increases vulnerability of male rats to adult stress re-exposure.
Collapse
Affiliation(s)
- Yanyan Wei
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan 430060, Hubei, PR China
| | - Gaohua Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan 430060, Hubei, PR China.
| | - Huiling Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan 430060, Hubei, PR China
| | - Jing He
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan 430060, Hubei, PR China
| | - Nan Zhang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan 430060, Hubei, PR China
| | - Zuotian Wu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan 430060, Hubei, PR China
| | - Ling Xiao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan 430060, Hubei, PR China
| | - Can Yang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan 430060, Hubei, PR China
| |
Collapse
|
34
|
Dimatelis JJ, Mtintsilana A, Naidoo V, Stein DJ, Russell VA. Chronic light exposure alters serotonergic and orexinergic systems in the rat brain and reverses maternal separation-induced increase in orexin receptors in the prefrontal cortex. Metab Brain Dis 2018; 33:433-441. [PMID: 29039077 DOI: 10.1007/s11011-017-0123-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 10/04/2017] [Indexed: 12/22/2022]
Abstract
Maternal separation (MS) is a well-established rodent model of depression. Chronic constant light (CCL) treatment during adolescence has been shown to reverse the depression-like behaviour induced by MS. We aimed to further delineate the antidepressant effect of light by investigating the involvement of the dopaminergic, serotonergic and orexinergic systems. MS was used to induce changes in adult male Sprague-Dawley rats, some of whom were also treated with CCL for 3 weeks during adolescence. At P80, rats were decapitated and brain tissue collected for analysis of glutamate- and potassium-stimulated dopamine release in the nucleus accumbens (NAc) using an in vitro superfusion technique. Enzyme-linked immunosorbent assays were employed to measure 5-hydroxytryptamine (5-HT) levels in the hypothalamus and prefrontal cortex (PFC). Western blotting was used to measure orexin receptor 1 (OXR-1) and 2 (OXR-2) in the PFC. MS did not affect 5-HT levels in these rats. However, CCL increased hypothalamic 5-HT and reduced 5-HT levels in the PFC. CCL had opposite effects on OXR levels in the PFC of maternally separated and non-separated rats. MS increased OXR-1 and OXR-2 levels in the PFC, an effect that was normalized by CCL treatment. MS reduced glutamate-stimulated dopamine release in the NAc, an effect that was not reversed by CCL. The present results suggest that CCL treatment affects 5-HT and orexinergic systems in the MS model while not affecting the MS-induced decrease in dopamine release in the NAc. The reversal of changes in the orexinergic system may be of particular relevance to the antidepressant effect of CCL in depression.
Collapse
Affiliation(s)
- J J Dimatelis
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925, South Africa.
| | - A Mtintsilana
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925, South Africa
| | - V Naidoo
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925, South Africa
| | - D J Stein
- Department of Psychiatry and Mental Health and MRC Unit on Anxiety & Stress Disorders, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925, South Africa
| | - V A Russell
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925, South Africa
| |
Collapse
|
35
|
Pollano A, Trujillo V, Suárez MM. How does early maternal separation and chronic stress in adult rats affect the immunoreactivity of serotonergic neurons within the dorsal raphe nucleus? Stress 2018; 21:59-68. [PMID: 29157077 DOI: 10.1080/10253890.2017.1401062] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Vulnerability to emotional disorders like depression derives from interactions between early and late environments, including stressful conditions. The serotonin (5HT) system is strongly affected by stress and chronic unpredictable stress can alter the 5HT system. We evaluated the distribution of active serotonergic neurons in the dorsal raphe nucleus (DR) through immunohistochemistry in maternally separated and chronically stressed rats treated with an antidepressant, tianeptine, whose mechanism of action is still under review. Male Wistar rats were subjected to daily maternal separation (MS) for 4.5 h between postnatal days (PND) 1-21, or to animal facility rearing (AFR). Between (PND) days 50-74, rats were exposed to chronic unpredictable stress and were treated daily with tianeptine (10 mg/kg) or vehicle. We found an interaction between the effects of MS and chronic unpredictable stress on Fos-5HT immunoreactive cells at mid-caudal level of the DR. MS-chronically stressed rats showed an increase of Fos-5HT immunoreactive cells compared with AFR-chronically stressed rats. The ventrolateral (DRL/VLPAG) and dorsal (DRD) subdivisions of the DR were significantly more active than the ventral part (DRV). At the rostral level of the DR, tianeptine decreased the number of Fos-5HT cells in DR in the AFR groups, both unstressed and stressed. Overall, our results support the idea of a match in phenotype exhibited when the early and the adult environment correspond.
Collapse
Affiliation(s)
- Antonella Pollano
- a Laboratorio de Fisiología Animal , Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba , Córdoba , Argentina
| | - Verónica Trujillo
- a Laboratorio de Fisiología Animal , Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba , Córdoba , Argentina
| | - Marta M Suárez
- a Laboratorio de Fisiología Animal , Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba , Córdoba , Argentina
| |
Collapse
|
36
|
Sood A, Pati S, Bhattacharya A, Chaudhari K, Vaidya VA. Early emergence of altered 5‐HT
2A
receptor‐evoked behavior, neural activation and gene expression following maternal separation. Int J Dev Neurosci 2017; 65:21-28. [DOI: 10.1016/j.ijdevneu.2017.10.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 09/20/2017] [Accepted: 10/12/2017] [Indexed: 01/15/2023] Open
Affiliation(s)
- Ankit Sood
- Department of Biological SciencesTata Institute of Fundamental ResearchMumbaiMaharashtraIndia
| | - Sthitapranjya Pati
- Department of Biological SciencesTata Institute of Fundamental ResearchMumbaiMaharashtraIndia
| | - Amrita Bhattacharya
- Department of Biological SciencesTata Institute of Fundamental ResearchMumbaiMaharashtraIndia
| | - Karina Chaudhari
- Department of Biological SciencesTata Institute of Fundamental ResearchMumbaiMaharashtraIndia
| | - Vidita A. Vaidya
- Department of Biological SciencesTata Institute of Fundamental ResearchMumbaiMaharashtraIndia
| |
Collapse
|
37
|
Construct and face validity of a new model for the three-hit theory of depression using PACAP mutant mice on CD1 background. Neuroscience 2017; 354:11-29. [PMID: 28450265 DOI: 10.1016/j.neuroscience.2017.04.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 04/06/2017] [Accepted: 04/13/2017] [Indexed: 02/07/2023]
Abstract
Major depression is a common cause of chronic disability. Despite decades of efforts, no equivocally accepted animal model is available for studying depression. We tested the validity of a new model based on the three-hit concept of vulnerability and resilience. Genetic predisposition (hit 1, mutation of pituitary adenylate cyclase-activating polypeptide, PACAP gene), early-life adversity (hit 2, 180-min maternal deprivation, MD180) and chronic variable mild stress (hit 3, CVMS) were combined. Physical, endocrinological, behavioral and functional morphological tools were used to validate the model. Body- and adrenal weight changes as well as corticosterone titers proved that CVMS was effective. Forced swim test indicated increased depression in CVMS PACAP heterozygous (Hz) mice with MD180 history, accompanied by elevated anxiety level in marble burying test. Corticotropin-releasing factor neurons in the oval division of the bed nucleus of the stria terminalis showed increased FosB expression, which was refractive to CVMS exposure in wild-type and Hz mice. Urocortin1 neurons became over-active in CMVS-exposed PACAP knock out (KO) mice with MD180 history, suggesting the contribution of centrally projecting Edinger-Westphal nucleus to the reduced depression and anxiety level of stressed KO mice. Serotoninergic neurons of the dorsal raphe nucleus lost their adaptation ability to CVMS in MD180 mice. In conclusion, the construct and face validity criteria suggest that MD180 PACAP HZ mice on CD1 background upon CVMS may be used as a reliable model for the three-hit theory.
Collapse
|
38
|
Ohta KI, Suzuki S, Warita K, Kaji T, Kusaka T, Miki T. Prolonged maternal separation attenuates BDNF-ERK signaling correlated with spine formation in the hippocampus during early brain development. J Neurochem 2017; 141:179-194. [PMID: 28178750 DOI: 10.1111/jnc.13977] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/27/2017] [Accepted: 02/03/2017] [Indexed: 12/18/2022]
Abstract
Maternal separation (MS) is known to affect hippocampal function such as learning and memory, yet the molecular mechanism remains unknown. We hypothesized that these impairments are attributed to abnormities of neural circuit formation by MS, and focused on brain-derived neurotrophic factor (BDNF) as key factor because BDNF signaling has an essential role in synapse formation during early brain development. Using rat offspring exposed to MS for 6 h/day during postnatal days (PD) 2-20, we estimated BDNF signaling in the hippocampus during brain development. Our results show that MS attenuated BDNF expression and activation of extracellular signal-regulated kinase (ERK) around PD 7. Moreover, plasticity-related immediate early genes, which are transcriptionally regulated by BDNF-ERK signaling, were also reduced by MS around PD 7. Interestingly, detailed analysis revealed that MS particularly reduced expression of BDNF gene and immediate early genes in the cornu ammonis 1 (CA1) of hippocampus at PD 7. Considering that BDNF-ERK signaling is involved in spine formation, we next evaluated spine formation in the hippocampus during the weaning period. Our results show that MS particularly reduced mature spine density in proximal apical dendrites of CA1 pyramidal neurons at PD 21. These results suggest that MS could attenuate BDNF-ERK signaling during primary synaptogenesis with a region-specific manner, which is likely to lead to decreased spine formation and maturation observed in the hippocampal CA1 region. It is speculated that this incomplete spine formation during early brain development has an influence on learning capabilities throughout adulthood.
Collapse
Affiliation(s)
- Ken-Ichi Ohta
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Shingo Suzuki
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Katsuhiko Warita
- Department of Veterinary Anatomy, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Tomohiro Kaji
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Takashi Kusaka
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Takanori Miki
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| |
Collapse
|
39
|
Effects of Neonatal Methamphetamine and Stress on Brain Monoamines and Corticosterone in Preweanling Rats. Neurotox Res 2016; 31:269-282. [PMID: 27817108 DOI: 10.1007/s12640-016-9680-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/17/2016] [Accepted: 10/20/2016] [Indexed: 01/10/2023]
Abstract
Neonatal exposure to methamphetamine (MA) and developmental chronic stress significantly alter neurodevelopmental profiles that show a variety of long-term physiological and behavioral effects. In the current experiment, Sprague-Dawley rats were exposed to one of two housing conditions along with MA. Rats were given 0 (saline), 5, or 7.5 mg/kg MA, four times per day from postnatal day (P)11 to 15 or P11 to 20. Half of the litters were reared in cages with standard bedding and half with no bedding. Separate litters were assessed at P15 or P20 for organ weights (adrenals, spleen, thymus); corticosterone; and monoamine assessments (dopamine, serotonin, norepinephrine) and their metabolites within the neostriatum, hippocampus, and prefrontal cortex. Findings show neonatal MA altered monoamines, corticosterone, and organ characteristics alone, and as a function of developmental age and stress compared with controls. These alterations may in part be responsible for MA and early life stress-induced long-term learning and memory deficits.
Collapse
|
40
|
Belmer A, Klenowski PM, Patkar OL, Bartlett SE. Mapping the connectivity of serotonin transporter immunoreactive axons to excitatory and inhibitory neurochemical synapses in the mouse limbic brain. Brain Struct Funct 2016; 222:1297-1314. [PMID: 27485750 PMCID: PMC5368196 DOI: 10.1007/s00429-016-1278-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 07/20/2016] [Indexed: 12/25/2022]
Abstract
Serotonin neurons arise from the brainstem raphe nuclei and send their projections throughout the brain to release 5-HT which acts as a modulator of several neuronal populations. Previous electron microscopy studies in rats have morphologically determined the distribution of 5-HT release sites (boutons) in certain brain regions and have shown that 5-HT containing boutons form synaptic contacts that are either symmetric or asymmetric. In addition, 5-HT boutons can form synaptic triads with the pre- and postsynaptic specializations of either symmetrical or asymmetrical synapses. However, due to the labor intensive processing of serial sections required by electron microscopy, little is known about the neurochemical properties or the quantitative distribution of 5-HT triads within whole brain or discrete subregions. Therefore, we used a semi-automated approach that combines immunohistochemistry and high-resolution confocal microscopy to label serotonin transporter (SERT) immunoreactive axons and reconstruct in 3D their distribution within limbic brain regions. We also used antibodies against key pre- (synaptophysin) and postsynaptic components of excitatory (PSD95) or inhibitory (gephyrin) synapses to (1) identify putative 5-HTergic boutons within SERT immunoreactive axons and, (2) quantify their close apposition to neurochemical excitatory or inhibitory synapses. We provide a 5-HTergic axon density map and have determined the ratio of synaptic triads consisting of a 5-HT bouton in close proximity to either neurochemical excitatory or inhibitory synapses within different limbic brain areas. The ability to model and map changes in 5-HTergic axonal density and the formation of triadic connectivity within whole brain regions using this rapid and quantitative approach offers new possibilities for studying neuroplastic changes in the 5-HTergic pathway.
Collapse
Affiliation(s)
- Arnauld Belmer
- Translational Research Institute, Queensland University of Technology, Brisbane, Qld 4059, Australia
| | - Paul M Klenowski
- Translational Research Institute, Queensland University of Technology, Brisbane, Qld 4059, Australia
| | - Omkar L Patkar
- Translational Research Institute, Queensland University of Technology, Brisbane, Qld 4059, Australia
| | - Selena E Bartlett
- Translational Research Institute, Queensland University of Technology, Brisbane, Qld 4059, Australia. .,Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology, Brisbane, Australia.
| |
Collapse
|
41
|
Decker MJ, Jones K, Keating GL, Damato EG, Darrah R. Maternal dietary supplementation with omega-3 polyunsaturated fatty acids confers neuroprotection to the newborn against hypoxia-induced dopamine dysfunction. Sleep Sci 2016; 9:94-9. [PMID: 27656273 PMCID: PMC5021959 DOI: 10.1016/j.slsci.2016.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 02/27/2016] [Accepted: 05/25/2016] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION Up to 84% of prematurely born infants suffer hypoxic, anoxic, and ischemic insults. Those infants with subsequent behavioral, motor or cognitive dysfunction represent 8-11% of all live births. Yet, no interventions employed during pregnancy attenuate risk of morbidity in those at-risk infants. Dietary supplementation with omega-3 polyunsaturated fatty acids (ω-3 PUFAs) has been shown to reduce stroke-induced neuropathology in rat models emulating this adverse clinical event. To extend those studies we sought to determine whether maternal dietary supplementation with ω-3 PUFAs would confer neuroprotection against hypoxia-induced neurochemical dysfunction in newborn rat pups exposed to repetitive hypoxic insults. METHODS We provided pregnant rats with either a ω-3 PUFA enriched diet or else a standard rat chow diet. At postnatal day 7, pups were assigned randomly to either repetitive hypoxic insults or repetitive bursts of room air. On postnatal day 12, pups were sacrificed and brain dopamine levels characterized. RESULTS Baseline brain dopamine levels did not differ between rat pups born to dams who received ω-3 PUFA enriched versus standard rat chow diets. Rat pups born to dams maintained on normal diets, who were exposed to five days of repetitive hypoxic insults, experienced a 57% reduction in striatal dopamine levels accompanied by significant apoptosis. In contrast, ω-3 PUFA-enriched newborn pups experienced no loss in striatal dopamine levels, and only minimal apoptosis. CONCLUSIONS Our findings suggest that it may be feasible to confer neuroprotection against hypoxia-induced dopamine dysfunction to newborns likely to experience hypoxic insults. This could significantly improve the outcomes of those 8-11% of newborns who would otherwise experience hypoxia-induced behavioral, motor and cognitive dysfunction.
Collapse
Affiliation(s)
- Michael J. Decker
- Case Western Reserve University, School of Nursing, 10900 Euclid Avenue, Cleveland, OH 44106, United States
| | - Karra Jones
- University of California, Neuropathology, Department of Pathology, 9500 Gilman Drive, La Jolla, San Diego, CA 92093, United States
| | - Glenda L. Keating
- Emory University, School of Medicine, Department of Neurology, Woodruff Memorial Research Building, 101 Woodruff Circle NE (Clifton RD NE), Atlanta, GA 30322, United States
| | - Elizabeth G. Damato
- Case Western Reserve University, School of Nursing, 10900 Euclid Avenue, Cleveland, OH 44106, United States
| | - Rebecca Darrah
- Case Western Reserve University, School of Nursing, 10900 Euclid Avenue, Cleveland, OH 44106, United States
| |
Collapse
|
42
|
Using PACAP Heterozygous Mice as Models of the Three Hit Theory of Depression. CURRENT TOPICS IN NEUROTOXICITY 2016. [DOI: 10.1007/978-3-319-35135-3_42] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
43
|
Xiong GJ, Yang Y, Cao J, Mao RR, Xu L. Fluoxetine treatment reverses the intergenerational impact of maternal separation on fear and anxiety behaviors. Neuropharmacology 2015; 92:1-7. [DOI: 10.1016/j.neuropharm.2014.12.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 12/12/2014] [Accepted: 12/18/2014] [Indexed: 01/23/2023]
|
44
|
Abstract
Early-life serotonin [5-hydroxytryptamine (5-HT)] signaling modulates brain development, which impacts adult behavior, but 5-HT-sensitive periods, neural substrates, and behavioral consequences remain poorly understood. Here we identify the period ranging from postnatal day 2 (P2) to P11 as 5-HT sensitive, with 5-HT transporter (5-HTT) blockade increasing anxiety- and depression-like behavior, and impairing fear extinction learning and memory in adult mice. Concomitantly, P2-P11 5-HTT blockade causes dendritic hypotrophy and reduced excitability of infralimbic (IL) cortex pyramidal neurons that normally promote fear extinction. By contrast, the neighboring prelimbic (PL) pyramidal neurons, which normally inhibit fear extinction, become more excitable. Excitotoxic IL but not PL lesions in adult control mice reproduce the anxiety-related phenotypes. These findings suggest that increased 5-HT signaling during P2-P11 alters adult mPFC function to increase anxiety and impair fear extinction, and imply a differential role for IL and PL neurons in regulating affective behaviors. Together, our results support a developmental mechanism for the etiology and pathophysiology of affective disorders and fear-related behaviors.
Collapse
|
45
|
Monoamine-sensitive developmental periods impacting adult emotional and cognitive behaviors. Neuropsychopharmacology 2015; 40:88-112. [PMID: 25178408 PMCID: PMC4262911 DOI: 10.1038/npp.2014.231] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 07/30/2014] [Accepted: 08/20/2014] [Indexed: 02/07/2023]
Abstract
Development passes through sensitive periods, during which plasticity allows for genetic and environmental factors to exert indelible influence on the maturation of the organism. In the context of central nervous system development, such sensitive periods shape the formation of neurocircuits that mediate, regulate, and control behavior. This general mechanism allows for development to be guided by both the genetic blueprint as well as the environmental context. While allowing for adaptation, such sensitive periods are also vulnerability windows during which external and internal factors can confer risk to disorders by derailing otherwise resilient developmental programs. Here we review developmental periods that are sensitive to monoamine signaling and impact adult behaviors of relevance to psychiatry. Specifically, we review (1) a serotonin-sensitive period that impacts sensory system development, (2) a serotonin-sensitive period that impacts cognition, anxiety- and depression-related behaviors, and (3) a dopamine- and serotonin-sensitive period affecting aggression, impulsivity and behavioral response to psychostimulants. We discuss preclinical data to provide mechanistic insight, as well as epidemiological and clinical data to point out translational relevance. The field of translational developmental neuroscience has progressed exponentially providing solid conceptual advances and unprecedented mechanistic insight. With such knowledge at hand and important methodological innovation ongoing, the field is poised for breakthroughs elucidating the developmental origins of neuropsychiatric disorders, and thus understanding pathophysiology. Such knowledge of sensitive periods that determine the developmental trajectory of complex behaviors is a necessary step towards improving prevention and treatment approaches for neuropsychiatric disorders.
Collapse
|
46
|
Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav Brain Res 2014; 277:32-48. [PMID: 25078296 DOI: 10.1016/j.bbr.2014.07.027] [Citation(s) in RCA: 1261] [Impact Index Per Article: 114.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 07/08/2014] [Accepted: 07/16/2014] [Indexed: 12/14/2022]
Abstract
The brain-gut axis is a bidirectional communication system between the central nervous system and the gastrointestinal tract. Serotonin functions as a key neurotransmitter at both terminals of this network. Accumulating evidence points to a critical role for the gut microbiome in regulating normal functioning of this axis. In particular, it is becoming clear that the microbial influence on tryptophan metabolism and the serotonergic system may be an important node in such regulation. There is also substantial overlap between behaviours influenced by the gut microbiota and those which rely on intact serotonergic neurotransmission. The developing serotonergic system may be vulnerable to differential microbial colonisation patterns prior to the emergence of a stable adult-like gut microbiota. At the other extreme of life, the decreased diversity and stability of the gut microbiota may dictate serotonin-related health problems in the elderly. The mechanisms underpinning this crosstalk require further elaboration but may be related to the ability of the gut microbiota to control host tryptophan metabolism along the kynurenine pathway, thereby simultaneously reducing the fraction available for serotonin synthesis and increasing the production of neuroactive metabolites. The enzymes of this pathway are immune and stress-responsive, both systems which buttress the brain-gut axis. In addition, there are neural processes in the gastrointestinal tract which can be influenced by local alterations in serotonin concentrations with subsequent relay of signals along the scaffolding of the brain-gut axis to influence CNS neurotransmission. Therapeutic targeting of the gut microbiota might be a viable treatment strategy for serotonin-related brain-gut axis disorders.
Collapse
|
47
|
Harrison EL, Baune BT. Modulation of early stress-induced neurobiological changes: a review of behavioural and pharmacological interventions in animal models. Transl Psychiatry 2014; 4:e390. [PMID: 24825729 PMCID: PMC4035722 DOI: 10.1038/tp.2014.31] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 02/08/2014] [Accepted: 03/26/2014] [Indexed: 12/28/2022] Open
Abstract
Childhood adversity alters the predisposition to psychiatric disorders later in life. Those with psychiatric conditions and a history of early adversity exhibit a higher incidence of treatment resistance compared with individuals with no such history. Modulation of the influence early stress exerts over neurobiology may help to prevent the development of psychiatric disorders in some cases, while attenuating the extent of treatment resistance in those with established psychiatric disorders. This review aims to critically evaluate the ability of behavioural, environmental and pharmacologic interventions to modulate neurobiological changes induced by early stress in animal models. Databases were systematically searched to locate literature relevant to this review. Early adversity was defined as stress that resulted from manipulation of the mother-infant relationship. Analysis was restricted to animal models to enable characterisation of how a given intervention altered specific neurobiological changes induced by early stress. A wide variety of changes in neurobiology due to early stress are amenable to intervention. Behavioural interventions in childhood, exercise in adolescence and administration of epigenetic-modifying drugs throughout life appear to best modulate cellar and behavioural alterations induced by childhood adversity. Other pharmacotherapies, such as endocannabinoid system modulators, anti-inflammatories and antidepressants can also influence these neurobiological and behavioural changes that result from early stress, although findings are less consistent at present and require further investigation. Further work is required to examine the influence that behavioural interventions, exercise and epigenetic-modifying drugs exert over alterations that occur following childhood stress in human studies, before possible translational into clinical practice is possible.
Collapse
Affiliation(s)
- E L Harrison
- Discipline of Psychiatry, School of Medicine, University of Adelaide, Adelaide, SA, Australia,School of Medicine and Dentistry, James Cook University, Townsville, QLD, Australia
| | - B T Baune
- Discipline of Psychiatry, School of Medicine, University of Adelaide, Adelaide, SA, Australia,Discipline of Psychiatry, School of Medicine, University of Adelaide, Adelaide, SA 5005, Australia. E-mail:
| |
Collapse
|