1
|
Chiodetti M, Monica S, Bancalari E, Bottari B, Fuso A, Prandi B, Tedeschi T, Carini E. Effect of fermentation with selected lactic acid bacteria strains on the molecular and technological properties of sorghum batters. Food Chem 2025; 484:144350. [PMID: 40253729 DOI: 10.1016/j.foodchem.2025.144350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/31/2025] [Accepted: 04/14/2025] [Indexed: 04/22/2025]
Abstract
This study provides an in-depth investigation of the relationship between fermentation-induced molecular changes and techno-functional properties of sorghum flour, using three lactic acid bacteria (LAB) strains - Lactobacillus delbrueckii subsp. bulgaricus 1932, Leuconostoc spp. 4454, and Lacticaseibacillus casei 4339. Fermentation at 25 °C for 15 h induced significant molecular changes, including the reduction of low molecular weight fractions (∼0.7 kDa), and depolymerization of starch and fiber (HPSEC analysis). Proton mobility and relaxation analyses (1H LR-NMR) revealed matrix breakdown and stronger water-biopolymer interactions. These molecular changes were closely associated with improved technological properties, including enhanced starch gelatinization (higher enthalpy changes, DSC) and better pasting properties. Changes in structure and molecular interactions likely contributed to the increased viscosity of sorghum, even in the absence of exopolysaccharide production. This study bridges the gap between molecular-level transformations with functional outcomes, providing insights into tailoring fermentation processes for the development of sustainable and innovative sorghum-based foods.
Collapse
Affiliation(s)
- Miriam Chiodetti
- Department of Food and Drug, University of Parma, Parco Area delle Scienze, 47/A, 43124 Parma (PR), Italy.
| | - Saverio Monica
- Department of Food and Drug, University of Parma, Parco Area delle Scienze, 47/A, 43124 Parma (PR), Italy.
| | - Elena Bancalari
- Department of Food and Drug, University of Parma, Parco Area delle Scienze, 47/A, 43124 Parma (PR), Italy.
| | - Benedetta Bottari
- Department of Food and Drug, University of Parma, Parco Area delle Scienze, 47/A, 43124 Parma (PR), Italy.
| | - Andrea Fuso
- Department of Food and Drug, University of Parma, Parco Area delle Scienze, 47/A, 43124 Parma (PR), Italy.
| | - Barbara Prandi
- Department of Food and Drug, University of Parma, Parco Area delle Scienze, 47/A, 43124 Parma (PR), Italy.
| | - Tullia Tedeschi
- Department of Food and Drug, University of Parma, Parco Area delle Scienze, 47/A, 43124 Parma (PR), Italy.
| | - Eleonora Carini
- Department of Food and Drug, University of Parma, Parco Area delle Scienze, 47/A, 43124 Parma (PR), Italy.
| |
Collapse
|
2
|
Yadav P, Debnath N, Pradhan D, Mehta PK, Kumar A, Yadav ML, Yadav AK. Probiotic Lactobacillus-Derived Extracellular Vesicles: Insights Into Disease Prevention and Management. Mol Nutr Food Res 2025:e70013. [PMID: 40200671 DOI: 10.1002/mnfr.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 01/22/2025] [Accepted: 02/12/2025] [Indexed: 04/10/2025]
Abstract
Bacterial extracellular vesicles (BEVs) have emerged as versatile and promising tools for therapeutic interventions across a spectrum of medical applications. Among these, Lactobacillus-derived extracellular vesicles (LDEVs) have garnered significant attention due to their diverse physiological functions and applications in health advancement. These LDEVs modulate host cell signaling pathways through the delivery of bioactive molecules, including nucleic acids and proteins. The immunomodulatory properties of LDEVs are important, as they have been shown to regulate the balance between pro-inflammatory and anti-inflammatory responses in various diseases. These LDEVs play a crucial role in maintaining gut homeostasis by modulating the composition and function of the gut microbiota, which has implications for health conditions, including inflammatory bowel diseases, metabolic disorders, and neurological disorders. Furthermore, LDEVs hold potential to deliver therapeutic payloads to specific tissues or organs. Engineered LDEVs can be loaded with therapeutic agents such as antimicrobial peptides or nucleic acid-based therapies to treat various diseases. By leveraging the unique properties of LDEVs, researchers can develop innovative strategies for disease prevention, treatment, and overall well-being. Thus, this review aims to provide a comprehensive overview of the therapeutic benefits of LDEVs and their implications for promoting overall well-being.
Collapse
Affiliation(s)
- Pooja Yadav
- Centre for Molecular Biology, Central University of Jammu, Jammu, Jammu & Kashmir, India
| | - Nabendu Debnath
- Centre for Molecular Biology, Central University of Jammu, Jammu, Jammu & Kashmir, India
| | - Diwas Pradhan
- Dairy Microbiology Division, National Dairy Research Institute, Karnal, Haryana, India
| | - Praveen Kumar Mehta
- Centre for Molecular Biology, Central University of Jammu, Jammu, Jammu & Kashmir, India
| | - Ashwani Kumar
- Department of Nutrition Biology, Central University of Haryana, Mahendergarh, Haryana, India
| | - Munna Lal Yadav
- Discovery Research Division, Indian Council of Medical Research (ICMR), New Delhi, India
| | - Ashok Kumar Yadav
- Centre for Molecular Biology, Central University of Jammu, Jammu, Jammu & Kashmir, India
- Department of Zoology, Central University of Jammu, Jammu, Jammu & Kashmir, India
| |
Collapse
|
3
|
Hu J, Yu Q, Wang L, Shi H, Luan S. Recent Progress in Antibacterial Surfaces for Implant Catheters. BME FRONTIERS 2025; 6:0063. [PMID: 39949607 PMCID: PMC11822169 DOI: 10.34133/bmef.0063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 02/16/2025] Open
Abstract
Catheter-related infections (CRIs) caused by hospital-acquired microbial infections lead to the failure of treatment and the increase of mortality and morbidity. Surface modifications of the implant catheters have been demonstrated to be effective approaches to improve and largely reduce the bacterial colonization and related complications. In this work, we focus on the last 5-year progress in the surface modifications of biomedical catheters to prevent CRIs. Their antibacterial strategies used for surface modifications are further divided into 5 classifications through the antimicrobial mechanisms, including active surfaces, passive surfaces, active and passive combination surfaces, stimulus-type response surfaces, and other types. Each feature and the latest advances in these abovementioned antibacterial surfaces of implant catheters are highlighted. Finally, these confronting challenges and future prospects are discussed for the antibacterial modifications of implant catheters.
Collapse
Affiliation(s)
- Jia Hu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry,
Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Qing Yu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry,
Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Lei Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry,
Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Hengchong Shi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry,
Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering,
University of Science and Technology of China, Hefei 230026, P. R. China
| | - Shifang Luan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry,
Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering,
University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
4
|
Chen M, Qiao Y, Yu L, Wang W, Wang W, Sun H, Xu Y, Bai J, Zhou J, Geng D. A microenvironment responsive polyetheretherketone implant with antibacterial and osteoimmunomodulatory properties facilitates osseointegration. Bioact Mater 2025; 43:273-291. [PMID: 39399839 PMCID: PMC11470486 DOI: 10.1016/j.bioactmat.2024.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/08/2024] [Accepted: 09/12/2024] [Indexed: 10/15/2024] Open
Abstract
Failure of intraosseous prostheses is primarily attributed to implant loosening and infections. Current primary therapeutic modalities, such as antibiotics and local debridement, not only face challenges in thoroughly eliminating obstinate adhered bacteria but also encounter difficulties in ameliorating undue inflammatory reactions and regenerating impaired peri-implant bone tissues. Polyetheretherketone (PEEK) has excellent mechanical and physicochemical characteristics and has been used extensively as a medical biomaterial. However, the limited bactericidal and osseointegrative activities of bioinert PEEK restrict its clinical application. Herein, a microenvironment responsive coating with immobilised immunomodulatory magnesium ions (Mg2+) and disinfectant cerium oxide nanoparticles (CNPs) is designed via ion coordination mediated by polydopamine (PDA) and electrospinning based on collagen structure-bionic silk fibroin (SF). By utilising the pH responsiveness of SF, CNPs exhibit potent antibacterial effects in an acidic environment (pH 5.0) caused by local bacterial infection. Due to the chelation interaction with PDA and the constraint of SF, Mg2+ is slowly released, ameliorating the local immune microenvironment and boosting osteogenesis by upregulating M2 phenotype macrophages. Bioinformatics analysis indicates that the inflammation is suppressed via the NF-κB signaling pathway. Overall, this SF-based coating maximizes the synergistic effect of CNPs and Mg2+, offering enhanced antibacterial and osteoimmunomodulatory bioactivity for successful implantation.
Collapse
Affiliation(s)
- Miao Chen
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Medical College, Soochow University, Suzhou, 215006, Jiangsu, China
| | - Yusen Qiao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Medical College, Soochow University, Suzhou, 215006, Jiangsu, China
| | - Lei Yu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Medical College, Soochow University, Suzhou, 215006, Jiangsu, China
| | - Wei Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Medical College, Soochow University, Suzhou, 215006, Jiangsu, China
| | - Wentao Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Medical College, Soochow University, Suzhou, 215006, Jiangsu, China
| | - Haifu Sun
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Medical College, Soochow University, Suzhou, 215006, Jiangsu, China
| | - Yaozeng Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Medical College, Soochow University, Suzhou, 215006, Jiangsu, China
| | - Jiaxiang Bai
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230022, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China
| | - Jun Zhou
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Medical College, Soochow University, Suzhou, 215006, Jiangsu, China
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Medical College, Soochow University, Suzhou, 215006, Jiangsu, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China
| |
Collapse
|
5
|
Markandan K, Tiong YW, Sankaran R, Subramanian S, Markandan UD, Chaudhary V, Numan A, Khalid M, Walvekar R. Emergence of infectious diseases and role of advanced nanomaterials in point-of-care diagnostics: a review. Biotechnol Genet Eng Rev 2024; 40:3438-3526. [PMID: 36243900 DOI: 10.1080/02648725.2022.2127070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/12/2022] [Indexed: 11/09/2022]
Abstract
Infectious outbreaks are the foremost global public health concern, challenging the current healthcare system, which claims millions of lives annually. The most crucial way to control an infectious outbreak is by early detection through point-of-care (POC) diagnostics. POC diagnostics are highly advantageous owing to the prompt diagnosis, which is economical, simple and highly efficient with remote access capabilities. In particular, utilization of nanomaterials to architect POC devices has enabled highly integrated and portable (compact) devices with enhanced efficiency. As such, this review will detail the factors influencing the emergence of infectious diseases and methods for fast and accurate detection, thus elucidating the underlying factors of these infections. Furthermore, it comprehensively highlights the importance of different nanomaterials in POCs to detect nucleic acid, whole pathogens, proteins and antibody detection systems. Finally, we summarize findings reported on nanomaterials based on advanced POCs such as lab-on-chip, lab-on-disc-devices, point-of-action and hospital-on-chip. To this end, we discuss the challenges, potential solutions, prospects of integrating internet-of-things, artificial intelligence, 5G communications and data clouding to achieve intelligent POCs.
Collapse
Affiliation(s)
- Kalaimani Markandan
- Temasek Laboratories, Nanyang Technological University, Nanyang Drive, Singapore
- Faculty of Engineering, Technology and Built Environment, UCSI University, Kuala Lumpur, Malaysia
| | - Yong Wei Tiong
- NUS Environmental Research Institute, National University of Singapore, Engineering Drive, Singapore
| | - Revathy Sankaran
- Graduate School, University of Nottingham Malaysia Campus, Semenyih, Selangor, Malaysia
| | - Sakthinathan Subramanian
- Department of Materials & Mineral Resources Engineering, National Taipei University of Technology (NTUT), Taipei, Taiwan
| | | | - Vishal Chaudhary
- Research Cell & Department of Physics, Bhagini Nivedita College, University of Delhi, New Delhi, India
| | - Arshid Numan
- Graphene & Advanced 2D Materials Research Group (GAMRG), School of Engineering and Technology, Sunway University, Petaling Jaya, Selangor, Malaysia
- Sunway Materials Smart Science & Engineering (SMS2E) Research Cluster School of Engineering and Technology, Sunway University, Selangor, Malaysia
| | - Mohammad Khalid
- Graphene & Advanced 2D Materials Research Group (GAMRG), School of Engineering and Technology, Sunway University, Petaling Jaya, Selangor, Malaysia
- Sunway Materials Smart Science & Engineering (SMS2E) Research Cluster School of Engineering and Technology, Sunway University, Selangor, Malaysia
| | - Rashmi Walvekar
- Department of Chemical Engineering, School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang, Selangor, Malaysia
| |
Collapse
|
6
|
Boccia AC, Pulvirenti A, Cerruti P, Silvetti T, Brasca M. Antimicrobial starch-based cryogels and hydrogels for dual-active food packaging applications. Carbohydr Polym 2024; 342:122340. [PMID: 39048188 DOI: 10.1016/j.carbpol.2024.122340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 07/27/2024]
Abstract
The present study reports on the valorisation of starch waste biomass to produce dual-active cryogels and hydrogels able to adsorb water and deliver antimicrobial substances for fresh food packaging applications. Starch hydrogels were prepared by oxidation with sodium metaperiodate in water and mild conditions, while cryogels were obtained by freeze-drying process. To explore the role of starch composition on the final properties of materials, two starches differing in amylose/amylopectin ratio, were evaluated. The prepared materials were microstructurally and morphologically characterized by FTIR and NMR spectroscopy (1D, 2D, and DOSY experiments), and SEM microscopy. To provide the materials with active properties, they were loaded with antimicrobial molecules by absorption, or by crosslinking via Schiff-base reaction. All materials demonstrated high water absorption capacity and ability to deliver volatile molecules, including diacetyl and complex mixtures like mint essential oil. The release profiles of the adsorbed molecules were determined through quantitative NMR spectroscopy over time. The antibacterial activity was successfully demonstrated against Gram-positive bacterial strains for unloaded cryogels and hydrogels, and after loading with diacetyl and essential oil. The developed materials can be regarded as part of active pads for food packaging applications capable to control moisture inside the package and inhibit microbial contamination.
Collapse
Affiliation(s)
- Antonella Caterina Boccia
- Institute of Chemical Sciences and Technologies (SCITEC), National Research Council (CNR), Via A. Corti, 12, 20133 Milano, Italy.
| | - Alfio Pulvirenti
- Institute of Chemical Sciences and Technologies (SCITEC), National Research Council (CNR), Via A. Corti, 12, 20133 Milano, Italy
| | - Pierfrancesco Cerruti
- Institute for Polymers, Composites and Biomaterials (IPCB), National Research Council (CNR), Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Tiziana Silvetti
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Via Celoria 2, 20133 Milano, Italy
| | - Milena Brasca
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Via Celoria 2, 20133 Milano, Italy
| |
Collapse
|
7
|
Emiliano JVDS, Fusieger A, Camargo AC, Rodrigues FFDC, Nero LA, Perrone ÍT, Carvalho AFD. Staphylococcus aureus in Dairy Industry: Enterotoxin Production, Biofilm Formation, and Use of Lactic Acid Bacteria for Its Biocontrol. Foodborne Pathog Dis 2024; 21:601-616. [PMID: 39021233 DOI: 10.1089/fpd.2023.0170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
Staphylococcus aureus is a well-known pathogen capable of producing enterotoxins during bacterial growth in contaminated food, and the ingestion of such preformed toxins is one of the major causes of food poisoning around the world. Nowadays 33 staphylococcal enterotoxins (SEs) and SE-like toxins have been described, but nearly 95% of confirmed foodborne outbreaks are attributed to classical enterotoxins SEA, SEB, SEC, SED, and SEE. The natural habitat of S. aureus includes the skin and mucous membranes of both humans and animals, allowing the contamination of milk, its derivatives, and the processing facilities. S. aureus is well known for the ability to form biofilms in food processing environments, which contributes to its persistence and cross-contamination in food. The biocontrol of S. aureus in foods by lactic acid bacteria (LAB) and their bacteriocins has been studied for many years. Recently, LAB and their metabolites have also been explored for controlling S. aureus biofilms. LAB are used in fermented foods since in ancient times and nowadays characterized strains (or their purified bacteriocin) can be intentionally added to prolong food shelf-life and to control the growth of potentially pathogenic bacteria. Regarding the use of these microorganism and their metabolites (such as organic acids and bacteriocins) to prevent biofilm development or for biofilm removal, it is possible to conclude that a complex network behind the antagonistic activity remains poorly understood at the molecular level. The use of approaches that allow the characterization of these interactions is necessary to enhance our understanding of the mechanisms that govern the inhibitory activity of LAB against S. aureus biofilms in food processing environments.
Collapse
Affiliation(s)
- Jean Victor Dos Santos Emiliano
- InovaLeite - Laboratório de Pesquisa em Leites e Derivados, Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Andressa Fusieger
- InovaLeite - Laboratório de Pesquisa em Leites e Derivados, Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Anderson Carlos Camargo
- InovaLeite - Laboratório de Pesquisa em Leites e Derivados, Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, Brazil
- InsPOA - Laboratório de Inspeção de Produtos de Origem Animal, Departamento de Veterinária, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Fabíola Faria da Cruz Rodrigues
- InovaLeite - Laboratório de Pesquisa em Leites e Derivados, Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Luís Augusto Nero
- InsPOA - Laboratório de Inspeção de Produtos de Origem Animal, Departamento de Veterinária, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Ítalo Tuler Perrone
- Faculdade de Farmácia, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Antônio Fernandes de Carvalho
- InovaLeite - Laboratório de Pesquisa em Leites e Derivados, Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, Brazil
| |
Collapse
|
8
|
Yang X, Che T, Tian S, Zhang Y, Zheng Y, Zhang Y, Zhang X, Wu Z. A Living Microecological Hydrogel with Microbiota Remodeling and Immune Reinstatement for Diabetic Wound Healing. Adv Healthc Mater 2024; 13:e2400856. [PMID: 38744431 DOI: 10.1002/adhm.202400856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/08/2024] [Indexed: 05/16/2024]
Abstract
Dysregulated skin microbiota and compromised immune responses are the major etiological factors for non-healing diabetic wounds. Current antibacterial strategies fail to orchestrate immune responses and indiscriminately eradicate bacteria at the wound site, exacerbating the imbalance of microbiota. Drawing inspiration from the beneficial impacts that probiotics possess on microbiota, a living microecological hydrogel containing Lactobacillus plantarum and fructooligosaccharide (LP/FOS@Gel) is formulated to remodel dysregulated skin microbiota and reinstate compromised immune responses, cultivating a conducive environment for optimal wound healing. LP/FOS@Gel acts as an "evocator," skillfully integrating the skin microecology, promoting the proliferation of Lactobacillus, Ralstonia, Muribaculum, Bacillus, and Allobaculum, while eradicating colonized pathogenic bacteria. Concurrently, LP/FOS@Gel continuously generates lactic acid to elicit a reparative macrophage response and impede the activation of the nuclear factor kappa-B pathway, effectively alleviating inflammation. As an intelligent microecological system, LP/FOS@Gel reinstates the skin's sovereignty during the healing process and effectively orchestrates the harmonious dialogue between the host immune system and microorganisms, thereby fostering the healing of diabetic infectious wounds. These remarkable attributes render LP/FOS@Gel highly advantageous for pragmatic clinical applications.
Collapse
Affiliation(s)
- Xiaopeng Yang
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China
| | - Tingting Che
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China
| | - Shasha Tian
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China
| | - Yuanyuan Zhang
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China
| | - Yin Zheng
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Jinan Key Laboratory of Translational Medicine on Metabolic Diseases, Shandong Institute of Endocrine and Metabolic Diseases, Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Jinan, Shandong, 250012, China
| | - Yufei Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, Tianjin Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xinge Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, Tianjin Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zhongming Wu
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Jinan Key Laboratory of Translational Medicine on Metabolic Diseases, Shandong Institute of Endocrine and Metabolic Diseases, Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Jinan, Shandong, 250012, China
| |
Collapse
|
9
|
Zhang Z, Xiong J, Chen L, Wang G, Dong R, Wang F, Huang Y, Meng X, Li T, Gu Q, Li P. Potential probiotic characteristics and genomic analysis of a new folate-producing lactic acid bacteria Lactiplantibacillus plantarum ZFM55. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:7315-7325. [PMID: 38666511 DOI: 10.1002/jsfa.13552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/19/2024] [Accepted: 04/26/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Folate is crucial for maintaining health, but humans are unable to synthesize folate and need to obtain it from food. Lactiplantibacillus plantarum can produce the necessary vitamin B for the human body, including folate. Whole genome sequencing technology can clarify the physiological characteristics of folate production in Lactiplantibacillus plantarum. In order to explore new Lactiplantibacillus plantarum that produce folate, the folate production and probiotic characteristics of Lactiplantibacillus plantarum ZFM55 isolated from infant feces were investigated, and whole genome sequencing was performed. RESULTS The folate synthesis ability of Lactiplantibacillus plantarum ZFM55 were measured, and its total folate production was 299.72 ± 28.81 ng mL-1. Subsequently, its probiotic properties were explored. The antibacterial test showed that its inhibition zone diameter against Staphylococcus aureus and Salmonella typhimurium was 15.5 ± 0.82 mm and 13.88 ± 0.98 mm, respectively. The tolerance test results indicated that it maintained good activity in simulated gastrointestinal tract and bile salt environments. In vitro intestinal simulation experiments had confirmed that Lactiplantibacillus plantarum ZFM55 can increase the abundance of beneficial bacteria such as Bifidobacteria in the intestine and inhibit the growth of harmful bacteria such as Escherichia_Shigella. Genomic sequencing indicated that the genetic material of Lactiplantibacillus plantarum ZFM55 contains one chromosome and three plasmids, and it has 20 genes related to folate synthesis, which explains its ability to produce folate. CONCLUSION This study reports a new potential probiotic that produces folate, and provides ideas for exploring probiotics with specific probiotic characteristics. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zihao Zhang
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Jiayi Xiong
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Lin Chen
- Zhejiang Business College, Hangzhou, China
| | - Gang Wang
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Ruomeng Dong
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Fengxuan Wang
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Yingjie Huang
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Xia Meng
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Tiantian Li
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Qing Gu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou, China
| | - Ping Li
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou, China
| |
Collapse
|
10
|
Das S, Konwar BK. Inhibiting pathogenicity of vaginal Candida albicans by lactic acid bacteria and MS analysis of their extracellular compounds. APMIS 2024; 132:161-186. [PMID: 38168754 DOI: 10.1111/apm.13365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 11/26/2023] [Indexed: 01/05/2024]
Abstract
Maintaining healthy vaginal microflora post-puberty is critical. In this study we explore the potential of vaginal lactic acid bacteria (LAB) and their extracellular metabolites against the pathogenicity of Candida albicans. The probiotic culture free supernatant (PCFS) from Lactobacillus crispatus, L. gasseri, and L. vaginalis exhibit an inhibitory effect on budding, hyphae, and biofilm formation of C. albicans. LGPCFS manifested the best potential among the LAB PCFS, inhibiting budding for 24 h and restricting hyphae formation post-stimulation. LGPCFS also pre-eminently inhibited biofilm formation. Furthermore, L. gasseri itself grew under RPMI 1640 stimulation suppressing the biofilm formation of C. albicans. The PCFS from the LAB downregulated the hyphal genes of C. albicans, inhibiting the yeast transformation to fungi. Hyphal cell wall proteins HWP1, ALS3, ECE1, and HYR1 and transcription factors BCR1 and CPH1 were downregulated by the metabolites from LAB. Finally, the extracellular metabolome of the LAB was studied by LC-MS/MS analysis. L.gasseri produced the highest antifungal compounds and antibiotics, supporting its best activity against C. albicans. Vaginal LAB and their extracellular metabolites perpetuate C. albicans at an avirulent state. The metabolites produced by these LAB in vitro have been identified, and can be further exploited as a preventive measure against vaginal candidiasis.
Collapse
Affiliation(s)
- Shreaya Das
- Department of MBBT, Tezpur University, Napaam, Assam, India
| | | |
Collapse
|
11
|
Wang S, Liu Y, Sun Q, Zeng B, Liu C, Gong L, Wu H, Chen L, Jin M, Guo J, Gao Z, Huang W. Triple Cross-linked Dynamic Responsive Hydrogel Loaded with Selenium Nanoparticles for Modulating the Inflammatory Microenvironment via PI3K/Akt/NF-κB and MAPK Signaling Pathways. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303167. [PMID: 37740428 PMCID: PMC10625091 DOI: 10.1002/advs.202303167] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/27/2023] [Indexed: 09/24/2023]
Abstract
Modulating the inflammatory microenvironment can inhibit the process of inflammatory diseases (IDs). A tri-cross-linked inflammatory microenvironment-responsive hydrogel with ideal mechanical properties achieves triggerable and sustained drug delivery and regulates the inflammatory microenvironment. Here, this study develops an inflammatory microenvironment-responsive hydrogel (OD-PP@SeNPs) composed of phenylboronic acid grafted polylysine (PP), oxidized dextran (OD), and selenium nanoparticles (SeNPs). The introduction of SeNPs as initiators and nano-fillers into the hydrogel results in extra cross-linking of the polymer network through hydrogen bonding. Based on Schiff base bonds, Phenylboronate ester bonds, and hydrogen bonds, a reactive oxygen species (ROS)/pH dual responsive hydrogel with a triple-network is achieved. The hydrogel has injectable, self-healing, adhesion, outstanding flexibility, suitable swelling capacity, optimal biodegradability, excellent stimuli-responsive active substance release performance, and prominent biocompatibility. Most importantly, the hydrogel with ROS scavenging and pH-regulating ability protects cells from oxidative stress and induces macrophages into M2 polarization to reduce inflammatory cytokines through PI3K/AKT/NF-κB and MAPK pathways, exerting anti-inflammatory effects and reshaping the inflammatory microenvironment, thereby effectively treating typical IDs, including S. aureus infected wound and rheumatoid arthritis in rats. In conclusion, this dynamically responsive injectable hydrogel with a triple-network structure provides an effective strategy to treat IDs, holding great promise in clinical application.
Collapse
Affiliation(s)
- Shuangqing Wang
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100050China
- Beijing Key Laboratory of Drug Delivery Technology and Novel FormulationsDepartment of PharmaceuticsInstitute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100050China
- Key Laboratory of Natural Medicines of the Changbai MountainMinistry of EducationCollege of PharmacyYanbian UniversityYanjiJilin Province133002China
| | - Yanhong Liu
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100050China
- Beijing Key Laboratory of Drug Delivery Technology and Novel FormulationsDepartment of PharmaceuticsInstitute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100050China
| | - Qianwen Sun
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100050China
- Beijing Key Laboratory of Drug Delivery Technology and Novel FormulationsDepartment of PharmaceuticsInstitute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100050China
| | - Bowen Zeng
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100050China
- Beijing Key Laboratory of Drug Delivery Technology and Novel FormulationsDepartment of PharmaceuticsInstitute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100050China
| | - Chao Liu
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100050China
- Beijing Key Laboratory of Drug Delivery Technology and Novel FormulationsDepartment of PharmaceuticsInstitute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100050China
| | - Liming Gong
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100050China
- Beijing Key Laboratory of Drug Delivery Technology and Novel FormulationsDepartment of PharmaceuticsInstitute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100050China
| | - Hao Wu
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100050China
- Beijing Key Laboratory of Drug Delivery Technology and Novel FormulationsDepartment of PharmaceuticsInstitute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100050China
- Key Laboratory of Natural Medicines of the Changbai MountainMinistry of EducationCollege of PharmacyYanbian UniversityYanjiJilin Province133002China
| | - Liqing Chen
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100050China
- Beijing Key Laboratory of Drug Delivery Technology and Novel FormulationsDepartment of PharmaceuticsInstitute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100050China
| | - Mingji Jin
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100050China
- Beijing Key Laboratory of Drug Delivery Technology and Novel FormulationsDepartment of PharmaceuticsInstitute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100050China
| | - Jianpeng Guo
- Key Laboratory of Natural Medicines of the Changbai MountainMinistry of EducationCollege of PharmacyYanbian UniversityYanjiJilin Province133002China
| | - Zhonggao Gao
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100050China
- Beijing Key Laboratory of Drug Delivery Technology and Novel FormulationsDepartment of PharmaceuticsInstitute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100050China
- Key Laboratory of Natural Medicines of the Changbai MountainMinistry of EducationCollege of PharmacyYanbian UniversityYanjiJilin Province133002China
| | - Wei Huang
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100050China
- Beijing Key Laboratory of Drug Delivery Technology and Novel FormulationsDepartment of PharmaceuticsInstitute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100050China
| |
Collapse
|
12
|
Friberg M, Woeller K, Iberi V, Mancheno PP, Riedeman J, Bohman L, Davis CC. Development of in vitro methods to model the impact of vaginal lactobacilli on Staphylococcus aureus biofilm formation on menstrual cups as well as validation of recommended cleaning directions. FRONTIERS IN REPRODUCTIVE HEALTH 2023; 5:1162746. [PMID: 37671283 PMCID: PMC10475951 DOI: 10.3389/frph.2023.1162746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 07/25/2023] [Indexed: 09/07/2023] Open
Abstract
Introduction Menstrual cups (MC) are a reusable feminine hygiene product. A recent publication suggested that Staphylococcus aureus (S. aureus) biofilms can form on MCs which may lead to increased risk of menstrual Toxic Shock Syndrome (mTSS). Additionally, there is concern that buildup of residual menses may contribute to microbial growth and biofilm formation further increasing mTSS risk. Quantitative and qualitative analysis of in vitro tests were utilized to determine if S. aureus biofilm could form on MC in the presence of the keystone species Lactobacillus after 12 h of incubation. The methodology was based on a modification of an anaerobic in vitro method that harnesses the keystone species hypothesis by including a representative of vaginal lactic acid bacteria. Methods MCs were incubated anaerobically for 12 h in Vaginal Defined Media (VDM) with the two morphologically distinct bacteria, Lactobacillus gasseri (L. gasseri) and S. aureus. Colony Forming Units (CFU) for each organism from the VDM broth and sonicated MC were estimated. In addition, a separate experiment was conducted where S. aureus was grown for 12 h in the absence of L. gasseri. Qualitative analysis for biofilm formation utilized micro-CT (µ-CT) and cryogenic scanning electron microscopy (Cryo-SEM). Results Samples collected from the media control had expected growth of both organisms after 12 h of incubation. Samples collected from VDM broth were similar to media control at the end of the 12-h study. Total S. aureus cell density on MC following sonication/rinsing was minimal. Results when using a monoculture of S. aureus demonstrated that there was a significant growth of the organism in the media control and broth as well as the sonicated cups indicating that the presence of L. gasseri was important for controlling growth and adherence of S. aureus. Few rod-shaped bacteria (L. gasseri) and cocci (S. aureus) could be identified on the MCs when grown in a dual species culture inoculum and no biofilm was noted via µ-CT and cryo-SEM. Additionally, efforts to model and understand the validity of the current labeled recommendations for MC cleaning in-between uses are supported. Discussion The data support continued safe use of the Tampax® cup when used and maintained as recommended.
Collapse
Affiliation(s)
- Maria Friberg
- Baby, Feminine and Family Care Microbiology, The Procter & Gamble Company, Mason, OH, United States
| | - Kara Woeller
- Baby, Feminine and Family Care, Global Product Stewardship, The Procter & Gamble Company, Cincinnati, OH, United States
| | - Vighter Iberi
- Corporate Functions Analytical, The Procter & Gamble Company, Mason, OH, United States
| | | | - James Riedeman
- Baby, Family and Feminine Care Analytical Chemistry, The Procter & Gamble Company, Cincinnati, OH, United States
| | - Lisa Bohman
- Data Modeling and Sciences, The Procter & Gamble Company, Mason, OH, United States
| | - Catherine C. Davis
- Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, Omaha, NE, United States
| |
Collapse
|
13
|
Austrich-Comas A, Serra-Castelló C, Viella M, Gou P, Jofré A, Bover-Cid S. Growth and Non-Thermal Inactivation of Staphylococcus aureus in Sliced Dry-Cured Ham in Relation to Water Activity, Packaging Type and Storage Temperature. Foods 2023; 12:foods12112199. [PMID: 37297443 DOI: 10.3390/foods12112199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/19/2023] [Accepted: 05/20/2023] [Indexed: 06/12/2023] Open
Abstract
Dry-cured ham (DCH) could support the growth of Staphylococcus aureus as a halotolerant bacterium, which may compromise the shelf-stability of the product according to the growth/no growth boundary models and the physicochemical parameters of commercial DCH. In the present study, the behavior of S. aureus is evaluated in sliced DCH with different water activity (aw 0.861-0.925), packaged under air, vacuum, or modified atmosphere (MAP), and stored at different temperatures (2-25 °C) for up to 1 year. The Logistic and the Weibull models were fitted to data to estimate the primary kinetic parameters for the pathogen Log10 increase and Log10 reduction, respectively. Then, polynomial models were developed as secondary models following their integration into the primary Weibull model to obtain a global model for each packaging. Growth was observed for samples with the highest aw stored at 20 and 25 °C in air-packaged DCH. For lower aw, progressive inactivation of S. aureus was observed, being faster at the lowest temperature (15 °C) for air-packaged DCH. In contrast, for vacuum and MAP-packaged DCH, a higher storage temperature resulted in faster inactivation without a significant effect of the product aw. The results of this study clearly indicate that the behavior of S. aureus is highly dependent on factors such as storage temperature, packaging conditions and product aw. The developed models provide a management tool for evaluating the risk associated with DCH and for preventing the development of S. aureus by selecting the most appropriate packaging according to aw range and storage temperature.
Collapse
Affiliation(s)
- Anna Austrich-Comas
- Food Safety and Functionality Program, IRTA, Finca Camps i Armet, E-17121 Monells, Spain
| | | | - Maria Viella
- Food Safety and Functionality Program, IRTA, Finca Camps i Armet, E-17121 Monells, Spain
| | - Pere Gou
- Food Quality and Technology Program, IRTA, Finca Camps i Armet, E-17121 Monells, Spain
| | - Anna Jofré
- Food Safety and Functionality Program, IRTA, Finca Camps i Armet, E-17121 Monells, Spain
| | - Sara Bover-Cid
- Food Safety and Functionality Program, IRTA, Finca Camps i Armet, E-17121 Monells, Spain
| |
Collapse
|
14
|
Mejia ME, Robertson CM, Patras KA. Interspecies Interactions within the Host: the Social Network of Group B Streptococcus. Infect Immun 2023; 91:e0044022. [PMID: 36975791 PMCID: PMC10112235 DOI: 10.1128/iai.00440-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
Group B Streptococcus (GBS) is a pervasive neonatal pathogen accounting for a combined half a million deaths and stillbirths annually. The most common source of fetal or neonatal GBS exposure is the maternal microbiota. GBS asymptomatically colonizes the gastrointestinal and vaginal mucosa of 1 in 5 individuals globally, although its precise role in these niches is not well understood. To prevent vertical transmission, broad-spectrum antibiotics are administered to GBS-positive mothers during labor in many countries. Although antibiotics have significantly reduced GBS early-onset neonatal disease, there are several unintended consequences, including an altered neonatal microbiota and increased risk for other microbial infections. Additionally, the incidence of late-onset GBS neonatal disease remains unaffected and has sparked an emerging hypothesis that GBS-microbe interactions in developing neonatal gut microbiota may be directly involved in this disease process. This review summarizes our current understanding of GBS interactions with other resident microbes at the mucosal surface from multiple angles, including clinical association studies, agriculture and aquaculture observations, and experimental animal model systems. We also include a comprehensive review of in vitro findings of GBS interactions with other bacterial and fungal microbes, both commensal and pathogenic, along with newly established animal models of GBS vaginal colonization and in utero or neonatal infection. Finally, we provide a perspective on emerging areas of research and current strategies to design microbe-targeting prebiotic or probiotic therapeutic intervention strategies to prevent GBS disease in vulnerable populations.
Collapse
Affiliation(s)
- Marlyd E. Mejia
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Clare M. Robertson
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Kathryn A. Patras
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
15
|
Bnfaga AA, Lee KW, Than LTL, Amin-Nordin S. Antimicrobial and immunoregulatory effects of Lactobacillus delbrueckii 45E against genitourinary pathogens. J Biomed Sci 2023; 30:19. [PMID: 36959635 PMCID: PMC10037868 DOI: 10.1186/s12929-023-00913-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 03/14/2023] [Indexed: 03/25/2023] Open
Abstract
BACKGROUND Lactobacilli are essential microbiota that maintain a healthy, balanced vaginal environment. Vaginitis is a common infection in women during their reproductive years. Many factors are associated with vaginitis; one of them is the imbalance of microbiota in the vaginal environment. This study aimed to evaluate the antimicrobial properties of Lactobacillus delbrueckii 45E (Ld45E) against several species of bacteria, namely, Group B Streptococcus (GBS), Escherichia coli, Klebsiella spp., and Candida parapsilosis, as well as to determine the concentration of interleukin-17 (IL-17) in the presence of Ld45E. METHODS The probiotic characteristics of Ld45E were evaluated by examining its morphology, pH tolerance, adhesive ability onto HeLa cells, hemolytic activity, antibiotic susceptibility, and autoaggregation ability. Then, the antimicrobial activity of Ld45E was determined using Ld45E culture, cell-free supernatant, and crude bacteriocin solution. Co-aggregation and competition ability assays against various pathogens were conducted. The immunoregulatory effects of Ld45E were analyzed by measuring the proinflammatory cytokine IL-17. A p-value less than 0.05 was considered statistical significance. RESULTS Ld45E is 3-5 mm in diameter and round with a flat-shaped colony. pH 4 and 4.5 were the most favorable range for Ld45E growth within 12 h of incubation. Ld45E showed a strong adhesion ability onto HeLa cells (86%) and negative hemolytic activities. Ld45E was also sensitive to ceftriaxone, cefuroxime, ciprofloxacin, and doxycycline. We found that it had a good autoaggregation ability of 80%. Regarding antagonistic properties, Ld45E culture showed strong antimicrobial activity against GBS, E. coli, and Klebsiella spp. but only a moderate effect on C. parapsilosis. Cell-free supernatant of Ld45E exerted the most potent inhibitory effects at 40 °C against all genital pathogens, whereas bacteriocin showed a robust inhibition at 37 °C and 40 °C. The highest co-aggregation affinity was observed with GBS (81%) and E. coli (40%). Competition ability against the adhesion of GBS (80%), E. coli (76%), Klebsiella (72%), and C. parapsilosis (58%) was found. Ld45E was able to reduce the induction of the proinflammatory protein IL-17. CONCLUSIONS Ld45E possessed antimicrobial and immunoregulatory properties, with better cell-on-cell activity than supernatant activity. Thus, Ld45E is a potential probiotic candidate for adjunct therapy to address vaginal infections.
Collapse
Affiliation(s)
- Ameda Abdullah Bnfaga
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Department of Para-Clinic, Faculty of Medicine, Aden University, Aden, Yemen
| | - Kai Wei Lee
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Leslie Thian Lung Than
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Syafinaz Amin-Nordin
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
- Hospital Sultan Abdul Aziz Shah, Universiti Putra Malaysia, Persiaran MARDI-UPM, 43400, Serdang, Malaysia.
| |
Collapse
|
16
|
Cella MA, Coulson T, MacEachern S, Badr S, Ahmadi A, Tabatabaei MS, Labbe A, Griffiths MW. Probiotic disruption of quorum sensing reduces virulence and increases cefoxitin sensitivity in methicillin-resistant Staphylococcus aureus. Sci Rep 2023; 13:4373. [PMID: 36928453 PMCID: PMC10020441 DOI: 10.1038/s41598-023-31474-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
Therapies which target quorum sensing (QS) systems that regulate virulence in methicillin-resistant Staphylococcus aureus (MRSA) are a promising alternative to antibiotics. QS systems play a crucial in the regulation of MRSA antibiotic resistance, exotoxin production, antioxidant protection and immune cell evasion, and are therefore attractive therapeutic targets to reduce the virulence of a pathogen. In the present work the the effects of bioactive peptides isolated from two strains of lactic acid bacteria were tested against antibiotic resistance, carotenoid production, resistance to oxidative killing and biofilm structure in two clinical MRSA isolates. The results obtained from fractional-inhibitory concentration assays with bulk and semi-purified bioactive molecules showed a significant synergistic effect increasing cefoxitin mediated killing of MRSA. This was coupled to a six-fold decrease of the major membrane pigment staphyloxanthin, and a 99% increase in susceptibility to oxidative stress mediated killing. Real-time quantitative PCR analysis of the QS-genes agrA and luxS, showed differential expression between MRSA strains, and a significant downregulation of the hemolysin gene hla. Light microscopy and scanning electron microscopy revealed alteration in biofilm formation and clustering behavior. These results demonstrate that bioactive metabolites may be effectively applied in tandem with beta-lactam antibiotics to sensitize MRSA to cefoxitin. Moreover, these results shown that several key QS-controlled virulence mechanisms are diminished by probiotic metabolites.
Collapse
Affiliation(s)
- Monica Angela Cella
- Department of Mechanical Engineering, École de Technologie Supérieure (ÉTS), Montreal, QC, H3C 1K3, Canada
| | | | | | - Sara Badr
- Department of Mechanical Engineering, École de Technologie Supérieure (ÉTS), Montreal, QC, H3C 1K3, Canada
| | - Ali Ahmadi
- Department of Mechanical Engineering, École de Technologie Supérieure (ÉTS), Montreal, QC, H3C 1K3, Canada
| | | | - Alain Labbe
- MicroSintesis Inc., Victoria, PE, COA 2G0, Canada.
| | - Mansel William Griffiths
- Canadian Research Institute for Food Safety, University of Guelph, Guelph, ON, N1G 2W1, Canada
- Food Science Department, University of Guelph, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
17
|
Mashatan N, Heidari R, Altafi M, Amini A, Ommati MM, Hashemzaei M. Probiotics in vaginal health. Pathog Dis 2023; 81:ftad012. [PMID: 37286796 DOI: 10.1093/femspd/ftad012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/28/2023] [Accepted: 06/06/2023] [Indexed: 06/09/2023] Open
Abstract
Bacterial vaginosis, a type of vaginal inflammation, can be considered the main reason for abnormal discharges of the vagina and vaginal dysbiosis during reproductive years. Epidemiological investigations of females suffering from vaginitis demonstrated that at least 30% to 50% of all women had Bacterial vaginosis (BV). One of the fields of treatment is the use of probiotics, probiotics are commonly defined as viable microorganisms (yeasts or bacteria) that can positively affect the health of their hosts. They are used in foods, notably fermented milk products, and medicine-related products. The development of new probiotic strains is aimed at more active advantageous organisms. Lactobacillus species are the dominant bacteria in a normal vagina that can decrease the pH of the vagina by the production of lactic acid. A number of lactobacilli types can produce hydrogen peroxide as well. The presence of hydrogen peroxide-induced low pH can prevent the growth of several other microorganisms. The vaginal flora of BV cases can modify by replacing the Lactobacillus species with a high density of anaerobic bacteria (i.e. Mobiluncus sp. Bacteroides sp.), Mycoplasma hominis, and Gardnerella vaginalis. More vaginal infections are treated with medications, while there is a possibility of recurrence and chronic infection because of the adverse effects on the indigenous lactobacilli. Probiotics and prebiotics have shown capacities for optimizing, maintaining, and restoring the vaginal microflora. Therefore, biotherapeutics can offer alternative approaches to reduce infections of the vagina and thus promote consumers' health.
Collapse
Affiliation(s)
- Noushin Mashatan
- Graduated, School of Applied Sciences, University of Brighton, Brighton, UK
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
| | - Mana Altafi
- Department of Microbiology, Faculty of Biological Science and Technology, Shiraz Pardis Branch, Islamic Azad University, Shiraz, Iran
| | - Amir Amini
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
| | - Mohammad Mehdi Ommati
- Henan Key Laboratory of Environmental and Animal Products Safety, College of Animal Science and Technology, Luoyang, Henan, China
| | - Masoud Hashemzaei
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
| |
Collapse
|
18
|
Jin F, Liao S, Li W, Jiang C, Wei Q, Xia X, Wang Q. Amphiphilic sodium alginate-polylysine hydrogel with high antibacterial efficiency in a wide pH range. Carbohydr Polym 2023; 299:120195. [PMID: 36876766 DOI: 10.1016/j.carbpol.2022.120195] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022]
Abstract
Bacterial infection is a major pathological factor leading to persistent wounds. With the aging of population, wound infection has gradually become a global health-issue. The wound site environment is complicated, and the pH changes dynamically during healing. Therefore, there is an urgent need for new antibacterial materials that can adapt to a wide pH range. To achieve this goal, we developed a thymol-oligomeric tannic acid/amphiphilic sodium alginate-polylysine hydrogel film, which exhibited excellent antibacterial efficacy in the pH range from 4 to 9, achieving the highest achievable 99.993 % (4.2 log units) and 99.62 % (2.4 log units) against Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli, respectively. The hydrogel films exhibited excellent cytocompatibility, suggesting that the materials are promising as a novel wound healing material without the concern of biosafety.
Collapse
Affiliation(s)
- Fangyu Jin
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | - Shiqin Liao
- Jiangxi Centre for Modern Apparel Engineering and Technology, Jiangxi Institute of Fashion Technology, Nanchang 330201, PR China
| | - Wei Li
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | - Chenyu Jiang
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, United States
| | - Qufu Wei
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | - Xin Xia
- College of Textile and Clothing, Xinjiang University, Urumqi 830046, PR China
| | - Qingqing Wang
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122, PR China; Jiangxi Centre for Modern Apparel Engineering and Technology, Jiangxi Institute of Fashion Technology, Nanchang 330201, PR China.
| |
Collapse
|
19
|
Chen X, Wu Y, Zhu H, Wang H, Lu H, Zhang C, Li X, Xu Y, Li W, Wang Y. Turning over fermented grains elevating heap temperature and driving microbial community succession during the heap fermentation of sauce-flavor baijiu. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Liu B, Li J, Zhang Z, Roland JD, Lee BP. pH Responsive Antibacterial Hydrogel Utilizing Catechol-Boronate Complexation Chemistry. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2022; 441:135808. [PMID: 35444488 PMCID: PMC9015688 DOI: 10.1016/j.cej.2022.135808] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Bacteria such as Methicillin-resistant Staphylococcus aureus (MRSA) causes acidic microenvironment during infection. A biomaterial that exhibits tunable antimicrobial property in a pH dependent manner is potentially attractive. Herein, we presented a novel antibacterial hydrogel consisting of pH responsive and reversible catechol-boronate linkage formed between intrinsically bactericidal chlorinated catechol (catechol-Cl) and phenylboronic acid. Fourier transformed infrared spectroscopy (FTIR), oscillatory rheometry, and Johnson Kendall Roberts (JKR) contact mechanics testing confirmed the formation and dissociation of the complex in a pH dependent manner. When the hydrogel was treated with an acidic buffer (pH 3), the hydrogel exhibited excellent antimicrobial property against multiple strains of Gram-positive and negative bacteria including MRSA (up to 4 log10 reduction from 108 colony forming units/mL). At an acidic pH, catechol-Cl was unbound from the phenylboronic acid and available for killing bacteria. Conversely, when the hydrogel was treated with a basic buffer (pH 8.5), the hydrogel lost its antimicrobial property but also became non-cytotoxic. At a basic pH, the formation of catechol-boronate complex effectively reduce the exposure of the cytotoxic catechol-Cl to the surrounding. When further incubating the hydrogel in an acidic pH, the reversible complex dissociated to re-expose catechol-Cl and the hydrogel recovered its antibacterial property. Overall, the combination of catechol-Cl and phenylboronic acid provide a new strategy for designing hydrogels with pH responsive antibacterial activity and reduced cytotoxicity.
Collapse
Affiliation(s)
- Bo Liu
- Department of Biomedical Engineering, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Jianghua Li
- Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Zhongtian Zhang
- Department of Biomedical Engineering, Michigan Technological University, Houghton, Michigan 49931, United States
| | - James D. Roland
- Department of Biomedical Engineering, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Bruce P. Lee
- Department of Biomedical Engineering, Michigan Technological University, Houghton, Michigan 49931, United States
| |
Collapse
|
21
|
Ch'ng JH, Muthu M, Chong KKL, Wong JJ, Tan CAZ, Koh ZJS, Lopez D, Matysik A, Nair ZJ, Barkham T, Wang Y, Kline KA. Heme cross-feeding can augment Staphylococcus aureus and Enterococcus faecalis dual species biofilms. THE ISME JOURNAL 2022; 16:2015-2026. [PMID: 35589966 PMCID: PMC9296619 DOI: 10.1038/s41396-022-01248-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 04/18/2022] [Accepted: 04/29/2022] [Indexed: 12/17/2022]
Abstract
The contribution of biofilms to virulence and as a barrier to treatment is well-established for Staphylococcus aureus and Enterococcus faecalis, both nosocomial pathogens frequently isolated from biofilm-associated infections. Despite frequent co-isolation, their interactions in biofilms have not been well-characterized. We report that in combination, these two species can give rise to augmented biofilms biomass that is dependent on the activation of E. faecalis aerobic respiration. In E. faecalis, respiration requires both exogenous heme to activate the cydAB-encoded heme-dependent cytochrome bd, and the availability of O2. We determined that the ABC transporter encoded by cydDC contributes to heme import. In dual species biofilms, S. aureus provides the heme to activate E. faecalis respiration. S. aureus mutants deficient in heme biosynthesis were unable to augment biofilms whereas heme alone is sufficient to augment E. faecalis mono-species biofilms. Our results demonstrate that S. aureus-derived heme, likely in the form of released hemoproteins, promotes E. faecalis biofilm formation, and that E. faecalis gelatinase activity facilitates heme extraction from hemoproteins. This interspecies interaction and metabolic cross-feeding may explain the frequent co-occurrence of these microbes in biofilm-associated infections.
Collapse
Affiliation(s)
- Jun-Hong Ch'ng
- Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore. .,Department of Surgery Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore. .,Infectious Disease Translational Research Program, National University Health System, Singapore, Singapore. .,Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore, Singapore.
| | - Mugil Muthu
- Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore.,Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Kelvin K L Chong
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore.,Nanyang Technological University Institute for Health Technologies, Interdisciplinary Graduate School, Nanyang Technological University, Singapore, Singapore
| | - Jun Jie Wong
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore.,Singapore Centre for Environmental Life Sciences Engineering, Interdisciplinary Graduate Program, Nanyang Technological University, Singapore, Singapore
| | - Casandra A Z Tan
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore.,Singapore Centre for Environmental Life Sciences Engineering, Interdisciplinary Graduate Program, Nanyang Technological University, Singapore, Singapore
| | - Zachary J S Koh
- Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore
| | - Daniel Lopez
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Artur Matysik
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Zeus J Nair
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Timothy Barkham
- Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore.,Department of Laboratory Medicine, Tan Tock Seng Hospital, Singapore, Singapore
| | - Yulan Wang
- Singapore Phenome Center, Lee Kong Chian School of Medicine, Nanyang Technological University, Nanyang, Singapore
| | - Kimberly A Kline
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore. .,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
22
|
Isolation and identification of lactic acid bacteria in fruit processing residues from the Brazilian Cerrado and its probiotic potential. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Díaz Calvo T, Tejera N, McNamara I, Langridge GC, Wain J, Poolman M, Singh D. Genome-Scale Metabolic Modelling Approach to Understand the Metabolism of the Opportunistic Human Pathogen Staphylococcus epidermidis RP62A. Metabolites 2022; 12:metabo12020136. [PMID: 35208211 PMCID: PMC8874387 DOI: 10.3390/metabo12020136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/18/2022] [Accepted: 01/29/2022] [Indexed: 02/01/2023] Open
Abstract
Staphylococcus epidermidis is a common commensal of collagen-rich regions of the body, such as the skin, but also represents a threat to patients with medical implants (joints and heart), and to preterm babies. Far less studied than Staphylococcus aureus, the mechanisms behind this increasingly recognised pathogenicity are yet to be fully understood. Improving our knowledge of the metabolic processes that allow S. epidermidis to colonise different body sites is key to defining its pathogenic potential. Thus, we have constructed a fully curated, genome-scale metabolic model for S. epidermidis RP62A, and investigated its metabolic properties with a focus on substrate auxotrophies and its utilisation for energy and biomass production. Our results show that, although glucose is available in the medium, only a small portion of it enters the glycolytic pathways, whils most is utilised for the production of biofilm, storage and the structural components of biomass. Amino acids, proline, valine, alanine, glutamate and arginine, are preferred sources of energy and biomass production. In contrast to previous studies, we have shown that this strain has no real substrate auxotrophies, although removal of proline from the media has the highest impact on the model and the experimental growth characteristics. Further study is needed to determine the significance of proline, an abundant amino acid in collagen, in S. epidermidis colonisation.
Collapse
Affiliation(s)
- Teresa Díaz Calvo
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK;
| | - Noemi Tejera
- Microbes in the Food Chain, Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK; (N.T.); (G.C.L.); (J.W.)
| | - Iain McNamara
- Norwich Medical School, University of East Anglia, Norwich NR4 7UQ, UK;
- Department of Orthopaedics and Trauma, Norfolk and Norwich University Hospital NHS Foundation Trust, Norwich NR4 7UY, UK
| | - Gemma C. Langridge
- Microbes in the Food Chain, Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK; (N.T.); (G.C.L.); (J.W.)
| | - John Wain
- Microbes in the Food Chain, Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK; (N.T.); (G.C.L.); (J.W.)
- Norwich Medical School, University of East Anglia, Norwich NR4 7UQ, UK;
| | - Mark Poolman
- Cell System Modelling Group, Oxford Brookes University, Oxford OX3 OBP, UK;
| | - Dipali Singh
- Microbes in the Food Chain, Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK; (N.T.); (G.C.L.); (J.W.)
- Correspondence:
| |
Collapse
|
24
|
Detection of Enterotoxigenic Potential of Staphylococcus aureus Isolates from Cheese Samples with Two Different Methods. MACEDONIAN VETERINARY REVIEW 2022. [DOI: 10.2478/macvetrev-2022-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The primary objective of our study was to detect the occurrence of enterotoxigenic Staphylococcus aureus in diverse types of cheese (cow's milk cheese and mixed milk cheese) samples from R.N. Macedonia. Cheese samples were analyzed for enumeration and isolation of the S. aureus strains according to ISO 6888-1. We detected the toxigenic potential of the strains by the use of the Enzyme Link Fluorescent Assay VIDAS system, and we confirmed the presence of the SEs (sea, seb, sec, sed, see) genes by multiplex PCR. The results showed that out of 270 samples of cheese, coagulase-positive staphylococci (CPS) were detected in 27 (10%), and coagulase-negative staphylococci in five samples (1.8%). Biochemically, all 27 CPS samples were confirmed to be Staphylococcus aureus. With VIDAS SET2 test we confirmed that 11 isolates are producers of one of the toxins limited by the test. With the conventional PCR we confirmed genes in only 7 isolates. Most common detected gene was seb n=3 (42.8%), followed by sea n=2 (28.6%), and sec n=2 (28.6%). Additionally, sed and see genes were not detected in any of the S. aureus isolates. Discrepancies between the two test methods for detection of enterotoxigenic potential are not uncommon. The presence of viable Staphylococcus aureus cells that have enterotoxin potency demonstrates the importance of appropriate hygiene practices in the diary process and also the maintenance of the products in order to obtain a safe final product for the consumers.
Collapse
|
25
|
Ontiveros-Magadan M, Anderson RC, Ruiz-Barrera O, Arzola-Alvarez C, Salinas-Chavira J, Hume ME, Scholljegerdes EJ, Harvey RB, Nisbet DJ, Castillo-Castillo Y. Evaluation of antimicrobial compounds to inhibit growth of select Gram-positive pathogenic or antimicrobial resistant bacteria in air-exposed silage. CANADIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1139/cjas-2021-0061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Spoiled silages can harbor pathogenic and antimicrobial-resistant microbes. The potential of some antimicrobial additives to inhibit certain pathogenic and antimicrobial-resistant bacteria in air-exposed silage was measured using pure and mixed bacterial cultures. With pure cultures, laurate and monolaurin (5 mg·mL−1) caused decreases (P < 0.05) of 4 to >7 log10 colony-forming units (CFU)·mL−1 in Listeria monocytogenes and Enterococcus faecalis compared to controls. Ten-fold higher amounts of these inhibitors were needed to equivalently decrease staphylococci. 2-Nitropropanol (1 mg·mL−1) decreased (P < 0.05) E. faecalis and L. monocytogenes 2.9–3.8 and 2.4–7.2 log10 CFU·mL−1 after 6 and 24 h incubations, respectively. In air-exposed whole-plant corn silage the inhibitors caused decreases, although not necessarily significant, of 0.7–2.2 log10 CFU·mL−1 in L. monocytogenes, staphylococci and culturable aerobes after 24 h incubation, with modest yet significant (P < 0.05) inhibition (<0.1–0.3 log10 CFU·mL−1) of yeasts and molds. Tests for carry-over effects against ruminal microbes revealed laurate, monolaurin, and 2-nitropropanol inhibited methanogenesis by >50% (P < 0.05) after 24 h incubation and inhibited L. monocytogenes and enterococci. The antimicrobial activities exhibited by these compounds may yield opportunities to optimize their use to rescue spoiled silages.
Collapse
Affiliation(s)
| | - Robin C. Anderson
- United States Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, Food & Feed Safety Research Unit, College Station, Texas 77845, USA
| | | | | | | | - Michael E. Hume
- United States Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, Food & Feed Safety Research Unit, College Station, Texas 77845, USA
| | | | - Roger B. Harvey
- United States Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, Food & Feed Safety Research Unit, College Station, Texas 77845, USA
| | - David J. Nisbet
- United States Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, Food & Feed Safety Research Unit, College Station, Texas 77845, USA
| | | |
Collapse
|
26
|
Gorrens E, Van Looveren N, Van Moll L, Vandeweyer D, Lachi D, De Smet J, Van Campenhout L. Staphylococcus aureus in Substrates for Black Soldier Fly Larvae (Hermetia illucens) and Its Dynamics during Rearing. Microbiol Spectr 2021; 9:e0218321. [PMID: 34937197 PMCID: PMC8694120 DOI: 10.1128/spectrum.02183-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 11/22/2021] [Indexed: 11/29/2022] Open
Abstract
Black soldier fly larvae (BSFL; Hermetia illucens) are promising insects for the conversion of organic waste streams into valuable biomolecules. Such waste streams can contain foodborne pathogens. To assess this risk factor, this study evaluated the presence of Staphylococcus aureus in waste streams as a substrate ingredient for BSFL production as well as in the rearing process. First, the general microbiological quality and the occurrence of S. aureus were investigated for different waste streams. Staphylococcus aureus was abundantly present. Control of pH and water activity should avoid pathogens, which cannot grow in single-substrate ingredients, redeveloping when mixing streams for optimal substrate conditions for BSFL production. Next, it was investigated whether S. aureus present in the substrate was ingested and/or eradicated by BSFL. In inoculation trials, with S. aureus added to chicken feed as the substrate at 3 or 7 log CFU/g, the larvae showed a reducing effect on S. aureus. After 6 days, S. aureus counts were below the detection limit (2.0 log CFU/g) in all larvae samples and decreased in the substrate to <2.0 and <3.1 log CFU/g for inoculation levels of 3 and 7 log CFU/g, respectively. While this is promising, it is still recommended to monitor and control this pathogen in BSFL rearing. Intriguingly, screening of antimicrobial activity of dominant microorganisms associated with BSFL showed a clear activity of Trichosporon isolates against S. aureus. Future research should explore whether Trichosporon, which is frequently observed in BSFL, plays a role in controlling specific microorganisms, such as S. aureus. IMPORTANCE Given the increasing need for (more sustainable) methods to upcycle organic waste streams, the interest to rear insects, like black soldier fly larvae (BSFL), on such streams is increasing. This study reveals that S. aureus is abundantly present in such waste streams, which might be a point of attention for insect producers. At the same time, it reveals that when S. aureus was inoculated in chicken feed as the substrate, it was not detected in the larvae and was reduced in the substrate after 6 days. Future inoculation trials should investigate whether this reduction is substrate dependent or not. Toward the future, the role of the BSFL microbiota in controlling intestinal bacterial community homeostasis should be explored, because one of the dominant microorganisms associated with BSFL, Trichosporon spp., showed clear activity against S. aureus.
Collapse
Affiliation(s)
- E. Gorrens
- Department of Microbial and Molecular Systems (M2S), Research Group for Insect Production and Processing, KU Leuven, Geel Campus, Geel, Belgium
- Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| | - N. Van Looveren
- Department of Microbial and Molecular Systems (M2S), Research Group for Insect Production and Processing, KU Leuven, Geel Campus, Geel, Belgium
- Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| | - L. Van Moll
- Department of Microbial and Molecular Systems (M2S), Research Group for Insect Production and Processing, KU Leuven, Geel Campus, Geel, Belgium
- Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
- Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Wilrijk, Belgium
| | - D. Vandeweyer
- Department of Microbial and Molecular Systems (M2S), Research Group for Insect Production and Processing, KU Leuven, Geel Campus, Geel, Belgium
- Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| | - D. Lachi
- Department of Microbial and Molecular Systems (M2S), Research Group for Insect Production and Processing, KU Leuven, Geel Campus, Geel, Belgium
- Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| | - J. De Smet
- Department of Microbial and Molecular Systems (M2S), Research Group for Insect Production and Processing, KU Leuven, Geel Campus, Geel, Belgium
- Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| | - L. Van Campenhout
- Department of Microbial and Molecular Systems (M2S), Research Group for Insect Production and Processing, KU Leuven, Geel Campus, Geel, Belgium
- Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| |
Collapse
|
27
|
Ziarno M, Cichońska P. Lactic Acid Bacteria-Fermentable Cereal- and Pseudocereal-Based Beverages. Microorganisms 2021; 9:2532. [PMID: 34946135 PMCID: PMC8706850 DOI: 10.3390/microorganisms9122532] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/04/2021] [Accepted: 12/05/2021] [Indexed: 11/26/2022] Open
Abstract
Plant beverages are becoming more popular, and fermented cereal- or pseudocereal-based beverages are increasingly used as alternatives for fermented products made from cow milk. This review aimed to describe the basic components of cereal- or pseudocereal-based beverages and determine the feasibility of fermenting them with lactic acid bacteria (LAB) to obtain products with live and active LAB cells and increased dietary value. The technology used for obtaining cereal- or pseudocereal-based milk substitutes primarily involves the extraction of selected plant material, and the obtained beverages differ in their chemical composition and nutritional value (content of proteins, lipids, and carbohydrates, glycemic index, etc.) due to the chemical diversity of the cereal and pseudocereal raw materials and the operations used for their production. Beverages made from cereals or pseudocereals are an excellent matrix for the growth of LAB, and the lactic acid fermentation not only produces desirable changes in the flavor of fermented beverages and the biological availability of nutrients but also contributes to the formation of functional compounds (e.g., B vitamins).
Collapse
Affiliation(s)
- Małgorzata Ziarno
- Department of Food Technology and Assessment, Institute of Food Science, Warsaw University of Life Sciences-SGGW (WULS-SGGW), 02-787 Warsaw, Poland;
| | | |
Collapse
|
28
|
Niode NJ, Adji A, Rimbing J, Tulung M, Alorabi M, El-Shehawi AM, Idroes R, Celik I, Fatimawali, Adam AA, Dhama K, Mostafa-Hedeab G, Mohamed AAR, Tallei TE, Emran TB. In Silico and In Vitro Evaluation of the Antimicrobial Potential of Bacillus cereus Isolated from Apis dorsata Gut against Neisseria gonorrhoeae. Antibiotics (Basel) 2021; 10:1401. [PMID: 34827339 PMCID: PMC8614935 DOI: 10.3390/antibiotics10111401] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/09/2021] [Accepted: 11/13/2021] [Indexed: 12/22/2022] Open
Abstract
Antimicrobial resistance is a major public health and development concern on a global scale. The increasing resistance of the pathogenic bacteria Neisseria gonorrhoeae to antibiotics necessitates efforts to identify potential alternative antibiotics from nature, including insects, which are already recognized as a source of natural antibiotics by the scientific community. This study aimed to determine the potential of components of gut-associated bacteria isolated from Apis dorsata, an Asian giant honeybee, as an antibacterial against N. gonorrhoeae by in vitro and in silico methods as an initial process in the stage of new drug discovery. The identified gut-associated bacteria of A. dorsata included Acinetobacter indicus and Bacillus cereus with 100% identity to referenced bacteria from GenBank. Cell-free culture supernatants (CFCS) of B. cereus had a very strong antibacterial activity against N. gonorrhoeae in an in vitro antibacterial testing. Meanwhile, molecular docking revealed that antimicrobial lipopeptides from B. cereus (surfactin, fengycin, and iturin A) had a comparable value of binding-free energy (BFE) with the target protein receptor for N. gonorrhoeae, namely penicillin-binding protein (PBP) 1 and PBP2 when compared with the ceftriaxone, cefixime, and doxycycline. The molecular dynamics simulation (MDS) study revealed that the surfactin remains stable at the active site of PBP2 despite the alteration of the H-bond and hydrophobic interactions. According to this finding, surfactin has the greatest antibacterial potential against PBP2 of N. gonorrhoeae.
Collapse
Affiliation(s)
- Nurdjannah Jane Niode
- Entomology Study Program, Graduate School, University of Sam Ratulangi. Jl. Kampus Unsrat, Manado 95115, North Sulawesi, Indonesia; (N.J.N.); (A.A.); (J.R.); (M.T.)
- Department of Dermatology and Venereology, Faculty of Medicine, University of Sam Ratulangi, RD Kandou Hospital, Jl. Raya Tanawangko No. 56, Manado 95163, North Sulawesi, Indonesia
| | - Aryani Adji
- Entomology Study Program, Graduate School, University of Sam Ratulangi. Jl. Kampus Unsrat, Manado 95115, North Sulawesi, Indonesia; (N.J.N.); (A.A.); (J.R.); (M.T.)
- Department of Dermatology and Venereology, Faculty of Medicine, University of Sam Ratulangi, RD Kandou Hospital, Jl. Raya Tanawangko No. 56, Manado 95163, North Sulawesi, Indonesia
| | - Jimmy Rimbing
- Entomology Study Program, Graduate School, University of Sam Ratulangi. Jl. Kampus Unsrat, Manado 95115, North Sulawesi, Indonesia; (N.J.N.); (A.A.); (J.R.); (M.T.)
| | - Max Tulung
- Entomology Study Program, Graduate School, University of Sam Ratulangi. Jl. Kampus Unsrat, Manado 95115, North Sulawesi, Indonesia; (N.J.N.); (A.A.); (J.R.); (M.T.)
| | - Mohammed Alorabi
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (M.A.); (A.M.E.-S.)
| | - Ahmed M. El-Shehawi
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (M.A.); (A.M.E.-S.)
| | - Rinaldi Idroes
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Syiah Kuala, Kopelma Darussalam, Banda Aceh 23111, Aceh, Indonesia;
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Aceh, Indonesia
| | - Ismail Celik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri 38039, Turkey;
| | - Fatimawali
- Pharmacy Study Program, Faculty of Mathematics and Natural Sciences, University of Sam Ratulangi, Manado 95115, North Sulawesi, Indonesia;
| | - Ahmad Akroman Adam
- Dentistry Study Program, Faculty of Medicine, University of Sam Ratulangi, Manado 95115, North Sulawesi, Indonesia;
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, Uttar Pradesh, India;
| | - Gomaa Mostafa-Hedeab
- Pharmacology Department, Health Sciences Research Unit, Medical College, Jouf University, Skaka 11564, Saudi Arabia;
- Pharmacology Department, Faculty of Medicine, Beni-Suef University, Beni-Suef 62521, Egypt
| | | | - Trina Ekawati Tallei
- Department of Biology, Faculty of Mathematics and Natural Sciences, University of Sam Ratulangi, Manado 95115, North Sulawesi, Indonesia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| |
Collapse
|
29
|
Ladaycia A, Passirani C, Lepeltier E. Microbiota and nanoparticles: Description and interactions. Eur J Pharm Biopharm 2021; 169:220-240. [PMID: 34736984 DOI: 10.1016/j.ejpb.2021.10.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/12/2021] [Accepted: 10/26/2021] [Indexed: 12/15/2022]
Abstract
The healthy human body is inhabited with a large number of bacteria, forming natural flora. It is even estimated that for a human body, its amount of DNA is less important that its bacterial genetic material. This flora plays major roles in the sickness and health of the human body and any change in its composition may lead to different diseases. Nanoparticles are widely used in numerous fields: cosmetics, food, industry, and as drug delivery carrier in the medical field. Being included in these various applications, nanoparticles may interact with the human body at various levels and with different mechanisms. These interactions differ depending on the nanoparticle nature, its structure, its concentration and manifest in different ways on the microbiota, leading to its destabilization, its restoring or showing no toxic effect. Nanoparticles may also be used as a vehicle to regulate the microbiota or to treat some of its diseases.
Collapse
Affiliation(s)
- Abdallah Ladaycia
- Micro et Nanomédecines Translationnelles, MINT, UNIV Angers, UMR INSERM 1066, UMR CNRS 6021, Angers, France
| | - Catherine Passirani
- Micro et Nanomédecines Translationnelles, MINT, UNIV Angers, UMR INSERM 1066, UMR CNRS 6021, Angers, France
| | - Elise Lepeltier
- Micro et Nanomédecines Translationnelles, MINT, UNIV Angers, UMR INSERM 1066, UMR CNRS 6021, Angers, France.
| |
Collapse
|
30
|
Crespo-Piazuelo D, Lawlor PG. Livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) prevalence in humans in close contact with animals and measures to reduce on-farm colonisation. Ir Vet J 2021; 74:21. [PMID: 34362463 PMCID: PMC8348836 DOI: 10.1186/s13620-021-00200-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/13/2021] [Indexed: 12/14/2022] Open
Abstract
Since the 1940s, Staphylococcus aureus has adapted to the use of different antimicrobials to treat infections. Although S. aureus can act as a commensal bacterium, some strains are facultative pathogens and acquiring them can be fatal. In particular, treating infections caused by S. aureus with acquired antimicrobial resistance is problematic, as their treatment is more difficult. Some of these S. aureus variants are methicillin-resistant S. aureus (MRSA) with prevalence across the globe in health-care facilities, community settings and on livestock farms. Apart from humans, MRSA can colonise other animal species, and because of this, resistance to new antimicrobials can appear and jump between species. Livestock and companion animals are particularly important in this regard considering the relatively high usage of antimicrobials in these species. There is a risk to humans who come into direct contact with animals acquiring MRSA but there is also the risk of animals acquiring MRSA from colonised humans. In this review, we summarise studies conducted worldwide to characterise the prevalence of MRSA in veterinarians, farmers and other personnel who come into close contact with animals. Finally, alternative treatment, preventive measures and on-farm strategies to reduce MRSA introduction to a farm and carriage within a herd are discussed.
Collapse
Affiliation(s)
- Daniel Crespo-Piazuelo
- Teagasc, Pig Development Department, Animal & Grassland Research & Innovation Centre, Moorepark, Fermoy, Co. Cork, P61 C996, Ireland
| | - Peadar G Lawlor
- Teagasc, Pig Development Department, Animal & Grassland Research & Innovation Centre, Moorepark, Fermoy, Co. Cork, P61 C996, Ireland.
| |
Collapse
|
31
|
Acetate Activates Lactobacillus Bacteriocin Synthesis by Controlling Quorum Sensing. Appl Environ Microbiol 2021; 87:e0072021. [PMID: 33893120 DOI: 10.1128/aem.00720-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Bacteriocins are useful for controlling the composition of microorganisms in fermented food. Bacteriocin synthesis is regulated by quorum sensing mediated by autoinducing peptides. In addition, short-chain fatty acids, especially acetic acid, reportedly regulate bacteriocin synthesis. Five histidine kinases that regulated the synthesis of bacteriocins were selected to verify their interactions with acetate. Acetate activated the kinase activity of PlnB, SppK, and HpK3 in vitro and increased the yield of their cognate bacteriocins plantaricin EF, sakacin A, and rhamnosin B in vivo. The antimicrobial activity against Staphylococcus aureus of the fermentation supernatants of Lactobacillus plantarum, Lactobacillus sakei, and Lactobacillus rhamnosus with addition of acetate increased to 298%, 198%, and 289%, respectively, compared with that in the absence of acetate. Our study elucidated the activation activity of acetate in bacteriocin synthesis, and it might provide a potential strategy to increase the production of bacteriocin produced by Lactobacillus. IMPORTANCE Bacteriocins produced by lactic acid bacteria (LAB) are particularly useful in food preservation and food safety. Bacteriocins might increase bacterial competitive advantage against the indigenous microbiota of the intestines; at the same time, bacteriocins could limit the growth of undesired microorganisms in yogurt and other dairy products. This study confirmed that three kinds of histidine kinases were activated by acetate and upregulated bacteriocin synthesis both in vitro and in vivo. The increasing yield of bacteriocins reduced the number of pathogens and increased the number of probiotics in milk. Bacteriocin synthesis activation by acetate may have a broad application in the preservation of dairy products and forage silage.
Collapse
|
32
|
Evdokimova SA, Nokhaeva VS, Karetkin BA, Guseva EV, Khabibulina NV, Kornienko MA, Grosheva VD, Menshutina NV, Shakir IV, Panfilov VI. A Study on the Synbiotic Composition of Bifidobacterium bifidum and Fructans from Arctium lappa Roots and Helianthus tuberosus Tubers against Staphylococcus aureus. Microorganisms 2021; 9:930. [PMID: 33926121 PMCID: PMC8146412 DOI: 10.3390/microorganisms9050930] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 11/16/2022] Open
Abstract
A number of mechanisms have been proposed explaining probiotics and prebiotics benefit human health, in particular, probiotics have a suppression effect on pathogen growth that can be enhanced with the introduction of prebiotics. In vitro models enhanced with computational biology can be useful for selecting a composition with prebiotics from new plant sources with the greatest synergism. Water extracts from burdock root and Jerusalem artichoke tubers were purified by ultrafiltration and activated charcoal and concentrated on a rotary evaporator. Fructans were precipitated with various concentrations of ethanol. Bifidobacterium bifidum 8 VKPM AC-2136 and Staphylococcus aureus ATCC 43300 strains were applied to estimate the synbiotic effect. The growth of bifidobacteria and staphylococci in monocultures and cocultures in broths with glucose, commercial prebiotics, as well as isolated fructans were studied. The minimum inhibitory concentrations (MICs) of lactic and acetic acids for the Staphylococcus strain were determined. A quantitative model joining the formation of organic acids by probiotics as antagonism factors and the MICs of pathogens (as the measure of their inhibition) was tested in cocultures and showed a high predictive value (R2 ≥ 0.86). The synbiotic factor obtained from the model was calculated based on the experimental data and obtained constants. Fructans precipitated with 20% ethanol and Bifidobacterium bifidum have the greater synergism against Staphylococcus.
Collapse
Affiliation(s)
- Svetlana A. Evdokimova
- Department of Biotechnology, Faculty of Biotechnology and Industrial Ecology, D. Mendeleev University of Chemical Technology, Miusskaya Sq., 9, 125047 Moscow, Russia; (S.A.E.); (V.S.N.); (N.V.K.); (V.D.G.); (I.V.S.); (V.I.P.)
| | - Vera S. Nokhaeva
- Department of Biotechnology, Faculty of Biotechnology and Industrial Ecology, D. Mendeleev University of Chemical Technology, Miusskaya Sq., 9, 125047 Moscow, Russia; (S.A.E.); (V.S.N.); (N.V.K.); (V.D.G.); (I.V.S.); (V.I.P.)
| | - Boris A. Karetkin
- Department of Biotechnology, Faculty of Biotechnology and Industrial Ecology, D. Mendeleev University of Chemical Technology, Miusskaya Sq., 9, 125047 Moscow, Russia; (S.A.E.); (V.S.N.); (N.V.K.); (V.D.G.); (I.V.S.); (V.I.P.)
| | - Elena V. Guseva
- Department of Cybernetics of Chemical Technological Processes, Faculty of Digital Technologies and Chemical Engineering, D. Mendeleev University of Chemical Technology, Miusskaya Sq., 9, 125047 Moscow, Russia; (E.V.G.); (N.V.M.)
| | - Natalia V. Khabibulina
- Department of Biotechnology, Faculty of Biotechnology and Industrial Ecology, D. Mendeleev University of Chemical Technology, Miusskaya Sq., 9, 125047 Moscow, Russia; (S.A.E.); (V.S.N.); (N.V.K.); (V.D.G.); (I.V.S.); (V.I.P.)
| | - Maria A. Kornienko
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia;
| | - Veronika D. Grosheva
- Department of Biotechnology, Faculty of Biotechnology and Industrial Ecology, D. Mendeleev University of Chemical Technology, Miusskaya Sq., 9, 125047 Moscow, Russia; (S.A.E.); (V.S.N.); (N.V.K.); (V.D.G.); (I.V.S.); (V.I.P.)
| | - Natalia V. Menshutina
- Department of Cybernetics of Chemical Technological Processes, Faculty of Digital Technologies and Chemical Engineering, D. Mendeleev University of Chemical Technology, Miusskaya Sq., 9, 125047 Moscow, Russia; (E.V.G.); (N.V.M.)
| | - Irina V. Shakir
- Department of Biotechnology, Faculty of Biotechnology and Industrial Ecology, D. Mendeleev University of Chemical Technology, Miusskaya Sq., 9, 125047 Moscow, Russia; (S.A.E.); (V.S.N.); (N.V.K.); (V.D.G.); (I.V.S.); (V.I.P.)
| | - Victor I. Panfilov
- Department of Biotechnology, Faculty of Biotechnology and Industrial Ecology, D. Mendeleev University of Chemical Technology, Miusskaya Sq., 9, 125047 Moscow, Russia; (S.A.E.); (V.S.N.); (N.V.K.); (V.D.G.); (I.V.S.); (V.I.P.)
| |
Collapse
|
33
|
Quantitative Microbiological Analysis of Artisanal Stretched Cheese Manufacture. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11062680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To evaluate the behavior of the relevant microbial populations during stretched cheese production, quantitative microbiological analysis was performed during the critical steps of the preparation. The obtained data distributions proved statistically significant increases in all indicators, on average by 4.55 ± 0.64 log CFU/g of presumptive lactococci counts, 4.06 ± 0.61 of lactobacilli, 1.53 ± 0.57 log CFU/g of coliforms, 2.42 ± 0.67 log CFU/g of Escherichia coli, 1.53 ± 0.75 log CFU/g of yeasts and molds, and 0.99 ± 0.27 log CFU/g of presumptive Staphylococcus aureus, from the early stage of milk coagulation until curd ripening (0–24 h). The following steaming/stretching process caused reductions in viable counts with the most significant inactivation effect on coliform bacteria, including E. coli (−4.0 ± 1.0 log CFU/g). Total viable counts and yeasts and molds showed 2 and almost 3 log reduction (−2.2 ± 1.1 log CFU/g and −2.6 ± 0.9 log CFU/g), respectively. The lowest decreases in presumptive S. aureus counts were estimated at the level of −1.50 ± 0.64 log CFU/g. The counts of yeasts and molds showed the best indicatory function during the entire storage period of vacuum-packaged cheeses at 6 °C.
Collapse
|
34
|
Kortei NK, Asiedu P, Annan T, Deku JG, Boakye AA. Fungal diversity of "solom" a Ghanaian traditional beverage of millet ( Pennisetum glaucum). Food Sci Nutr 2021; 9:811-821. [PMID: 33598165 PMCID: PMC7866583 DOI: 10.1002/fsn3.2045] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 12/21/2022] Open
Abstract
The association of cereals with fungi cannot be disregarded as their manifestation in our foods poses serious health risks. The aim of this study was to investigate the mycofloral (fungal) and chemical (pH) qualities of the "solom" (beverage of millet) available for consumption from their respective sales points in Ho. "Solom" a cereal beverage of millet was sampled from ten (10) different locations in the Ho Municipality of Ghana and evaluated for their pH, fungal counts, and species diversity. Mycological analyses were done on Oxytetracycline Glucose Yeast Extract (OGYE) and Dichloran Rose Bengal Chloramphenicol (DRBC) media from three (3) points per location using serial dilution. A total of fourteen (14) fungal species belonging to eight (8) genera were isolated on both media; Aspergillus (A. niger, A. flavus, A. fumigatus, A. parasiticus, A. alutaceaus, A. terreus), Rhizopus (R. stolonifer), Mucor (M. racemosus), Fusarium (F. oxysporum), Penicillium (P. digitatum, P. verucosum), Cladosporium (C. cladosporoides), Curvularia (C. lunata), and Rhodotorula sp. were recorded. Fungal counts on both media ranged between 1.68 ± 0.8 and 4.11 ± 0.9 log10 CFU/ml. There were statistically significant (p < .05) differences observed in the samples from different locations. The values of pH recorded were in the range of 3.03 ± 0.09-4.03 ± 0.23 and showed no significant differences (p > .05) among them. All samples were found to be in the acceptable range of values prescribed by the International Commission for Microbiological Specification of Foods (ICMSF, 1998). Good Manufacturing Practices (GMP) and Good Hygiene Practices (GHP) should be employed to enhance food safety.
Collapse
Affiliation(s)
- Nii Korley Kortei
- Department of Nutrition and DieteticsSchool of Allied Health SciencesUniversity of Health and Allied SciencesHoGhana
| | - Prince Asiedu
- Department of Nutrition and DieteticsSchool of Allied Health SciencesUniversity of Health and Allied SciencesHoGhana
| | - Theophilus Annan
- Food Microbiology DivisionFood Research Institute‐Council for Scientific and Industrial ResearchAccraGhana
| | - John Gameli Deku
- Department of Medical Laboratory SciencesSchool of Allied Health SciencesUniversity of Health and Allied SciencesHoGhana
| | - Adjoa Agyemang Boakye
- Department of Biomedical SciencesSchool of Basic and Biomedical SciencesUniversity of Health and Allied SciencesHoGhana
| |
Collapse
|
35
|
Improvement of Bacterial Vaginosis by Oral Lactobacillus Supplement: A Randomized, Double-Blinded Trial. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11030902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bacterial vaginosis (BV) is the most common vaginal infection globally, with a high recurrent rate after antibiotic treatment. Probiotics consumption is known to improve BV with different efficacy among species or strains. After in vitro selection of Lactobacillus strains with growth inhibition and preventing adhesion to HeLa cervical epithelial cells, a randomized and double-blinded trial of two Lactobacillus formula, namely, VGA-1 and VGA-2, in BV patients with Nugent scores of 4–10 was conducted. Among 37 subjects who completed the trial, we observed significantly decreased Nugent scores in both VGA-1 (n = 18) and VGA-2 (n = 19) consumption groups. VGA-1 consumption significantly improved vaginal discharge odor/color and itching at both 2-week and 4-week-consumption, but those only observed after a 4-week-consumption in the VGA-2 group. We also observed a tendency to reduce recurrent rates among enrolled participants after VGA-1 or VGA-2 consumption. The improvement effect of VGA-1/VGA-2 was associated with the significant reduction of interleukin-6 expression after 4-week-consumption and the restoration of normal vaginal microflora by quantitative polymerase chain reaction analysis. In conclusion, VGA-1 or VGA-2 displayed beneficial effects in BV patients, but the VGA-1 formula showed a better efficacy, potentially used for BV intervention.
Collapse
|
36
|
Medved'ová A, Koňuchová M, Kvočiková K, Hatalová I, Valík L. Effect of Lactic Acid Bacteria Addition on the Microbiological Safety of Pasta-Filata Types of Cheeses. Front Microbiol 2020; 11:612528. [PMID: 33365023 PMCID: PMC7750188 DOI: 10.3389/fmicb.2020.612528] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/17/2020] [Indexed: 12/22/2022] Open
Abstract
In this work, the effects of different combinations of lactic acid bacteria (LAB) on the growth of coagulase-positive staphylococci (CPS) and Escherichia coli were evaluated during ripening of 23 curd cheeses, and their subsequent behavior during the manufacture and storage of pasta-filata cheeses was characterized. Three groups of cheeses were prepared in total: first, control cheeses from raw milk without LAB addition; further pasteurized milk cheeses with LAB, CPS and E. coli intentional inoculation; and finally, raw milk cheeses with LAB added. The aim was to compare the effect of LAB from starter culture, and also in combination with native LAB, and to evaluate the LAB effect as a group, and further to suggest the culture with the best inhibitory potential. Based on the results, counts of CPS increased over 24 h in control curd cheese by 1.76 ± 0.56 log CFU/g. On the other hand, in raw milk cheeses with the addition of starter culture, the increase in CPS counts by 0.76 ± 0.87 log CFU/g was noticed. Counts of E. coli increased during the first 24 h of curd manufacture by 3.56 ± 0.41 log CFU/g in cheeses without LAB addition. Contrary to this, using of LAB cultures resulted in an increase in E. coli counts by only 1.40 ± 1.07 log CFU/g. After steaming at 63.6 ± 1.9°C for 7.2 ± 2.1 min (temperature of heated acidified curd was 54.9 ± 1.7°C), CPS decreased by 0.58 ± 1.12 log CFU/g, and E. coli decreased by 1.23 ± 0.97 log CFU/g in all cheeses, regardless of LAB addition. Finally, during storage of cheeses at 6 ± 0.5°C for 28 days, the levels of E. coli in control cheeses and in raw milk LAB-enriched cheeses reached levels of 2.07 ± 2.28 log CFU/g and 1.20 ± 0.85 log CFU/g, respectively. In addition, the counts of CPS at the end of storage met the criteria of EU Commission Regulation (EC) No. 1441/2007 (2007) (less than 4 log CFU/g) in all manufactured cheeses with added LAB culture, while in the control raw milk cheeses, a level of 3.80 ± 1.22 log CFU/g was observed. Regarding the culture used, the best microbiological inhibitory effect in 28-day-old cheeses was reached by the combination of Fresco culture with Lacticaseibacillus rhamnosus GG, and the best sensory properties were judged to be those for cheeses manufactured with Culture A. A moderate negative effect of storage on overall sensory acceptance was noted, according to the final evaluation of overall acceptability of pasta-filata cheeses. The most satisfactory overall acceptability after 28 days of storage at 6°C was reached for cheese with the addition of culture A.
Collapse
Affiliation(s)
- Alžbeta Medved'ová
- Department of Nutrition and Food Quality Assessment, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava, Slovakia
| | - Martina Koňuchová
- Department of Nutrition and Food Quality Assessment, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava, Slovakia
| | - Karolína Kvočiková
- Department of Nutrition and Food Quality Assessment, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava, Slovakia
| | - Ivana Hatalová
- Department of Nutrition and Food Quality Assessment, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava, Slovakia
| | - L'ubomír Valík
- Department of Nutrition and Food Quality Assessment, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava, Slovakia
| |
Collapse
|
37
|
Angelidis AS, Kalamaki MS, Pexara AS, Papageorgiou DΚ. Investigation of Staphylococcus aureus growth and enterotoxin production during artisanal kefir fermentation. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109956] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
38
|
Zhang X, Ali Esmail G, Fahad Alzeer A, Valan Arasu M, Vijayaraghavan P, Choon Choi K, Abdullah Al-Dhabi N. Probiotic characteristics of Lactobacillus strains isolated from cheese and their antibacterial properties against gastrointestinal tract pathogens. Saudi J Biol Sci 2020; 27:3505-3513. [PMID: 33304162 PMCID: PMC7715019 DOI: 10.1016/j.sjbs.2020.10.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 01/22/2023] Open
Abstract
In the present study, four Lactobacillus strains from the cheese were analyzed for its probiotic potential against enteropathogenic bacteria. The probiotic properties of the selected strains were also analyzed and the selected bacterial strains showed high tolerance in bile salts and organic acid. The strain L. plantarum LP049 showed maximum survival rate (92 ± 4.2% and 93.3 ± 2%) after 3 h of treatment at 0.25% (w/v) bile salts and 0.25% (w/v) organic acid concentrations. The ability of the Lactobacillus strains to adhere to human epithelial cells (HT-29 cell lines) was evaluated and L. plantarum LP049 showed maximum adhesion property (19.2 ± 1.1%) than other tested strains. The Lactobacillus strains produced lactic acid at various concentrations. Compared with other strains, maximum level of lactic acid (3.1 g/L), hydrogen peroxide (4.31 mM) and bacteriocin (31 AU/mg) was detected in LB049. The inhibitory activity of culture supernatant against various bacterial pathogens was observed. The zone of inhibition ranged between 6 ± 2 mm and 23 ± 2 mm. The cell free extract showed activity against, Escherichia coli (ATCC 10536), Salmonella enteritidis (ATCC 13076), Shigella flexneri (ATCC 29903), and Enterococcus faecium (ATCC 8459). Consequently, L. plantarum LP049 may be considered as a potential candidate for the production of novel bioactive metabolites for therapeutic and bio-protective applications.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Medical Cosmetology, Linyi Central Hospital, Linyi, Shandong 276400, China
| | - Galal Ali Esmail
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdulaziz Fahad Alzeer
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ponnuswamy Vijayaraghavan
- Bioprocess Engineering Division, Smykon Biotech Pvt Ltd, Nagercoil, Kanyakumari District 629 001, Tamil Nadu, India
| | - Ki Choon Choi
- Grassland and Forage Division, National Institute of Animal Science, RDA, Seonghwan-Eup, Cheonan-Si, Chungnam 330-801, Republic of Korea
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
39
|
Liu M, Song S, Hu C, Tang L, Lam JCW, Lam PKS, Chen L. Dietary administration of probiotic Lactobacillus rhamnosus modulates the neurological toxicities of perfluorobutanesulfonate in zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114832. [PMID: 32454362 DOI: 10.1016/j.envpol.2020.114832] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/06/2020] [Accepted: 05/15/2020] [Indexed: 05/27/2023]
Abstract
Perfluorobutanesulfonate (PFBS), an aquatic pollutant of emerging concern, is found to disturb the neural signaling along gut-brain axis, whereas probiotic additives have been applied to improve neuroendocrine function of teleosts. Both PFBS and probiotics can commonly target nervous system. However, whether and how probiotic bacteria can modulate the neurotoxicities of PFBS remain not explored. It is thus necessary to elucidate the probiotic modulation of PFBS neurotoxicity, which can provide implications to the application of probiotic bacteria in aquaculture industry. In the present study, adult zebrafish were exposed to 0, 10 and 100 μg/L PFBS with or without dietary administration of probiotic Lactobacillus rhamnosus. Interaction between PFBS and probiotic along gut-brain axis was examined, covering three dominant pathways (i.e., neurotransmission, immune response and hypothalamic-pituitary-adrenal (HPA) axis). The results showed that, compared to the single effects, PFBS and probiotic coexposure significantly altered the acetylcholinesterase activity and neurotransmitter profiles in gut and brain of zebrafish, with mild effects on neuronal integrity. Neurotransmitters closely correlated reciprocally in intestines, which, however, was distinct from the correlation profile in brains. In addition, PFBS and probiotic were combined to impact brain health through absorption of bacterial lipopolysaccharides and production of inflammatory cytokines. Relative to neurotransmission and immune signaling, HPA axis was not involved in the neurotoxicological interaction between PFBS and probiotic. Furthermore, it needs to point out that interactive modes between PFBS and probiotic varied a lot, depending on exposure concentrations, sex and toxic indices. Overall, the present study provided the first evidence that probiotic supplement could dynamically modulate the neurotoxicities of PFBS in teleost.
Collapse
Affiliation(s)
- Mengyuan Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shiwen Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Chenyan Hu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430072, China
| | - Lizhu Tang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - James C W Lam
- Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong
| | - Paul K S Lam
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong
| | - Lianguo Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
40
|
Aljasir SF, D'Amico DJ. The effect of protective cultures on Staphylococcus aureus growth and enterotoxin production. Food Microbiol 2020; 91:103541. [PMID: 32539968 DOI: 10.1016/j.fm.2020.103541] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/01/2020] [Accepted: 04/30/2020] [Indexed: 10/24/2022]
Abstract
Staphylococcus aureus is the causative agent of staphylococcal food poisoning and is a common contaminant in milk. Despite efforts to control S. aureus, recalls and outbreaks continue to occur, highlighting the need for additional interventions. This study determined the potential for protective cultures (PC) that are commercially available to producers to control S. aureus growth in raw milk and attenuate virulence by impeding staphylococcal enterotoxin (SE) production in raw milk and laboratory medium. Cultures of Hafnia alvei and Lactococcus lactis effectively inhibited S. aureus growth in raw milk to counts ~5 log CFU/mL lower than control when cocultured following a cheesemaking time and temperature profile; two cultures of Lactobacillus plantarum inhibited growth to ~1.5 log CFU/mL less than control. Cocultures of S. aureus with Lc. lactis, H. alvei and Lb. plantarum in raw milk reduced SE levels by 24.9%, 62.4%, and 76%, respectively. Lc. lactis also decreased SE production in raw milk in the absence of PC-mediated growth inhibition. Significant reductions in SE production in the absence of pathogen growth inhibition were also achieved in laboratory medium. Together, these results demonstrate the potential for PCs to inhibit S. aureus growth and impede SE production in the absence of growth inhibition.
Collapse
Affiliation(s)
- Sulaiman F Aljasir
- Department of Animal Science, University of Connecticut, U-4163, Agricultural Biotechnology Laboratory, 1390 Storrs Road, Storrs, Connecticut 06269, USA.
| | - Dennis J D'Amico
- Department of Animal Science, University of Connecticut, U-4163, Agricultural Biotechnology Laboratory, 1390 Storrs Road, Storrs, Connecticut 06269, USA.
| |
Collapse
|
41
|
Titze I, Krömker V. Antimicrobial Activity of a Phage Mixture and a Lactic Acid Bacterium against Staphylococcus aureus from Bovine Mastitis. Vet Sci 2020; 7:E31. [PMID: 32155751 PMCID: PMC7157551 DOI: 10.3390/vetsci7010031] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 12/25/2022] Open
Abstract
The antimicrobial activity of a phage mixture and a lactic acid bacterium against Staphylococcus aureus isolates from bovine origin was investigated in vitro with regard to possible applications in the therapy of udder inflammation (mastitis) caused by bacterial infections. The S. aureus isolates used for inoculation derived from quarter foremilk samples of mastitis cases. For the examination of the antimicrobial activity, the reduction of the S. aureus germ density was determined [log10 cfu/mL]. The phage mixture consisted of the three obligatory lytic and S. aureus-specific phages STA1.ST29, EB1.ST11 and EB1.ST27 (1:1:1). The selected Lactobacillus plantarum strain with proven antimicrobial properties and the phage mixture were tested against S. aureus in milk, both alone and in combination. The application of the lactic acid bacterium showed only a low reduction ability for a 24 h incubation period. The bacteriophage mixture as well as its combination with the lactic acid bacterium showed high antimicrobial activity against S. aureus for a 24 h incubation period at 37 °C, with only the phage mixture showing significance.
Collapse
Affiliation(s)
- Isabel Titze
- Department of Bioprocess Engineering and Microbiology, Hannover University of Applied Sciences and Arts, D-30453 Hannover, Germany
| | - Volker Krömker
- Department of Bioprocess Engineering and Microbiology, Hannover University of Applied Sciences and Arts, D-30453 Hannover, Germany
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of Veterinary and Animal Sciences, Section for Production, Nutrition and Health, Gronnegardsvej 2, DK-1870 Frederiksberg C, Denmark
| |
Collapse
|
42
|
Bangieva D. Microbiological and physicochemical changes during ripening in Bulgarian white brined cheese made from raw cow milk. BULGARIAN JOURNAL OF VETERINARY MEDICINE 2020. [DOI: 10.15547/bjvm.2019-0009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The main microbiological hazards of raw milk cheese are associated with Listeria monocytogenes, Escherichia coli and Staphylococcus aureus. Due to its high nutritional value, cheese is an excellent medium for the growth of these pathogens. This study was aimed to observe microbial dynamics of Bulgarian white brined cheese during cheese production and ripening. Microbiological analysis included determination of Staphylococcus aureus, Listeria spp. and Escherichia coli counts. Some physicochemical parameters, such as total titratable acidity, sodium chloride content, water activity and pH were also examined. Results revealed statistically significant increase in bacterial counts after cheesemaking steps and decrease at the end of the ripening period. Listeria monocytogenes was not detected in any of the cheese samples. Raw milk cheese was of unsatisfactory quality that emphasises the need for applying and maintaining good hygiene practices along the food chain to prevent microbial contamination and growth
Collapse
|
43
|
Xie M, An F, Yue X, Liu Y, Shi H, Yang M, Cao X, Wu J, Wu R. Characterization and comparison of metaproteomes in traditional and commercial dajiang, a fermented soybean paste in northeast China. Food Chem 2019; 301:125270. [PMID: 31377619 DOI: 10.1016/j.foodchem.2019.125270] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/28/2019] [Accepted: 07/26/2019] [Indexed: 01/01/2023]
Abstract
Dajiang is a popular Chinese fermented soybean condiment. Here, a comparative metaproteomic analysis of traditional and commercial dajiang was performed during fermentation. A total of 4250 and 1421 peptide sequences were obtained from 3493 and 1987 proteins in traditional and commercial dajiang, respectively. 4299 differentially expressed microbial proteins show a high metabolic heterogeneity between the two types of dajiang. The KEGG annotation indicated that there were some pathways related to human diseases, which suggest that some microbes in traditional dajiang fermentation may have greater food safety hazards. In combination with qualitative metabolomic analysis, we further traced metabolic intermediates and key enzymes in several main fermentation pathways of dajiang to be mainly affiliated with Penicillium, Tetracoccus and Bacillus in traditional samples, as well as Aspergilus in commercial samples. These results could provide information for the selection of strains that are more suitable to produce high quality dajiang and other fermented products.
Collapse
Affiliation(s)
- Mengxi Xie
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Feiyu An
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Xiqing Yue
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Yiming Liu
- College of Foreign Languages, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Haisu Shi
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Mei Yang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Xueyan Cao
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Junrui Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China.
| | - Rina Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China.
| |
Collapse
|
44
|
Li C, Wang T, Li Y, Zhang T, Wang Q, He J, Wang L, Li L, Yang N, Fang Y. Probiotics for the treatment of women with bacterial vaginosis: A systematic review and meta-analysis of randomized clinical trials. Eur J Pharmacol 2019; 864:172660. [PMID: 31562865 DOI: 10.1016/j.ejphar.2019.172660] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 09/03/2019] [Accepted: 09/09/2019] [Indexed: 12/17/2022]
Abstract
This systematic review and meta-analysis systematically evaluated the efficacy of probiotic monotherapy and combination therapy for bacterial vaginosis (BV). Published randomized controlled trials were searched in the Cochrane Library, PubMed, EMBASE, OVID Database and ClinicalTrials.gov from the inception dates to 12 July 2019. The literature was screened and evaluated according to the inclusion criteria, and the data were analysed by a random effect model. A chi-square test was used to test heterogeneity between trials. This study included 13 randomized controlled trials (RCTs), which included 1258 patients, and the cure rate of BV was analysed. Three RCTs compared probiotics with a placebo (control) [risk ratios (RR) = 4.39, 95% CI (2.05, 9.41), P = 0.0001]. Two RCTs compared probiotics with antibiotics (control) [RR = 1.03, 95% CI (0.38, 2.81), P = 0.95]. Nine of 13 RCTs compared the combination of probiotics and antibiotics with antibiotics alone [RR = 1.28, 95% CI (1.05, 1.56), P = 0.02]. Despite the high heterogeneity of the pooled analysis, neither the subgroup analysis results nor the sensitivity analysis results were statistically significant. Probiotics may have a positive effect on the treatment of BV, but there is a lack of strong evidence.
Collapse
Affiliation(s)
- Chen Li
- Key Laboratory of Molecular Target and Clinical Pharmacology, The Fifth Affiliated Hospital & School Pharmaceutical Sciences, Guangzhou Medical University, Guangdong, 511436, China
| | - Tenghua Wang
- Key Laboratory of Molecular Target and Clinical Pharmacology, The Fifth Affiliated Hospital & School Pharmaceutical Sciences, Guangzhou Medical University, Guangdong, 511436, China
| | - Yongmei Li
- Key Laboratory of Molecular Target and Clinical Pharmacology, The Fifth Affiliated Hospital & School Pharmaceutical Sciences, Guangzhou Medical University, Guangdong, 511436, China
| | - Tan Zhang
- Department of Pharmacy, Peking University People's Hospital, Beijing, 100871, China
| | - Qi Wang
- Department of Pharmacy, Peking University People's Hospital, Beijing, 100871, China
| | - Jin He
- Key Laboratory of Molecular Target and Clinical Pharmacology, The Fifth Affiliated Hospital & School Pharmaceutical Sciences, Guangzhou Medical University, Guangdong, 511436, China
| | - Li Wang
- Key Laboratory of Molecular Target and Clinical Pharmacology, The Fifth Affiliated Hospital & School Pharmaceutical Sciences, Guangzhou Medical University, Guangdong, 511436, China
| | - Lujin Li
- Center for Drug Clinical Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ning Yang
- Key Laboratory of Molecular Target and Clinical Pharmacology, The Fifth Affiliated Hospital & School Pharmaceutical Sciences, Guangzhou Medical University, Guangdong, 511436, China
| | - Yi Fang
- Key Laboratory of Molecular Target and Clinical Pharmacology, The Fifth Affiliated Hospital & School Pharmaceutical Sciences, Guangzhou Medical University, Guangdong, 511436, China; Department of Pharmacy, Peking University People's Hospital, Beijing, 100871, China.
| |
Collapse
|
45
|
Hhm H, Ma M, Jin G, Jin Y, Khalifa I, Zeng Q, Liu Y. Nitroso-hemoglobin Increased the Color Stability and Inhibited the Pathogenic Bacteria in a Minced Beef Model: A Combined Low-field NMR Study. Food Sci Anim Resour 2019; 39:704-724. [PMID: 31728442 PMCID: PMC6837893 DOI: 10.5851/kosfa.2019.e40] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/30/2019] [Accepted: 04/30/2019] [Indexed: 12/16/2022] Open
Abstract
This study mainly investigated the improvement effect of nitroso-hemoglobin
(NO-Hb) and four lactic acid bacteria (LAB) (Streptococcus thermophiles,
Lactobacillus bulgaricus, Lactobacillus casei, and
Montessori enterococcus) on the color and microbiological
qualities of raw beef. Three strains of Escherichia coli,
Staphylococcus, Salmonella, and
Pseudomonas were used as pathogenic bacteria. The results
showed that both NO-Hb and LAB could enhance the color stability and scavenged
the spoilage bacteria in a minced beef model. But the improvement effect of
NO-Hb was more significant than LAB. This suggested that NO-Hb, as a novel
ingredient, could be used as a promising substitute for nitrite in meat products
to improve the color and safety of meat products. In addition, low field
(LF)-NMR method has been established to be practicable to identify changes in
the relaxation times of water and fat caused by different type of bacteria and
the storage periods. The number of relaxation components in minced beef was
affected by bacteria and increase of the storage period.
Collapse
Affiliation(s)
- Hammad Hhm
- College of Food Science and Technology, Huazhong Agricultural University, Shizishan Street, Wuhan, Hubei 430070, China.,National Food Research Centre, Khartoum, Sudan
| | - Meihu Ma
- College of Food Science and Technology, Huazhong Agricultural University, Shizishan Street, Wuhan, Hubei 430070, China
| | - Guofeng Jin
- College of Food Science and Technology, Huazhong Agricultural University, Shizishan Street, Wuhan, Hubei 430070, China
| | - Yongguo Jin
- College of Food Science and Technology, Huazhong Agricultural University, Shizishan Street, Wuhan, Hubei 430070, China
| | - Ibrahim Khalifa
- College of Food Science and Technology, Huazhong Agricultural University, Shizishan Street, Wuhan, Hubei 430070, China
| | - Qi Zeng
- College of Food Science and Technology, Huazhong Agricultural University, Shizishan Street, Wuhan, Hubei 430070, China
| | - Yuanyuan Liu
- College of Food Science and Technology, Huazhong Agricultural University, Shizishan Street, Wuhan, Hubei 430070, China
| |
Collapse
|
46
|
Nogueira Viçosa G, Vieira Botelho C, Botta C, Bertolino M, Fernandes de Carvalho A, Nero LA, Cocolin L. Impact of co-cultivation with Enterococcus faecalis over growth, enterotoxin production and gene expression of Staphylococcus aureus in broth and fresh cheeses. Int J Food Microbiol 2019; 308:108291. [PMID: 31437692 DOI: 10.1016/j.ijfoodmicro.2019.108291] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/04/2019] [Accepted: 08/05/2019] [Indexed: 11/18/2022]
Affiliation(s)
| | | | - Cristian Botta
- Department of Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, Italy
| | - Marta Bertolino
- Department of Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, Italy
| | | | - Luís Augusto Nero
- Departamento de Veterinária, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Luca Cocolin
- Department of Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, Italy.
| |
Collapse
|
47
|
Warren MF, Hallowell HA, Higgins KV, Liles MR, Hood WR. Maternal Dietary Protein Intake Influences Milk and Offspring Gut Microbial Diversity in a Rat ( Rattus norvegicus) Model. Nutrients 2019; 11:E2257. [PMID: 31546967 PMCID: PMC6769776 DOI: 10.3390/nu11092257] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 09/11/2019] [Accepted: 09/14/2019] [Indexed: 12/23/2022] Open
Abstract
Historically, investigators have assumed microorganisms identified in mother's milk to be contaminants, but recent data suggest that milk microbiota may contribute to beneficial maternal effects. Microorganisms that colonize the gastrointestinal tracts of newborn mammals are derived, at least in part, from the maternal microbial population. Milk-derived microbiota is an important source of this microbial inocula and we hypothesized that the maternal diet contributes to variation in this microbial community. To evaluate the relationship between a mother's diet and milk microbiome, we fed female rats a low- or high-protein diet and mated all individuals. Milk and cecal contents were collected from dams at peak lactation (14-day post-partum), and the bacterial composition of each community was assessed by 16S rRNA gene amplicon sequencing. Our findings revealed higher dietary protein intake decreased fecal microbial diversity but increased milk microbial and pup cecum diversity. Further, the higher dietary protein intake resulted in a greater abundance of potentially health-promoting bacteria, such as Lactobacillus spp. These data suggest that dietary protein levels contribute to significant shifts in the composition of maternal milk microbiota and that the functional consequences of these changes in microbial inocula might be biologically important and should be further explored.
Collapse
Affiliation(s)
- Matthew F Warren
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA.
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA.
| | - Haley A Hallowell
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA.
| | - Keah V Higgins
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA.
| | - Mark R Liles
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA.
| | - Wendy R Hood
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
48
|
KIVANC M, YAPICI E. Survival of Escherichia coli O157:H7 and Staphylococcus aureus during the fermentation and storage of kefir. FOOD SCIENCE AND TECHNOLOGY 2019. [DOI: 10.1590/fst.39517] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
49
|
Hu C, Ren L, Zhou Y, Ye B. Characterization of antimicrobial activity of three Lactobacillus plantarum strains isolated from Chinese traditional dairy food. Food Sci Nutr 2019; 7:1997-2005. [PMID: 31289647 PMCID: PMC6593389 DOI: 10.1002/fsn3.1025] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/15/2019] [Accepted: 03/17/2019] [Indexed: 12/21/2022] Open
Abstract
Many Lactobacillus plantarum strains can secrete some antimicrobial substances and be added to food as antimicrobial agents and preservatives. In this study, three L. plantarum strains (P1, S11, and M7) with strong antimicrobial activity against three pathogenic bacteria were isolated from Xinjiang traditional dairy products. Five common organic acids produced by fermentation of strains play a key role in inhibiting three pathogenic bacteria. At the same pH, the antimicrobial activity of the fermentation broth against Escherichia coli and Salmonella is stronger than that of the organic acid alone. Thus, three kinds of antimicrobial agents (P1-1, M7-1, and S11-1) mixed with five common organic acids were produced. Moreover, the antimicrobial activity against Salmonella ASI.1174 of the antimicrobial agents was about 30% higher than that of the fermentation broth. In addition, organic acid antimicrobial agents combined in different proportions can inhibit different pathogenic bacteria. According to this result, it is a potential approach to develop novel antimicrobial agents used in food preservation by mixing different organic acids.
Collapse
Affiliation(s)
- Chang‐Hui Hu
- Department of Food Science and Technology, School of BioengineeringEast China University of Science and TechnologyShanghaiChina
| | - Li‐Quan Ren
- Department of Food Science and Technology, School of BioengineeringEast China University of Science and TechnologyShanghaiChina
| | - Ying Zhou
- Department of Food Science and Technology, School of BioengineeringEast China University of Science and TechnologyShanghaiChina
| | - Bang‐Ce Ye
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor EngineeringEast China University of Science and TechnologyShanghaiChina
- School of Chemistry and Chemical EngineeringShihezi UniversityXinjiangChina
| |
Collapse
|
50
|
Martín V, Cárdenas N, Ocaña S, Marín M, Arroyo R, Beltrán D, Badiola C, Fernández L, Rodríguez JM. Rectal and Vaginal Eradication of Streptococcus agalactiae (GBS) in Pregnant Women by Using Lactobacillus salivarius CECT 9145, A Target-specific Probiotic Strain. Nutrients 2019; 11:E810. [PMID: 30974819 PMCID: PMC6521265 DOI: 10.3390/nu11040810] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/02/2019] [Accepted: 04/05/2019] [Indexed: 12/14/2022] Open
Abstract
Streptococcus agalactiae (Group B Streptococci, GBS) can cause severe neonatal sepsis. The recto-vaginal GBS screening of pregnant women and intrapartum antibiotic prophylaxis (IAP) to positive ones is one of the main preventive options. However, such a strategy has some limitations and there is a need for alternative approaches. Initially, the vaginal microbiota of 30 non-pregnant and 24 pregnant women, including the assessment of GBS colonization, was studied. Among the Lactobacillus isolates, 10 Lactobacillus salivarius strains were selected for further characterization. In vitro characterization revealed that L. salivarius CECT 9145 was the best candidate for GBS eradication. Its efficacy to eradicate GBS from the intestinal and vaginal tracts of pregnant women was evaluated in a pilot trial involving 57 healthy pregnant women. All the volunteers in the probiotic group (n = 25) were GBS-positive and consumed ~9 log10 cfu of L. salivarius CECT 9145 daily from week 26 to week 38. At the end of the trial (week 38), 72% and 68% of the women in this group were GBS-negative in the rectal and vaginal samples, respectively. L. salivarius CECT 9145 seems to be an efficient method to reduce the number of GBS-positive women during pregnancy, decreasing the number of women receiving IAP during delivery.
Collapse
Affiliation(s)
- Virginia Martín
- Department of Nutrition and Food Science, Complutense University of Madrid, 28040 Madrid, Spain.
| | - Nivia Cárdenas
- Department of Galenic Pharmacy and Food Technology, Complutense University of Madrid, 28040 Madrid, Spain.
| | - Sara Ocaña
- Department of Galenic Pharmacy and Food Technology, Complutense University of Madrid, 28040 Madrid, Spain.
- Unidad de Reproducción, Fundación Hospital Alcorcón, 28922 Alcorcón, Spain.
| | - María Marín
- Department of Nutrition and Food Science, Complutense University of Madrid, 28040 Madrid, Spain.
| | - Rebeca Arroyo
- Department of Nutrition and Food Science, Complutense University of Madrid, 28040 Madrid, Spain.
| | - David Beltrán
- Centro de Diagnóstico Médico, Ayuntamiento de Madrid, 28006 Madrid, Spain.
| | - Carlos Badiola
- Laboratorios Casen Recordati S.L., Vía de las Dos Castillas, 33, 28224 Pozuelo de Alarcón, Madrid, Spain.
| | - Leónides Fernández
- Department of Galenic Pharmacy and Food Technology, Complutense University of Madrid, 28040 Madrid, Spain.
| | - Juan M Rodríguez
- Department of Nutrition and Food Science, Complutense University of Madrid, 28040 Madrid, Spain.
| |
Collapse
|