1
|
Breselge S, Skibinska I, Yin X, Brennan L, Kilcawley K, Cotter PD. The core microbiomes and associated metabolic potential of water kefir as revealed by pan multi-omics. Commun Biol 2025; 8:415. [PMID: 40069560 PMCID: PMC11897133 DOI: 10.1038/s42003-025-07808-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 02/25/2025] [Indexed: 03/15/2025] Open
Abstract
Water kefir (WK) is an artisanal fermented beverage made from sugary water, optional fruits and WK grains. WK grains can be reused to start new fermentations. Here we investigate the microbial composition and function of 69 WK grains and their ferments by shotgun metagenomics. A subset of samples was subjected to metabolomic, including volatilomic, analysis. The impact of different fermentation practices on microbial composition and fermentation characteristics was analysed and it was noted that, for example, the common practice of drying water kefir grains significantly reduces microbial diversity and negatively impacts subsequent grain growth. Metagenomic analysis allowed the detection of 96 species within WK, the definition of core genera and the detection of different community states after 48 h of fermentation. A total of 485 bacterial metagenome assembled genomes were obtained and 18 putatively novel species were predicted. Metabolite and volatile analysis show associations between key species with flavour compounds. We show the complex microbial composition of WK and links between fermentation practices, microbes and the fermented product. The results can be used as a foundation for the selection of species for large scale WK production with desired flavour profiles and to guide the regulatory framework for commercial WK production.
Collapse
Affiliation(s)
- Samuel Breselge
- Teagasc Food Research Centre, Moorepark, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | | | - Xiaofei Yin
- UCD Institute of Food and Health, UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Lorraine Brennan
- UCD Institute of Food and Health, UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- VistaMilk, Cork, Ireland
| | - Kieran Kilcawley
- Teagasc Food Research Centre, Moorepark, Cork, Ireland
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Paul D Cotter
- Teagasc Food Research Centre, Moorepark, Cork, Ireland.
- APC Microbiome Ireland, Cork, Ireland.
- VistaMilk, Cork, Ireland.
| |
Collapse
|
2
|
Edis KK, İspirli H, Yilmaz MT, Dertli E. Liquorilactobacillus hordei SK6 and Liquorilactobacillus mali SK26 from Traditional Water Kefir Produce Dextrans with Technological Roles. Appl Biochem Biotechnol 2025; 197:1610-1629. [PMID: 39601972 DOI: 10.1007/s12010-024-05081-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2024] [Indexed: 11/29/2024]
Abstract
The significance of exopolysaccharides (EPS) in various applications has garnered increasing attention. In this study, two bacteria, Liquorilactobacillus hordei SK6 and Liquorilactobacillus mali SK26, isolated from traditional water kefir grains, produced 8.89 g/L and 7.2 g/L of homopolymeric glucan, respectively. NMR analysis revealed that both glucans were dextrans composed of (1 → 6)-linked α-D-glucose units, with (1 → 3)-linked α-D-glucose units serving as branching points, accounting for 5.3 ± 0.2% in dextran SK6 and 2.7 ± 0.15% in SK26. FTIR and XRD analyses further confirmed the amorphous nature of the dextrans, although dextran SK6 exhibited micro-arranged structures. Thermal characterization using TGA and DSC showed degradation temperatures of 298.5 °C for dextran SK6 and 282.1 °C for dextran SK26. Clear differences in morphological properties were observed using AFM and SEM. These findings provide valuable insights into dextran-producing strains and their potential applications in various industries.
Collapse
Affiliation(s)
- Kader Korkmaz Edis
- Chemical and Metallurgical Engineering Faculty, Food Engineering Department, Yildiz Technical University, Istanbul, Turkey
| | - Hümeyra İspirli
- Food Engineering Department, Bayburt University, Engineering Faculty, Bayburt, Turkey
| | - Mustafa Tahsin Yilmaz
- Department of Industrial Engineering, Faculty of Engineering, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Enes Dertli
- Chemical and Metallurgical Engineering Faculty, Food Engineering Department, İstanbul Technical University, Istanbul, Turkey.
| |
Collapse
|
3
|
Alrosan M, Tan TC, Easa AM, Gammoh S, Alu’datt MH, Kubow S, Almajwal AM, Razzak Mahmood AA, Al-Qaisi A, Bawadi H. Enhancing the quality of lentil proteins via combination with whey proteins based on a dual process: a novel strategy through the incorporation of complexation and fermentation. Food Sci Biotechnol 2025; 34:65-78. [PMID: 39758720 PMCID: PMC11695564 DOI: 10.1007/s10068-024-01647-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 06/02/2024] [Accepted: 06/16/2024] [Indexed: 01/07/2025] Open
Abstract
In recent years, there has been a growing interest in developing a distinguished alternative to human consumption of animal-based proteins. The application of lentil proteins in the food industry is typically limited due to their poor solubility and digestibility. An innovative method of balancing lentil-whey protein (LP-WP) complexes with higher-quality protein properties was established to address this issue, which coupled a pH-shifting approach with fermentation treatment. The results showed that microorganisms in the water kefir influenced the quality of protein structures and enhanced the nutritional values, including increasing the total phenolic compounds and improving the flavor of fermented LP-WP complexes. The protein digestibility, pH values, microbial growth, total soluble solids, and total saponin and phenolic contents were hydrolyzed for 5 days at 25 °C. The FTIR spectrophotometer scans indicated significant (P < 0.05) changes to the secondary protein structure components (random coil and α-helix). This study showed that combining pH-shifting with fermentation treatment improves lentil and whey proteins' structure, protein quality, and nutritional benefits.
Collapse
Affiliation(s)
- Mohammad Alrosan
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Gelugor, Penang Malaysia
- Applied Science Research Center, Applied Science Private University, Al-Arab St. 21, Amman, 11931 Jordan
- Department of Food Science and Nutrition, Faculty of Agriculture, Jerash University, Jerash, Jordan
- QU Health, College of Health Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Thuan-Chew Tan
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Gelugor, Penang Malaysia
- Renewable Biomass Transformation Cluster, School of Industrial Technology, Universiti Sains Malaysia, 11800 Gelugor, Penang Malaysia
| | - Azhar Mat Easa
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Gelugor, Penang Malaysia
| | - Sana Gammoh
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110 Jordan
| | - Muhammad H. Alu’datt
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110 Jordan
| | - Stan Kubow
- School of Human Nutrition, Macdonald Campus, McGill University, 21,111 Lakeshore Road, Ste-Anne-De-Bellevue QC, Montreal, H9X 3V9 Canada
| | - Ali Madi Almajwal
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, 11433 Riyadh, Saudi Arabia
| | - Ammar A. Razzak Mahmood
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Baghdad, Bab-Al-Mouadam, Baghdad, 10001 Iraq
| | - Ali Al-Qaisi
- Department of Agricultural Biotechnology, Faculty of Agricultural Sciences and Technology, Palestine Technical University-Kadoorie, Jaffa Street, P.O. Box 7, Tulkarm, Palestine
| | - Hiba Bawadi
- QU Health, College of Health Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
| |
Collapse
|
4
|
Papadopoulou D, Chrysikopoulou V, Rampaouni A, Tsoupras A. Antioxidant and anti-inflammatory properties of water kefir microbiota and its bioactive metabolites for health promoting bio-functional products and applications. AIMS Microbiol 2024; 10:756-811. [PMID: 39628717 PMCID: PMC11609422 DOI: 10.3934/microbiol.2024034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/05/2024] [Accepted: 08/28/2024] [Indexed: 12/06/2024] Open
Abstract
Inflammation and oxidative stress are implicated in several chronic disorders, while healthy foods and especially fermented beverages and those containing probiotics can provide anti-inflammatory and antioxidant protection against such manifestations and the associated disorders. Water kefir is such a beverage that is rich in both probiotic microbiota and anti-inflammatory bioactives, with an increasing demand as an alternative to a fermented product based on non-dairy matrix with potential health properties. Within this study, the health-promoting properties of the most representative species and strains of microorganisms present in water kefir grains, as well as the health benefits attributed to the bioactive metabolites produced by each individual strain in a series of their cultures, were thoroughly reviewed. Emphasis was given to the antioxidant, antithrombotic, and anti-inflammatory bio-functionalities of both the cultured microorganisms and the bioactive metabolites produced in each case. Moreover, an extensive presentation of the antioxidant and anti-inflammatory health benefits observed from the overall water kefir cultures and classic water kefir beverages obtained were also conducted. Finally, the use of water kefir for the production of several other bio-functional products, including fermented functional foods, supplements, nutraceuticals, nutricosmetics, cosmeceuticals, and cosmetic applications with anti-inflammatory and antioxidant health promoting potential was also thoroughly discussed. Limitations and future perspectives on the use of water kefir, its microorganisms, and their bioactive metabolites are also outlined.
Collapse
Affiliation(s)
| | | | | | - Alexandros Tsoupras
- Hephaestus Laboratory, School of Chemistry, Faculty of Science, Democritus University of Thrace, Kavala University Campus, 65404, Kavala, Greece
| |
Collapse
|
5
|
Bozkir E, Yilmaz B, Sharma H, Esatbeyoglu T, Ozogul F. Challenges in water kefir production and limitations in human consumption: A comprehensive review of current knowledge. Heliyon 2024; 10:e33501. [PMID: 39035485 PMCID: PMC11259891 DOI: 10.1016/j.heliyon.2024.e33501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/09/2024] [Accepted: 06/21/2024] [Indexed: 07/23/2024] Open
Abstract
Water kefir is a convenient dairy-free alternative to dairy-based fermented beverages. It is prepared by fermenting a sucrose solution with fresh and dried fruits using water kefir grains, and demineralized whey can be used in water kefir production. This review describes current knowledge on water kefir production and its health effects. The main aims of this paper are to focus on the microbial composition, potential health-promoting properties, limitations in human consumption, and challenges in the production of water kefir. Water kefir grains and substrates, including brown sugar, dried and fresh fruits, vegetables, and molasses, used in the production influence the fermentation characteristics and composition of water kefir. Lactic acid bacteria, acetic acid bacteria, and yeasts are the microorganisms involved in the fermentation process. Lactobacillus species are the most common microorganisms found in water kefir. Water kefir contains various bioactive compounds that have potential health benefits. Water kefir may inhibit the growth of certain pathogenic microorganisms and food spoilage bacteria, resulting in various health-promoting properties, including immunomodulatory, antihypertensive, anti-inflammatory, anti-ulcerogenic, antiobesity, hypolipidemic, and hepatoprotective activities.
Collapse
Affiliation(s)
- Eda Bozkir
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Italy
| | - Birsen Yilmaz
- Department of Biological Sciences, Tata Institute of Fundamental Research, Hyderabad, India
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Cukurova University, 01330, Adana, Turkiye
| | - Heena Sharma
- Food Technology Lab, Dairy Technology Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Tuba Esatbeyoglu
- Department of Molecular Food Chemistry and Food Development, Institute of Food and One Health, Gottfried Wilhelm Leibniz University Hannover, Am Kleinen Felde 30, 30167, Hannover, Germany
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, 01330, Adana, Turkiye
- Biotechnology Research and Application Center, Cukurova University, Adana, 01330, Turkiye
| |
Collapse
|
6
|
de Carvalho Alves J, de Souza CO, de Matos Santos L, Viana SNA, de Jesus Assis D, Tavares PPLG, Requião EDR, Ferro JMRBDS, Roselino MN. Licuri Kernel ( Syagrus coronata (Martius) Beccari): A Promising Matrix for the Development of Fermented Plant-Based Kefir Beverages. Foods 2024; 13:2056. [PMID: 38998561 PMCID: PMC11240999 DOI: 10.3390/foods13132056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
New licuri-based kefir beverages were obtained using water kefir grains as fermentation inoculum (1, 2.5, and 5%) under different fermentation times (24 and 48 h). Metagenomic sequencing of the kefir grains adapted to the aqueous licuri extract revealed Lactobacillus hilgardii and Brettanomyces bruxellensis to be predominant in this inoculum. The excellent adaptation of the kefir grains to the licuri extract raised the possibility of prebiotic action of these almonds. The beverages showed acidity values between 0.33 ± 0.00 and 0.88 ± 0.00 mg lactic acid/100 mL and pH between 3.52 ± 0.01 and 4.29 ± 0.04. The viability of lactic acid bacteria in the fermented beverages was equal to or greater than 108 CFU/mL, while yeasts were between 104 and 105 CFU/mL. There were significant differences (p < 0.05) in the proximate composition of the formulations, especially in the protein (1.37 ± 0.33-2.16 ± 0.84) and carbohydrate (5.86 ± 0.19-11.51 ± 1.26) contents. In addition, all the samples showed good stability in terms of acidity, pH, and viability for LAB and yeasts during 28 days of storage (4 °C). Overall, the beverages showed a dominant yellow-green color, non-Newtonian pseudoplastic behavior, and high mean scores in the sensory evaluation. This study provided evidence of the emerging potential of licuri in the plant-based beverage industry.
Collapse
Affiliation(s)
- Janaína de Carvalho Alves
- Northeast Biotechnology Network, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon, s/n, Salvador 40231-300, Brazil
| | - Carolina Oliveira de Souza
- Northeast Biotechnology Network, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon, s/n, Salvador 40231-300, Brazil
- Graduate Program in Food Science, Faculty of Pharmacy, Federal University of Bahia, R. Barão de Jeremoabo, 147, Salvador 40170-115, Brazil
- College of Pharmacy, Federal University of Bahia, R. Barão de Jeremoabo, 147, Salvador 40170-115, Brazil
| | - Livia de Matos Santos
- Graduate Program in Food Science, Faculty of Pharmacy, Federal University of Bahia, R. Barão de Jeremoabo, 147, Salvador 40170-115, Brazil
| | - Suelen Neris Almeida Viana
- Graduate Program in Food Science, Faculty of Pharmacy, Federal University of Bahia, R. Barão de Jeremoabo, 147, Salvador 40170-115, Brazil
| | - Denilson de Jesus Assis
- School of Exact and Technological Sciences, Salvador University, Av. Tancredo Neves, 2131, Salvador 41820-021, Brazil
- Graduate Program in Chemical Engineering (PPEQ), Polytechnic School, Federal University of Bahia, R. Prof. Aristídes Novis, 2, Salvador 40210-630, Brazil
| | | | - Elis Dos Reis Requião
- College of Pharmacy, Federal University of Bahia, R. Barão de Jeremoabo, 147, Salvador 40170-115, Brazil
| | | | - Mariana Nougalli Roselino
- College of Pharmacy, Federal University of Bahia, R. Barão de Jeremoabo, 147, Salvador 40170-115, Brazil
- Postgraduate Program in Microbiology (PPG-MICRO), Institute of Biology, Federal University of Bahia, R. Barão de Jeremoabo, 668, Salvador 40170-115, Brazil
| |
Collapse
|
7
|
Alrosan M, Tan TC, Mat Easa A, Gammoh S, Alu'datt MH, Kubow S, Madi Almajwal A, Maghaydah S, Razzak Mahmood AA, Al-Qaisi A, AlFandi H. Characterisation of the protein quality and composition of water kefir-fermented casein. Food Chem 2024; 443:138574. [PMID: 38309026 DOI: 10.1016/j.foodchem.2024.138574] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 12/21/2023] [Accepted: 01/23/2024] [Indexed: 02/05/2024]
Abstract
This study aimed to assess the technique of natural fermentation by applying water kefir to the casein protein. The diverse microorganisms and their enzymes found naturally in the water kefir can influence casein's characteristics. The fermented casein's protein quality (digestibility and secondary protein structure) and composition (total soluble solids and nutritive and non-nutritive substances) were investigated. Our findings revealed that the fermented casein's protein digestibility and total phenolic content increased from 82.46 to 88.60 % and 7.6 to 8.0 mg gallic acid equivalent/100 g, respectively. In addition, their surface charge and hydrophobicity changed from -30.06 to -34.93 mV and 286.9 to 213.7, respectively. Furthermore, the fermented casein's secondary protein components, α-helix (decreased from 13.66 to 8.21 %) and random coil (increased from 16.88 to 19.61 %), were also altered during the fermentation. Based on these findings, the water kefir fermentation approach could be an effective, practical, non-thermal approach for improving casein's protein quality and composition.
Collapse
Affiliation(s)
- Mohammad Alrosan
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia; Applied Science Research Center, Applied Science Private University, Amman 11937, Jordan.
| | - Thuan-Chew Tan
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia; Renewable Biomass Transformation Cluster, School of Industrial Technology, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia.
| | - Azhar Mat Easa
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
| | - Sana Gammoh
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Muhammad H Alu'datt
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan; Department of Food Science and Nutrition, College of Life Sciences, Kuwait University, P.O. Box. 5969, Safat 13060, Kuwait
| | - Stan Kubow
- School of Human Nutrition, Macdonald Campus, McGill University, 21,111 Lakeshore Road, Ste-Anne-De-Bellevue, QC H9X 3V9, Canada
| | - Ali Madi Almajwal
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia
| | - Sofyan Maghaydah
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan; Department of Human Nutrition and Dietetics, College of Health Sciences, Abu Dhabi University, Zayed City, Abu Dhabi, P.O. Box 59911, United Arab Emirates
| | - Ammar A Razzak Mahmood
- Department of Pharmaceutical Chemistry, College of Pharmacy-University of Baghdad, Baghdad, Bab-Al-Mouadam 10001, Iraq
| | - Ali Al-Qaisi
- Department of Agricultural Biotechnology, Faculty of Agricultural Sciences and Technology, Palestine Technical University-Kadoorie, Jaffa Street, Tulkarm, P.O. Box 7, Palestine
| | - Haya AlFandi
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| |
Collapse
|
8
|
Al-Qaisi A, Alrosan M, Almajwal AM, Gammoh S, Alu'datt MH, Kubow S, Tan TC, Mahmood AAR, Qudsi FRA. Evaluation of structure, quality, physicochemical properties, and phenolics content of pea proteins: A novel strategy through the incorporation of fermentation. J Food Sci 2024; 89:1517-1530. [PMID: 38317408 DOI: 10.1111/1750-3841.16946] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/24/2023] [Accepted: 12/31/2023] [Indexed: 02/07/2024]
Abstract
The utilization of pea proteins (PPs) is limited due to their relatively low protein digestibility (∼81%) compared to animal-based proteins, such as whey. The present investigation involved the fermentation of PPs at a concentration of 1% (w/v) using 5% (w/v) water kefir for 60 h at 25°C to improve the functional properties of PPs. The results showed a significant (p < 0.05) increase in lactic acid and acetic acid production during fermentation. These findings suggest that PPs can be effectively fermented using water kefir as a starter culture for the increased protein digestibility of PPs. The PP conformation underwent modifications, including secondary and tertiary protein structure alterations. The total phenolic compounds increased throughout the fermentation, reaching around 695.32 ± 15 mg gallic acid equivalent/100 g after 24 h of fermentation. Furthermore, the fermentation process has culminated in significant (p < 0.05) changes in the surface charge and hydrophobic properties of the fermented PPs, from -38.1 to -45.73 and 362.7 to 550.2, respectively. Fermentation using water kefir is a promising technique for improving the digestibility, protein structure, and nutritional values of PPs.
Collapse
Affiliation(s)
- Ali Al-Qaisi
- Department of Agricultural Biotechnology, Faculty of Agricultural Sciences and Technology, Palestine Technical University-Kadoorie (PTUK), Tulkarm, Palestine
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
| | - Mohammad Alrosan
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, USM, Penang, Malaysia
- Applied Science Research Centre, Applied Science Private University, Amman, Jordan
| | - Ali Madi Almajwal
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Sana Gammoh
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
| | - Muhammad H Alu'datt
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
- Department of Food Science & Nutrition, College of Life Sciences, Kuwait University, Safat, Kuwait
| | - Stan Kubow
- School of Human Nutrition, Macdonald Campus, McGill University, Montreal, Canada
| | - Thuan-Chew Tan
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, USM, Penang, Malaysia
| | - Ammar A Razzak Mahmood
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Baghdad, Baghdad, Iraq
| | - Farah R Al Qudsi
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
- Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
9
|
Aumiller K, Scheffler R, Stevens ET, Güvener ZT, Tung E, Grimaldo AB, Carlson HK, Deutschbauer AM, Taga ME, Marco ML, Ludington WB. A chemically-defined growth medium to support Lactobacillus-Acetobacter sp. community analysis. PLoS One 2023; 18:e0292585. [PMID: 37824485 PMCID: PMC10569604 DOI: 10.1371/journal.pone.0292585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/25/2023] [Indexed: 10/14/2023] Open
Abstract
Lactobacilli and Acetobacter sp. are commercially important bacteria that often form communities in natural fermentations, including food preparations, spoilage, and in the digestive tract of the fruit fly Drosophila melanogaster. Communities of these bacteria are widespread and prolific, despite numerous strain-specific auxotrophies, suggesting they have evolved nutrient interdependencies that regulate their growth. The use of a chemically-defined medium (CDM) supporting the growth of both groups of bacteria would facilitate the identification of the molecular mechanisms for the metabolic interactions between them. While numerous CDMs have been developed that support specific strains of lactobacilli or Acetobacter, there has not been a medium formulated to support both genera. We developed such a medium, based on a previous CDM designed for growth of lactobacilli, by modifying the nutrient abundances to improve growth yield. We further simplified the medium by substituting casamino acids in place of individual amino acids and the standard Wolfe's vitamins and mineral stocks in place of individual vitamins and minerals, resulting in a reduction from 40 to 8 stock solutions. These stock solutions can be used to prepare several CDM formulations that support robust growth of numerous lactobacilli and Acetobacters. Here, we provide the composition and several examples of its use, which is important for tractability in dissecting the genetic and metabolic basis of natural bacterial species interactions.
Collapse
Affiliation(s)
- Kevin Aumiller
- Department of Embryology, Carnegie Institution of Washington, Baltimore, MD, United States of America
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States of America
| | - Robert Scheffler
- Department of Embryology, Carnegie Institution of Washington, Baltimore, MD, United States of America
| | - Eric T. Stevens
- Department of Food Science and Technology, University of California, Davis, Davis, CA, United States of America
| | - Zehra T. Güvener
- Molecular and Cell Biology Department, University of California, Berkeley, Berkeley, CA, United States of America
| | - Emily Tung
- Molecular and Cell Biology Department, University of California, Berkeley, Berkeley, CA, United States of America
| | - Anna B. Grimaldo
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States of America
| | - Hans K. Carlson
- Lawrence Berkeley National Laboratory, Department of Environmental Genomics and Systems Biology, Berkeley, CA, United States of America
| | - Adam M. Deutschbauer
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States of America
- Lawrence Berkeley National Laboratory, Department of Environmental Genomics and Systems Biology, Berkeley, CA, United States of America
| | - Michiko E. Taga
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States of America
| | - Maria L. Marco
- Department of Food Science and Technology, University of California, Davis, Davis, CA, United States of America
| | - William B. Ludington
- Department of Embryology, Carnegie Institution of Washington, Baltimore, MD, United States of America
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States of America
| |
Collapse
|
10
|
Arrieta-Echeverri MC, Fernandez GJ, Duarte-Riveros A, Correa-Álvarez J, Bardales JA, Villanueva-Mejía DF, Sierra-Zapata L. Multi-omics characterization of the microbial populations and chemical space composition of a water kefir fermentation. Front Mol Biosci 2023; 10:1223863. [PMID: 37849822 PMCID: PMC10577418 DOI: 10.3389/fmolb.2023.1223863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/11/2023] [Indexed: 10/19/2023] Open
Abstract
In recent years, the popularity of fermented foods has strongly increased based on their proven health benefits and the adoption of new trends among consumers. One of these health-promoting products is water kefir, which is a fermented sugary beverage based on kefir grains (symbiotic colonies of yeast, lactic acid and acetic acid bacteria). According to previous knowledge and the uniqueness of each water kefir fermentation, the following project aimed to explore the microbial and chemical composition of a water kefir fermentation and its microbial consortium, through the integration of culture-dependent methods, compositional metagenomics, and untargeted metabolomics. These methods were applied in two types of samples: fermentation grains (inoculum) and fermentation samples collected at different time points. A strains culture collection of ∼90 strains was established by means of culture-dependent methods, mainly consisting of individuals of Pichia membranifaciens, Acetobacter orientalis, Lentilactobacillus hilgardii, Lacticaseibacillus paracasei, Acetobacter pomorum, Lentilactobacillus buchneri, Pichia kudriavzevii, Acetobacter pasteurianus, Schleiferilactobacillus harbinensis, and Kazachstania exigua, which can be further studied for their use in synthetic consortia formulation. In addition, metabarcoding of each fermentation time was done by 16S and ITS sequencing for bacteria and yeast, respectively. The results show strong population shifts of the microbial community during the fermentation time course, with an enrichment of microbial groups after 72 h of fermentation. Metataxonomics results revealed Lactobacillus and Acetobacter as the dominant genera for lactic acid and acetic acid bacteria, whereas, for yeast, P. membranifaciens was the dominant species. In addition, correlation and systematic analyses of microbial growth patterns and metabolite richness allowed the recognition of metabolic enrichment points between 72 and 96 h and correlation between microbial groups and metabolite abundance (e.g., Bile acid conjugates and Acetobacter tropicalis). Metabolomic analysis also evidenced the production of bioactive compounds in this fermented matrix, which have been associated with biological activities, including antimicrobial and antioxidant. Interestingly, the chemical family of Isoschaftosides (C-glycosyl flavonoids) was also found, representing an important finding since this compound, with hepatoprotective and anti-inflammatory activity, had not been previously reported in this matrix. We conclude that the integration of microbial biodiversity, cultured species, and chemical data enables the identification of relevant microbial population patterns and the detection of specific points of enrichment during the fermentation process of a food matrix, which enables the future design of synthetic microbial consortia, which can be used as targeted probiotics for digestive and metabolic health.
Collapse
Affiliation(s)
| | - Geysson Javier Fernandez
- Infectious Diseases Biology and Control Group (BCEI), Universidad de Antioquia UdeA, Medellín, Colombia
| | | | - Javier Correa-Álvarez
- Research Group CIBIOP, School of Applied Sciences and Engineering, Universidad EAFIT, Medellín, Antioquia, Colombia
| | | | | | - Laura Sierra-Zapata
- Research Group CIBIOP, School of Applied Sciences and Engineering, Universidad EAFIT, Medellín, Antioquia, Colombia
| |
Collapse
|
11
|
Macit E, Yücel N, Dertli E. The characterization of the non-starter lactic acid bacteria and yeast microbiota and the chemical and aromatic properties of traditionally produced Turkish White Cheese. Braz J Microbiol 2023; 54:2227-2241. [PMID: 37624476 PMCID: PMC10484850 DOI: 10.1007/s42770-023-01098-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023] Open
Abstract
Turkish White Cheese is a brined (or pickled) cheese with a salty, acidic flavor and a soft or semi-hard texture. It is the most produced and consumed type of cheese in Turkey. The purpose of this study was to determine the non-starter lactic acid bacteria and yeast microbiota of traditionally produced Turkish White Cheese and analyze the chemical properties and the aroma profile of the cheese. The results of the study identified 27 distinct strains belonging to 14 the non-starter lactic acid bacteria species and 49 different strains belonging to 11 yeast species. Lactobacillus plantarum was found to be the dominant species among the lactic acid bacteria, while Candida zeylanoides was the dominant yeast species in the White Cheese samples. In addition, Kluyveromyces lactis and Debaryomyces hansenii were prominent yeast species in cheese samples. Turkish White Cheese samples had different aromatic properties. The study is highly significant as it anaylzed both non-starter lactic acid bacteria and yeast microbiota of traditionally produced Turkish White Cheese through molecular methods. It also determined and analyzed a number of chemical and aromatic properties of White Cheese.
Collapse
Affiliation(s)
- Emine Macit
- Atatürk University, Faculty of Tourism, Department of Gastronomy and Culinary Arts, 25240, Erzurum, Turkey.
| | - Nur Yücel
- Department of Food Engineering, Faculty of Engineering, Bayburt University, Bayburt, Turkey
| | - Enes Dertli
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Yıldız Technical University, İstanbul, Turkey
| |
Collapse
|
12
|
Evaluation of quality and protein structure of natural water kefir-fermented quinoa protein concentrates. Food Chem 2023; 404:134614. [DOI: 10.1016/j.foodchem.2022.134614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 09/20/2022] [Accepted: 10/12/2022] [Indexed: 11/23/2022]
|
13
|
Improving the Functionality of Lentil–Casein Protein Complexes through Structural Interactions and Water Kefir-Assisted Fermentation. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9020194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Highly nutritious lentil proteins (LP) have recently attracted interest in the food industry. However, due to their low solubility, extensive application of LP is severely limited. This study describes a new and successful method for overcoming this challenge by improving the nutritional–functional properties of LP, particularly their solubility and protein quality. By combining protein complexation with water kefir-assisted fermentation, the water solubility of native LP (~58%) increases to over 86% upon the formation of lentil–casein protein complexes (LCPC). Meanwhile, the surface charge increases to over −40 mV, accompanied by alterations in secondary and tertiary structures, as shown by Fourier-transform infrared and UV-vis spectra, respectively. In addition, subjecting the novel LCPC to fermentation increases the protein digestibility from 76% to over 86%, due to the reduction in micronutrients that have some degree of restriction with respect to protein digestibility. This approach could be an effective and practical way of altering plant-based proteins.
Collapse
|
14
|
Wilches‐López L, Correa‐Espinal A, Pérez‐Monterroza EJ, Rojas LF. Metataxonomic and metabolic evaluation of three water kefir microbiomes cultured in sugar cane juice. J FOOD PROCESS ENG 2023. [DOI: 10.1111/jfpe.14281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Lisett Wilches‐López
- Universidad de Antioquia Escuela de Microbiología, Grupo de Biotransformación Medellín Colombia
| | - Alexander Correa‐Espinal
- Departamento de Ingeniería de la Organización Facultad de Minas—Sede Medellín Universidad Nacional de Colombia Medellín Colombia
| | - Ezequiel José Pérez‐Monterroza
- Facultad de Ciencias Administrativas, Económicas y Contables Universidad Católica Luis Amigó, Programa de Gastronomía Medellín Colombia
| | - Luisa F. Rojas
- Universidad de Antioquia Escuela de Microbiología, Grupo de Biotransformación Medellín Colombia
| |
Collapse
|
15
|
Cufaoglu G, Erdinc AN. An alternative source of probiotics: Water kefir. FOOD FRONTIERS 2023. [DOI: 10.1002/fft2.200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Gizem Cufaoglu
- Faculty of Veterinary Medicine Department of Food Hygiene and Technology Kirikkale University Kirikkale Turkey
| | - Ayse Nur Erdinc
- Faculty of Veterinary Medicine Department of Food Hygiene and Technology Kirikkale University Kirikkale Turkey
| |
Collapse
|
16
|
Araújo CDS, Macedo LL, Teixeira LJQ. Use of mid-infrared spectroscopy to predict the content of bioactive compounds of a new non-dairy beverage fermented with water kefir. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
17
|
Influence of Substrate on the Fermentation Characteristics and Culture-Dependent Microbial Composition of Water Kefir. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation9010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Water kefir is a sparkling fermented beverage produced by fermenting water kefir grains in a sucrose solution containing dried fruits or fruit extracts. The objective of this study was to investigate the influence of substrate composition on the fermentation kinetics and culture-dependent microbial composition of water kefir. First, the impact of different fruit substrates and nitrogen limitation was examined. Fermentation of different fruit-based media with a single water kefir culture demonstrated that the substrate mainly influenced the type and ratio of the organic acids produced. These organic acid profiles could be linked to the culture-dependent microbial composition. In addition, the microbial composition and the associated dominant microorganisms observed were influenced by the water kefir fermentation conditions. Investigation of the effect of nitrogen limitation on the fermentation kinetics of several water kefir cultures showed that under such conditions, the fermentative capacity of the cultures declined. However, this decline was not immediate, and specific water kefir microorganisms may have enabled some cultures to maintain a higher fermentative capacity for longer. Thus, the water kefir fermentation kinetics and characteristics could be linked to the substrate composition, microorganisms present, and the process conditions under which the fermentations were performed.
Collapse
|
18
|
Microbial Diversity of Six Commercially Available Kefir Grains. ACTA UNIVERSITATIS CIBINIENSIS. SERIES E: FOOD TECHNOLOGY 2022. [DOI: 10.2478/aucft-2022-0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Abstract
Natural kefir grains are rich in beneficial bacteria, and analysis of their microbial diversity is a necessary condition for developing and applying kefir grains. In this study, six commercially available natural kefir grains were used as raw materials to explore their microbial diversity by metagenomics. The results showed that there were 14794 genes in 6 kinds of natural kefir grains, and the number of unique genes of X1, X2, X3, X4, X5, X6 were 111, 11, 0, 1899, 552, 1, respectively. From the relative abundance table of boundary, phylum, class, order, family, genus and species, the microbial diversity at each level was analyzed.The two dominant genera at the genus level are Lactobacillus and Lactococcus, and the dominant species at the species level are Lactococcus lactis and Lactococcus kefiranofaciens, Lactococcus crispatus, and Lactococcus helveticus, etc. Species distribution and species diversity of each sample were analyzed by species heat map, principal component analysis and non-metric multidimensional calibration methods. The results showed that the microbial diversity of natural kefir grains from 6 different sources were different. The research can provide reference for the development and application of natural kefir grains in the field of dairy products.
Collapse
|
19
|
Yerlikaya O, Akan E, Kinik Ö. The metagenomic composition of water kefir microbiota. Int J Gastron Food Sci 2022. [DOI: 10.1016/j.ijgfs.2022.100621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
20
|
Characterization of kefir yeasts with antifungal capacity against Aspergillus species. Int Microbiol 2022; 26:361-370. [PMID: 36370206 DOI: 10.1007/s10123-022-00296-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/11/2022] [Accepted: 10/30/2022] [Indexed: 11/15/2022]
Abstract
Kefir is a fermented probiotic drink obtained by placing kefir granules in a suitable substrate. The kefir granules are a consortium of bacteria and yeasts embedded in a exopolysaccharide matrix. The aim of this research was the isolation and identification of yeasts from kefir of different origin, the evaluation of their antifungal capacity against Aspergillus spp., and the characterization of virulence related traits. Using RFLP of ITS1/ITS4 region, D1/D2 region sequencing, and RAPD techniques, 20 kefir isolates were identified as Geotrichum candidum, Pichia kudriavzevii, Pichia membranifaciens, Saccharomyces cerevisiae, and Candida ethanolica. Their antifungal capacity was evaluated by their conidia germination reduction, which allowed the selection of eight isolates with high to moderate conidia germination reduction against Aspergillus flavus and Aspergillus parasiticus. Furthermore, these selected isolates showed growth inhibition on contact in the dual culture assay for both Aspergillus species and 3 of them-belonging to S. cerevisiae and P. kudriavzevii species-generated volatile organic compounds which significantly affected the growth of both fungi. For the evaluation of virulence-related traits, growth at high temperatures, enzymatic activities, and the adhesion to Caco-2 cells were analyzed. The isolates did not present more than one positive virulence-related trait simultaneously. In particular, it is important to highlight that the adhesion capacity to the model of intestinal barrier was extremely low for all of them. According to the results obtained, further studies would be of interest for the possible use of these promising yeasts as biocontrol agents against fungi in food.
Collapse
|
21
|
Sy H, Chan M, Finley J. Determination of Ethanol Content in Water Kefir Using Headspace Gas Chromatography With Mass Spectrometry Detection: Matrix Extension and Methanol Characterization. J AOAC Int 2022; 106:348-355. [PMID: 36264117 PMCID: PMC9978574 DOI: 10.1093/jaoacint/qsac125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Water kefir is a fermented beverage using water, sugar, and cultured microorganism grains as the primary ingredients. Ethanol may be present at varying levels within the final product due to the fermentation process, so it is vital to have a validated method to meet regulatory, quality, and safety requirements. OBJECTIVE This study describes using water kefir as a matrix for the evaluation of the previously validated method employing headspace gas chromatography mass spectrometry (HS-GCMS) detection for ethanol in kombucha. The study objective is to demonstrate the method originally using kombucha is also fit for the analysis of water kefir. This method will also evaluate the determination of methanol within the water kefir samples. METHOD The matrix extension study was performed as per the AOAC INTERNATIONAL guidance documents outlined in Appendix K: Guidelines for Dietary Supplements and Botanicals using HS-GCMS for ethanol determination. Ethanol determination in each water kefir sample is quantified against an external standard calibration curve. The same instrumentation is used for methanol characterization. RESULTS RSDr and HorRat values obtained for from the study demonstrated acceptable precision with RSDr values of 1.03 to 6.68% and HorRat values determined to be between 0.23 and 1.52 for ethanol determination within kefir samples. Similarly, acceptable values of RSDr ranging from 1.45 to 3.39% and HorRat ranging from 0.25 to 0.49 were observed with methanol determination. For methanol determination, the limit of detection (LOD) and limit of quantification (LOQ) determined for the method in this study to be 16 and 21 ppm, respectively. The methanol spike recovery study gave overall recoveries ranging from 89 to 91%, demonstrating acceptable method accuracy. CONCLUSIONS The results of this study demonstrate the previously validated HS-GCMS method for ethanol determination in kombucha can also be used to quantify ethanol in water kefir samples. The method is also suitable for the determination of methanol within water kefir samples. HIGHLIGHTS A straightforward method has been adapted to include the the quantification of ethanol and methanol in fermented beverages such as Water Kefir samples.
Collapse
Affiliation(s)
- Hong Sy
- Corresponding author’s e-mail:
| | - Michael Chan
- Natural Health and Food Products Research Group, British Columbia Institute of Technology, 3700 Willingdon Ave, Burnaby, BC V5G 3H2, Canada
| | - Jamie Finley
- Natural Health and Food Products Research Group, British Columbia Institute of Technology, 3700 Willingdon Ave, Burnaby, BC V5G 3H2, Canada
| |
Collapse
|
22
|
Culpepper T. The Effects of Kefir and Kefir Components on Immune and Metabolic Physiology in Pre-Clinical Studies: A Narrative Review. Cureus 2022; 14:e27768. [PMID: 36106262 PMCID: PMC9450431 DOI: 10.7759/cureus.27768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2022] [Indexed: 02/01/2023] Open
Abstract
Kefir, a fermented beverage made from kefir grains, has gained immense popularity around the world due to its potential health-promoting properties. Kefir beverages are both marketed commercially and brewed privately by individuals. Both milk and sugar solutions can be used as substrates with various additives included based on consumer preference. Fermentation occurs via microorganisms including lactic acid bacteria, acetic acid bacteria, and yeasts, which are naturally present in kefir grains. Health-promoting effects of kefir are thought to occur through immune, gastrointestinal, and metabolic regulation. Both clinical trials and mechanistic studies in cell culture and animal models have explored these effects. Studies in vitro and in animals have shown the ability of kefir and kefir components to antagonize pathogens, reduce proinflammatory cytokine production, contribute to cytotoxicity of tumor cell lines and reduce tumor burden, and improve serum glycemic and lipid profiles. However, some data from clinical trials are conflicting, and the precise mechanisms by which kefir promotes well-being are not completely defined. This review summarizes the current body of evidence in both cell culture and animal models that provide insight into the mechanisms by which kefir beverages may protect consumers from enteric infections and improve immune and metabolic health. We believe that readers will gain knowledge helpful for both developing more targeted mechanistic studies and selecting informative outcomes when designing clinical studies.
Collapse
|
23
|
Patel S, Tan J, Börner R, Zhang S, Priour S, Lima A, Ngom-Bru C, Cotter P, Duboux S. A temporal view of the water kefir microbiota and flavour attributes. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
24
|
Lima Parente Fernandes M, Cristina de Souza A, Sérgio Pedroso Costa Júnior P, Ayra Alcântara Veríssimo L, Satler Pylro V, Ribeiro Dias D, Freitas Schwan R. Sugary kefir grains as the inoculum for developing a low sodium isotonic beverage. Food Res Int 2022; 157:111257. [DOI: 10.1016/j.foodres.2022.111257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 12/15/2022]
|
25
|
Laureys D, Leroy F, Vandamme P, De Vuyst L. Backslopping Time, Rinsing of the Grains During Backslopping, and Incubation Temperature Influence the Water Kefir Fermentation Process. Front Microbiol 2022; 13:871550. [PMID: 35602025 PMCID: PMC9120925 DOI: 10.3389/fmicb.2022.871550] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
For eight backslopping steps, eight series of water kefir fermentation processes differing in backslopping time and rinsing of the grains during each backslopping step and eight series of fermentation processes differing in incubation temperature and backslopping time were followed. Short backslopping times resulted in high relative abundances of Liquorilactobacillus nagelii and Saccharomyces cerevisiae, intermediate backslopping times in high relative abundances of Leuconostoc pseudomesenteroides, and long backslopping times in high relative abundances of Oenococcus sicerae and Dekkera bruxellensis. When the grains were rinsed during each backslopping step, the relative abundances of Lentilactobacillus hilgardii and Leuc. pseudomesenteroides increased and those of D. bruxellensis and Liql. nagelii decreased. Furthermore, rinsing of the grains during each backslopping step resulted in a slightly higher water kefir grain growth and lower metabolite concentrations. The relative abundances of Liquorilactobacillus mali were highest at 17°C, those of Leuc. pseudomesenteroides at 21 and 25°C, and those of Liql. nagelii at 29°C. With a kinetic modeling approach, the impact of the temperature and rinsing of the grains during the backslopping step on the volumetric production rates of the metabolites was determined.
Collapse
Affiliation(s)
- David Laureys
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Frédéric Leroy
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
- *Correspondence: Frédéric Leroy
| | - Peter Vandamme
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
26
|
Tan LL, Tan CH, Ng NKJ, Tan YH, Conway PL, Loo SCJ. Potential Probiotic Strains From Milk and Water Kefir Grains in Singapore-Use for Defense Against Enteric Bacterial Pathogens. Front Microbiol 2022; 13:857720. [PMID: 35432232 PMCID: PMC9011154 DOI: 10.3389/fmicb.2022.857720] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/15/2022] [Indexed: 12/15/2022] Open
Abstract
Kefir grains consist of complex symbiotic mixtures of bacteria and yeasts, and are reported to impart numerous health-boosting properties to milk and water kefir beverages. The objective of this work was to investigate the microbial communities in kefir grains, and explore the possibility of deriving useful probiotic strains from them. A total of 158 microbial strains, representing six fungal and 17 bacterial species, were isolated from milk and water kefir grains collected from a Singapore-based homebrewer. Based on 16S rRNA sequencing, isolated genera included Lactobacillus, Liquorilactobacillus, Lacticaseibacillus, Lentilactobacillus, Leuconostoc, Lactococcus, Acetobacter, Gluconobacter, Oenococcus, Clostridium, Zymomonas, Saccharomyces, Kluyveromyces, Pichia, Lachancea, Candida, and Brettanomyces. To characterize these isolates, a funnel approach, involving numerous phenotypic and genomic screening assays, was applied to identify kefir-derived microbial strains with the highest probiotic potential. Particular focus was placed on examining the pathogen inhibitory properties of kefir isolates toward enteric pathogens which pose a considerable global health burden. Enteric pathogens tested include species of Bacillus, Salmonella, Vibrio, Clostridium, Klebsiella, Escherichia, and Staphylococcus. Well diffusion assays were conducted to determine the propensity of kefir isolates to inhibit growth of enteric pathogens, and a competitive adhesion/exclusion assay was used to determine the ability of kefir isolates to out-compete or exclude attachment of enteric pathogens to Caco-2 cells. Seven bacterial strains of Lentilactobacillus hilgardii, Lacticaseibacillus paracasei, Liquorilactobacillus satsumensis, Lactobacillus helveticus, and Lentilactobacillus kefiri, were ultimately identified as potential probiotics, and combined to form a "kefir probiotics blend." Desirable probiotic characteristics, including good survival in acid and bile environments, bile salt hydrolase activity, antioxidant activity, non-cytotoxicity and high adhesion to Caco-2 cells, and a lack of virulence or antimicrobial resistance genes. In addition, vitamin and γ-aminobutyric acid (GABA) synthesis genes, were identified in these kefir isolates. Overall, probiotic candidates derived in this study are well-characterized strains with a good safety profile which can serve as novel agents to combat enteric diseases. These kefir-derived probiotics also add diversity to the existing repertoire of probiotic strains, and may provide consumers with alternative product formats to attain the health benefits of kefir.
Collapse
Affiliation(s)
- Li Ling Tan
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Chuan Hao Tan
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Noele Kai Jing Ng
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Yoke Hun Tan
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Patricia Lynne Conway
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Say Chye Joachim Loo
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
27
|
Motlhanka K, Lebani K, Garcia-Aloy M, Zhou N. Functional Characterization of khadi Yeasts Isolates for Selection of Starter Cultures. J Microbiol Biotechnol 2022; 32:307-316. [PMID: 34866127 PMCID: PMC9628858 DOI: 10.4014/jmb.2109.09003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/11/2021] [Accepted: 11/29/2021] [Indexed: 12/15/2022]
Abstract
Yeasts play an important role in spontaneous fermentation of traditional alcoholic beverages. Our previous study revealed that a mixed-consortia of both Saccharomyces and non-Saccharomyces yeasts were responsible for fermentation of khadi, a popular, non-standardized traditional beverage with an immense potential for commercialization in Botswana. Functional characterization of isolated fermenting yeasts from mixed consortia is an indispensable step towards the selection of potential starter cultures for commercialization of khadi. In this study, we report the characterization of 13 khadi isolates for the presence of brewing-relevant phenotypes such as their fermentative capacity, ability to utilize a range of carbon sources and their ability to withstand brewing-associated stresses, as a principal step towards selection of starter cultures. Khadi isolates such as Saccharomyces cerevisiae, Saccharomycodes ludwigii and Candida ethanolica showed good brewing credentials but Lachancea fermentati emerged as the isolate with the best brewing attributes with a potential as a starter culture. However, we were then prompted to investigate the potential of L. fermentati to influence the fruity aromatic flavor, characteristic of khadi. The aroma components of 18 khadi samples were extracted using headspace solid phase micro-extraction (HSSPME) and identified using a GC-MS. We detected esters as the majority of volatile compounds in khadi, typical of the aromatic signature of both khadi and L. fermentati associated fermentations. This work shows that L. fermentati has potential for commercial production of khadi.
Collapse
Affiliation(s)
- Koketso Motlhanka
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Private Bag 16, Central District, Palapye, Botswana
| | - Kebaneilwe Lebani
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Private Bag 16, Central District, Palapye, Botswana
| | - Mar Garcia-Aloy
- Metabolomics Unit, Food Quality and Nutrition Department, Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38098 San Michele all’Adige, Italy
| | - Nerve Zhou
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Private Bag 16, Central District, Palapye, Botswana
| |
Collapse
|
28
|
From Milk Kefir to Water Kefir: Assessment of Fermentation Processes, Microbial Changes and Evaluation of the Produced Beverages. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8030135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The aim of the present study was to investigate the feasibly of using traditional milk kefir grains for the production of water kefir-like beverages and assess the changes in the physicochemical characteristics and the microbial populations of the fermented beverages. To this end, experiments of milk fermentation were primarily conducted at different temperatures and upon selection of the optimal, a gradual substitution of the substrate was performed by replacing milk from a sucrose-based solution. After the successful fermentation of the sucrose substrate, fruit juices were used as fermentation substrates. Sensory evaluation of the sugar-based beverages was also performed in order to access their acceptability for consumption. According to the results, the transition from milk to water kefir is indeed feasible, leading to the production of beverages with relatively higher ethanol concentrations (up to 2.14 ± 0.12% w/v) than milk kefir and much lower lactic acid concentrations (up to 0.16 ± 0.01% w/v). During the fermentation of the sugary substrates, yeasts seemed to be dominant over lactic acid bacteria, in contrast to what was observed in the case of milk kefir, where LAB dominated. The sensory evaluation revealed that all sugar-based beverages were acceptable for consumption, with the fruit-based ones obtaining, though, a better score in all attributes.
Collapse
|
29
|
Gökırmaklı Ç, Guzel-Seydim ZB. Water Kefir Grains vs. Milk Kefir Grains: Physical, Microbial and Chemical Comparison. J Appl Microbiol 2022; 132:4349-4358. [PMID: 35301787 DOI: 10.1111/jam.15532] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 11/30/2022]
Abstract
AIMS Even though kefir has been known for centuries, there is confusion between the two types of kefir grains, e.g., milk kefir grain and water kefir grain. This study aimed to unravel the differences and similarities between water kefir grain and milk kefir grain. METHODS AND RESULTS Microbiological analyses, identification of grains microbiota and enumeration of microbiological content of the grains as well as Scanning Electron Microscope (SEM) imaging, dry matter, protein, ash, and mineral content, and color analyses were carried out for the two types of grains. As a result, significant differences were found in microbiological content, chemical properties, and colors (p<0.05). Additionally, SEM images revealed the different intrinsic structures for the microbiota and the structure of the two types of grains. CONCLUSIONS MK grain has more nutritional content compared to WK grain. Despite not as widely known and used as MK grain, WK grain is a good source for minerals and health-friendly microorganisms like lactic acid bacteria (LAB) and yeasts. WK grain is possibly suitable for vegans and allergic individuals to fulfill nutritional requirements. Moreover, in this study, the variety of WK grain microbial consortia was wider than that of MK grains, and this significantly affected the resultant WK products. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first study that comprehensively compares two different kefir grains in microbial, chemical, and physical properties.
Collapse
Affiliation(s)
- Çağlar Gökırmaklı
- Department of Ffood Engineering, Süleyman Demirel University, Isparta 32260, Turkey
| | | |
Collapse
|
30
|
WATER KEFIR, A FERMENTED BEVERAGE CONTAINING PROBIOTIC MICROORGANISMS: FROM ANCIENT AND ARTISANAL MANUFACTURE TO INDUSTRIALIZED AND REGULATED COMMERCIALIZATION. FUTURE FOODS 2022. [DOI: 10.1016/j.fufo.2022.100123] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
31
|
Falsoni RMP, Moraes FDSA, Rezende MSD, Silva CLD, Andrade TUD, Brasil GA, Lima EMD. Pretreatment with water kefir reduces the development of acidified ethanol-induced gastric ulcers. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e191046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
32
|
Paredes JL, Escudero-Gilete ML, Vicario IM. A new functional kefir fermented beverage obtained from fruit and vegetable juice: Development and characterization. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112728] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
33
|
Darvishzadeh P, Orsat V. Storage Stability and In Vitro Digestion of Microencapsulated Russian Olive Water Kefir Using Spray-Drying. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02741-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
34
|
Pendón MD, Bengoa AA, Iraporda C, Medrano M, Garrote GL, Abraham AG. Water kefir: Factors affecting grain growth and health-promoting properties of the fermented beverage. J Appl Microbiol 2021; 133:162-180. [PMID: 34822204 DOI: 10.1111/jam.15385] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 10/18/2021] [Accepted: 11/22/2021] [Indexed: 01/07/2023]
Abstract
Nowadays, the interest in the consumption of healthy foods has increased as well as the homemade preparation of artisanal fermented product. Water kefir is an ancient drink of uncertain origin, which has been passed down from generation to generation and is currently consumed practically all over the world. Considering the recent and extensive updates published on sugary kefir, this work aims to shed light on the scientific works that have been published so far in relation to this complex ecosystem. We focused our review evaluating the factors that affect the beverage microbial and chemical composition that are responsible for the health attribute of water kefir as well as the grain growth. The microbial ecosystem that constitutes the grains and the fermented consumed beverage can vary according to the fermentation conditions (time and temperature) and especially with the use of different substrates (source of sugars, additives as fruits and molasses). In this sense, the populations of microorganisms in the beverage as well as the metabolites that they produce varies and in consequence their health properties. Otherwise, the knowledge of the variables affecting grain growth are also discussed for its relevance in maintenance of the starter biomass as well as the use of dextran for technological application.
Collapse
Affiliation(s)
- María Dolores Pendón
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA, UNLP-CIC-CONICET), La Plata, Argentina
| | - Ana Agustina Bengoa
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA, UNLP-CIC-CONICET), La Plata, Argentina
| | - Carolina Iraporda
- Departamento de Ingeniería Química y Tecnología de los Alimentos, Facultad de Ingeniería, UNCPBA, Olavarría, Argentina
| | - Micaela Medrano
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA, UNLP-CIC-CONICET), La Plata, Argentina
| | - Graciela L Garrote
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA, UNLP-CIC-CONICET), La Plata, Argentina
| | - Analía G Abraham
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA, UNLP-CIC-CONICET), La Plata, Argentina.,Área Bioquímica y Control de Alimentos, Facultad de Ciencias Exactas, UNLP, La Plata, Argentina
| |
Collapse
|
35
|
Calatayud M, Börner RA, Ghyselinck J, Verstrepen L, Medts JD, den Abbeele PV, Boulangé CL, Priour S, Marzorati M, Damak S. Water Kefir and Derived Pasteurized Beverages Modulate Gut Microbiota, Intestinal Permeability and Cytokine Production In Vitro. Nutrients 2021; 13:nu13113897. [PMID: 34836151 PMCID: PMC8625349 DOI: 10.3390/nu13113897] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 01/08/2023] Open
Abstract
Fermentation is an ancient food preservation process, and fermented products have been traditionally consumed in different cultures worldwide over the years. The interplay between human gut microbiota, diet and host health is widely recognized. Diet is one of the main factors modulating gut microbiota potentially with beneficial effects on human health. Fermented dairy products have received much attention, but other sources of probiotic delivery through food received far less attention. In this research, a combination of in vitro tools mimicking colonic fermentation and the intestinal epithelium have been applied to study the effect of different pasteurized and non-pasteurized water kefir products on gut microbiota, epithelial barrier function and immunomodulation. Water kefir increased beneficial short-chain fatty acid production at the microbial level, reduced detrimental proteolytic fermentation compounds and increased Bifidobacterium genus abundance. The observed benefits are enhanced by pasteurization. Pasteurized products also had a significant effect at the host level, improving inflammation-induced intestinal epithelial barrier disruption and increasing IL-10 and IL-1β compared to the control condition. Our data support the potential health benefits of water kefir and demonstrate that pasteurization, performed to prolong shelf life and stability of the product, also enhanced these benefits.
Collapse
Affiliation(s)
- Marta Calatayud
- ProDigest, Technologiepark 82, 9052 Zwijnaarde, Belgium; (M.C.); (J.G.); (L.V.); (J.D.M.); (P.V.d.A.)
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Rosa Aragao Börner
- Nestlé Institute of Health Sciences, and Nestlé Institute of Material Sciences, Nestlé Research, Société des Produits Nestlé S.A., Vers-chez-les-Blanc, 1000 Lausanne, Switzerland; (C.L.B.); (S.P.); (S.D.)
- Correspondence: (R.A.B.); (M.M.)
| | - Jonas Ghyselinck
- ProDigest, Technologiepark 82, 9052 Zwijnaarde, Belgium; (M.C.); (J.G.); (L.V.); (J.D.M.); (P.V.d.A.)
| | - Lynn Verstrepen
- ProDigest, Technologiepark 82, 9052 Zwijnaarde, Belgium; (M.C.); (J.G.); (L.V.); (J.D.M.); (P.V.d.A.)
| | - Jelle De Medts
- ProDigest, Technologiepark 82, 9052 Zwijnaarde, Belgium; (M.C.); (J.G.); (L.V.); (J.D.M.); (P.V.d.A.)
| | - Pieter Van den Abbeele
- ProDigest, Technologiepark 82, 9052 Zwijnaarde, Belgium; (M.C.); (J.G.); (L.V.); (J.D.M.); (P.V.d.A.)
| | - Claire L. Boulangé
- Nestlé Institute of Health Sciences, and Nestlé Institute of Material Sciences, Nestlé Research, Société des Produits Nestlé S.A., Vers-chez-les-Blanc, 1000 Lausanne, Switzerland; (C.L.B.); (S.P.); (S.D.)
| | - Sarah Priour
- Nestlé Institute of Health Sciences, and Nestlé Institute of Material Sciences, Nestlé Research, Société des Produits Nestlé S.A., Vers-chez-les-Blanc, 1000 Lausanne, Switzerland; (C.L.B.); (S.P.); (S.D.)
| | - Massimo Marzorati
- ProDigest, Technologiepark 82, 9052 Zwijnaarde, Belgium; (M.C.); (J.G.); (L.V.); (J.D.M.); (P.V.d.A.)
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
- Correspondence: (R.A.B.); (M.M.)
| | - Sami Damak
- Nestlé Institute of Health Sciences, and Nestlé Institute of Material Sciences, Nestlé Research, Société des Produits Nestlé S.A., Vers-chez-les-Blanc, 1000 Lausanne, Switzerland; (C.L.B.); (S.P.); (S.D.)
| |
Collapse
|
36
|
Pihurov M, Păcularu-Burada B, Cotârleţ M, Vasile MA, Bahrim GE. Novel Insights for Metabiotics Production by Using Artisanal Probiotic Cultures. Microorganisms 2021; 9:2184. [PMID: 34835310 PMCID: PMC8624174 DOI: 10.3390/microorganisms9112184] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/16/2021] [Accepted: 10/16/2021] [Indexed: 01/15/2023] Open
Abstract
Wild probiotic consortia of microorganisms (bacteria and yeasts) associated in the artisanal cultures' microbiota (milk kefir grains, water kefir grains and kombucha) are considered valuable promoters for metabiotics (prebiotics, probiotics, postbiotics and paraprobiotics) production. The beneficial effects of the fermented products obtained with the artisanal cultures on human well-being are described by centuries and the interest for them is continuously increasing. The wild origin and microbial diversity of these above-mentioned consortia give them extraordinary protection capacity against microbiological contaminants in unusual physico-chemical conditions and unique fermentative behaviour. This review summarizes the state of the art for the wild artisanal cultures (milk and water kefir grains, respectively, kombucha-SCOBY), their symbiotic functionality, and the ability to ferment unconventional substrates in order to obtain valuable bioactive compounds with in vitro and in vivo beneficial functional properties. Due to the necessity of the bioactives production and their use as metabiotics in the modern consumer's life, artisanal cultures are the perfect sources able to biosynthesize complex functional metabolites (bioactive peptides, antimicrobials, polysaccharides, enzymes, vitamins, cell wall components). Depending on the purposes of the biotechnological fermentation processes, artisanal cultures can be used as starters on different substrates. Current studies show that the microbial synergy between bacteria-yeast and/or bacteria-offers new perspectives to develop functional products (food, feeds, and ingredients) with a great impact on life quality.
Collapse
Affiliation(s)
| | | | | | | | - Gabriela Elena Bahrim
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Domneasca Street No. 111, 800201 Galati, Romania; (M.P.); (B.P.-B.); (M.C.); (M.A.V.)
| |
Collapse
|
37
|
Ghibaudo F, Gerbino E, Hugo AA, Campo Dall' Orto V, Gomez-Zavaglia A. Fortification of water kefir with magnetite nanoparticles. Food Res Int 2021; 149:110650. [PMID: 34600652 DOI: 10.1016/j.foodres.2021.110650] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/09/2021] [Accepted: 08/17/2021] [Indexed: 02/07/2023]
Abstract
The aim of this work was to evaluate the suitability of incorporating Fe3O4 (magnetite, M) NPs into water kefir (wKef) beverages. Magnetite NPs were synthesized and coated with pectins (cM), and incorporated into wKef beverages obtained by fermentation of a muscovado sugar solution with wKef grains. FeSO4, usually employed as fortifier, was used as a control. Four different beverages were analyzed: wKef, wKef-cM, wKef-M, wKef-FeSO4, indicating wKef beverages fortified with cM, M or FeSO4, respectively. Their stability was assessed by determining the viability of total lactic acid bacteria and yeasts, and the composition of saccharides along storage at 4 °C for up to 30 days. The toxicity of M and cM was evaluated in an in vivo model of Artemia salina. The absorption of iron was quantified by determining ferritin values on intestinal Caco-2/TC7 cells, and its internalization mechanisms, by employing inhibitors of endocytic pathways and quantifying ferritin. M and cM were non-toxic on Artemia salina up to 500 µg/mL, a toxicity even lower than that of FeSO4, which showed a LD50 of 304.08 µg/mL. After 30 days of storage, no significant decrease on yeasts viability was observed, and bacteria viability was above 6 log CFU/mL for the four beverages. In turn, sucrose decreased to undetectable values, concomitantly to an increase in the concentrations of glucose and fructose. Both wKef-M and wKef-cM led to a significant increase in the ferritin values (up to 2 folds) with regard to the basal state. The internalization of M NPs occurred via clathrins and caveolin pathways, whereas that of cM, by macropinocytosis. Safely incorporating M and cM NPs into wKef beverages appear as an innovative strategy for providing bioavailable iron aiming to ameliorate the nutritional status of populations at risk of iron deficiency (e.g., vegans).
Collapse
Affiliation(s)
- F Ghibaudo
- Center for Research and Development in Food Cryotechnology (CCT-CONICET La Plata, UNLP) RA-1900, Argentina
| | - E Gerbino
- Center for Research and Development in Food Cryotechnology (CCT-CONICET La Plata, UNLP) RA-1900, Argentina
| | - A A Hugo
- Center for Research and Development in Food Cryotechnology (CCT-CONICET La Plata, UNLP) RA-1900, Argentina
| | - V Campo Dall' Orto
- Department of Analytical Chemistry and Physical Chemistry, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Chemistry and Drug Metabolism Institute (IQUIMEFA, CONICET), Junín 956, RA 1113, Argentina
| | - A Gomez-Zavaglia
- Center for Research and Development in Food Cryotechnology (CCT-CONICET La Plata, UNLP) RA-1900, Argentina.
| |
Collapse
|
38
|
Álvarez SA, Rocha‐Guzmán NE, Moreno‐Jiménez MR, Gallegos‐Infante JA, Pérez‐Martínez JD, Rosas‐Flores W. Functional fermented beverage made with apple, tibicos, and pectic polysaccharides from prickly pear (
Opuntia ficus‐indica
L. Mill) peels. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Saúl Alberto Álvarez
- Department of Chemical and Biochemical Engineering TecNM/Instituto Tecnológico de Durango Durango Mexico
| | | | | | | | | | - Walfred Rosas‐Flores
- Department of Chemical and Biochemical Engineering TecNM/Instituto Tecnológico de Durango Durango Mexico
| |
Collapse
|
39
|
Guzel-Seydim ZB, Gökırmaklı Ç, Greene AK. A comparison of milk kefir and water kefir: Physical, chemical, microbiological and functional properties. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.041] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
40
|
Kumar MR, Yeap SK, Mohamad NE, Abdullah JO, Masarudin MJ, Khalid M, Leow ATC, Alitheen NB. Metagenomic and phytochemical analyses of kefir water and its subchronic toxicity study in BALB/c mice. BMC Complement Med Ther 2021; 21:183. [PMID: 34210310 PMCID: PMC8247212 DOI: 10.1186/s12906-021-03358-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/21/2021] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND In recent years, researchers are interested in the discovery of active compounds from traditional remedies and natural sources, as they reveal higher therapeutic efficacies and improved toxicological profiles. Among the various traditional treatments that have been widely studied and explored for their potential therapeutic benefits, kefir, a fermented beverage, demonstrates a broad spectrum of pharmacological properties, including antioxidant, anti-inflammation, and healing activities. These health-promoting properties of kefir vary among the kefir cultures found at the different part of the world as different media and culture conditions are used for kefir maintenance and fermentation. METHODS This study investigated the microbial composition and readily found bioactive compounds in water kefir fermented in Malaysia using 16S rRNA microbiome and UHPLC sequencing approaches. The toxicity effects of the kefir water administration in BALB/c mice were analysed based on the mice survival, body weight index, biochemistry profile, and histopathological changes. The antioxidant activities were evaluated using SOD, FRAP, and NO assays. RESULTS The 16S rRNA amplicon sequencing revealed the most abundant species found in the water kefir was Lactobacillus hilgardii followed by Lactobacillus harbinensis, Acetobacter lovaniensis, Lactobacillus satsumensis, Acetobacter tropicalis, Lactobacillus zeae, and Oenococcus oeni. The UHPLC screening showed flavonoid and phenolic acid derivatives as the most important bioactive compounds present in kefir water which has been responsible for its antioxidant activities. Subchronic toxicity study showed no toxicological signs, behavioural changes, or adverse effects by administrating 10 mL/kg/day and 2.5 mL/kg/day kefir water to the mice. Antioxidants assays demonstrated enhanced SOD and FRAP activities and reduced NO level, especially in the brain and kidney samples. CONCLUSIONS This study will help to intensify the knowledge on the water kefir microbial composition, available phytochemicals and its toxicological and antioxidant effects on BALB/c mice since there are very limited studies on the water kefir grain fermented in Malaysia.
Collapse
Affiliation(s)
- Muganti Rajah Kumar
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, 43400 Serdang, Selangor Darul Ehsan Malaysia
| | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, 43900 Sepang, Malaysia
| | - Nurul Elyani Mohamad
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, 43400 Serdang, Selangor Darul Ehsan Malaysia
- Biotechnology Research Institute, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah Malaysia
| | - Janna Ong Abdullah
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, 43400 Serdang, Selangor Darul Ehsan Malaysia
| | - Mas Jaffri Masarudin
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, 43400 Serdang, Selangor Darul Ehsan Malaysia
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan Malaysia
| | - Melati Khalid
- Biotechnology Research Institute, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah Malaysia
| | - Adam Thean Chor Leow
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, 43400 Serdang, Selangor Darul Ehsan Malaysia
| | - Noorjahan Banu Alitheen
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, 43400 Serdang, Selangor Darul Ehsan Malaysia
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan Malaysia
- Department of Biomedical Sciences, Universiti Putra Malaysia, UPM, 43400 Serdang, Selangor Darul Ehsan Malaysia
| |
Collapse
|
41
|
Staniszewski A, Kordowska-Wiater M. Probiotic and Potentially Probiotic Yeasts-Characteristics and Food Application. Foods 2021; 10:1306. [PMID: 34200217 PMCID: PMC8228341 DOI: 10.3390/foods10061306] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/27/2021] [Accepted: 06/03/2021] [Indexed: 11/16/2022] Open
Abstract
Probiotics are live microorganisms which when administered in adequate amounts confer a health benefit on the host. Besides the well-known and tested lactic acid bacteria, yeasts may also be probiotics. The subject of probiotic and potentially probiotic yeasts has been developing and arising potential for new probiotic products with novel properties, which are not offered by bacteria-based probiotics available on the current market. The paper reviews the first probiotic yeast Saccharomyces cerevisiae var. boulardii, its characteristics, pro-healthy activities and application in functional food production. This species offers such abilities as improving digestion of certain food ingredients, antimicrobial activities and even therapeutic properties. Besides Saccharomyces cerevisiae var. boulardii, on this background, novel yeasts with potentially probiotic features are presented. They have been intensively investigated for the last decade and some species have been observed to possess probiotic characteristics and abilities. There are yeasts from the genera Debaryomyces, Hanseniaspora, Pichia, Meyerozyma, Torulaspora, etc. isolated from food and environmental habitats. These potentially probiotic yeasts can be used for production of various fermented foods, enhancing its nutritional and sensory properties. Because of the intensively developing research on probiotic yeasts in the coming years, we can expect many discoveries and possibly even evolution in the segment of probiotics available on the market.
Collapse
Affiliation(s)
| | - Monika Kordowska-Wiater
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland;
| |
Collapse
|
42
|
Darvishzadeh P, Orsat V, Faucher SP. Encapsulation of Russian Olive Water Kefir as an Innovative Functional Drink with High Antioxidant Activity. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2021; 76:161-169. [PMID: 33715102 DOI: 10.1007/s11130-021-00886-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Abstract
Processing of Russian olive water kefir (RWK), as a fermented functional drink made with Russian olive juice and water kefir grains with high antioxidant activity, into powder is crucial for improving its stability for the commercialization of this product. For the first time, this study aimed to encapsulate water kefir microorganisms and bioactive compounds in RWK using carrier materials to develop a synbiotic functional powder using spray drying as an encapsulation method. The goal was maximizing antioxidant activity, product yield, and survival rate of water kefir microorganisms in the produced Russian olive water kefir powder. The optimal spray drying conditions were observed to be at an inlet air temperature of 120ºC, 35 % feed flow rate, and 7 % concentration of drying aid. The effects of spray drying conditions on the quality of microcapsules were assessed and modeled, and the validity of the model was verified. Also, the spray-dried powder's physicochemical properties were assessed and showed promising microbial and physicochemical characteristics compared with the freeze-dried powder.
Collapse
Affiliation(s)
- Pariya Darvishzadeh
- Department of Bioresource Engineering, McGill University, 21111 Lakeshore Road, Sainte Anne de Bellevue, Montreal, Quebec, H9X 3V9, Canada.
| | - Valérie Orsat
- Department of Bioresource Engineering, McGill University, 21111 Lakeshore Road, Sainte Anne de Bellevue, Montreal, Quebec, H9X 3V9, Canada
| | - Sebastien P Faucher
- Department of Natural Resource Sciences, McGill University, 21111 Lakeshore Road, Sainte Anne de Bellevue, Montreal, Quebec, H9X 3V9, Canada
| |
Collapse
|
43
|
Umegatani M, Takesue N, Asano S, Tadami H, Uemura K. Study of Beer Spoilage Lactobacillus nagelii Harboring Hop Resistance Gene horA. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2021. [DOI: 10.1080/03610470.2021.1915073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Minami Umegatani
- Research Laboratories for Alcohol Beverages, Asahi Breweries Ltd., Moriya, Japan
| | - Nobuchika Takesue
- Research Laboratories for Alcohol Beverages, Asahi Breweries Ltd., Moriya, Japan
| | - Shizuka Asano
- Research Laboratories for Alcohol Beverages, Asahi Breweries Ltd., Moriya, Japan
| | - Hideyo Tadami
- Research Laboratories for Alcohol Beverages, Asahi Breweries Ltd., Moriya, Japan
| | - Kazuhiko Uemura
- Research Laboratories for Alcohol Beverages, Asahi Breweries Ltd., Moriya, Japan
| |
Collapse
|
44
|
Kefir and Its Biological Activities. Foods 2021; 10:foods10061210. [PMID: 34071977 PMCID: PMC8226494 DOI: 10.3390/foods10061210] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/07/2021] [Accepted: 04/10/2021] [Indexed: 02/01/2023] Open
Abstract
Kefir is a fermented beverage with renowned probiotics that coexist in symbiotic association with other microorganisms in kefir grains. This beverage consumption is associated with a wide array of nutraceutical benefits, including anti-inflammatory, anti-oxidative, anti-cancer, anti-microbial, anti-diabetic, anti-hypertensive, and anti-hypercholesterolemic effects. Moreover, kefir can be adapted into different substrates which allow the production of new functional beverages to provide product diversification. Being safe and inexpensive, there is an immense global interest in kefir’s nutritional potential. Due to their promising benefits, kefir and kefir-like products have a great prospect for commercialization. This manuscript reviews the therapeutic aspects of kefir to date, and potential applications of kefir products in the health and food industries, along with the limitations. The literature reviewed here demonstrates that there is a growing demand for kefir as a functional food owing to a number of health-promoting properties.
Collapse
|
45
|
Gamba RR, Koyanagi T, Peláez AL, De Antoni G, Enomoto T. Changes in Microbiota During Multiple Fermentation of Kefir in Different Sugar Solutions Revealed by High-Throughput Sequencing. Curr Microbiol 2021; 78:2406-2413. [PMID: 33961093 DOI: 10.1007/s00284-021-02501-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 04/19/2021] [Indexed: 10/21/2022]
Abstract
Kefir is a fermented beverage produced through the activity of its grains, which is constituted by lactic acid and acetic acid bacteria and yeasts. We studied the bacterial succession during multiple fermentation of Argentinian kefir in brown sugar, purified molasses or high-test molasses, using 16S high-throughput sequencing. Firmicutes was dominant (up to 98% of total population) in grains and beverages made from various sugar substrates, except in high-test molasses beverage, which was dominated by Proteobacteria (up to 78% of total population). Major bacterial species in Firmicutes were Liquorilactobacillus nagelii, Lentilactobacillus hilgardii/diolivorans and Lacticaseibacillus casei/paracasei, which are active in lactic acid fermentation. Proteobacteria comprised Acetobacter lovaniensis and Gluconobacter oxydans/roseus as major species, which are presumably responsible for the acetic acid formation in sugary kefir beverages. Bacteria differ in abundance depending on the sugar type, as revealed by the competitive dominances between L. nagelii and A. loveniensis. Purified molasses led to scarce acetic acid bacteria during fermentation, indicating that it is not a suitable substrate for their growth. Our results suggest that acetic acid (and/or ethanol) in sugary kefir modulates the succession and dominance of specific lactic acid bacteria. This study will provide valuable information for designing more sophisticated non-dairy fermented beverages with stable microbial properties.
Collapse
Affiliation(s)
- Raúl Ricardo Gamba
- Department of Food Science, Ishikawa Prefectural University, Nonoichi, Ishikawa, 921-8836, Japan
| | - Takashi Koyanagi
- Department of Food Science, Ishikawa Prefectural University, Nonoichi, Ishikawa, 921-8836, Japan
| | - Angela León Peláez
- Facultad de Ciencias Exactas, Cátedra de Microbiología, Universidad Nacional de La Plata, Calle 47 y 115, 1900, La Plata, Argentina
| | - Graciela De Antoni
- Facultad de Ciencias Exactas, Cátedra de Microbiología, Universidad Nacional de La Plata, Calle 47 y 115, 1900, La Plata, Argentina
| | - Toshiki Enomoto
- Department of Food Science, Ishikawa Prefectural University, Nonoichi, Ishikawa, 921-8836, Japan.
| |
Collapse
|
46
|
Xu Z, Lu Z, Soteyome T, Ye Y, Huang T, Liu J, Harro JM, Kjellerup BV, Peters BM. Polymicrobial interaction between Lactobacillus and Saccharomyces cerevisiae: coexistence-relevant mechanisms. Crit Rev Microbiol 2021; 47:386-396. [PMID: 33663335 DOI: 10.1080/1040841x.2021.1893265] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The coordination of single or multiple microorganisms are required for the manufacture of traditional fermented foods, improving the flavour and nutrition of the food materials. However, both the additional economic benefits and safety concerns have been raised by microbiotas in fermented products. Among the fermented products, Lactobacillus and Saccharomyces cerevisiae are one of the stable microbiotas, suggesting their interaction is mediated by coexistence-relevant mechanisms and prevent to be excluded by other microbial species. Thus, aiming to guide the manufacture of fermented foods, this review will focus on interactions of coexistence-relevant mechanisms between Lactobacillus and S. cerevisiae, including metabolites communications, aggregation, and polymicrobial biofilm. Also, the molecular regulatory network of the coexistence-relevant mechanisms is discussed according to omics researches.
Collapse
Affiliation(s)
- Zhenbo Xu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, China
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
- Research Institute for Food Nutrition and Human Health, Guangzhou, China
- Home Economics Technology, Rajamangala University of Technology Phra Nakhon, Bangkok, Thailand
| | - Zerong Lu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, China
| | - Thanapop Soteyome
- Home Economics Technology, Rajamangala University of Technology Phra Nakhon, Bangkok, Thailand
| | - Yanrui Ye
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Tengyi Huang
- Department of Laboratory Medicine, the Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Junyan Liu
- Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, USA
| | - Janette M Harro
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD, USA
| | - Birthe V Kjellerup
- Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, USA
| | - Brian M Peters
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
47
|
Hilgarth M, Redwitz J, Ehrmann MA, Vogel RF, Jakob F. Bombella favorum sp. nov. and Bombella mellum sp. nov., two novel species isolated from the honeycombs of Apis mellifera. Int J Syst Evol Microbiol 2021; 71. [PMID: 33439113 DOI: 10.1099/ijsem.0.004633] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
As part of a study investigating the microbiome of bee hives and honey, two novel strains (TMW 2.1880T and TMW 2.1889T) of acetic acid bacteria were isolated and subsequently taxonomically characterized by a polyphasic approach, which revealed that they cannot be assigned to known species. The isolates are Gram-stain-negative, aerobic, pellicle-forming, catalase-positive and oxidase-negative. Cells of TMW 2.1880T are non-motile, thin/short rods, and cells of TMW 2.1889T are motile and occur as rods and long filaments. Morphological, physiological and phylogenetic analyses revealed a distinct lineage within the genus Bombella. Strain TMW 2.1880T is most closely related to the type strain of Bombella intestini with a 16S rRNA gene sequence similarity of 99.5 %, and ANIb and in silico DDH values of 94.16 and 56.3 %, respectively. The genome of TMW 2.1880T has a size of 1.98 Mb and a G+C content of 55.3 mol%. Strain TMW 2.1889T is most closely related to the type strain of Bombella apis with a 16S rRNA gene sequence similarity of 99.5 %, and ANIb and in silico DDH values of 85.12 and 29.5 %, respectively. The genome of TMW 2.1889T has a size of 2.07 Mb and a G+C content of 60.4 mol%. Ubiquinone analysis revealed that both strains contained Q-10 as the main respiratory quinone. Major fatty acids for both strains were C16 : 0, C19 : 0 cyclo ω8c and summed feature 8, respectively, and additionally C14 : 0 2-OH only for TMW 2.1880T and C14 : 0 only for TMW 2.1889T. Based on polyphasic evidence, the two isolates from honeycombs of Apis mellifera represent two novel species of the genus Bombella, for which the names Bombella favorum sp. nov and Bombella mellum sp. nov. are proposed. The designated respective type strains are TMW 2.1880T (=LMG 31882T=CECT 30114T) and TMW 2.1889T (=LMG 31883T=CECT 30113T).
Collapse
Affiliation(s)
- Maik Hilgarth
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, Gregor-Mendel-Straße 4, 85354 Freising, Germany
| | - Johannes Redwitz
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, Gregor-Mendel-Straße 4, 85354 Freising, Germany
| | - Matthias A Ehrmann
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, Gregor-Mendel-Straße 4, 85354 Freising, Germany
| | - Rudi F Vogel
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, Gregor-Mendel-Straße 4, 85354 Freising, Germany
| | - Frank Jakob
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, Gregor-Mendel-Straße 4, 85354 Freising, Germany
| |
Collapse
|
48
|
Lynch KM, Wilkinson S, Daenen L, Arendt EK. An update on water kefir: Microbiology, composition and production. Int J Food Microbiol 2021; 345:109128. [PMID: 33751986 DOI: 10.1016/j.ijfoodmicro.2021.109128] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 01/31/2021] [Accepted: 02/23/2021] [Indexed: 11/15/2022]
Abstract
Water kefir is a sparkling, slightly acidic fermented beverage produced by fermenting a solution of sucrose, to which dried fruits have been added, with water kefir grains. These gelatinous grains are a symbiotic culture of bacteria and yeast embedded in a polysaccharide matrix. Lactic acid bacteria, yeast and acetic acid bacteria are the primary microbial members of the sugary kefir grain. Amongst other contributions, species of lactic acid bacteria produce the exopolysaccharide matrix from which the kefir grain is formed, while yeast assists the bacteria by a nitrogen source that can be assimilated. Exactly which species predominate within the grain microbiota, however, appears to be dependent on the geographical origin of the grains and the fermentation substrate and conditions. These factors ultimately affect the characteristics of the beverage produced in terms of aroma, flavour, and acidity, for example, but can also be controlled and exploited in the production of a beverage of desired characteristics. The production of water kefir has traditionally occurred on a small scale and the use of defined starter cultures is not commonly practiced. However, as water kefir increases in popularity as a beverage - in part because of consumer lifestyle trends and in part due to water kefir being viewed as a health drink with its purported health benefits - the need for a thorough understanding of the biology and dynamics of water kefir, and for defined and controlled production processes, will ultimately increase. The aim of this review is to provide an update into the current knowledge of water kefir.
Collapse
Affiliation(s)
- Kieran M Lynch
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Stuart Wilkinson
- Global Innovation & Technology Centre, Anheuser-Busch InBev nv/sa, Brouwerijplein 1, 3000 Leuven, Belgium
| | - Luk Daenen
- Global Innovation & Technology Centre, Anheuser-Busch InBev nv/sa, Brouwerijplein 1, 3000 Leuven, Belgium
| | - Elke K Arendt
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland.
| |
Collapse
|
49
|
Laureys D, Leroy F, Hauffman T, Raes M, Aerts M, Vandamme P, De Vuyst L. The Type and Concentration of Inoculum and Substrate as Well as the Presence of Oxygen Impact the Water Kefir Fermentation Process. Front Microbiol 2021; 12:628599. [PMID: 33643256 PMCID: PMC7904701 DOI: 10.3389/fmicb.2021.628599] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/18/2021] [Indexed: 11/13/2022] Open
Abstract
Eleven series of water kefir fermentation processes differing in the presence of oxygen and the type and concentration of inoculum and substrate, were followed as a function of time to quantify the impact of these parameters on the kinetics of this process via a modeling approach. Increasing concentrations of the water kefir grain inoculum increased the water kefir fermentation rate, so that the metabolic activity during water kefir fermentation was mainly associated with the grains. Water kefir liquor could also be used as an alternative means of inoculation, but the resulting fermentation process progressed slower than the one inoculated with water kefir grains, and the production of water kefir grain mass was absent. Substitution of sucrose with glucose and/or fructose reduced the water kefir grain growth, whereby glucose was fermented faster than fructose. Lacticaseibacillus paracasei (formerly known as Lactobacillus paracasei), Lentilactobacillus hilgardii (formerly known as Lactobacillus hilgardii), Liquorilactobacillus nagelii (formerly known as Lactobacillus nagelii), Saccharomyces cerevisiae, and Dekkera bruxellensis were the main microorganisms present. Acetic acid bacteria were present in low abundances under anaerobic conditions and only proliferated under aerobic conditions. Visualization of the water kefir grains through scanning electron microscopy revealed that the majority of the microorganisms was attached onto their surface. Lactic acid bacteria and yeasts were predominantly associated with the grains, whereas acetic acid bacteria were predominantly associated with the liquor.
Collapse
Affiliation(s)
- David Laureys
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Frédéric Leroy
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Tom Hauffman
- Research Group of Electrochemical and Surface Engineering, Faculty of Engineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Marc Raes
- Research Group of Electrochemical and Surface Engineering, Faculty of Engineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Maarten Aerts
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Peter Vandamme
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
50
|
Kazou M, Grafakou A, Tsakalidou E, Georgalaki M. Zooming Into the Microbiota of Home-Made and Industrial Kefir Produced in Greece Using Classical Microbiological and Amplicon-Based Metagenomics Analyses. Front Microbiol 2021; 12:621069. [PMID: 33584624 PMCID: PMC7876260 DOI: 10.3389/fmicb.2021.621069] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 01/07/2021] [Indexed: 11/22/2022] Open
Abstract
Kefir is a high nutritional fermented dairy beverage associated with a wide range of health benefits. It constitutes a unique symbiotic association, comprising mainly lactic acid bacteria, yeasts, and occasionally acetic acid bacteria, which is strongly influenced by the geographical origin of the grains, the type of milk used, and the manufacture technology applied. Until recently, kefir microbiota has been almost exclusively studied by culture-dependent techniques. However, high-throughput sequencing, alongside omics approaches, has revolutionized the study of food microbial communities. In the present study, the bacterial, and yeast/fungal microbiota of four home-made samples (both grains and drinks), deriving from well spread geographical regions of Greece, and four industrial beverages, was elucidated by culture-dependent and -independent analyses. In all samples, classical microbiological analysis revealed varying populations of LAB and yeasts, ranging from 5.32 to 9.60 log CFU mL–1 or g–1, and 2.49 to 7.80 log CFU mL–1 or g–1, respectively, while in two industrial samples no yeasts were detected. Listeria monocytogenes, Salmonella spp. and Staphylococcus spp. were absent from all the samples analyzed, whereas Enterobacteriaceae were detected in one of them. From a total of 123 isolates, including 91 bacteria and 32 yeasts, Lentilactobacillus kefiri, Leuconostoc mesenteroides, and Lactococcus lactis as well as Kluvyeromyces marxianus and Saccharomyces cerevisiae were the mostly identified bacterial and yeast species, respectively, in the home-made samples. On the contrary, Streptococcus thermophilus, Lactobacillus delbrueckii subsp. bulgaricus, and Lacticaseibacillus rhamnosus along with Debaryomyces hansenii and K. marxianus were the main bacterial and yeast species, respectively, isolated from the industrial beverages. In agreement with the identification results obtained from the culture-dependent approaches, amplicon-based metagenomics analysis revealed that the most abundant bacterial genera in almost all home-made samples (both grains and drinks) were Lactobacillus and Lactococcus, while Saccharomyces, Kazachstania, and Kluvyeromyces were the predominant yeasts/fungi. On the other hand, Streptococcus, Lactobacillus, and Lactococcus as well as Kluvyeromyces and Debaryomyces dominated the bacterial and yeast/fungal microbiota, respectively, in the industrial beverages. This is the first report on the microbiota of kefir produced in Greece by a holistic approach combining classical microbiological, molecular, and amplicon-based metagenomics analyses.
Collapse
Affiliation(s)
- Maria Kazou
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Andriana Grafakou
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Effie Tsakalidou
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Marina Georgalaki
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| |
Collapse
|