1
|
Pagan E, Merino N, Berdejo D, Campillo R, Gayan E, García-Gonzalo D, Pagan R. Adaptive evolution of Salmonella Typhimurium LT2 exposed to carvacrol lacks a uniform pattern. Appl Microbiol Biotechnol 2024; 108:38. [PMID: 38175235 PMCID: PMC10766787 DOI: 10.1007/s00253-023-12840-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 10/05/2023] [Accepted: 10/17/2023] [Indexed: 01/05/2024]
Abstract
Emergence of genetic variants with increased resistance/tolerance to natural antimicrobials, such as essential oils, has been previously evidenced; however, it is unknown whether mutagenesis follows a general or a specific pattern. For this purpose, we carried out four adaptive laboratory evolutions (ALE) in parallel of Salmonella enterica Typhimurium with carvacrol. After 10 evolution steps, we selected and characterized one colony from each lineage (SeCarA, SeCarB, SeCarC, and SeCarD). Phenotypic characterization of the four evolved strains revealed enhanced survival to lethal treatments; two of them (SeCarA and SeCarB) showed an increase of minimum inhibitory concentration of carvacrol and a better growth fitness in the presence of carvacrol compared to wild-type strain. Whole genome sequencing revealed 10 mutations, of which four (rrsH, sseG, wbaV, and flhA) were present in more than one strain, whereas six (nirC, fliH, lon, rob, upstream yfhP, and upstream argR) were unique to individual strains. Single-mutation genetic constructs in SeWT confirmed lon and rob as responsible for the increased resistance to carvacrol as well as to antibiotics (ampicillin, ciprofloxacin, chloramphenicol, nalidixic acid, rifampicin, tetracycline, and trimethoprim). wbaV played an important role in increased tolerance against carvacrol and chloramphenicol, and flhA in cross-tolerance to heat treatments. As a conclusion, no common phenotypical or genotypical pattern was observed in the isolated resistant variants of Salmonella Typhimurium emerged under carvacrol stress. Furthermore, the demonstration of cross-resistance against heat and antibiotics exhibited by resistant variants raises concerns regarding food safety. KEY POINTS: • Stable resistant variants of Salmonella Typhimurium emerged under carvacrol stress • No common pattern of mutagenesis after cyclic exposures to carvacrol was observed • Resistant variants to carvacrol showed cross-resistance to heat and to antibiotics.
Collapse
Affiliation(s)
- Elisa Pagan
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA, Zaragoza, Spain
| | - Natalia Merino
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA, Zaragoza, Spain
| | - Daniel Berdejo
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA, Zaragoza, Spain
| | - Raul Campillo
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA, Zaragoza, Spain
| | - Elisa Gayan
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA, Zaragoza, Spain
| | - Diego García-Gonzalo
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA, Zaragoza, Spain
| | - Rafael Pagan
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA, Zaragoza, Spain.
| |
Collapse
|
2
|
Almeida HHS, Crugeira PJL, Amaral JS, Rodrigues AE, Barreiro MF. Disclosing the potential of Cupressus leylandii A.B. Jacks & Dallim, Eucalyptus globulus Labill., Aloysia citrodora Paláu, and Melissa officinalis L. hydrosols as eco-friendly antimicrobial agents. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:1. [PMID: 38163838 PMCID: PMC10758378 DOI: 10.1007/s13659-023-00417-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/06/2023] [Indexed: 01/03/2024]
Abstract
Antimicrobial resistance is a major global health concern, threatening the effective prevention and treatment of infections caused by microorganisms. These factors boosted the study of safe and green alternatives, with hydrosols, the by-products of essential oils extraction, emerging as promising natural antimicrobial agents. In this context, four hydrosols obtained from Cupressus leylandii A.B. Jacks & Dallim, Eucalyptus globulus Labill., Aloysia citrodora Paláu and Melissa officinalis L. were studied. Their chemical composition comprises neral, geranial, 1,8-cineole, terpinen-4-ol, and oplopanonyl acetate, compounds with recognised antimicrobial activity. Concerning antimicrobial activity, significant differences were found using different hydrosol concentrations (10-20% v/v) in comparison to a control (without hydrosol), showing the potential of the tested hydrosols to inhibit the microbial growth of Escherichia coli, Staphylococcus aureus, and Candida albicans. A. citrodora hydrosol was the most effective one, inhibiting 90% of E. coli growth and 80% of C. albicans growth, for both hydrosol concentrations (p < 0.0001). With hydrosol concentration increase, it was possible to observe an improved antimicrobial activity with significant reductions (p < 0.0001). The findings of this work indicate the viability of reusing and valuing the hydrosols, encouraging the development of green applications for different fields (e.g., food, agriculture, pharmaceuticals, and cosmetics).
Collapse
Affiliation(s)
- Heloísa H S Almeida
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-252, Bragança, Portugal
- Laboratório Associado Para a Sustentabilidade Em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-252, Bragança, Portugal
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
- Associate Laboratory in Chemical Engineering (ALiCE), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Pedro J L Crugeira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-252, Bragança, Portugal
- Laboratório Associado Para a Sustentabilidade Em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-252, Bragança, Portugal
| | - Joana S Amaral
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-252, Bragança, Portugal
- Laboratório Associado Para a Sustentabilidade Em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-252, Bragança, Portugal
| | - Alírio E Rodrigues
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
- Associate Laboratory in Chemical Engineering (ALiCE), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Maria-Filomena Barreiro
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-252, Bragança, Portugal.
- Laboratório Associado Para a Sustentabilidade Em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-252, Bragança, Portugal.
| |
Collapse
|
3
|
Poovathumkadavil Thambi N, Rani P, Sharma M, Katoch M. A combinatorial approach of Monarda citriodora essential oil (MEO) and linalool vapors to control fruit rot of Citrus limon caused by a new pathogen, Aspergillus foetidus, and its underlying mode of action. J Appl Microbiol 2023; 134:lxad292. [PMID: 38040653 DOI: 10.1093/jambio/lxad292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/08/2023] [Accepted: 12/01/2023] [Indexed: 12/03/2023]
Abstract
AIMS Citrus limon (lemon) is a widely cultivated citrus fruit. Significant postharvest losses due to fungi plague its production. Environmental and human health hazards have made the application of synthetic fungicides unsuitable. Despite the previous reports of antifungal activities of essential oil (EO) vapors, their synergistic combinations are understudied. Synergistic vapor combinations are advantageous due to less concentration of active components. This study aimed to isolate and identify postharvest fungal pathogens lemon and to evaluate the antifungal effects of synergistic Monarda citriodora EO (MEO)-constituent vapor combinations in vivo and in vitro. METHODS AND RESULTS Postharvest fungal pathogens of lemon (C. limon) were isolated from various infected samples. The most pathogenic isolate was identified through morphology and its ITS-based rRNA gene sequencing as Aspergillus foetidus (O4). This is the first report of A. foetidus as a postharvest pathogen of lemon. The minimum fungicidal concentrations (MFCs) of MEO vapors treatment against O4 were 1346.15 µL/L air. For carvacrol, hexanal, and linalool, MFC was same (96.16 µL/L air). Checkerboard assays demonstrated that 1/4 MFC of MEO (336.54 µL/L air) and 1/4 MFC of linalool (24.04 µL/L air) (M + L) were synergistic against O4. M + L vapors reduced the O4 growth on lemons during storage by 64% ± 1.50% and preserved their quality (low weight loss %, unchanged pH, increased ascorbic acid content). Propidium iodide staining, ergosterol content analysis, calcofluor white staining and chitin content analysis revealed the integrity loss of the O4 plasma membrane and cell wall. 2',7'-Dichlorofluorescin diacetate staining revealed accumulation of intracellular reactive oxygen species (ROS), and scanning electron microscopy (SEM) analysis exposed the M + L treated mycelia with malformations. CONCLUSIONS M + L vapors offer protection for lemons from A. foetidus and preserve their quality during storage.
Collapse
Affiliation(s)
| | - Pragya Rani
- Fermentation and Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Mohini Sharma
- Fermentation and Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Meenu Katoch
- Fermentation and Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
- Academy of Scientific and Innovative Research, CSIR-Indian Institute of Integrative Medicine-CSIR, Jammu 180001, India
| |
Collapse
|
4
|
Gutiérrez-Pacheco MM, Torres-Moreno H, Flores-Lopez ML, Velázquez Guadarrama N, Ayala-Zavala JF, Ortega-Ramírez LA, López-Romero JC. Mechanisms and Applications of Citral's Antimicrobial Properties in Food Preservation and Pharmaceuticals Formulations. Antibiotics (Basel) 2023; 12:1608. [PMID: 37998810 PMCID: PMC10668791 DOI: 10.3390/antibiotics12111608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/01/2023] [Accepted: 11/04/2023] [Indexed: 11/25/2023] Open
Abstract
Citral is a monoterpene constituted by two isomers known as neral and geranial. It is present in different plant sources and recognized as safe (GRAS) by the Food and Drug Administration (FDA). In recent years, investigations have demonstrated that this compound exhibited several biological activities, such as antibacterial, antifungal, antibiofilm, antiparasitic, antiproliferative, anti-inflammatory, and antioxidant properties, by in vitro and in vivo assays. Additionally, when incorporated into different food matrices, citral can reduce the microbial load of pathogenic microorganisms and extend the shelf life. This compound has acceptable drug-likeness properties and does not present any violations of Lipinski's rules, which could be used for drug development. The above shows that citral could be a compound of interest for developing food additives to extend the shelf life of animal and vegetable origin foods and develop pharmaceutical products.
Collapse
Affiliation(s)
| | - Heriberto Torres-Moreno
- Departamento de Ciencias Químico-Biológicas y Agropecuarias, Universidad de Sonora, H. Caborca 83600, Sonora, Mexico;
| | - María Liliana Flores-Lopez
- Centro de Investigación e Innovación Científica y Tecnológica, Universidad Autónoma de Coahuila, Saltillo 25070, Coahuila, Mexico;
| | - Norma Velázquez Guadarrama
- Laboratorio de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico;
| | - J. Fernando Ayala-Zavala
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A. C. Carretera Gustavo Astiazarán Rosas No. 46, Colonia la Victoria, Hermosillo 83304, Sonora, Mexico;
| | - Luis Alberto Ortega-Ramírez
- Departamento de Ciencias de la Salud, Universidad Estatal de Sonora, San Luis Río Colorado 83430, Sonora, Mexico;
| | - Julio César López-Romero
- Departamento de Ciencias Químico-Biológicas y Agropecuarias, Universidad de Sonora, H. Caborca 83600, Sonora, Mexico;
| |
Collapse
|
5
|
Merino N, Berdejo D, Pagán E, Girard C, Kerros S, Spinozzi E, Pagán R, García-Gonzalo D. Phenotypic and Genotypic Comparison of Antimicrobial-Resistant Variants of Escherichia coli and Salmonella Typhimurium Isolated from Evolution Assays with Antibiotics or Commercial Products Based on Essential Oils. Pharmaceuticals (Basel) 2023; 16:1443. [PMID: 37895914 PMCID: PMC10610042 DOI: 10.3390/ph16101443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/06/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
On account of the widespread development and propagation of antimicrobial-resistant (AMR) bacteria, essential oils (EOs) have emerged as potential alternatives to antibiotics. However, as already observed for antibiotics, recent studies have raised concerns regarding the potential emergence of resistant variants (RVs) to EOs. In this study, we assessed the emergence of RVs in Escherichia coli and Salmonella enterica Typhimurium after evolution assays under extended exposure to subinhibitory doses of two commercial EOs (AEN and COLIFIT) as well as to two antibiotics (amoxicillin and colistin). Phenotypic characterization of RVs from evolution assays with commercial EOs yielded no relevant increases in the minimum inhibitory concentration (MIC) of E. coli and did not even modify MIC values in S. Typhimurium. Conversely, RVs of E. coli and S. Typhimurium isolated from evolution assays with antibiotics showed increased resistance. Genotypic analysis demonstrated that resistance to commercial EOs was associated with enhanced protection against oxidative stress and redirection of cell energy toward efflux activity, while resistance to antibiotics was primarily linked to modifications in the cell binding sites of antibiotics. These findings suggest that AEN and COLIFIT could serve as safe alternatives to antibiotics in combating the emergence and dissemination of antimicrobial resistance within the agrifood system.
Collapse
Affiliation(s)
- Natalia Merino
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), 50013 Zaragoza, Spain
| | - Daniel Berdejo
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), 50013 Zaragoza, Spain
| | - Elisa Pagán
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), 50013 Zaragoza, Spain
| | | | | | - Eleonora Spinozzi
- Chemistry Interdiscplinary Project (ChIP), School of Pharmacy, University of Camerino, 62032 Camerino, Italy
| | - Rafael Pagán
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), 50013 Zaragoza, Spain
| | - Diego García-Gonzalo
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), 50013 Zaragoza, Spain
| |
Collapse
|
6
|
Jena B, Biswal B, Sarangi A, Giri AK, Bhattacharya D, Acharya L. GC/MS Profiling and Evaluation of Leaf Essential Oil for Bactericidal Effect and Free Radical Scavenging Activity of Plectranthus amboinicus (Lour.) Spreng Collected from Odisha, India. Chem Biodivers 2023; 20:e202200691. [PMID: 36692091 DOI: 10.1002/cbdv.202200691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 01/25/2023]
Abstract
Plectranthus amboinicus (Lour.) Spreng, known as the Indian borage or Mexican mint, is one of the most documented species in the family Lamiaceae for its therapeutic and pharmaceutical values. It is found in the tropical and subtropical regions of the world. The leaf essential oil has immense medicinal benefits like treating illnesses of the skin and disorders like colds, asthma, constipation, headaches, coughs, and fevers. After analyzing earlier reports with regard to the quantity and quality of leaf oil yield, we discovered that the germplasm taken from Odisha is preferable to other germplasms. The objective of the present work is to evaluate the free radical scavenging activity and bactericidal effect of leaf essential oil (EO) of Plectranthus amboinicus (Lour.) Spreng collected from the state of Odisha, India. The hydro distillation technique has been used for essential oil extraction. Upon GC/MS analysis, approximately 57 compounds were identified with Carvacrol as the major compound (peak area=20.25 %), followed by p-thymol (peak area=20.17 %), o-cymene (peak area=19.41 %) and carene (peak area=15.89 %). On evaluation of free radical scavenging activity, it was recorded that the best value of inhibitory concentration, was for DPPH with IC50 =18.64 ppm and for H2 O2 with IC50 =9.35 ppm. The EO showed efficient bactericidal effect against both gram positive (Mycobacterium smegmatis, Staphylococcus aureus, Enterococcus faecium) and gram negative (Escherichia coli, Vibrio cholerae, Klebsiella pneumoniae) bacteria studied through well diffusion method. Fumigatory action of the essential oil was found against M. smegmatis, the model organism for tuberculosis study. Alamar Blue assay, gave a result with MIC value for M. smegmatis i. e., 0.12 μg/ml and the MBC value of 0.12 μg/ml. Hence, P. amboinicus found in Odisha can be suggested as an elite variety and should be further investigated for efficient administration in drug formulation.
Collapse
Affiliation(s)
- Biswajit Jena
- Molecular Biology and Genetic Engineering Lab, Center for Biotechnology, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Bhagyashree Biswal
- Molecular Biology and Genetic Engineering Lab, Center for Biotechnology, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Ashirbad Sarangi
- Molecular Biology and Genetic Engineering Lab, Center for Biotechnology, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Alok Kumar Giri
- Molecular Biology and Genetic Engineering Lab, Center for Biotechnology, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Debapriya Bhattacharya
- Molecular Biology and Genetic Engineering Lab, Center for Biotechnology, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Laxmikanta Acharya
- Molecular Biology and Genetic Engineering Lab, Center for Biotechnology, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| |
Collapse
|
7
|
Lim AC, Tang SGH, Zin NM, Maisarah AM, Ariffin IA, Ker PJ, Mahlia TMI. Chemical Composition, Antioxidant, Antibacterial, and Antibiofilm Activities of Backhousia citriodora Essential Oil. Molecules 2022; 27:4895. [PMID: 35956846 PMCID: PMC9370046 DOI: 10.3390/molecules27154895] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/23/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022] Open
Abstract
The essential oil of Backhousia citriodora, commonly known as lemon myrtle oil, possesses various beneficial properties due to its richness in bioactive compounds. This study aimed to characterize the chemical profile of the essential oil isolated from leaves of Backhousia citriodora (BCEO) and its biological properties, including antioxidant, antibacterial, and antibiofilm activities. Using gas chromatography-mass spectrometry, 21 compounds were identified in BCEO, representing 98.50% of the total oil content. The isomers of citral, geranial (52.13%), and neral (37.65%) were detected as the main constituents. The evaluation of DPPH radical scavenging activity and ferric reducing antioxidant power showed that BCEO exhibited strong antioxidant activity at IC50 of 42.57 μg/mL and EC50 of 20.03 μg/mL, respectively. The antibacterial activity results showed that BCEO exhibited stronger antibacterial activity against Gram-positive bacteria (Staphylococcus aureus and Staphylococcus epidermidis) than against Gram-negative bacteria (Escherichia coli and Klebsiella pneumoniae). For the agar disk diffusion method, S. epidermidis was the most sensitive to BCEO with an inhibition zone diameter of 50.17 mm, followed by S. aureus (31.13 mm), E. coli (20.33 mm), and K. pneumoniae (12.67 mm). The results from the microdilution method showed that BCEO exhibited the highest activity against S. epidermidis and S. aureus, with the minimal inhibitory concentration (MIC) value of 6.25 μL/mL. BCEO acts as a potent antibiofilm agent with dual actions, inhibiting (85.10% to 96.44%) and eradicating (70.92% to 90.73%) of the biofilms formed by the four tested bacteria strains, compared with streptomycin (biofilm inhibition, 67.65% to 94.29% and biofilm eradication, 49.97% to 89.73%). This study highlights that BCEO can potentially be a natural antioxidant agent, antibacterial agent, and antibiofilm agent that could be applied in the pharmaceutical and food industries. To the best of the authors' knowledge, this is the first report, on the antibiofilm activity of BCEO against four common nosocomial pathogens.
Collapse
Affiliation(s)
- Ann Chie Lim
- School of Graduate Studies, Management and Science University, University Drive, Off Persiaran Olahraga, Section 13, Shah Alam 40100, Malaysia; (A.C.L.); (A.M.M.)
- International Medical School, Management and Science University, University Drive, Off Persiaran Olahraga, Section 13, Shah Alam 40100, Malaysia;
| | - Shirley Gee Hoon Tang
- Center for Toxicology and Health Risk Studies (CORE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Noraziah Mohamad Zin
- Center of Diagnostics, Therapeutics & Investigations, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
| | - Abdul Mutalib Maisarah
- School of Graduate Studies, Management and Science University, University Drive, Off Persiaran Olahraga, Section 13, Shah Alam 40100, Malaysia; (A.C.L.); (A.M.M.)
- International Medical School, Management and Science University, University Drive, Off Persiaran Olahraga, Section 13, Shah Alam 40100, Malaysia;
| | - Indang Ariati Ariffin
- International Medical School, Management and Science University, University Drive, Off Persiaran Olahraga, Section 13, Shah Alam 40100, Malaysia;
| | - Pin Jern Ker
- Institute of Sustainable Energy, Department of Electrical and Electronics Engineering, Universiti Tenaga Nasional, Kajang 43000, Malaysia;
| | - Teuku Meurah Indra Mahlia
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia;
| |
Collapse
|
8
|
Liu L, Bao W, Men X, Zhang H. Engineering for life in toxicity: Key to industrializing microbial synthesis of high energy density fuels. ENGINEERING MICROBIOLOGY 2022; 2:100013. [PMID: 39628844 PMCID: PMC11611038 DOI: 10.1016/j.engmic.2022.100013] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 03/09/2022] [Accepted: 03/14/2022] [Indexed: 12/06/2024]
Abstract
With the growing demand for air transportation combined with global concerns about environmental issues and the instability and lack of renewability of the oil market, microbial production of high energy density fuels for jets (bio-jet fuels) has received more attention in recent years. Bio-jet fuels can be derived from both isoprenoids and fatty acids, and, additionally, aromatic hydrocarbons derived from expanded shikimate pathways are also candidates for jet fuels. Compared to fatty acid derivatives, most of isoprenoids and aromatic hydrocarbons used for jet fuels have higher density energies. However, they are also highly toxic to host microbes. The cytotoxicity induced during the synthesis of isoprenoid or shikimate pathway-derived biofuels remains one of the major obstacles for industrial production even though synthetic and systems biology approaches have reconstructed and optimized metabolic pathways for production of these bio-jet fuels. Here, we review recent developments in the production of known and potential jet fuels by microorganisms, with a focus on alleviating cytotoxicity caused by the final products, intermediates, and metabolic pathways.
Collapse
Affiliation(s)
- Lijuan Liu
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
| | - Wenzhi Bao
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Xiao Men
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Haibo Zhang
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
| |
Collapse
|
9
|
Maggini V, Calvi L, Pelagatti T, Gallo ER, Civati C, Privitera C, Squillante F, Maniglia P, Di Candia D, Spampatti R, Firenzuoli F. An Optimized Terpene Profile for a New Medical Cannabis Oil. Pharmaceutics 2022; 14:pharmaceutics14020298. [PMID: 35214031 PMCID: PMC8879232 DOI: 10.3390/pharmaceutics14020298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/23/2022] [Accepted: 01/25/2022] [Indexed: 12/27/2022] Open
Abstract
The purpose of this analytical study was to develop an advanced formulation of medical Cannabis oil (MCO) comparing the chemical profile of different extracts obtained with two existing methods (SIFAP and CALVI) and one original upgraded (CERFIT) method. Preparation methods were applied with varying solvent, temperature, and duration of the decarboxylation and extraction steps. HPLC-MS/MS TSQ and GC/FID-HS analyses were performed to investigate cannabinoid and terpene contents in the three oil extracts. Cannabinoids profile remained comparable between the formulations. CERFIT extracts exhibited a superior quantity of total terpene hydrocarbon forms (e.g., limonene and α-pinene) with no degradation occurrence (i.e., oxidized terpenes not quantifiable). Thus, this new method optimized the phytochemical profile of the MCO presenting a value opportunity to obtain a standardized high-level therapeutic product.
Collapse
Affiliation(s)
- Valentina Maggini
- Research and Innovation Center in Phytotherapy and Integrated Medicine (CERFIT), Careggi University Hospital, Via Delle Oblate 4, 50141 Florence, Italy; (L.C.); (T.P.); (E.R.G.)
- Correspondence: (V.M.); (F.F.); Tel.: +39-055-794-9635 (V.M.)
| | - Lorenzo Calvi
- Research and Innovation Center in Phytotherapy and Integrated Medicine (CERFIT), Careggi University Hospital, Via Delle Oblate 4, 50141 Florence, Italy; (L.C.); (T.P.); (E.R.G.)
| | - Tommaso Pelagatti
- Research and Innovation Center in Phytotherapy and Integrated Medicine (CERFIT), Careggi University Hospital, Via Delle Oblate 4, 50141 Florence, Italy; (L.C.); (T.P.); (E.R.G.)
- Farmacia Tili, Piazza Vittorio Veneto 32, 22036 Erba, Italy; (C.C.); (F.S.); (R.S.)
| | - Eugenia Rosaria Gallo
- Research and Innovation Center in Phytotherapy and Integrated Medicine (CERFIT), Careggi University Hospital, Via Delle Oblate 4, 50141 Florence, Italy; (L.C.); (T.P.); (E.R.G.)
| | - Celine Civati
- Farmacia Tili, Piazza Vittorio Veneto 32, 22036 Erba, Italy; (C.C.); (F.S.); (R.S.)
| | - Carlo Privitera
- Progetto MediCOmm s.r.l.s., C.da due Fontane s.n., 93100 Caltanissetta, Italy;
| | - Flavio Squillante
- Farmacia Tili, Piazza Vittorio Veneto 32, 22036 Erba, Italy; (C.C.); (F.S.); (R.S.)
| | - Paolo Maniglia
- Department of Anesthesia and Intensive Care Medicine, Alessandro Manzoni Hospital, Azienda Socio-Sanitaria Territoriale Lecco, 23900 Lecco, Italy;
| | - Domenico Di Candia
- Department of Biomedical Sciences for Health, Section of Legal Medicine, University of Milan, 20133 Milan, Italy;
| | - Roberto Spampatti
- Farmacia Tili, Piazza Vittorio Veneto 32, 22036 Erba, Italy; (C.C.); (F.S.); (R.S.)
| | - Fabio Firenzuoli
- Research and Innovation Center in Phytotherapy and Integrated Medicine (CERFIT), Careggi University Hospital, Via Delle Oblate 4, 50141 Florence, Italy; (L.C.); (T.P.); (E.R.G.)
- Correspondence: (V.M.); (F.F.); Tel.: +39-055-794-9635 (V.M.)
| |
Collapse
|
10
|
Neomenthol prevents the proliferation of skin cancer cells by restraining tubulin polymerization and hyaluronidase activity. J Adv Res 2022; 34:93-107. [PMID: 35024183 PMCID: PMC8655237 DOI: 10.1016/j.jare.2021.06.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 06/07/2021] [Accepted: 06/07/2021] [Indexed: 11/28/2022] Open
Abstract
Introduction Neomenthol, a cyclic monoterpenoid, is a stereoisomer of menthol present in the essential oil of Mentha spp. It is used in food as a flavoring agent, in cosmetics and medicines because of its cooling effects. However, neomenthol has not been much explored for its anticancer potential. Additionally, targeting hyaluronidase, Cathepsin-D, and ODC by phytochemicals is amongst the efficient approach for cancer prevention and/or treatment. Objectives To investigate the molecular and cell target-based antiproliferative potential of neomenthol on human cancer (A431, PC-3, K562, A549, FaDu, MDA-MB-231, COLO-205, MCF-7, and WRL-68) and normal (HEK-293) cell lines. Methods The potency of neomenthol was evaluated on human cancer and normal cell line using SRB, NRU and MTT assays. The molecular target based study of neomenthol was carried out in cell-free and cell-based test systems. Further, the potency of neomenthol was confirmed by quantitative real-time PCR analysis and molecular docking studies. The in vivo anticancer potential of neomenthol was performed on mice EAC model and the toxicity examination was accomplished through in silico, ex vivo and in vivo approaches. Results Neomenthol exhibits a promising activity (IC50 17.3 ± 6.49 μM) against human epidermoid carcinoma (A431) cells by arresting the G2/M phase and increasing the number of sub-diploid cells. It significantly inhibits hyaluronidase activity (IC50 12.81 ± 0.01 μM) and affects the tubulin polymerization. The expression analysis and molecular docking studies support the in vitro molecular and cell target based results. Neomenthol prevents EAC tumor formation by 58.84% and inhibits hyaluronidase activity up to 10% at 75 mg/kg bw, i.p. dose. The oral dose of 1000 mg/kg bw was found safe in acute oral toxicity studies. Conclusion Neomenthol delayed the growth of skin carcinoma cells by inhibiting the tubulin polymerization and hyaluronidase activity, which are responsible for tumor growth, metastasis, and angiogenesis.
Collapse
Key Words
- AA, Arachidonic acid
- AKLP, Alkaline phosphatase
- Ab/Am, Antibiotic/antimycotic
- BE, Binding energy
- BIL, Bilirubin total & direct
- BSA, Bovine serum albumin
- BUN, Blood urea nitrogen
- CATD, Cathepsin D
- CHOL, Cholesterol
- CM-H2DCFDA, Chloromethyl derivative of dichloro fluorescin diacetate
- COX-2, Cyclooxygenase 2
- CRTN, Creatinine
- Cancer biomarker
- DCFDA, 2′,7′ dichloro fluorescin diacetate
- DFMO, α-difluoro methyl ornithine
- DHFR, Dihydrofolatereductase
- DMEM, Dulbecco’s minimal essential media
- DMSO, Dimethyl sulfoxide
- DNA, Deoxyribonucleic acid
- DOXO, Doxorubicin
- EAC, Ehlrich Ascites Carcinoma
- EC50, Half maximal effective concentration
- EDTA, Ethylene diamine tetra acetic acid
- ELISA, enzyme-linked immunosorbent assay
- Ehrlich Ascites Carcinoma
- FACS, Fluorescence-Activated Cell Sorting
- FBS, Fetal bovine serum
- FDA, Food and Drug Administration
- FOX, Ferrous oxidation-xylenol orange
- GAPDH, Glyceraldehyde 3-phosphate dehydrogenase, HEPES, N-2-hydroxyethylpiperazine-N′-2-ethanesulfonic acid
- HA, Hyaluronic acid
- HDAC, Histone deacetylase
- HDL, High density lipoprotein
- HYAL, Hyaluronidase
- Human epidermoid carcinoma
- Hyaluronidase
- IC50, Half maximal inhibitory concentration
- IDT, Integrated DNA Technologies
- Ki, Inhibitory constant
- LDH, Lactate dehydrogenase
- LOX-5, Lipoxygenase-5
- MEF, Mean erythrocyte fragility
- MMP, Mitochondrial membrane potential
- MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
- MTX, Methotrexate
- NAC, N-acetyl cysteine
- NADPH, Nicotinamide adenine dinucleotide phosphate hydrogen
- NRU, Neutral red uptake
- NaOH, Sodium hydroxide
- Neomenthol
- ODC, Ornithine decarboxylase
- OECD, Organization for Economic Co-operation and Development
- OF, Osmotic fragility
- PBS, Phosphate buffer saline
- PCR, Polymerase chain reaction
- PDB, Protein Data Bank
- PDT, Podophyllotoxin
- PEP A, pepstatin A
- PI, Propidium iodide
- PI3K, Phosphotidyl inositol-3 kinase
- PKB/Akt, Protein kinase B
- RBC, Red blood cell
- RIPA, Radio immune precipitation assay buffer
- RNA, Ribonucleic acid
- RNase A, Ribonuclease A
- ROS, Reactive oxygen species
- RPMI, Roswell park memorial institute
- Rh123, Rhodamine 123
- SGOT, Aspartate aminotransferase
- SGPT, Alanine aminotransferase
- SRB, Sulphorhodamine B
- TCA, Tricarboxylic acid
- TMPD, N,N,N′,N′-tetramethyl-p-phenylenediamine
- TNBS, Trinitrobenzenesulphonic acid
- TPA, 12-O-Tetradecanoylphorbol-13-acetate
- TPR, Total protein
- TRIG, Triglyceraldehyde
- TRPM8, Transient receptor potential member 8
- Tubulin
- URIC, Uric acid
- WBC, White blood cell
- mTOR, Mammalian target of rapamycin
Collapse
|
11
|
Berdejo D, Pagán E, Merino N, Botello-Morte L, Pagán R, García-Gonzalo D. Salmonella enterica serovar Typhimurium genetic variants isolated after lethal treatment with Thymbra capitata essential oil (TCO) showed increased resistance to TCO in milk. Int J Food Microbiol 2021; 360:109443. [PMID: 34710810 DOI: 10.1016/j.ijfoodmicro.2021.109443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/25/2021] [Accepted: 10/14/2021] [Indexed: 10/20/2022]
Abstract
The high prevalence of Salmonella enterica in milk poses a risk of considerable concern in the preservation of certain dairy products, mainly those elaborated from raw milk. Essential oils (EOs) have been proposed as a promising food preservative for such products due to their strong antimicrobial properties. Additionally, these natural antimicrobials have been shown to be effective against multi-drug resistant strains. They can thus also be utilized to prevent the dissemination of antimicrobial resistances (AMR). However, recent evidence of the development of bacterial resistance under EO treatments may call their use into question. This study sought to assess the emergence of antimicrobial resistant genetic variants of S. enterica serovar Typhimurium from survivors after cyclic exposure to lethal doses (>5 log10 cycles of inactivation) of Thymbra capitata EO (TCO), in order to evaluate the impact that it could have on milk preservation, to ascertain whether cross-resistance to antibiotics occurs, and to identify the genomic changes responsible for their phenotype. Isolated strains by TCO (SeTCO) showed a two-fold increase in minimum inhibitory and bactericide concentrations (MIC and MBC) of TCO compared to Salmonella enterica serovar Typhimurium wild-type strain (SeWT) in laboratory growth medium, as well as a greater adaptation and growth rate in the presence of the EOs and a higher survival to TCO treatments in buffers of pH 4.0 and 7.0. The increased resistance of SeTCO was confirmed in skimmed milk: 300 μL/L TCO reduced only 1 log10 cycle of SeTCO population, whereas it inactivated more than 5 log10 cycles in SeWT. Moreover, SeTCO showed an increased cross-resistance against aminoglycosides, quinolones and tetracyclines. Whole genome sequencing revealed 5 mutations in SeTCO: 2 in genes involved in O-antigens synthesis (rfbV and rfbX), 2 in genes related to adaptation to the growing medium (trkA and glpK), and 1 in a redox-sensitive transcriptional regulator (soxR). The phenotypic characterization of a constructed SeWT strain with mutant soxRSeTCO demonstrated that the mutation of soxR was the main cause of the increased resistance and tolerance observed in SeTCO against TCO and antibiotics. The emergence of resistant strains against EOs might jeopardize their use as food preservatives. Further studies will thus be required to determine under which conditions such resistant strains might occur, and to assess the food risk they may pose, as well as to ascertain their impact on the spread of AMR.
Collapse
Affiliation(s)
- Daniel Berdejo
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA, Zaragoza, Spain
| | - Elisa Pagán
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA, Zaragoza, Spain
| | - Natalia Merino
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA, Zaragoza, Spain
| | - Laura Botello-Morte
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA, Zaragoza, Spain
| | - Rafael Pagán
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA, Zaragoza, Spain
| | - Diego García-Gonzalo
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA, Zaragoza, Spain.
| |
Collapse
|
12
|
Felix E Silva A, Pires IC, da Costa MM, Melo JFB, Lorenzo VP, de Melo FVST, Copatti CE. Antibacterial and antibiofilm activities and synergism with florfenicol from the essential oils of Lippia sidoides and Cymbopogon citratus against Aeromonas hydrophila. J Appl Microbiol 2021; 132:1802-1812. [PMID: 34689393 DOI: 10.1111/jam.15336] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/21/2021] [Accepted: 10/11/2021] [Indexed: 11/27/2022]
Abstract
AIMS Aeromonas hydrophila is an opportunistic bacterium, with a high capacity for biofilm production, which can cause severe damage in aquaculture. The objective of this study was to identify the chemical compounds of the essential oils of Lippia sidoides (EOLS) and Cymbopogon citratus (EOCC), and to evaluate the biocidal, antibiofilm and synergistic action with the antimicrobial florfenicol of these essential oils (EOs) against A. hydrophila. METHODS AND RESULTS The antibacterial activity of EOLS and EOCC was verified by the minimum bactericidal concentration and by the action of these EOs against both forming and consolidated biofilms. The synergistic activity of EOs with florfenicol was performed using the checkerboard technique. The main component of EOLS and EOCC was carvacrol (44.50%) and α-citral (73.56%), respectively. Both EOs showed weak inhibitory activity (≥3125.00 µg ml-1 ). Two bacterial isolates were able to produce biofilm, and EOLS and EOCC acted upon the bacterial isolates to prevent biofilm formation. A bactericidal effect was verified for EOLS in the previously consolidated biofilm for both isolates and for EOCC in only one of the isolates. In general, EOLS had a synergistic effect with florfenicol, while EOCF had an additive effect. CONCLUSIONS Both EOs were able to interfere with biofilm formation and did not have an antagonistic effect in combination with florfenicol. The best results were found for EOLS, which showed a synergistic effect with florfenicol and the ability to interfere in the formation of consolidated biofilm. SIGNIFICANCE AND IMPACT OF THE STUDY This study highlights the potential of EOLS and EOCC to interfere in biofilm and act in synergy with florfenicol to reduce the occurrence of A. hydrophila. Development of these compounds may contribute to the development of herbal medicines in aquaculture.
Collapse
Affiliation(s)
- Altiery Felix E Silva
- Programa de Pós-Graduação em Zootecnia, Universidade Federal da Bahia, Salvador, BA, Brazil
| | - Isabelle C Pires
- Departamento de Zootecnia, Universidade Federal do Vale do São Francisco, Petrolina, PE, Brazil
| | - Mateus M da Costa
- Departamento de Zootecnia, Universidade Federal do Vale do São Francisco, Petrolina, PE, Brazil
| | - José F B Melo
- Departamento de Zootecnia, Universidade Federal do Vale do São Francisco, Petrolina, PE, Brazil
| | - Vitor P Lorenzo
- Instituto Federal do Sertão Pernambucano, Campus Petrolina Setor Rural, Petrolina, PE, Brazil
| | | | - Carlos E Copatti
- Programa de Pós-Graduação em Zootecnia, Universidade Federal da Bahia, Salvador, BA, Brazil
| |
Collapse
|
13
|
Dhyani R, Srivastava SK, Shankar K, Ghosh T, Beniwal A, Navani NK. A chemical genetic approach using genetically encoded reporters to detect and assess the toxicity of plant secondary metabolites against bacterial pathogens. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126399. [PMID: 34329040 DOI: 10.1016/j.jhazmat.2021.126399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 05/25/2021] [Accepted: 06/10/2021] [Indexed: 06/13/2023]
Abstract
Plant secondary metabolites are emerging as attractive alternatives in the development of therapeutics against infectious and chronic diseases. Due to the present pandemic, therapeutics showing toxicity against bacterial pathogens and viruses are gaining interest. Plant metabolites of terpenoid and phenylpropanoid categories have known antibacterial and antiviral properties. These metabolites have also been associated with toxicity to eukaryotic cells in terms of carcinogenicity, hepatotoxicity, and neurotoxicity. Sensing methods that can report the exact antibacterial dosage, formation, and accumulation of these antibacterial compounds are needed. The whole-cell reporters for such antibacterial metabolites are cost-effective and easy to maintain. In the present study, battery of toxicity sensors containing fluorescent transcriptional bioreporters was constructed, followed by fine-tuning the response using gene-debilitated E. coli mutants. This study shows that by combining regulatory switches with chemical genetics strategy, it may be possible to detect and elucidate the mode of action of effective antibacterial plant secondary metabolites - thymol, cinnamaldehyde, eugenol, and carvacrol in both pure and complex formats. Apart from the detection of adulteration of pure compounds present in complex mixture of essential oils, this approach will be useful to detect authenticity of essential oils and thus reduce unintended harmful effects on human and animal health.
Collapse
Affiliation(s)
- Rajat Dhyani
- Department of Biotechnology, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | | | - Krishna Shankar
- Department of Biotechnology, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Tamoghna Ghosh
- Department of Biotechnology, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Arun Beniwal
- Department of Biotechnology, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Naveen Kumar Navani
- Department of Biotechnology, Indian Institute of Technology Roorkee, Uttarakhand 247667, India.
| |
Collapse
|
14
|
de Souza GHDA, dos Santos Radai JA, Mattos Vaz MS, Esther da Silva K, Fraga TL, Barbosa LS, Simionatto S. In vitro and in vivo antibacterial activity assays of carvacrol: A candidate for development of innovative treatments against KPC-producing Klebsiella pneumoniae. PLoS One 2021; 16:e0246003. [PMID: 33617571 PMCID: PMC7899316 DOI: 10.1371/journal.pone.0246003] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 01/12/2021] [Indexed: 12/13/2022] Open
Abstract
Dissemination of carbapenem-resistant Klebsiella pneumoniae poses a threat to the successful treatment of bacterial diseases and increases the need for new antibacterial agents development. The objective of this study was to determine the antimicrobial activity of carvacrol against multidrug-resistant K. pneumoniae. Carbapenemase production was detected by MALDI-TOF. The PCR and sequencing showed that the blaKPC-2,blaOXA-48, blaNDM-1, blaCTX-M-8 genes were present in carbapenem-resistant K. pneumoniae strains. The polymyxin-resistant K. pneumoniae strain exhibited alterations in mgrB gene. The antimicrobial activity of carvacrol was evaluated in vitro using broth microdilution and time-kill methods. For this, carbapenem-resistant K. pneumoniae and polymyxin-resistant strains, were evaluated. The in vitro results showed that carvacrol had antimicrobial activity against all isolates evaluated. The survival curves showed that carvacrol eradicated all of the bacterial cells within 4 h. The antimicrobial effect of carvacrol in vivo was determined using a mouse model of infection with Klebsiella pneumoniae carbapenemase (KPC). The treatment with carvacrol was associated with increased survival, and significantly reduced bacterial load in peritoneal lavage. In addition, groups treated with carvacrol, had a significant reduction in the total numbers of white cell and significantly increased of platelets when compared to the untreated group. In vivo and in vitro studies showed that carvacrol regimens exhibited significant antimicrobial activity against KPC-producing K. pneumoniae, making it an interesting candidate for development of alternative treatments.
Collapse
Affiliation(s)
| | - Joyce Alencar dos Santos Radai
- Laboratório de Pesquisa em Ciências da Saúde, Universidade Federal da Grande Dourados—UFGD, Dourados, Mato Grosso do Sul, Brazil
| | - Marcia Soares Mattos Vaz
- Laboratório de Pesquisa em Ciências da Saúde, Universidade Federal da Grande Dourados—UFGD, Dourados, Mato Grosso do Sul, Brazil
| | - Kesia Esther da Silva
- Laboratório de Pesquisa em Ciências da Saúde, Universidade Federal da Grande Dourados—UFGD, Dourados, Mato Grosso do Sul, Brazil
| | - Thiago Leite Fraga
- Centro Universitário da Grande Dourados–UNIGRAN, Dourados, Mato Grosso do Sul, Brazil
| | - Leticia Spanivello Barbosa
- Laboratório de Pesquisa em Ciências da Saúde, Universidade Federal da Grande Dourados—UFGD, Dourados, Mato Grosso do Sul, Brazil
| | - Simone Simionatto
- Laboratório de Pesquisa em Ciências da Saúde, Universidade Federal da Grande Dourados—UFGD, Dourados, Mato Grosso do Sul, Brazil
- * E-mail:
| |
Collapse
|
15
|
Citral and geraniol induce necrotic and apoptotic cell death on Saccharomyces cerevisiae. World J Microbiol Biotechnol 2021; 37:42. [PMID: 33547564 DOI: 10.1007/s11274-021-03011-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/19/2021] [Indexed: 01/13/2023]
Abstract
Essential oils and their main components, monoterpenes, have been proven to be important alternatives for the control of pathogenic and spoiling microorganisms, but the mode of action of these compounds is poorly understood. This work aimed to determine the mode of action of citral and geraniol on the model yeast Saccharomyces cerevisiae using a flow cytometry approach. Exponentially growing yeast cells were treated with different concentrations of citral and geraniol for 3 h, and evaluated for cell wall susceptibility to glucanase, membrane integrity, reactive oxygen species (ROS) accumulation, mitochondrial membrane potential, and metacaspase activity. Results provide strong evidence that citral and geraniol acute fungicidal activity against Saccharomyces cells involves the loss of membrane and cell wall integrity resulting in a dose-dependent apoptotic/necrotic cell death. However, yeast cells that escape this first cell membrane disruption, particularly evident on sub-lethal concentration, die by metacaspase-mediated apoptosis induced by the accumulation of intracellular ROS. The deleted mutant on the yca1 gene showed high tolerance to citral and geraniol.
Collapse
|
16
|
Berdejo D, Pagán E, Merino N, Pagán R, García-Gonzalo D. Incubation with a Complex Orange Essential Oil Leads to Evolved Mutants with Increased Resistance and Tolerance. Pharmaceuticals (Basel) 2020; 13:E239. [PMID: 32916977 PMCID: PMC7557841 DOI: 10.3390/ph13090239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 12/18/2022] Open
Abstract
Emergence of strains with increased resistance/tolerance to natural antimicrobials was evidenced after cyclic exposure to carvacrol, citral, and (+)-limonene oxide. However, no previous studies have reported the development of resistance and tolerance to complex essential oils (EOs). This study seeks to evaluate the occurrence of Staphylococcus aureus strains resistant and tolerant to a complex orange essential oil (OEO) after prolonged cyclic treatments at low concentrations. Phenotypic characterization of evolved strains revealed an increase of minimum inhibitory and bactericidal concentration for OEO, a better growth fitness in presence of OEO, and an enhanced survival to lethal treatments, compared to wild-type strain. However, no significant differences (p > 0.05) in cross-resistance to antibiotics were observed. Mutations in hepT and accA in evolved strains highlight the important role of oxidative stress in the cell response to OEO, as well as the relevance of the cell membrane in the cell response to these natural antimicrobials. This study demonstrates the emergence of S. aureus strains that are resistant and tolerant to EO (Citrus sinensis). This phenomenon should be taken into account to assure the efficacy of natural antimicrobials in the design of food preservation strategies, in cleaning and disinfection protocols, and in clinical applications against resistant bacteria.
Collapse
Affiliation(s)
| | | | | | | | - Diego García-Gonzalo
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), C/ Miguel Servet, 177, 50013 Zaragoza, Spain; (D.B.); (E.P.); (N.M.); (R.P.)
| |
Collapse
|
17
|
Berdejo D, Merino N, Pagán E, García-Gonzalo D, Pagán R. Genetic Variants and Phenotypic Characteristics of Salmonella Typhimurium-Resistant Mutants after Exposure to Carvacrol. Microorganisms 2020; 8:microorganisms8060937. [PMID: 32580471 PMCID: PMC7356045 DOI: 10.3390/microorganisms8060937] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 12/12/2022] Open
Abstract
The emergence of antimicrobial resistance has raised questions about the safety of essential oils and their individual constituents as food preservatives and as disinfection agents. Further research is required to understand how and under what conditions stable genotypic resistance might occur in food pathogens. Evolution experiments on Salmonella Typhimurium cyclically exposed to sublethal and lethal doses of carvacrol permitted the isolation of SeSCar and SeLCar strains, respectively. Both evolved strains showed a significant increase in carvacrol resistance, assessed by minimum inhibitory and bactericidal concentrations, the study of growth kinetics in the presence of carvacrol, and the evaluation of survival under lethal conditions. Moreover, antibiotic susceptibility tests revealed a development of SeLCar resistance to a wide range of antibiotics. Whole genome sequencing allowed the identification of single nucleotide variations in transcriptional regulators of oxidative stress-response: yfhP in SeSCar and soxR in SeLCar, which could be responsible for the increased resistance by improving the response to carvacrol and preventing its accumulation inside the cell. This study demonstrates the emergence of S. Typhimurium-resistant mutants against carvacrol, which might pose a risk to food safety and should therefore be considered in the design of food preservation strategies, or of cleaning and disinfection treatments.
Collapse
|
18
|
Makroo H, Rastogi N, Srivastava B. Ohmic heating assisted inactivation of enzymes and microorganisms in foods: A review. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.01.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Tyagi N, Kumar A. Understanding effect of interaction of nanoparticles and antibiotics on bacteria survival under aquatic conditions: Knowns and unknowns. ENVIRONMENTAL RESEARCH 2020; 181:108945. [PMID: 31806288 DOI: 10.1016/j.envres.2019.108945] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/22/2019] [Accepted: 11/17/2019] [Indexed: 06/10/2023]
Abstract
The review provides a comprehensive overview of the available state-of-the-art of nanoparticles (NPs) and antibiotics (ABs) occurrence and their fate in the natural aquatic settings by addressing different research questions and the challenges faced while addressing those questions. Firstly, understand the interaction of NPs and ABs with themselves in addition to other matrix components (presence of natural organic matter, bacteria, biofilms, other anthropogenic pollutants and metals from natural sources). Secondly, summarize the bactericidal activity of NP and AB due to reactive oxygen species (ROS) production. The complete information was gathered from database and analysed as per the conjectured questions under laboratory versus environmental-relevant conditions (1. Fate of NPs and ABs, and 2. Will the presence of NPs and ABs alone and their mixtures influence the ROS concentration and antibacterial activity), and proposed six reactions to describe the fate of NP and AB in natural aquatic settings. However, laboratory-based studies revealed that NP and AB fate largely depend on the ionic strength, organic matter content and pH of the matrix whereas field based information is missing about this. The former was performed at sterile conditions using sophisticated instruments and standard protocol as compared to latter and can't be replicated under natural aquatic settings due to lack of: (i) accurate environmental concentration of NPs and ABs, (ii) knowledge of bacterial type and their concentration, (iii) optimized protocol and tracking systems. The author's recommendation is to verify the proposed reactions experimentally by using the frequently found pairs of NPs and ABs in the natural aquatic settings. Further, ranked them on their decreasing order of toxicity and informed regulatory bodies for further action. Overall research is needed in the suggested directions to reduce uncertainty behind the impacts of NPs and ABs on the aquatic settings and their role in bactericidal activity.
Collapse
Affiliation(s)
- Neha Tyagi
- Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi, 110016, India.
| | - Arun Kumar
- Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi, 110016, India.
| |
Collapse
|
20
|
Ağuş HH, Yilmaz S, Şengöz CO. Crosstalk between autophagy and apoptosis induced by camphor in Schizosaccharomyces pombe. ACTA ACUST UNITED AC 2019; 43:382-390. [PMID: 31892813 PMCID: PMC6911262 DOI: 10.3906/biy-1908-11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Camphor is widely used in pharmacy, the food industry, and cosmetics. In this study, we evaluate inhibitory and cytotoxic effects of camphor in the fission yeast (Schizosaccharomyces pombe), which presents a unicellular model in mechanistic toxicology and cell biology. Low-dose camphor exposure (0.4 mg/mL) activated autophagy, which was shown by GFP-Atg8 dots and transcriptional upregulation of Atg6 (Beclin-1 ortholog). Autophagy was also confirmed by using autophagy-deficient cells, which showed reduction in GFP-Atg8 dot formation. However, high-dose camphor exposure (0.8 mg/mL) caused dramatic cell death ratios, demonstrated by spot and colony-forming assays, even in autophagy-deficient cells. To unravel the underlying mechanism, this time, apoptosis-deficient cells were exposed to low- and high-dose camphor. Apoptosis was also confirmed by acridine orange/ethidium bromide staining. Among yeast apoptosis mediators, Aif1 was found to mediate camphor-induced cell death. In conclusion, differential regulation of autophagy and apoptosis, and switches between them, were found to be dose-dependent. The potential effects of camphor on autophagy and apoptotic cell death and underlying mechanisms were clarified in basic unicellular eukaryotic model, S. pombe.
Collapse
Affiliation(s)
- Hızlan Hıncal Ağuş
- Department of Molecular Biology and Genetics, Faculty of Arts & Science, İstanbul Yeni Yüzyıl University, İstanbul Turkey
| | - Sedanur Yilmaz
- Department of Molecular Biology and Genetics, Faculty of Arts & Science, İstanbul Yeni Yüzyıl University, İstanbul Turkey
| | - Cansın Ogeday Şengöz
- Department of Molecular Biology and Genetics, Faculty of Arts & Science, İstanbul Yeni Yüzyıl University, İstanbul Turkey
| |
Collapse
|
21
|
Hassannejad N, Bahador A, Rudbari NH, Modarressi MH, Parivar K. In vivo antibacterial activity of
Zataria multiflora
Boiss extract and its components, carvacrol, and thymol, against colistin‐resistant
Acinetobacter baumannii
in a pneumonic BALB/c mouse model. J Cell Biochem 2019; 120:18640-18649. [DOI: 10.1002/jcb.28908] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/01/2019] [Accepted: 02/04/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Niloofar Hassannejad
- Department of Cellular and Molecular BiologyFaculty of SciencesScience and Research Brand of Islamic Azad University Tehran Iran
| | - Abbas Bahador
- Department of MicrobiologySchool of MedicineTehran University of Medical Sciences Tehran Iran
| | - Nasim Hayati Rudbari
- Department of BiologyFaculty of SciencesScience and Research Brand of Islamic Azad University Tehran Iran
| | | | - Kazem Parivar
- Department of BiologyFaculty of SciencesScience and Research Brand of Islamic Azad University Tehran Iran
| |
Collapse
|
22
|
Thielmann J, Muranyi P. Review on the chemical composition of Litsea cubeba essential oils and the bioactivity of its major constituents citral and limonene. JOURNAL OF ESSENTIAL OIL RESEARCH 2019. [DOI: 10.1080/10412905.2019.1611671] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- J. Thielmann
- Retention of Food Quality, Fraunhofer Institute for Process Engineering and Packaging IVV, Freising, German
- Chair of food packaging technology, Technical University of Munich TUM, Munich, Germany
| | - P. Muranyi
- Chair of food packaging technology, Technical University of Munich TUM, Munich, Germany
| |
Collapse
|
23
|
Agus HH, Sengoz CO, Yilmaz S. Oxidative stress-mediated apoptotic cell death induced by camphor in sod1-deficient Schizosaccharomyces pombe. Toxicol Res (Camb) 2019; 8:216-226. [PMID: 30931102 PMCID: PMC6404167 DOI: 10.1039/c8tx00279g] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 11/26/2018] [Indexed: 12/15/2022] Open
Abstract
Camphor is one of the monoterpenes widely used in cosmetics, pharmaceutics and the food industry. In this study, we aimed to assess the oxidative, cytotoxic and apoptotic effects of camphor on the fission yeast (Schizosaccharomyces pombe), which is a promising unicellular model organism in mechanistic toxicology and cell biology. Since Sod1 is the main radical scavenger in the cell, we used sod1 mutants to understand whether camphor-induced ROS accumulation caused higher cytotoxicity and apoptosis. Camphor exposure (0-2000 mg L-1) caused significant cytotoxicity in yeast, particularly in sod1Δ cells. DCFDA (2,7-dichlorodihydrofluorescein diacetate) fluorescence and NBT (p-nitro-blue tetrazolium chloride) reduction increased (at least 2.5-3-fold in sod1Δ cells) in correlation with camphor concentrations (800-1200 mg L-1), showing higher ROS levels and oxidative stress. Moreover, cells, stained with acridine orange/ethidium bromide, showed an apoptotic morphology with nuclear fragmentation and condensation. DAPI (4',6-diamidino-2-phenylindole) staining was used to validate the apoptotic nuclear morphology. Dramatically increased mitochondrial impairment, which was higher in sod1Δ cells than in wild type cells, was shown by rhodamine 123 staining. In conclusion, camphor-induced excessive ROS production, which could not be prevented significantly in sod1 mutants, caused a dramatic increase in mortality rates due to intrinsic apoptosis revealed by mitochondrial impairment and apoptotic nuclear morphology. The potential effects of camphor on apoptotic cell death and the underlying mechanisms were clarified in the unicellular eukaryotic model, S. pombe.
Collapse
Affiliation(s)
- Hizlan Hincal Agus
- Department of Molecular Biology and Genetics , Istanbul Yeni Yuzyil University , Istanbul , Turkey .
| | - Cansin Ogeday Sengoz
- Department of Molecular Biology and Genetics , Istanbul Yeni Yuzyil University , Istanbul , Turkey .
| | - Sedanur Yilmaz
- Department of Molecular Biology and Genetics , Istanbul Yeni Yuzyil University , Istanbul , Turkey .
| |
Collapse
|
24
|
Vieira AI, Guerreiro A, Antunes MD, Miguel MDG, Faleiro ML. Edible Coatings Enriched with Essential Oils on Apples Impair the Survival of Bacterial Pathogens through a Simulated Gastrointestinal System. Foods 2019; 8:E57. [PMID: 30720754 PMCID: PMC6406970 DOI: 10.3390/foods8020057] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/24/2019] [Accepted: 01/30/2019] [Indexed: 11/18/2022] Open
Abstract
Edible coatings supplemented with essential oil components have been investigated to control spoilage microorganisms. In this study, the survival of Listeria monocytogenes and Salmonella enterica serovar Typhimurium on apples treated with edible coatings based on sodium alginate (2%) (ECs) and supplemented with essential oil components, namely eugenol (Eug) at 0.2% or in combination with 0.1% (v/v) of Eug and citral (Cit) at 0.15% was determined. Both bacterial pathogens were exposed on apples treated with ECs supplemented with Eug or Eug + Cit and challenged with gastrointestinal fluids and their survival was examined. Both pathogens were able to survive on the surface of 'Bravo de Esmolfe' apple. The use of ECs in fresh-cut fruits impaired the survival of both bacterial populations over 72 h at 4 °C. The exposure of the pathogens on apples with ECs supplemented with Eug and Cit and challenged with gastrointestinal fluids significantly reduced their survival. This study evidences that the use of alginate edible coating enriched with Eug or the combination of Eug and Cit can contribute to the safer consumption of minimally processed fruits.
Collapse
Affiliation(s)
- Ana Isabel Vieira
- University of Algarve, FCT, Center for Biomedical Research, Edf. 8, Campus de Gambelas, 8005-139 Faro, Portugal.
| | - Adriana Guerreiro
- University of Algarve, FCT, Meditbio, Edf. 8, Campus de Gambelas, 8005-139 Faro, Portugal.
| | - Maria Dulce Antunes
- University of Algarve, FCT, Meditbio, Edf. 8, Campus de Gambelas, 8005-139 Faro, Portugal.
| | - Maria da Graça Miguel
- University of Algarve, FCT, Meditbio, Edf. 8, Campus de Gambelas, 8005-139 Faro, Portugal.
| | - Maria Leonor Faleiro
- University of Algarve, FCT, Center for Biomedical Research, Edf. 8, Campus de Gambelas, 8005-139 Faro, Portugal.
| |
Collapse
|
25
|
Berdejo D, Chueca B, Pagán E, Renzoni A, Kelley WL, Pagán R, Garcia-Gonzalo D. Sub-Inhibitory Doses of Individual Constituents of Essential Oils Can Select for Staphylococcus aureus Resistant Mutants. Molecules 2019; 24:E170. [PMID: 30621156 PMCID: PMC6337159 DOI: 10.3390/molecules24010170] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 12/26/2018] [Accepted: 12/27/2018] [Indexed: 11/16/2022] Open
Abstract
Increased bacterial resistance to food preservation technologies represents a risk for food safety and shelf-life. The use of natural antimicrobials, such as essential oils (EOs) and their individual constituents (ICs), has been proposed to avoid the generation of antimicrobial resistance. However, prolonged application of ICs might conceivably lead to the emergence of resistant strains. Hence, this study was aimed toward applying sub-inhibitory doses of the ICs carvacrol, citral, and (+)-limonene oxide to Staphylococcus aureus USA300, in order to evaluate the emergence of resistant strains and to identify the genetic modifications responsible for their increased resistance. Three stable-resistant strains, CAR (from cultures with carvacrol), CIT (from cultures with citral), and OXLIM (from cultures with (+)-limonene oxide) were isolated, showing an increased resistance against the ICs and a higher tolerance to lethal treatments by ICs or heat. Whole-genome sequencing revealed in CAR a large deletion in a region that contained genes encoding transcriptional regulators and metabolic enzymes. CIT showed a single missense mutation in aroC (N187K), which encodes for chorismate synthase; and in OXLIM a missense mutation was detected in rpoB (A862V), which encodes for RNA polymerase subunit beta. This study provides a first detailed insight into the mechanisms of action and S. aureus resistance arising from exposure to carvacrol, citral, and (+)-limonene oxide.
Collapse
Affiliation(s)
- Daniel Berdejo
- Tecnología de los Alimentos, Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), 930 50059 Zaragoza, Spain.
| | - Beatriz Chueca
- Tecnología de los Alimentos, Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), 930 50059 Zaragoza, Spain.
| | - Elisa Pagán
- Tecnología de los Alimentos, Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), 930 50059 Zaragoza, Spain.
| | - Adriana Renzoni
- Service of Infectious Diseases, Department of Medical Specialties, University Hospital of Geneva, 1205 Geneva, Switzerland.
| | - William L Kelley
- Department of Microbiology and Molecular Medicine, University Hospital and Medical School of Geneva, 1205 Geneva, Switzerland.
| | - Rafael Pagán
- Tecnología de los Alimentos, Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), 930 50059 Zaragoza, Spain.
| | - Diego Garcia-Gonzalo
- Tecnología de los Alimentos, Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), 930 50059 Zaragoza, Spain.
| |
Collapse
|
26
|
Stress Resistance Development and Genome-Wide Transcriptional Response of Escherichia coli O157:H7 Adapted to Sublethal Thymol, Carvacrol, and trans-Cinnamaldehyde. Appl Environ Microbiol 2018; 84:AEM.01616-18. [PMID: 30217837 DOI: 10.1128/aem.01616-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/02/2018] [Indexed: 01/05/2023] Open
Abstract
Thymol, carvacrol, and trans-cinnamaldehyde are essential oil (EO) compounds with broad-spectrum antimicrobial activities against foodborne pathogens, including Escherichia coli O157:H7. However, little is known regarding direct resistance and cross-resistance development in E. coli O157:H7 after adaptation to sublethal levels of these compounds, and information is scarce on microbial adaptive responses at a molecular level. The present study demonstrated that E. coli O157:H7 was able to grow in the presence of sublethal thymol (1/2T), carvacrol (1/2C), or trans-cinnamaldehyde (1/2TC), displaying an extended lag phase duration and a lower maximum growth rate. EO-adapted cells developed direct resistance against lethal EO treatments and cross-resistance against heat (58°C) and oxidative (50 mM H2O2) stresses. However, no induction of acid resistance (simulated gastric fluid, pH 1.5) was observed. RNA sequencing revealed a large number (310 to 338) of differentially expressed (adjusted P value [Padj ], <0.05; fold change, ≥5) genes in 1/2T and 1/2C cells, while 1/2TC cells only showed 27 genes with altered expression. In accordance with resistance phenotypes, the genes related to membrane, heat, and oxidative stress responses and genes related to iron uptake and metabolism were upregulated. Conversely, virulence genes associated with motility, biofilm formation, and efflux pumps were repressed. This study demonstrated the development of direct resistance and cross-resistance and characterized whole-genome transcriptional responses in E. coli O157:H7 adapted to sublethal thymol, carvacrol, or trans-cinnamaldehyde. The data suggested that caution should be exercised when using EO compounds as food antimicrobials, due to the potential stress resistance development in E. coli O157:H7.IMPORTANCE The present study was designed to understand transcriptomic changes and the potential development of direct and cross-resistance in essential oil (EO)-adapted Escherichia coli O157:H7. The results demonstrated altered growth behaviors of E. coli O157:H7 during adaptation in sublethal thymol, carvacrol, and trans-cinnamaldehyde. Generally, EO-adapted bacteria showed enhanced resistance against subsequent lethal EO, heat, and oxidative stresses, with no induction of acid resistance in simulated gastric fluid. A transcriptomic analysis revealed the upregulation of related stress resistance genes and a downregulation of various virulence genes in EO-adapted cells. This study provides new insights into microbial EO adaptation behaviors and highlights the risk of resistance development in adapted bacteria.
Collapse
|
27
|
Agus HH, Sarp C, Cemiloglu M. Oxidative stress and mitochondrial impairment mediated apoptotic cell death induced by terpinolene in Schizosaccharomyces pombe. Toxicol Res (Camb) 2018; 7:848-858. [PMID: 30310662 PMCID: PMC6116180 DOI: 10.1039/c8tx00100f] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 04/25/2018] [Indexed: 12/27/2022] Open
Abstract
Terpinolene is one of the most abundant monoterpenes used as a food supplement or odorant in cosmetics and the pharmaceutical industry. In this study, we aimed to assess apoptotic, oxidative and cytotoxic effects of terpinolene. We used the fission yeast (Schizosaccharomyces pombe) as a promising uni-cellular model organism in molecular toxicology and cell death research, due to its resemblance to mammalian cells at the molecular level. After terpinolene exposure (200-800 mg L-1), the IC50 and LC50 were calculated as 349.17 mg L-1 and 593.87 mg L-1. Cells, stained with acridine orange/ethidium bromide and DAPI, showed apoptotic nuclear morphology, chromatin condensation and fragmentation. 2,7-Dichlorodihydrofluorescein diacetate (DCFDA) fluorescence gradually increased (1.5-2-fold increase) in correlation with increasing concentrations of terpinolene (200-800 mg L-1). Mitochondrial impairment at higher concentrations of terpinolene (400-800 mg L-1) was shown by Rhodamine 123 staining. Real-time PCR experiments showed significant increases (1.5-3-fold) in SOD1 and GPx1 levels (p < 0.05) as well as 2-2.5-fold increases (p < 0.05) in pro-apoptotic factors, Pca1 and Sprad9. The potential effects of terpinolene on programmed cell death and the underlying mechanisms were clarified in unicellular model fungi, Schizosaccharomyces pombe.
Collapse
Affiliation(s)
- Hizlan H Agus
- Department of Molecular Biology and Genetics , Istanbul Yeni Yuzyil University , Istanbul , Turkey . ; Tel: +90 212 444 50 01
| | - Cemaynur Sarp
- Department of Molecular Biology and Genetics , Istanbul Yeni Yuzyil University , Istanbul , Turkey . ; Tel: +90 212 444 50 01
| | - Meryem Cemiloglu
- Department of Molecular Biology and Genetics , Istanbul Yeni Yuzyil University , Istanbul , Turkey . ; Tel: +90 212 444 50 01
| |
Collapse
|
28
|
Antifungal Activity of Essential Oil Compounds (Geraniol and Citral) and Inhibitory Mechanisms on Grain Pathogens ( Aspergillus flavus and Aspergillus ochraceus). Molecules 2018; 23:molecules23092108. [PMID: 30131466 PMCID: PMC6225121 DOI: 10.3390/molecules23092108] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/05/2018] [Accepted: 08/20/2018] [Indexed: 12/24/2022] Open
Abstract
The grain contamination by Aspergillus spp. has been a serious issue. This study exhibited the excellent antifungal effects of the essential oil compounds (EOCs) geraniol and citral against common grain pathogens (A. flavus and A. ochraceus) in vitro and in situ. The inhibitory mechanisms were also evaluated from the perspective of cell membrane permeability, reactive oxygen species (ROS) generation, and Aspergillus spp. growth-related gene expression. Meanwhile, the combined effects of EOCs in the vapor phase and modified atmosphere packaging (MAP) were examined to find an alternative preservation method for controlling Aspergillus spp. The results indicated that citral exhibited the antifungal activity mainly by downregulating the sporulation- and growth-related genes for both pathogens. Geraniol displayed inhibitory effectiveness against A. flavus predominantly by inducing the intracellular ROS accumulation and showed toxicity against A. ochraceus principally by changing cell membrane permeability. Furthermore, the synthetic effects of EOCs and MAP (75% CO2 and 25% N2) induced better grain quality than the current commercial fumigant AlP. These findings reveal that EOCs have potential to be a novel grain preservative for further application.
Collapse
|
29
|
Whole-Genome Sequencing and Genetic Analysis Reveal Novel Stress Responses to Individual Constituents of Essential Oils in Escherichia coli. Appl Environ Microbiol 2018; 84:AEM.02538-17. [PMID: 29374037 DOI: 10.1128/aem.02538-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 01/21/2018] [Indexed: 11/20/2022] Open
Abstract
Food preservation by the use of essential oils (EOs) is being extensively studied because of the antimicrobial properties of their individual constituents (ICs). Three resistant mutants (termed CAR, CIT, and LIM) of Escherichia coli MG1655 were selected by subculturing with the ICs carvacrol, citral, and (+)-limonene oxide, respectively. These derivative strains showed increased MIC values of ICs and concomitantly enhanced resistance to various antibiotics (ampicillin, trimethoprim, chloramphenicol, tetracycline, kanamycin, novobiocin, norfloxacin, cephalexin, and nalidixic acid) compared to those for the parental strain (wild type [WT]). Whole-genome sequencing (WGS) of these hyperresistant strains permitted the identification of single nucleotide polymorphisms (SNPs) and deletions in comparison to the WT. In order to analyze the contribution of these mutations to the increased antimicrobial resistance detected in hyperresistant strains, derivative strains were constructed by allelic reversion. A role of the SoxR D137Y missense mutation in CAR was confirmed by growth in the presence of some ICs and antibiotics and by its tolerance to ICs but not to lethal heat treatments. In CIT, increased resistance relied on contributions by several detected SNPs, resulting in a frameshift in MarR and an in-frame GyrB ΔG157 mutation. Finally, both the insertion resulting in an AcrR frameshift and large chromosomal deletions found in LIM were correlated with the hyperresistant phenotype of this strain. The nature of the obtained mutants suggests intriguing links to cellular defense mechanisms previously implicated in antibiotic resistance.IMPORTANCE The antimicrobial efficacy of ICs has been proven over the years, together with their potential to improve traditional heat treatments by reducing treatment intensity and, consequently, adverse effects on food quality. However, the mechanisms of bacterial inactivation by ICs are still not well understood, in contrast to antibiotics. We performed WGS of three E. coli strains that are hyperresistant to ICs. The information provided detailed insight into the mechanisms of bacterial resistance arising from exposure to carvacrol, citral, and (+)-limonene oxide. Future experiments will undoubtedly yield additional insights into genes and pathways contributing to the acquisition of endogenous resistance to ICs.
Collapse
|
30
|
Zhang L, Xiao WH, Wang Y, Yao MD, Jiang GZ, Zeng BX, Zhang RS, Yuan YJ. Chassis and key enzymes engineering for monoterpenes production. Biotechnol Adv 2017; 35:1022-1031. [DOI: 10.1016/j.biotechadv.2017.09.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 09/02/2017] [Accepted: 09/04/2017] [Indexed: 02/07/2023]
|
31
|
Van de Vel E, Sampers I, Raes K. A review on influencing factors on the minimum inhibitory concentration of essential oils. Crit Rev Food Sci Nutr 2017; 59:357-378. [PMID: 28853911 DOI: 10.1080/10408398.2017.1371112] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
With growing interest in essential oils as natural preservatives in the food industry, the literature is expanding enormously. To understand the antimicrobial activity of essential oils, the antimicrobial mechanism of individual essential oil (EO) compounds, and their minimum inhibitory concentrations (MICs), are interesting starting points for research. Therefore, and to get insight into the factors influencing their antimicrobial activities, the Web of Science was searched for MICs of EO compounds (1995-2016). Many MICs for individual EO compounds have already been reported in the literature, but there is large variability in these data, even for the MIC of the same compound against the same species. No correlation was found between the tested structural parameters of EO compounds (polarity, water solubility, dissociation constant, molecular weight and molecular complexity) and their MICs against all microorganisms, Gram-negative bacteria, Gram-positive bacteria and fungi. Few clear differences in sensitivity between microorganisms could be found. Based on this review it is clear that different incubation conditions, culture media and the use of emulsifiers/solvents have an influence on the MIC, causing big variance. This review points out the need for a good international standard method to assess the antimicrobial activity of EO compounds for better comparability between studies.
Collapse
Affiliation(s)
- Elien Van de Vel
- a Department of Industrial Biological Sciences, Laboratory of Food Microbiology and Biotechnology, Faculty of Bioscience Engineering , Ghent University Campus Kortrijk , Graaf Karel de Goedelaan 5, Kortrijk , Belgium
| | - Imca Sampers
- a Department of Industrial Biological Sciences, Laboratory of Food Microbiology and Biotechnology, Faculty of Bioscience Engineering , Ghent University Campus Kortrijk , Graaf Karel de Goedelaan 5, Kortrijk , Belgium
| | - Katleen Raes
- a Department of Industrial Biological Sciences, Laboratory of Food Microbiology and Biotechnology, Faculty of Bioscience Engineering , Ghent University Campus Kortrijk , Graaf Karel de Goedelaan 5, Kortrijk , Belgium
| |
Collapse
|
32
|
Baldissera MD, Souza CF, Dolci GS, Grando TH, Sagrillo MR, Vaucher RA, da Luz SC, Silveira SO, Duarte MM, Duarte T, da Silva AS, Monteiro SG. Monoterpene alpha-terpinene induced hepatic oxidative, cytotoxic and genotoxic damage is associated to caspase activation in rats. J Appl Biomed 2017. [DOI: 10.1016/j.jab.2017.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
33
|
Global transcriptional response of Escherichia coli MG1655 cells exposed to the oxygenated monoterpenes citral and carvacrol. Int J Food Microbiol 2017. [PMID: 28644990 DOI: 10.1016/j.ijfoodmicro.2017.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
DNA microarrays were used to study the mechanism of bacterial inactivation by carvacrol and citral. After 10-min treatments of Escherichia coli MG1655 cells with 100 and 50ppm of carvacrol and citral, 76 and 156 genes demonstrated significant transcriptional differences (p≤0.05), respectively. Among the up-regulated genes after carvacrol treatment, we found gene coding for multidrug efflux pumps (acrA, mdtM), genes related to phage shock response (pspA, pspB, pspC, pspD, pspF and pspG), biosynthesis of arginine (argC, argG, artJ), and purine nucleotides (purC, purM). In citral-treated cells, transcription of purH and pyrB and pyrI was 2 times higher. Deletion of several differentially expressed genes confirmed the role of ygaV, yjbO, pspC, sdhA, yejG and ygaV in the mechanisms of E. coli inactivation by carvacrol and citral. These results would indicate that citral and carvacrol treatments cause membrane damage and activate metabolism through the production of nucleotides required for DNA and RNA synthesis and metabolic processes. Comparative transcriptomics of the response of E. coli to a heat treatment, which caused a significant change of the transcription of 1422 genes, revealed a much weaker response to both individual constituents of essential oils (ICs).·Thus, inactivation by citral or carvacrol was not multitarget in nature.
Collapse
|
34
|
Kim SS, Kang DH. Synergistic effect of carvacrol and ohmic heating for inactivation of E. coli O157:H7, S . Typhimurium, L. monocytogenes , and MS-2 bacteriophage in salsa. Food Control 2017. [DOI: 10.1016/j.foodcont.2016.08.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
35
|
Menezes PDP, Serafini MR, de Carvalho YMBG, Soares Santana DV, Lima BS, Quintans-Júnior LJ, Marreto RN, de Aquino TM, Sabino AR, Scotti L, Scotti MT, Grangeiro-Júnior S, de Souza Araújo AA. Kinetic and physical-chemical study of the inclusion complex of β-cyclodextrin containing carvacrol. J Mol Struct 2016. [DOI: 10.1016/j.molstruc.2016.06.062] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
36
|
Redox and respiratory chain related alterations in the lophirones B and C-mediated bacterial lethality. Microb Pathog 2016; 100:95-111. [DOI: 10.1016/j.micpath.2016.08.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 08/19/2016] [Accepted: 08/22/2016] [Indexed: 11/19/2022]
|
37
|
Leite de Souza E. The effects of sublethal doses of essential oils and their constituents on antimicrobial susceptibility and antibiotic resistance among food-related bacteria: A review. Trends Food Sci Technol 2016. [DOI: 10.1016/j.tifs.2016.07.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
38
|
Montagu A, Joly-Guillou ML, Rossines E, Cayon J, Kempf M, Saulnier P. Stress Conditions Induced by Carvacrol and Cinnamaldehyde on Acinetobacter baumannii. Front Microbiol 2016; 7:1133. [PMID: 27486453 PMCID: PMC4949268 DOI: 10.3389/fmicb.2016.01133] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 07/07/2016] [Indexed: 12/27/2022] Open
Abstract
Acinetobacter baumannii has emerged as a major cause of nosocomial infections. The ability of A. baumannii to display various resistance mechanisms against antibiotics has transformed it into a successful nosocomial pathogen. The limited number of antibiotics in development and the disengagement of the pharmaceutical industry have prompted the development of innovative strategies. One of these strategies is the use of essential oils, especially aromatic compounds that are potent antibacterial molecules. Among them, the combination of carvacrol and cinnamaldehyde has already demonstrated antibacterial efficacy against A. baumannii. The aim of this study was to determine the biological effects of these two compounds in A. baumannii, describing their effect on the rRNA and gene regulation under environmental stress conditions. Results demonstrated rRNA degradation by the carvacrol/cinnamaldehyde mixture, and this effect was due to carvacrol. Degradation was conserved after encapsulation of the mixture in lipid nanocapsules. Results showed an upregulation of the genes coding for heat shock proteins, such as groES, groEL, dnaK, clpB, and the catalase katE, after exposure to carvacrol/cinnamaldehyde mixture. The catalase was upregulated after carvacrol exposure wich is related to an oxidative stress. The combination of thiourea (hydroxyl radical scavenger) and carvacrol demonstrated a potent bactericidal effect. These results underline the development of defense strategies of the bacteria by synthesis of reactive oxygen species in response to environmental stress conditions, such as carvacrol.
Collapse
Affiliation(s)
- Angélique Montagu
- LUNAM UniversitéAngers, France
- INSERM U1066, Micro et Nanomédecines Biomimétiques, Institut de Biologie en Santé – Centre Hospitalier UniversitaireAngers, France
| | - Marie-Laure Joly-Guillou
- ATOMycA, INSERM Atip-Avenir Team, CRCNA, Inserm U892, 6299 CNRS, University of AngersAngers, France
- Laboratoire de Bactériologie, Institut de Biologie en Santé – Centre Hospitalier UniversitaireAngers, France
| | | | - Jérome Cayon
- Plateforme d’Analyse Cellulaire Et Moléculaire, Institut de Biologie en Santé – Centre Hospitalier UniversitaireAngers, France
| | - Marie Kempf
- ATOMycA, INSERM Atip-Avenir Team, CRCNA, Inserm U892, 6299 CNRS, University of AngersAngers, France
- Laboratoire de Bactériologie, Institut de Biologie en Santé – Centre Hospitalier UniversitaireAngers, France
| | - Patrick Saulnier
- LUNAM UniversitéAngers, France
- INSERM U1066, Micro et Nanomédecines Biomimétiques, Institut de Biologie en Santé – Centre Hospitalier UniversitaireAngers, France
| |
Collapse
|
39
|
Fancello F, Petretto GL, Zara S, Sanna ML, Addis R, Maldini M, Foddai M, Rourke JP, Chessa M, Pintore G. Chemical characterization, antioxidant capacity and antimicrobial activity against food related microorganisms of Citrus limon var. pompia leaf essential oil. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2016.02.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
40
|
Toogood HS, Tait S, Jervis A, Ní Cheallaigh A, Humphreys L, Takano E, Gardiner JM, Scrutton NS. Natural Product Biosynthesis in Escherichia coli: Mentha Monoterpenoids. Methods Enzymol 2016; 575:247-70. [PMID: 27417932 DOI: 10.1016/bs.mie.2016.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
The era of synthetic biology heralds in a new, more "green" approach to fine chemical and pharmaceutical drug production. It takes the knowledge of natural metabolic pathways and builds new routes to chemicals, enables nonnatural chemical production, and/or allows the rapid production of chemicals in alternative, highly performing organisms. This route is particularly useful in the production of monoterpenoids in microorganisms, which are naturally sourced from plant essential oils. Successful pathways are constructed by taking into consideration factors such as gene selection, regulatory elements, host selection and optimization, and metabolic considerations of the host organism. Seamless pathway construction techniques enable a "plug-and-play" switching of genes and regulatory parts to optimize the metabolic functioning in vivo. Ultimately, synthetic biology approaches to microbial monoterpenoid production may revolutionize "natural" compound formation.
Collapse
Affiliation(s)
- H S Toogood
- Manchester Institute of Biotechnology, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - S Tait
- Manchester Institute of Biotechnology, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - A Jervis
- Manchester Institute of Biotechnology, SYNBIOCHEM, University of Manchester, Manchester, United Kingdom
| | - A Ní Cheallaigh
- School of Chemistry, Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom
| | - L Humphreys
- GlaxoSmithKline, Medicines Research Centre, Stevenage, United Kingdom
| | - E Takano
- Manchester Institute of Biotechnology, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - J M Gardiner
- School of Chemistry, Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom
| | - N S Scrutton
- Manchester Institute of Biotechnology, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
41
|
Chueca B, Berdejo D, Gomes-Neto NJ, Pagán R, García-Gonzalo D. Emergence of Hyper-Resistant Escherichia coli MG1655 Derivative Strains after Applying Sub-Inhibitory Doses of Individual Constituents of Essential Oils. Front Microbiol 2016; 7:273. [PMID: 26973641 PMCID: PMC4777736 DOI: 10.3389/fmicb.2016.00273] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 02/19/2016] [Indexed: 12/04/2022] Open
Abstract
The improvement of food preservation by using essential oils (EOs) and their individual constituents (ICs) is attracting enormous interest worldwide. Until now, researchers considered that treatments with such antimicrobial compounds did not induce bacterial resistance via a phenotypic (i.e., transient) response. Nevertheless, the emergence of genotypic (i.e., stable) resistance after treatment with these compounds had not been previously tested. Our results confirm that growth of Escherichia coli MG1655 in presence of sub-inhibitory concentrations of the ICs carvacrol, citral, and (+)-limonene oxide do not increase resistance to further treatments with either the same IC (direct resistance) or with other preservation treatments (cross-resistance) such as heat or pulsed electric fields (PEF). Bacterial mutation frequency was likewise lower when those IC's were applied; however, after 10 days of re-culturing cells in presence of sub-inhibitory concentrations of the ICs, we were able to isolate several derivative strains (i.e., mutants) displaying an increased minimum inhibitory concentration to those ICs. Furthermore, when compared to the wild type (WT) strain, they also displayed direct resistance and cross-resistance. Derivative strains selected with carvacrol and citral also displayed morphological changes involving filamentation along with cell counts at late-stationary growth phase that were lower than the WT strain. In addition, co-cultures of each derivative strain with the WT strain resulted in a predominance of the original strain in absence of ICs, indicating that mutants would not out-compete WT cells under optimal growth conditions. Nevertheless, growth in the presence of ICs facilitated the selection of these resistant mutants. Thus, as a result, subsequent food preservation treatments of these bacterial cultures might be less effective than expected for WT cultures. In conclusion, this study recommends that treatment with ICs at sub-inhibitory concentrations should be generally avoided, since it could favor the emergence of hyper-resistant strains. To ascertain the true value of EOs and their ICs in the field of food preservation, further research thus needs to be conducted on the induction of increased transient and stable bacterial resistance via such antimicrobial compounds, as revealed in this study.
Collapse
Affiliation(s)
- Beatriz Chueca
- Tecnología de los Alimentos, Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón, Universidad de Zaragoza-CITA Zaragoza, Spain
| | - Daniel Berdejo
- Tecnología de los Alimentos, Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón, Universidad de Zaragoza-CITA Zaragoza, Spain
| | - Nelson J Gomes-Neto
- Laboratory of Food Microbiology, Department of Nutrition, Health Sciences Center, Federal University of Paraíba João Pessoa, Brazil
| | - Rafael Pagán
- Tecnología de los Alimentos, Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón, Universidad de Zaragoza-CITA Zaragoza, Spain
| | - Diego García-Gonzalo
- Tecnología de los Alimentos, Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón, Universidad de Zaragoza-CITA Zaragoza, Spain
| |
Collapse
|
42
|
Char C, Cisternas L, Pérez F, Guerrero S. Effect of emulsification on the antimicrobial activity of carvacrol. CYTA - JOURNAL OF FOOD 2015. [DOI: 10.1080/19476337.2015.1079558] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
43
|
Unveiling the Mode of Action of Two Antibacterial Tanshinone Derivatives. Int J Mol Sci 2015; 16:17668-81. [PMID: 26263982 PMCID: PMC4581214 DOI: 10.3390/ijms160817668] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 07/17/2015] [Accepted: 07/24/2015] [Indexed: 01/21/2023] Open
Abstract
In this study, 2-(N-pyrrolidine-alkyl) tanshinones bearing pyrrolidine groups were synthesized and the antibacterial mechanism was explored. These derivatives selectively elicited antibacterial activity against Gram-positive bacteria. Moreover, their antibacterial activities were time-, concentration-dependent and persistent. It appeared that Fenton-mediated hydroxyl radicals were involved, and the disruption of cell membranes was observed. This study indicates that 2-(N-pyrrolidine-alkyl) tanshinones might be potential candidates as antibacterial agents.
Collapse
|
44
|
Friedman M. Antibiotic-resistant bacteria: prevalence in food and inactivation by food-compatible compounds and plant extracts. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:3805-3822. [PMID: 25856120 DOI: 10.1021/acs.jafc.5b00778] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Foodborne antibiotic-resistant pathogenic bacteria such as Campylobacter jejuni, Bacillus cereus, Clostridium perfringens, Escherichia coli, Salmonella enterica, Staphylococcus aureus, Vibrio cholerae, and Vibrio parahemolyticus can adversely affect animal and human health, but a better understanding of the factors involved in their pathogenesis is needed. To help meet this need, this overview surveys and interprets much of our current knowledge of antibiotic (multidrug)-resistant bacteria in the food chain and the implications for microbial food safety and animal and human health. Topics covered include the origin and prevalence of resistant bacteria in the food chain (dairy, meat, poultry, seafood, and herbal products, produce, and eggs), their inactivation by different classes of compounds and plant extracts and by the use of chlorine and physicochemical methods (heat, UV light, pulsed electric fields, and high pressure), the synergistic antimicrobial effects of combinations of natural antimicrobials with medicinal antibiotics, and mechanisms of antimicrobial activities and resistant effects. Possible areas for future research are suggested. Plant-derived and other safe natural antimicrobial compounds have the potential to control the prevalence of both susceptible and resistant pathogens in various environments. The collated information and suggested research will hopefully contribute to a better understanding of approaches that could be used to minimize the presence of resistant pathogens in animal feed and human food, thus reducing adverse effects, improving microbial food safety, and helping to prevent or treat animal and human infections.
Collapse
Affiliation(s)
- Mendel Friedman
- Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, California 94710, United States
| |
Collapse
|