1
|
Augustyńska-Prejsnar A, Kačániová M, Hanus P, Sokołowicz Z, Słowiński M. Microbial and Sensory Quality Changes in Broiler Chicken Breast Meat During Refrigerated Storage. Foods 2024; 13:4063. [PMID: 39767005 PMCID: PMC11675927 DOI: 10.3390/foods13244063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/09/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
The aim of the study was to assess the bacterial flora of broiler chicken breast meat using the MALDI method, as well as its sensory evaluation while stored refrigerated at a stable temperature (0.5 °C+/-0.5 °C). Bacterial identification based on peptidic spectra obtained by matrix-assisted laser desorption ionisation time-of-flight (MALDI-TOF MS) mass spectrometry is a rapid, inexpensive, and accurate method for identifying isolates that belong to certain bacterial phyla. The microbiological and sensory quality was assessed on the 1st and 3rd, 5th, 7th, 8th, 9th, 10th, 11th, and 12th day of refrigerated storage. The study identified psychrophilic bacteria to be the dominant microflora during the entire period of refrigerated storage. The species profile of the bacteria, however, varied in the subsequent days of storage. From the 8th day of storage, the profile was dominated by bacteria of the genus Pseudomonas. The proportionate content of Pseudomonas bacteria ranged from 89% on day 8 to 95% on day 11th of storage. The majority of the unfavourable microflora (Aeromonas species, Alcaligenes spp., Klebsiella spp., and Yersinia spp.) were observed on the 11th day of storage, which indicates that meat spoilage processes had commenced. The quality of breast meat from broiler chickens stored at 0.5 °C+/-0.5 °C was sensorially acceptable up to the 8th day of storage.
Collapse
Affiliation(s)
- Anna Augustyńska-Prejsnar
- Department of Animal Production and Poultry Products Evaluation, Institute of Food and Nutrition Technology, University of Rzeszow, 35-959 Rzeszow, Poland; (A.A.-P.); (Z.S.)
| | - Miroslava Kačániová
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agri-Culture, Trieda Andreja Hlinku 2, 949 76 Nitra, Slovakia;
- School of Medical & Health Sciences, University of Economics and Human Sciences in Warsaw, Okopowa 59, 01-043 Warszawa, Poland
| | - Paweł Hanus
- Department of Food Technology and Human Nutrition, Institute of Food and Nutrition Technology, University of Rzeszow, 35-959 Rzeszow, Poland
| | - Zofia Sokołowicz
- Department of Animal Production and Poultry Products Evaluation, Institute of Food and Nutrition Technology, University of Rzeszow, 35-959 Rzeszow, Poland; (A.A.-P.); (Z.S.)
| | - Mirosław Słowiński
- Department of Food Technology and Assessment, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159, 02-787 Warsaw, Poland;
| |
Collapse
|
2
|
Han J, Liu B, Lin X, Zhang S, Dong L, Ji C. Mathematical modeling and comparative metabolomics analyses of interactions between Lactiplantibacillus plantarum and Morganella morganii. Food Res Int 2024; 196:115026. [PMID: 39614548 DOI: 10.1016/j.foodres.2024.115026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 08/12/2024] [Accepted: 09/01/2024] [Indexed: 12/01/2024]
Abstract
Morganella morganii is a spoilage microorganism in fish products that produces harmful biogenic amines (BAs). It has been discovered that Lactiplantibacillus plantarum His6 can inhibit the growth of this bacterium. The aim of this study was to quantitatively assess the inhibitory impact of the bioprotective culture Lpb. plantarum His6 on M. morganii YC16 in the matrix (fish and rice) using predictive microbiology models, and elucidate the interaction mechanism through untargeted metabolomics. The mathematical model results showed the inhibition effect of Lpb. plantarum His6 on M. morganii YC16 was dependent on temperature and inoculation concentration. In addition, the simultaneous growth of Lpb. plantarum His6 and M. morganii YC16 could be well simulated with the Lotka-Volterra model. Furthermore, significant decreased in histamine levels was observed in co-(1:3) at 25 °C. Finally, based on the metabolomics data, it was speculated that Lpb. plantarum His6 may enhance bacteriocin production while reducing the yield of glycerophospholipids and fatty acids associated with outer membrane formation, thereby inhibiting the growth of M. morganii YC16. These findings provide valuable insights into the interaction behavior and mechanism of Lpb. plantarum His6 and M. morganii YC16 in co-culture, facilitating the design of the biopreservation strategies for fish products.
Collapse
Affiliation(s)
- Jing Han
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian 116034, China; College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China.
| | - Binkun Liu
- College of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Xinping Lin
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian 116034, China.
| | - Sufang Zhang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian 116034, China.
| | - Liang Dong
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian 116034, China.
| | - Chaofan Ji
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian 116034, China.
| |
Collapse
|
3
|
Cohen Hakmon M, Buhnik-Rosenblau K, Hanani H, Korach-Rechtman H, Mor D, Etkin E, Kashi Y. Early Detection of Food Safety and Spoilage Incidents Based on Live Microbiome Profiling and PMA-qPCR Monitoring of Indicators. Foods 2024; 13:2459. [PMID: 39123650 PMCID: PMC11311866 DOI: 10.3390/foods13152459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
The early detection of spoilage microorganisms and food pathogens is of paramount importance in food production systems. We propose a novel strategy for the early detection of food production defects, harnessing the product microbiome. We hypothesize that by establishing microbiome datasets of proper and defective batches, indicator bacteria signaling production errors can be identified and targeted for rapid quantification as part of routine practice. Using the production process of pastrami as a model, we characterized its live microbiome profiles throughout the production stages and in the final product, using propidium monoazide treatment followed by 16S rDNA sequencing. Pastrami demonstrated product-specific and consistent microbiome profiles predominated by Serratia and Vibrionimonas, with distinct microbial signatures across the production stages. Based on the established microbiome dataset, we were able to detect shifts in the microbiome profile of a defective batch produced under lactate deficiency. The most substantial changes were observed as increased relative abundances of Vibrio and Lactobacillus, which were subsequently defined as potential lactate-deficiency indicators. PMA-qPCR efficiently detected increased levels of these species, thus proving useful in rapidly pinpointing the production defect. This approach offers the possibility of the in-house detection of defective production events with same-day results, promoting safer food production systems.
Collapse
Affiliation(s)
- May Cohen Hakmon
- Department of Biotechnology and Food Engineering, Technion—Israel Institute of Technology, Haifa 3200003, Israel; (M.C.H.); (K.B.-R.); (H.H.); (H.K.-R.)
| | - Keren Buhnik-Rosenblau
- Department of Biotechnology and Food Engineering, Technion—Israel Institute of Technology, Haifa 3200003, Israel; (M.C.H.); (K.B.-R.); (H.H.); (H.K.-R.)
| | - Hila Hanani
- Department of Biotechnology and Food Engineering, Technion—Israel Institute of Technology, Haifa 3200003, Israel; (M.C.H.); (K.B.-R.); (H.H.); (H.K.-R.)
| | - Hila Korach-Rechtman
- Department of Biotechnology and Food Engineering, Technion—Israel Institute of Technology, Haifa 3200003, Israel; (M.C.H.); (K.B.-R.); (H.H.); (H.K.-R.)
| | - Dagan Mor
- Gene-G Ltd., Kfar Tavor 1524100, Israel;
| | - Erez Etkin
- Maadaney Yehiam (1993) Ltd., Kibbutz Yehiam 2512500, Israel;
| | - Yechezkel Kashi
- Department of Biotechnology and Food Engineering, Technion—Israel Institute of Technology, Haifa 3200003, Israel; (M.C.H.); (K.B.-R.); (H.H.); (H.K.-R.)
| |
Collapse
|
4
|
Manap K, Serikkyzy M. Production of ostrich meat pâtés: Design of a food safety management system. FOOD SCI TECHNOL INT 2023; 29:847-856. [PMID: 36083150 DOI: 10.1177/10820132221124195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In recent years, there has been a growing interest in ostrich breeding, and the commercial breeding of these birds has attracted the attention of new breeders, and it has become a great alternative to agricultural production. The study on the production of pâtés was conducted in 2019 in Almaty (Kazakhstan). During the formation of two new formulations of pâtés, the following safety system parameters were taken into account: microflora development; oxidation number (intensity of oxidation products accumulation). The aim of the study is to obtain the optimal characteristics of ostrich meat preservation in the production of pâtés. As a result of the study, it was found that ostrich meat samples have high nutritional value. Meat is characterized by a high content of protein, low content of fat, and carbohydrates are almost absent. Also, it was found that concentration of arachidonic acid in ostrich meat was 3 times higher as compared to beef (p ≤ 0.05). Therefore, the introduction of inulin and carrageenan polysaccharides into the recipe of ostrich pâtés allows one to significantly improve their shelf life and based on the developed recipe it is possible to start the production of pâtés.
Collapse
Affiliation(s)
- Kalima Manap
- Department of Food Safety and Quality, Almaty Technological University, Almaty, Kazakhstan
| | - Mira Serikkyzy
- Department of Food Safety and Quality, Almaty Technological University, Almaty, Kazakhstan
| |
Collapse
|
5
|
Hai D, Jiang H, Meng Z, Qiao M, Xu T, Song L, Huang X. The Impact of High Temperature on Microbial Communities in Pork and Duck Skin. Microorganisms 2023; 11:2869. [PMID: 38138014 PMCID: PMC10746068 DOI: 10.3390/microorganisms11122869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/12/2023] [Accepted: 11/16/2023] [Indexed: 12/24/2023] Open
Abstract
Pork skin and duck skin are highly favored by consumers in China, and high-temperature processing methods are widely employed in cooking and food preparation. However, the influence of high-temperature treatment on the microbial communities within pork skin and duck skin remains unclear. In this study, a high-temperature treatment method simulating the cooking process was utilized to treat samples of pork skin and duck skin at temperatures ranging from 60 °C to 120 °C. The findings revealed that high-temperature treatment significantly altered the microbial communities in both pork skin and duck skin. Heat exposure resulted in a decrease in microbial diversity and induced changes in the relative abundance of specific microbial groups. In pork skin, high-temperature treatment led to a reduction in bacterial diversity and a decline in the relative abundance of specific bacterial taxa. Similarly, the relative abundance of microbial communities in duck skin also decreased. Furthermore, potential pathogenic bacteria, including Gram-positive and Gram-negative bacteria, as well as aerobic, anaerobic, and facultative anaerobic bacteria, exhibited different responses to high-temperature treatment in pork skin and duck skin. These findings highlighted the substantial impact of high-temperature processing on the composition and structure of microbial communities in pork skin and duck skin, potentially influencing food safety and quality. This study contributed to an enhanced understanding of the microbial mechanisms underlying the alterations in microbial communities during high-temperature processing of pork skin and duck skin, with significant implications for ensuring food safety and developing effective cooking techniques.
Collapse
Affiliation(s)
- Dan Hai
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (D.H.); (H.J.); (Z.M.); (M.Q.); (T.X.); (L.S.)
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, Zhengzhou 450002, China
| | - Haisheng Jiang
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (D.H.); (H.J.); (Z.M.); (M.Q.); (T.X.); (L.S.)
| | - Ziheng Meng
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (D.H.); (H.J.); (Z.M.); (M.Q.); (T.X.); (L.S.)
| | - Mingwu Qiao
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (D.H.); (H.J.); (Z.M.); (M.Q.); (T.X.); (L.S.)
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, Zhengzhou 450002, China
| | - Tian Xu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (D.H.); (H.J.); (Z.M.); (M.Q.); (T.X.); (L.S.)
| | - Lianjun Song
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (D.H.); (H.J.); (Z.M.); (M.Q.); (T.X.); (L.S.)
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, Zhengzhou 450002, China
| | - Xianqing Huang
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (D.H.); (H.J.); (Z.M.); (M.Q.); (T.X.); (L.S.)
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, Zhengzhou 450002, China
| |
Collapse
|
6
|
Marmion M, Soro AB, Whyte P, Scannell AGM. A culture-based assessment of the microbiota of conventional and free-range chicken meat from Irish processing facilities. Food Microbiol 2023; 114:104306. [PMID: 37290880 DOI: 10.1016/j.fm.2023.104306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/27/2023] [Accepted: 05/11/2023] [Indexed: 06/10/2023]
Abstract
Chicken meat is the most popularly consumed meat worldwide, with free-range and ethically produced meat a growing market among consumers. However, poultry is frequently contaminated with spoilage microbes and zoonotic pathogens which impact the shelf-life and safety of the raw product, constituting a health risk to consumers. The free-range broiler microbiota is subject to various influences during rearing such as direct exposure to the external environment and wildlife which are not experienced during conventional rearing practices. Using culture-based microbiology approaches, this study aimed to determine whether there is a detectable difference in the microbiota from conventional and free-range broilers from selected Irish processing plants. This was done through analysis of the microbiological status of bone-in chicken thighs over the duration of the meat shelf-life. It was found that the shelf-life of these products was 10 days from arrival in the laboratory, with no statistically significant difference (P > 0.05) evident between free-range and conventionally raised chicken meat. A significant difference, however, was established in the presence of pathogenesis-associated genera in different meat processors. These results reinforce past findings which indicate that the processing environment and storage during shelf-life are key determinants of the microflora of chicken products reaching the consumer.
Collapse
Affiliation(s)
- M Marmion
- UCD School of Agriculture Food Science and Veterinary Medicine, Ireland; UCD Centre for Food Safety, University College Dublin, Belfield, Dublin, 4, D04 V1W8, Ireland.
| | - A B Soro
- UCD School of Agriculture Food Science and Veterinary Medicine, Ireland; Teagasc Ashtown Food Research Centre, Ashtown, D15DY05, Dublin, Ireland
| | - P Whyte
- UCD School of Veterinary Medicine, Ireland
| | - A G M Scannell
- UCD School of Agriculture Food Science and Veterinary Medicine, Ireland; UCD Institute of Food and Health, Ireland; UCD Centre for Food Safety, University College Dublin, Belfield, Dublin, 4, D04 V1W8, Ireland
| |
Collapse
|
7
|
Xu Q, Liu S, Ji S, Wang Z, Wang M, Liu Y, Gong X, Fu B, Ye C, Chang H, Sui Z. Development and application of a flow cytometry-based method for rapid and multiplexed quantification of three foodborne pathogens in chicken breast. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Aklilu E, Harun A, Singh KKB. Molecular characterization of bla NDM, bla OXA-48, mcr-1 and bla TEM-52 positive and concurrently carbapenem and colistin resistant and extended spectrum beta-lactamase producing Escherichia coli in chicken in Malaysia. BMC Vet Res 2022; 18:190. [PMID: 35590358 PMCID: PMC9118571 DOI: 10.1186/s12917-022-03292-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 05/05/2022] [Indexed: 11/25/2022] Open
Abstract
Background Antimicrobial resistance (AMR) is a global public health threat and the use of antibiotics growth promoters in food animals has been implicated as a potential contributing factor in the emergence and spread of AMR. This study was conducted to investigate colistin and carbapenem resistance and extended spectrum beta-lactamase producing E. coli from live broiler chicken and chicken meat in Kelantan, Malaysia. Results Among the E. coli isolates, 37.5% (27/72 were positive for at least one of the resistance genes and one isolate was positive for mcr-1, blaTEM-52, blaNDM and blaOXA-48 whereas 4.17% (3/72) and 2.78% (2/72) were positive for mcr-1, blaTEM-52 and blaOXA-48, and mcr-1, blaTEM-52 and blaIMP. Multilocus sequence typing (MLST) results revealed the presence of widespread E. coli strains belonging to the sequence types ST410 and ST155 and other extra-intestinal E. coli (ExPEC) strains. Phylogroup A made up the majority 51.85% (14/27) followed by phylogroup B1 22.22% (6/27). Conclusions The findings imply the potential threats of colistin, extended-spectrum beta-lactamase producing and carbapenem resistant E. coli in food animals to the public health and underscores the need for judicious use of antibiotics in animal production and good hygiene practices to curb the rising risks of AMR.
Collapse
Affiliation(s)
- Erkihun Aklilu
- Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Locked Box 36, Pengkalan Chepa, 16100, Kota Bharu, Kelantan, Malaysia. .,Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kota Bharu, Kelantan, Malaysia.
| | - Azian Harun
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kota Bharu, Kelantan, Malaysia.
| | - Kirnpal Kaur Banga Singh
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kota Bharu, Kelantan, Malaysia
| |
Collapse
|
9
|
Umiralieva L, Chizhayeva A, Ibraikhan A, Avylov C, Velyamov M. Investigation of the Sanitary State of Air and Refrigeration Equipment of Meat Processing Enterprises in Kazakhstan Using the Method of Metagenomic Analysis. ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS 2021. [DOI: 10.11118/actaun.2021.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
10
|
Application of a LED-UV based light technology for decontamination of chicken breast fillets: Impact on microbiota and quality attributes. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111297] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Evaluation of the Spoilage-Related Bacterial Profiles of Vacuum-Packaged Chilled Ostrich Meat by Next-Generation DNA Sequencing Approach. Processes (Basel) 2021. [DOI: 10.3390/pr9050803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Monitoring the development of the bacterial community in packaged raw meat refrigerated until two weeks is important for identifying the spoilage-related bacteria, preventing meat putrefaction, and prolong the shelf life. This study aimed to evaluate the influence of vacuum-packaging (VP) on the development of spoilage-related bacterial profiles in chilled ostrich meat among three manufacturing batches produced in different periods by using culture-dependent and 16S rDNA amplicon sequencing. Similar to the culture-dependent method, 16S rDNA sequencing showed that Photobacterium was the most prevalent genus detected in VP ostrich meat after 14 days of cold storage. The second-largest group was the population of lactic acid bacteria (LAB), mainly dominated by Carnobacteriaceae including Carnobacterium spp. and Lactobacillaceae with Lactobacillus spp. Our results suggest that these taxa could contribute to spoilage of VP ostrich meat and shorten its shelf life, especially Photobacterium spp., which is considered as a potential meat spoiler.
Collapse
|
12
|
The changing microbiome of poultry meat; from farm to fridge. Food Microbiol 2021; 99:103823. [PMID: 34119108 DOI: 10.1016/j.fm.2021.103823] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 11/20/2022]
Abstract
Chickens play host to a diverse community of microorganisms which constitute the microflora of the live bird. Factors such as diet, genetics and immune system activity affect this complex population within the bird, while external influences including weather and exposure to other animals alter the development of the microbiome. Bacteria from these settings including Campylobacter and Salmonella play an important role in the quality and safety of end-products from these birds. Further steps, including washing and chilling, within the production cycle aim to control the proliferation of these microbes as well as those which cause product spoilage. These steps impose specific selective pressures upon the microflora of the meat product. Within the next decade, it is forecast that poultry meat, particularly chicken will become the most consumed meat globally. However, as poultry meat is a frequently cited reservoir of zoonotic disease, understanding the development of its microflora is key to controlling the proliferation of important spoilage and pathogenic bacterial groups present on the bird. Whilst several excellent reviews exist detailing the microbiome of poultry during primary production, others focus on fate of important poultry pathogens such as Campylobacter and Salmonella spp. At farm and retail level, and yet others describe the evolution of spoilage microbes during spoilage. This review seeks to provide the poultry industry and research scientists unfamiliar with food technology process with a holistic overview of the key changes to the microflora of broiler chickens at each stage of the production and retail cycle.
Collapse
|
13
|
Dourou D, Grounta A, Argyri AA, Froutis G, Tsakanikas P, Nychas GJE, Doulgeraki AI, Chorianopoulos NG, Tassou CC. Rapid Microbial Quality Assessment of Chicken Liver Inoculated or Not With Salmonella Using FTIR Spectroscopy and Machine Learning. Front Microbiol 2021; 11:623788. [PMID: 33633698 PMCID: PMC7901899 DOI: 10.3389/fmicb.2020.623788] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/22/2020] [Indexed: 11/13/2022] Open
Abstract
Chicken liver is a highly perishable meat product with a relatively short shelf-life and that can get easily contaminated with pathogenic microorganisms. This study was conducted to evaluate the behavior of spoilage microbiota and of inoculated Salmonella enterica on chicken liver. The feasibility of Fourier-transform infrared spectroscopy (FTIR) to assess chicken liver microbiological quality through the development of a machine learning workflow was also explored. Chicken liver samples [non-inoculated and inoculated with a four-strain cocktail of ca. 103 colony-forming units (CFU)/g Salmonella] were stored aerobically under isothermal (0, 4, and 8°C) and dynamic temperature conditions. The samples were subjected to microbiological analysis with concomitant FTIR measurements. The developed FTIR spectral analysis workflow for the quantitative estimation of the different spoilage microbial groups consisted of robust data normalization, feature selection based on extra-trees algorithm and support vector machine (SVM) regression analysis. The performance of the developed models was evaluated in terms of the root mean square error (RMSE), the square of the correlation coefficient (R2), and the bias (Bf) and accuracy (Af) factors. Spoilage was mainly driven by Pseudomonas spp., followed closely by Brochothrix thermosphacta, while lactic acid bacteria (LAB), Enterobacteriaceae, and yeast/molds remained at lower levels. Salmonella managed to survive at 0°C and dynamic conditions and increased by ca. 1.4 and 1.9 log CFU/g at 4 and 8°C, respectively, at the end of storage. The proposed models exhibited Af and Bf between observed and predicted counts within the range of 1.071 to 1.145 and 0.995 to 1.029, respectively, while the R2 and RMSE values ranged from 0.708 to 0.828 and 0.664 to 0.949 log CFU/g, respectively, depending on the microorganism and chicken liver samples. Overall, the results highlighted the ability of Salmonella not only to survive but also to grow at refrigeration temperatures and demonstrated the significant potential of FTIR technology in tandem with the proposed spectral analysis workflow for the estimation of total viable count, Pseudomonas spp., B. thermosphacta, LAB, Enterobacteriaceae, and Salmonella on chicken liver.
Collapse
Affiliation(s)
- Dimitra Dourou
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization DIMITRA, Athens, Greece
| | - Athena Grounta
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization DIMITRA, Athens, Greece
| | - Anthoula A Argyri
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization DIMITRA, Athens, Greece
| | - George Froutis
- Laboratory of Food Microbiology and Biotechnology, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Athens, Greece
| | - Panagiotis Tsakanikas
- Laboratory of Food Microbiology and Biotechnology, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Athens, Greece
| | - George-John E Nychas
- Laboratory of Food Microbiology and Biotechnology, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Athens, Greece
| | - Agapi I Doulgeraki
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization DIMITRA, Athens, Greece
| | - Nikos G Chorianopoulos
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization DIMITRA, Athens, Greece
| | - Chrysoula C Tassou
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization DIMITRA, Athens, Greece
| |
Collapse
|
14
|
Zhou C, Wang J, Li R, Ye K. High-throughput sequencing analysis of the bacterial community for assessing the differences in extraction methods of bacteria separation from chilled pork. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.110213] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
15
|
Helsens N, Calvez SÉ, Bouju-Albert A, Rossero A, PrÉvost H, Magras C. Comparison of Stomaching versus Rinsing for Recovering Bacterial Communities from Rainbow Trout (Oncorhynchus mykiss) Fillets. J Food Prot 2020; 83:1540-1546. [PMID: 32339230 DOI: 10.4315/jfp-20-037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/27/2020] [Indexed: 11/11/2022]
Abstract
ABSTRACT The use of high-throughput methods allows a better characterization of food-related bacterial communities. However, such methods require large amounts of high-quality bacterial DNA, which may be a challenge when dealing with a complex matrix that has a low concentration of bacteria, such as fresh fish fillets. Therefore, the choice of method used to recover bacteria from a food matrix in a cost-effective way is critical, yet little information is available on the performance of commonly used methods. We assessed the recovery capacity of two such methods: stomaching and mechanical rinsing. The efficiency of the methods was evaluated through quantitative recovery and compatibility with end-point quantitative PCR (qPCR). Fresh rainbow trout (Oncorhynchus mykiss) fillets were inoculated with a bacterial marker, Brochothrix thermosphacta, at different concentrations (7.52 to 1.52 log CFU/g). The fillets were processed by one of the two methods, and the recovery of the marker in the suspensions was assessed by plate counting and qPCR targeting B. thermosphacta-rpoC. The same analyses were performed on six noninoculated fresh fillets. Stomaching and mechanical rinsing allowed efficient and repeatable recovery of the bacterial communities from the 42 inoculated fillets. No significant differences in recovery ratios were observed between the marker enumerated in the inoculation suspensions and in the corresponding recovery suspensions after rinsing and stomaching. However, the stomaching method allowed too many particles to pass through the filters bag, making necessary a limiting supplementary filtration step. As a consequence, only the rinsing recovery method allowed proper PCR quantification of the inoculated B. thermosphacta. The mean recovered bacterial level of the fillets was approximately 3 log CFU/g. It seems more relevant and cost-effective to recover the endogenous bacterial microbiota of a fish fillet structure using the rinsing method rather than the stomaching method. HIGHLIGHTS
Collapse
Affiliation(s)
- Nicolas Helsens
- SECALIM, Institut National de la Recherche Agronomique, Oniris, 44300, Nantes, France.,BIOEPAR, Institut National de la Recherche Agronomique, Oniris, 44300, Nantes, France (ORCID: https://orcid.org/0000-0001-8902-0486 [N.H.]; https://orcid.org/0000-0001-6145-2666 [S.C.]; https://orcid.org/0000-0001-9384-8382 [H.P.])
| | - SÉgolÈne Calvez
- BIOEPAR, Institut National de la Recherche Agronomique, Oniris, 44300, Nantes, France (ORCID: https://orcid.org/0000-0001-8902-0486 [N.H.]; https://orcid.org/0000-0001-6145-2666 [S.C.]; https://orcid.org/0000-0001-9384-8382 [H.P.])
| | - AgnÈs Bouju-Albert
- SECALIM, Institut National de la Recherche Agronomique, Oniris, 44300, Nantes, France
| | - Albert Rossero
- SECALIM, Institut National de la Recherche Agronomique, Oniris, 44300, Nantes, France
| | - HervÉ PrÉvost
- SECALIM, Institut National de la Recherche Agronomique, Oniris, 44300, Nantes, France
| | - Catherine Magras
- SECALIM, Institut National de la Recherche Agronomique, Oniris, 44300, Nantes, France
| |
Collapse
|
16
|
Delhalle L, Taminiau B, Fastrez S, Fall A, Ballesteros M, Burteau S, Daube G. Evaluation of Enzymatic Cleaning on Food Processing Installations and Food Products Bacterial Microflora. Front Microbiol 2020; 11:1827. [PMID: 32849429 PMCID: PMC7431609 DOI: 10.3389/fmicb.2020.01827] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/12/2020] [Indexed: 12/13/2022] Open
Abstract
Biofilms are a permanent source of contamination in food industries and could harbor various types of microorganisms, such as spoiling bacteria. New strategies, such as enzymatic cleaning, have been proposed to eradicate them. The purpose of this study was to evaluate the impact of enzymatic cleaning on the microbial flora of installations in a processing food industry and of the final food product throughout its shelf life. A total of 189 samples were analyzed by classical microbiology and 16S rDNA metagenetics, including surface samples, cleaning-in-place (CIP) systems, and food products (at D0, Dend of the shelf life, and Dend of the shelf life +7 days). Some surfaces were highly contaminated with spoiling bacteria during conventional cleaning while the concentration of the total flora decreased during enzymatic cleaning. Although the closed circuits were cleaned with conventional cleaning before enzymatic cleaning, there was a significant release of microorganisms from some parts of the installations during enzymatic treatment. A significant difference in the total flora in the food products at the beginning of the shelf life was observed during enzymatic cleaning compared to the conventional cleaning, with a reduction of up to 2 log CFU/g. Metagenetic analysis of the food samples at the end of their shelf life showed significant differences in bacterial flora between conventional and enzymatic cleaning, with a decrease of spoiling bacteria (Leuconostoc sp.). Enzymatic cleaning has improved the hygiene of the food processing instillations and the microbial quality of the food throughout the shelf life. Although enzymatic cleaning is not yet commonly used in the food industry, it should be considered in combination with conventional sanitizing methods to improve plant hygiene.
Collapse
Affiliation(s)
- Laurent Delhalle
- Fundamental and Applied Research for Animals and Health, Department of Food Science, University of Liège, Liège, Belgium
| | - Bernard Taminiau
- Fundamental and Applied Research for Animals and Health, Department of Food Science, University of Liège, Liège, Belgium
| | | | | | | | | | - Georges Daube
- Fundamental and Applied Research for Animals and Health, Department of Food Science, University of Liège, Liège, Belgium
| |
Collapse
|
17
|
Cauchie E, Delhalle L, Baré G, Tahiri A, Taminiau B, Korsak N, Burteau S, Fall PA, Farnir F, Daube G. Modeling the Growth and Interaction Between Brochothrix thermosphacta, Pseudomonas spp., and Leuconostoc gelidum in Minced Pork Samples. Front Microbiol 2020; 11:639. [PMID: 32328055 PMCID: PMC7160237 DOI: 10.3389/fmicb.2020.00639] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/20/2020] [Indexed: 12/17/2022] Open
Abstract
The aim of this study was to obtain the growth parameters of specific spoilage micro-organisms previously isolated in minced pork (MP) samples and to develop a three-spoilage species interaction model under different storage conditions. Naturally contaminated samples were used to validate this approach by considering the effect of the food microbiota. Three groups of bacteria were inoculated on irradiated samples, in mono- and in co-culture experiments (n = 1152): Brochothrix thermosphacta, Leuconostoc gelidum, and Pseudomonas spp. (Pseudomonas fluorescens and Pseudomonas fragi). Samples were stored in two food packaging [food wrap and modified atmosphere packaging (CO2 30%/O2 70%)] at three isothermal conditions (4, 8, and 12°C). Analysis was carried out by using both 16S rRNA gene amplicon sequencing and classical microbiology in order to estimate bacterial counts during the storage period. Growth parameters were obtained by fitting primary (Baranyi) and secondary (square root) models. The food packaging shows the highest impact on bacterial growth rates, which in turn have the strongest influence on the shelf life of food products. Based on these results, a three-spoilage species interaction model was developed by using the modified Jameson-effect model and the Lotka Volterra (prey-predator) model. The modified Jameson-effect model showed slightly better performances, with 40-86% out of the observed counts falling into the Acceptable Simulation Zone (ASZ). It only concerns 14-48% for the prey-predator approach. These results can be explained by the fact that the dynamics of experimental and validation datasets seems to follow a Jameson behavior. On the other hand, the Lotka Volterra model is based on complex interaction factors, which are included in highly variable intervals. More datasets are probably needed to obtained reliable factors, and so better model fittings, especially for three- or more-spoilage species interaction models. Further studies are also needed to better understand the interaction of spoilage bacteria between them and in the presence of natural microbiota.
Collapse
Affiliation(s)
- Emilie Cauchie
- Department of Food Sciences, Fundamental and Applied Research for Animal and Health, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Laurent Delhalle
- Department of Food Sciences, Fundamental and Applied Research for Animal and Health, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Ghislain Baré
- Department of Food Sciences, Fundamental and Applied Research for Animal and Health, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Assia Tahiri
- Department of Food Sciences, Fundamental and Applied Research for Animal and Health, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Bernard Taminiau
- Department of Food Sciences, Fundamental and Applied Research for Animal and Health, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Nicolas Korsak
- Department of Food Sciences, Fundamental and Applied Research for Animal and Health, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | | | | | - Frédéric Farnir
- Department of Food Sciences, Fundamental and Applied Research for Animal and Health, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Georges Daube
- Department of Food Sciences, Fundamental and Applied Research for Animal and Health, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| |
Collapse
|
18
|
Cauchie E, Delhalle L, Taminiau B, Tahiri A, Korsak N, Burteau S, Fall PA, Farnir F, Baré G, Daube G. Assessment of Spoilage Bacterial Communities in Food Wrap and Modified Atmospheres-Packed Minced Pork Meat Samples by 16S rDNA Metagenetic Analysis. Front Microbiol 2020; 10:3074. [PMID: 32038536 PMCID: PMC6985204 DOI: 10.3389/fmicb.2019.03074] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 12/19/2019] [Indexed: 12/12/2022] Open
Abstract
Although several studies have focused on the dynamics of bacterial food community, little is known about the variability of batch production and microbial changes that occur during storage. The aim of the study was to characterize the microbial spoilage community of minced pork meat samples, among different food production and storage, using both 16S rRNA gene sequencing and classical microbiology. Three batches of samples were obtained from four local Belgian facilities (A–D) and stored until shelf life under food wrap (FW) and modified atmosphere packaging (MAP, CO2 30%/O2 70%), at constant and dynamic temperature. Analysis of 288 samples were performed by 16S rRNA gene sequencing in combination with counts of psychrotrophic and lactic acid bacteria at 22°C. At the first day of storage, different psychrotrophic counts were observed between the four food companies (Kruskal-Wallist test, p-value < 0.05). Results shown that lowest microbial counts were observed at the first day for industries D and A (4.2 ± 0.4 and 5.6 ± 0.1 log CFU/g, respectively), whereas industries B and C showed the highest results (7.5 ± 0.4 and 7.2 ± 0.4 log CFU/g). At the end of the shelf life, psychrotrophic counts for all food companies was over 7.0 log CFU/g. With metagenetics, 48 OTUs were assigned. At the first day, the genus Photobacterium (86.7 and 19.9% for food industries A and C, respectively) and Pseudomonas (38.7 and 25.7% for food companies B and D, respectively) were dominant. During the storage, a total of 12 dominant genera (>5% in relative abundance) were identified in MAP and 7 in FW. Pseudomonas was more present in FW and this genus was potentially replaced by Brochothrix in MAP (two-sided Welch’s t-test, p-value < 0.05). Also, a high Bray-Curtis dissimilarity in genus relative abundance was observed between food companies and batches. Although the bacteria consistently dominated the microbiota in our samples are known, results indicated that bacterial diversity needs to be addressed on the level of food companies, batches variation and food storage conditions. Present data illustrate that the combined approach provides complementary results on microbial dynamics in minced pork meat samples, considering batches and packaging variations.
Collapse
Affiliation(s)
- Emilie Cauchie
- Department of Food Sciences, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Laurent Delhalle
- Department of Food Sciences, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Bernard Taminiau
- Department of Food Sciences, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Assia Tahiri
- Department of Food Sciences, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Nicolas Korsak
- Department of Food Sciences, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | | | | | - Frédéric Farnir
- Department of Food Sciences, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Ghislain Baré
- Department of Food Sciences, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Georges Daube
- Department of Food Sciences, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| |
Collapse
|
19
|
Thangavel G, Thiruvengadam S. Microorganisms Isolated from Stored Meat in India, with Potential Antimicrobial Activity against Food Pathogens. Curr Pharm Biotechnol 2019; 20:401-409. [PMID: 30868947 DOI: 10.2174/1389201020666190314125534] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/07/2019] [Accepted: 03/09/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND World Health Organization has estimated that 1 in 10 people fall ill and 4, 20, 000 die every year from eating contaminated food. Food pathogens like Escherichia, Salmonella, Staphylococcus and Listeria pose a serious threat to human health. OBJECTIVE The objective was to isolate microbes from meat stored at refrigerated conditions and evaluate the antimicrobial activity of the cell-free supernatant against food pathogens. METHODS Chicken and Pork samples were procured and stored at refrigerated conditions (4-7ºC) for 2 weeks. The samples were plated on to Nutrient agar (NA) and De Man, Rogosa and Sharpe (MRS) agar for isolation of aerobic and lactic acid bacteria. Cell-free supernatants of the isolates were screened for antimicrobial activity against Escherichia coli, Salmonella typhimurium, Listeria monocytogenes and Staphylococcus aureus by microtiter plate assay. The 5 most - effective strains were screened for hemolytic activity and identified by 16s rRNA sequencing. RESULTS A total of 110 strains were isolated, out of which the top 5 most - effective strains were all from MRS agar. They showed 88-90% inhibition against E. coli and S. typhimurium, whereas 60 to 70 % against S. aureus and L. monocytogenes. These strains were found to be non - hemolytic and were identified as Leuconostoc spp. namely, L. mesenteroides subsp. mesenteroides J18, CP003101; L. mesenteroides LM2; L. mesenteroides ATCC 8293, CP000414; L. gelidum subsp. gasicomitatum LM G 18811 and L. mesenteroides; LM2, AY675249. CONCLUSION Leuconostoc are known to be effective in controlling foodborne pathogens and therefore, these strains have the potential for application in food and human.
Collapse
Affiliation(s)
- Gokila Thangavel
- Department of Microbial Biotechnology, Bharathiar University, Coimbatore, India
| | | |
Collapse
|
20
|
Yu Z, Peruzy MF, Dumolin C, Joossens M, Houf K. Assessment of food microbiological indicators applied on poultry carcasses by culture combined MALDI-TOF MS identification and 16S rRNA amplicon sequencing. Food Microbiol 2019; 82:53-61. [PMID: 31027815 DOI: 10.1016/j.fm.2019.01.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/05/2018] [Accepted: 01/26/2019] [Indexed: 01/05/2023]
Abstract
Examination of the bacterial contamination on food products is still largely performed by standardized culture methods, though culture-independent methods are suggested as a more reliable approach. Knowledge of the diversity of bacteria isolated from food as well as the impact of the plate incubation conditions applied are still understudied. The impact of incubation at 7 °C and 30 °C on total aerobic bacterial count and diversity, and the performance of ISO methods generally applied in microbiological quality examination were assessed by culture combined MALDI-TOF MS identification and 16S rRNA amplicon sequencing. Examining breast skin of 16 chicken carcasses, no significant impact of the incubation temperature on the total aerobic bacteria level and diversity was detected, limiting the usefulness of additional psychrophilic examination. Bacteria phenotypically similar to Pseudomonas, were identified on selective CFC plates, and on MRS agar plates for lactic acid bacteria, Escherichia coli and Staphylococcus were commonly present. Application of 16S rRNA amplicon sequencing revealed a higher bacterial diversity, but the impact of the DNA extraction kit applied, and the detection of non-viable bacteria should be taken into account to interpret the final outcome.
Collapse
Affiliation(s)
- Zhongjia Yu
- Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium.
| | - Maria Francesca Peruzy
- Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium; Department of Veterinary Medicine and Animal Production, University of Naples "Federico II", Via Delpino 1, 80137, Napoli, Italy.
| | - Charles Dumolin
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Karel Lodewijk Ledeganckstraat 35, Ghent, Belgium.
| | - Marie Joossens
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Karel Lodewijk Ledeganckstraat 35, Ghent, Belgium.
| | - Kurt Houf
- Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium. %20
| |
Collapse
|
21
|
Meng J, Huang X, Song L, Hou B, Qiao M, Zhang P, Zhao Q, Zhang B, Liu F. Effect of storage temperature on bacterial diversity in chicken skin. J Appl Microbiol 2019; 126:854-863. [DOI: 10.1111/jam.14183] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 11/20/2018] [Accepted: 12/16/2018] [Indexed: 01/17/2023]
Affiliation(s)
- J. Meng
- College of Food Science and Technology; Henan Agricultural University; Zhengzhou PR China
| | - X. Huang
- College of Food Science and Technology; Henan Agricultural University; Zhengzhou PR China
| | - L. Song
- College of Food Science and Technology; Henan Agricultural University; Zhengzhou PR China
| | - B. Hou
- College of Food Science and Technology; Henan Agricultural University; Zhengzhou PR China
| | - M. Qiao
- College of Food Science and Technology; Henan Agricultural University; Zhengzhou PR China
| | - P. Zhang
- College of Food Science and Technology; Henan Agricultural University; Zhengzhou PR China
| | - Q. Zhao
- College of Food Science and Technology; Henan Agricultural University; Zhengzhou PR China
| | - B. Zhang
- College of Food Science and Technology; Henan Agricultural University; Zhengzhou PR China
| | - F. Liu
- College of Food Science and Technology; Henan Agricultural University; Zhengzhou PR China
| |
Collapse
|
22
|
Illikoud N, Rossero A, Chauvet R, Courcoux P, Pilet MF, Charrier T, Jaffrès E, Zagorec M. Genotypic and phenotypic characterization of the food spoilage bacterium Brochothrix thermosphacta. Food Microbiol 2018; 81:22-31. [PMID: 30910085 DOI: 10.1016/j.fm.2018.01.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/10/2018] [Accepted: 01/19/2018] [Indexed: 11/17/2022]
Abstract
Microbial food spoilage is responsible for significant economic losses. Brochothrix thermosphacta is one of the major bacteria involved in the spoilage of meat and seafood. Its growth and metabolic activities during food storage result in the production of metabolites associated with off-odors. In this study, we evaluated the genotypic and phenotypic diversity of this species. A collection of 161 B. thermosphacta strains isolated from different foods, spoiled or not, and from a slaughterhouse environment was constituted from various laboratory collections and completed with new isolates. A PCR test based on the rpoB gene was developed for a fast screening of B. thermosphacta isolates. Strains were typed by MALDI-TOF MS, rep-PCR, and PFGE. Each typing method separated strains into distinct groups, revealing significant intra-species diversity. These classifications did not correlate with the ecological origin of strains. The ability to produce acetoin and diacetyl, two molecules associated with B. thermosphacta spoilage, was evaluated in meat and shrimp juices. The production level was variable between strains and the spoilage ability on meat or shrimp juice did not correlate with the substrate origin of strains. Although the B. thermosphacta species encompasses ubiquitous strains, spoiling ability is both strain- and environment-dependent.
Collapse
Affiliation(s)
- Nassima Illikoud
- SECALIM, INRA, Oniris, Université Bretagne Loire, 44307, Nantes, France.
| | - Albert Rossero
- SECALIM, INRA, Oniris, Université Bretagne Loire, 44307, Nantes, France.
| | - Romain Chauvet
- EUROFINS, Laboratoire Microbiologie Ouest, 44300 Nantes, France.
| | - Philippe Courcoux
- Oniris, StatSC Sensometrics and Chemometrics Laboratory, Nantes F-44322, France.
| | - Marie-France Pilet
- SECALIM, INRA, Oniris, Université Bretagne Loire, 44307, Nantes, France.
| | - Thomas Charrier
- EUROFINS, Laboratoire Microbiologie Ouest, 44300 Nantes, France.
| | - Emmanuel Jaffrès
- SECALIM, INRA, Oniris, Université Bretagne Loire, 44307, Nantes, France.
| | - Monique Zagorec
- SECALIM, INRA, Oniris, Université Bretagne Loire, 44307, Nantes, France.
| |
Collapse
|
23
|
Geeraerts W, Pothakos V, De Vuyst L, Leroy F. Variability within the dominant microbiota of sliced cooked poultry products at expiration date in the Belgian retail. Food Microbiol 2018. [PMID: 29526205 DOI: 10.1016/j.fm.2018.01.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sliced cooked poultry products are susceptible to bacterial spoilage, notwithstanding their storage under modified-atmosphere packaging (MAP) in the cold chain. Although the prevailing bacterial communities are known to be mostly consisting of lactic acid bacteria (LAB), more information is needed about the potential variation in species diversity within national markets. In the present study, a total of 42 different samples of sliced cooked poultry products were collected in the Belgian retail and their bacterial communities were analysed at expiration date. A total of 629 isolates from four different culture media, including plate count agar for the total microbiota and de Man-Rogosa-Sharpe (MRS), modified MRS, and M17 agar as three selective agar media for LAB, were subjected to (GTG)5-PCR fingerprinting and identification by gene sequencing. Overall, Carnobacterium, Lactobacillus, and Leuconostoc were the dominant genera. Within each genus, the most encountered isolates were Carnobacterium divergens, Lactobacillus sakei, and Leuconostoc carnosum. When comparing samples from chicken origin with samples from turkey-derived products, a higher dominance of Carnobacteria spp. was found in the latter group. Also, an association between the dominance of lactobacilli and the presence of added plant material and lactate salts was found.
Collapse
Affiliation(s)
- Wim Geeraerts
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Vasileios Pothakos
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Frédéric Leroy
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium.
| |
Collapse
|
24
|
Rouger A, Tresse O, Zagorec M. Bacterial Contaminants of Poultry Meat: Sources, Species, and Dynamics. Microorganisms 2017; 5:E50. [PMID: 28841156 PMCID: PMC5620641 DOI: 10.3390/microorganisms5030050] [Citation(s) in RCA: 204] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 08/17/2017] [Accepted: 08/21/2017] [Indexed: 02/07/2023] Open
Abstract
With the constant increase in poultry meat consumption worldwide and the large variety of poultry meat products and consumer demand, ensuring the microbial safety of poultry carcasses and cuts is essential. In the present review, we address the bacterial contamination of poultry meat from the slaughtering steps to the use-by-date of the products. The different contamination sources are identified. The contaminants occurring in poultry meat cuts and their behavior toward sanitizing treatments or various storage conditions are discussed. A list of the main pathogenic bacteria of concern for the consumer and those responsible for spoilage and waste of poultry meat is established.
Collapse
Affiliation(s)
- Amélie Rouger
- Secalim, INRA, LUNAM Université, 44307 Nantes, France.
| | - Odile Tresse
- Secalim, INRA, LUNAM Université, 44307 Nantes, France.
| | | |
Collapse
|