1
|
Chen P, Zhang Y, Zhang T, Li J, Shen M, Mao R, Zhang C. Association of air pollution with incidence of late-onset seborrhoeic dermatitis: a prospective cohort study in UK Biobank. Clin Exp Dermatol 2024; 49:1164-1170. [PMID: 38648509 DOI: 10.1093/ced/llae122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/19/2024] [Accepted: 03/28/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND Late-onset seborrhoeic dermatitis seriously affects patients' quality of life. Studies have shown an association between air pollution and other inflammatory skin diseases. However, associations between air pollution exposures and the incidence of late-onset seborrhoeic dermatitis have not been elucidated. OBJECTIVES To investigate air pollution's role in the incidence of late-onset seborrhoeic dermatitis. METHODS We engaged a prospective cohort analysis utilizing the UK Biobank database. Exposure data spanning various years for specific air pollutants, namely particulate matter [PM; with an aerodynamic diameter of ≤ 2.5 µm (PM2.5), between 2.5 and 10 μm (PM2.5-10), ≤ 10 μm (PM10)] along with nitrogen oxides (NO plus NO2, denoted NOx) and NO2, were incorporated. Through a composite air pollution score constructed from five pollutants and employing Cox proportional hazards models, the relationship between air pollution and seborrhoeic dermatitis was delineated. RESULTS Our examination of 193 995 participants identified 3363 cases of seborrhoeic dermatitis. Higher concentrations of specific pollutants, particularly in the upper quartile (Q4), were significantly linked to an elevated risk of seborrhoeic dermatitis. Notably, PM2.5, PM10, NO2 and NOx exhibited hazard ratios of 1.11, 1.15, 1.22 and 1.15, respectively. The correlation was further solidified with a positive association between air pollution score increments and onset of seborrhoeic dermatitis. Intriguingly, this association was accentuated in certain demographics, including younger men, socioeconomically deprived people, smokers, daily alcohol consumers, and those engaging in regular physical activity. CONCLUSIONS Our findings revealed that air pollution exposures were associated with incidence of late-onset seborrhoeic dermatitis. These results emphasize the importance of preventing environmental air pollution exposures to mitigate the risk of developing the condition.
Collapse
Affiliation(s)
- Peng Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yiya Zhang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Tongtong Zhang
- Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University & The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
- Medical Research Center, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University & The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Minxue Shen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Department of Social Medicine and Health Management, Xiangya School of Public Health, Central South University, Changsha, China
| | - Rui Mao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Chengcheng Zhang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Department of Social Medicine and Health Management, Xiangya School of Public Health, Central South University, Changsha, China
| |
Collapse
|
2
|
Kim RW, Takeshita J, Abuabara K. Air Pollution and Inflammatory Skin Disease-Can Clinicians Make Recommendations to Reduce Risk? JAMA Netw Open 2024; 7:e2421633. [PMID: 39012637 DOI: 10.1001/jamanetworkopen.2024.21633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/17/2024] Open
Affiliation(s)
- Richard W Kim
- University of California San Francisco School of Medicine
| | - Junko Takeshita
- Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia
| | - Katrina Abuabara
- Department of Dermatology, University of California, San Francisco
- Division of Epidemiology, University of California Berkeley
| |
Collapse
|
3
|
Chao L, Feng B, Liang H, Zhao X, Song J. Particulate matter and inflammatory skin diseases: From epidemiological and mechanistic studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167111. [PMID: 37716690 DOI: 10.1016/j.scitotenv.2023.167111] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/24/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023]
Abstract
Epidemiological and toxicological studies have confirmed that exposure to atmospheric particulate matter (PM) could affect our cardiovascular and respiratory systems. Recent studies have shown that PM can penetrate the skin and cause skin inflammation, but the evidence is limited and contradictory. As the largest outermost surface of the human body, the skin is constantly exposed to the environment. The aim of this study was to assess the relationship between PM and inflammatory skin diseases. Most epidemiological studies have provided positive evidence for outdoor, indoor, and wildfire PM and inflammatory skin diseases. The effects of PM exposure during pregnancy and inflammatory skin diseases in offspring are heterogeneous. Skin barrier dysfunction, Oxidative stress, and inflammation may play a critical role in the underlying mechanisms. Finally, we summarize some interventions to alleviate PM-induced inflammatory skin diseases, which may contribute to public health welfare. Overall, PM is related to inflammatory skin diseases via skin barrier dysfunction, oxidative stress, and inflammation. Appropriate government interventions are beneficial.
Collapse
Affiliation(s)
- Ling Chao
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Bin Feng
- Environmental Health Section, Xinxiang Health Technology Supervision Center, School of Management, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Haiyan Liang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Xiangmei Zhao
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Jie Song
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China.
| |
Collapse
|
4
|
Pan Z, Dai Y, Akar-Ghibril N, Simpson J, Ren H, Zhang L, Hou Y, Wen X, Chang C, Tang R, Sun JL. Impact of Air Pollution on Atopic Dermatitis: A Comprehensive Review. Clin Rev Allergy Immunol 2023; 65:121-135. [PMID: 36853525 DOI: 10.1007/s12016-022-08957-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2022] [Indexed: 03/01/2023]
Abstract
Air pollution is associated with multiple health problems worldwide, contributing to increased morbidity and mortality. Atopic dermatitis (AD) is a common allergic disease, and increasing evidence has revealed a role of air pollution in the development of atopic dermatitis. Air pollutants are derived from several sources, including harmful gases such as nitrogen dioxide (NO2), sulfur dioxide (SO2), and carbon monoxide (CO), as well as particulate matter (PM) of various sizes, and bioaerosols. Possible mechanisms linking air pollution to atopic dermatitis include damage to the skin barrier through oxidative stress, increased water loss, physicochemical injury, and an effect on skin microflora. Furthermore, oxidative stress triggers immune dysregulation, leading to enhanced sensitization to allergens. There have been multiple studies focusing on the association between various types of air pollutants and atopic dermatitis. Since there are many confounders in the current research, such as climate, synergistic effects of mixed pollutants, and diversity of study population, it is not surprising that inconsistencies exist between different studies regarding AD and air pollution. Still, it is generally accepted that air pollution is a risk factor for AD. Future studies should focus on how air pollution leads to AD as well as effective intervention measures.
Collapse
Affiliation(s)
- Zhouxian Pan
- Allergy Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Allergy Department, Beijing Key Laboratory of Precision Medicine for Diagnosis and Treatment of Allergic Diseases, National Clinical Research Center for Dermatologic and Immunologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yimin Dai
- Eight-Year Clinical Medicine System, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Nicole Akar-Ghibril
- Division of Immunology, Allergy and Rheumatology, Joe DiMaggio Children's Hospital, Memorial Healthcare System, Hollywood, FL, 33021, USA
| | - Jessica Simpson
- Division of Immunology, Allergy and Rheumatology, Joe DiMaggio Children's Hospital, Memorial Healthcare System, Hollywood, FL, 33021, USA
| | - Huali Ren
- Department of Allergy, Beijing Electric Power Hospital of State Grid Company of China, Electric Power Teaching Hospital of Capital Medical University, Beijing, 100073, China
| | - Lishan Zhang
- Allergy Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Allergy Department, Beijing Key Laboratory of Precision Medicine for Diagnosis and Treatment of Allergic Diseases, National Clinical Research Center for Dermatologic and Immunologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yibo Hou
- Allergy Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Allergy Department, Beijing Key Laboratory of Precision Medicine for Diagnosis and Treatment of Allergic Diseases, National Clinical Research Center for Dermatologic and Immunologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Xueyi Wen
- Allergy Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Allergy Department, Beijing Key Laboratory of Precision Medicine for Diagnosis and Treatment of Allergic Diseases, National Clinical Research Center for Dermatologic and Immunologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Christopher Chang
- Division of Immunology, Allergy and Rheumatology, Joe DiMaggio Children's Hospital, Memorial Healthcare System, Hollywood, FL, 33021, USA.
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA, 95616, USA.
| | - Rui Tang
- Allergy Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
- Allergy Department, Beijing Key Laboratory of Precision Medicine for Diagnosis and Treatment of Allergic Diseases, National Clinical Research Center for Dermatologic and Immunologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Jin-Lyu Sun
- Allergy Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
- Allergy Department, Beijing Key Laboratory of Precision Medicine for Diagnosis and Treatment of Allergic Diseases, National Clinical Research Center for Dermatologic and Immunologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
5
|
Fadadu RP, Chee E, Jung A, Chen JY, Abuabara K, Wei ML. Air pollution and global healthcare use for atopic dermatitis: A systematic review. J Eur Acad Dermatol Venereol 2023; 37:1958-1970. [PMID: 37184289 DOI: 10.1111/jdv.19193] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/03/2023] [Indexed: 05/16/2023]
Abstract
Increasing air pollution is common around the world, but the impacts of outdoor air pollution exposure on atopic dermatitis (AD) are unclear. We synthesized the current global epidemiologic evidence for air pollution exposure and associated medical visits for AD among adults and children. This review followed PRISMA guidelines, and searches were conducted on PubMed, MEDLINE, Web of Science and EMBASE databases. The searches yielded 390 studies, and after screening, 18 studies around the world assessing at least 5,197,643 medical visits for AD in total were included for the final analysis. We found that exposure to particulate matter ≤2.5 μm in diameter (PM2.5 ) [(10/11) of studies], particulate matter ≤10 μm in diameter (PM10 ) (11/13), nitrogen dioxide (NO2 ) (12/14) and sulfur dioxide (SO2 ) (10/13) was positively associated with AD visits. Results were equivocal for ozone [(4/8) of studies reported positive association] and limited for carbon monoxide [(1/4) of studies reported positive association]. When stratifying results by patient age, patient sex and season, we found that the associations with particulate matter, NO2 and O3 may be affected by temperature. Exposure to selected air pollutants is associated with AD visits, and increasingly poor worldwide air quality may increase global healthcare use for AD.
Collapse
Affiliation(s)
- R P Fadadu
- Department of Dermatology, University of California, San Francisco, San Francisco, California, USA
- Dermatology Service, San Francisco VA Health Care System, San Francisco, California, USA
| | - E Chee
- Department of Dermatology, University of California, San Francisco, San Francisco, California, USA
| | - A Jung
- Department of Dermatology, University of California, San Francisco, San Francisco, California, USA
- School of Information, University of California, Berkeley, Berkeley, California, USA
| | - J Y Chen
- Department of Dermatology, University of California, San Francisco, San Francisco, California, USA
- Dermatology Service, San Francisco VA Health Care System, San Francisco, California, USA
| | - K Abuabara
- Department of Dermatology, University of California, San Francisco, San Francisco, California, USA
- School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - M L Wei
- Department of Dermatology, University of California, San Francisco, San Francisco, California, USA
- Dermatology Service, San Francisco VA Health Care System, San Francisco, California, USA
| |
Collapse
|
6
|
Quan VL, Erickson T, Daftary K, Chovatiya R. Atopic Dermatitis Across Shades of Skin. Am J Clin Dermatol 2023; 24:731-751. [PMID: 37336869 DOI: 10.1007/s40257-023-00797-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2023] [Indexed: 06/21/2023]
Abstract
Atopic dermatitis (AD) is a chronic, heterogeneous inflammatory skin disease that is associated with immense patient burden globally. There is increasing appreciation of disparities among patients identified as having skin of color (SOC), which often refers to patients of non-White race or non-European ancestry, but can broadly include individuals from a number of different racial, ethnic, ancestral, and skin pigmentation groups based on definition. In this narrative review, we discuss key terminology as it relates to AD across shades of skin, including modern definitions of 'race', 'ethnicity', and 'SOC'. We then synthesize the current literature describing disparities in AD prevalence, disease recognition, and burden alongside current data regarding genetic and immunologic findings across SOC populations. In the context of these findings, we highlight key concomitant social determinants of health, including environmental factors, socioeconomic status, and access to care, for which race often serves as a proxy for true biological and genetic differences. Finally, we discuss future efforts to shift to a more inclusive understanding of AD to encompass all shades of skin, to ensure equitable representation of diverse populations in high impact research, and intensify efforts to address the critical upstream factors driving observed disparities.
Collapse
Affiliation(s)
- Victor L Quan
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, 676 N St Clair St, Suite 1600, Chicago, IL, 60611, USA
| | - Taylor Erickson
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, 676 N St Clair St, Suite 1600, Chicago, IL, 60611, USA
| | - Karishma Daftary
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, 676 N St Clair St, Suite 1600, Chicago, IL, 60611, USA
| | - Raj Chovatiya
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, 676 N St Clair St, Suite 1600, Chicago, IL, 60611, USA.
| |
Collapse
|
7
|
Peng Q, Liu Y, Huels A, Zhang C, Yu Y, Qiu W, Cai X, Zhao Y, Schikowski T, Merches K, Liu Y, Yang Y, Wang J, Zhao Y, Jin L, Zhang L, Krutmann J, Wang S. Genetic Variants in Telomerase Reverse Transcriptase Contribute to Solar Lentigines. J Invest Dermatol 2023; 143:1062-1072.e25. [PMID: 36572090 DOI: 10.1016/j.jid.2022.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 10/01/2022] [Accepted: 11/11/2022] [Indexed: 12/26/2022]
Abstract
Solar lentigines (SLs) are a hallmark of human skin aging. They result from chronic exposure to sunlight and other environmental stressors. Recent studies also imply genetic factors, but findings are partially conflicting and lack of replication. Through a multi-trait based analysis strategy, we discovered that genetic variants in telomerase reverse transcriptase were significantly associated with non-facial SL in two East Asian (Taizhou longitudinal cohort, n = 2,964 and National Survey of Physical Traits, n = 2,954) and one Caucasian population (SALIA, n = 462), top SNP rs2853672 (P-value for Taizhou longitudinal cohort = 1.32 × 10‒28 and P-value for National Survey of Physical Traits = 3.66 × 10‒17 and P-value for SALIA = 0.0007 and Pmeta = 4.93 × 10‒44). The same variants were nominally associated with facial SL but not with other skin aging or skin pigmentation traits. The SL-enhanced allele/haplotype upregulated the transcription of the telomerase reverse transcriptase gene. Of note, well-known telomerase reverse transcriptase‒related aging markers such as leukocyte telomere length and intrinsic epigenetic age acceleration were not associated with SL. Our results indicate a previously unrecognized role of telomerase reverse transcriptase in skin aging‒related lentigines formation.
Collapse
Affiliation(s)
- Qianqian Peng
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yu Liu
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Anke Huels
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany; Faculty of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Canfeng Zhang
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Yao Yu
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China; CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wenqing Qiu
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xiyang Cai
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yuepu Zhao
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Tamara Schikowski
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Katja Merches
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Yun Liu
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yajun Yang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Human Phenome Institute, Fudan University, Shanghai, China; Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Human Phenome Institute, Fudan University, Shanghai, China; Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Yong Zhao
- Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Human Phenome Institute, Fudan University, Shanghai, China; Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Liang Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China; Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jean Krutmann
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany; State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Human Phenome Institute, Fudan University, Shanghai, China; Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Sijia Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.
| |
Collapse
|
8
|
Kam S, Hwang BJ, Parker ER. The impact of climate change on atopic dermatitis and mental health comorbidities: a review of the literature and examination of intersectionality. Int J Dermatol 2023; 62:449-458. [PMID: 36639925 DOI: 10.1111/ijd.16557] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 10/19/2022] [Accepted: 11/30/2022] [Indexed: 01/15/2023]
Abstract
Climate change, fueled by increasing concentrations of greenhouse gases, is associated with rising temperatures, extreme weather events, increased aeroallergen production, and air pollution. Our understanding that many inflammatory cutaneous diseases carry important mental health comorbidities is expanding. Simultaneously, the detrimental impacts of climate change on human health are now widely recognized as a global public health crisis. Importantly, these climate-associated phenomena exacerbate the environmental triggers of atopic dermatitis (AD) and are also associated with amplification of comorbid mental health conditions in AD including depression, anxiety, trauma-related disorders, and psychotic spectrum disorders. This review is the first to examine the nexus of climate change, atopic dermatitis, and mental health comorbidities and emphasizes the disproportionate impacts of climate change in vulnerable and marginalized populations.
Collapse
Affiliation(s)
- Sharon Kam
- Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Barrington J Hwang
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Eva R Parker
- Department of Dermatology and the Center for Biomedical Ethics and Society, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
9
|
Gu X, Jing D, Xiao Y, Zhou G, Yang S, Liu H, Chen X, Shen M. Association of air pollution and genetic risks with incidence of elderly-onset atopic dermatitis: A prospective cohort study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 253:114683. [PMID: 36857917 DOI: 10.1016/j.ecoenv.2023.114683] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/13/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Elderly-onset atopic dermatitis (AD) is a remarkable subtype and has been put on the agenda owing to its difficulty to control. Understanding the influence of genetic and environmental exposures is crucial to preventing elderly-onset AD. OBJECTIVES To explore the association between genes and air pollution on incident elderly-onset AD. MATERIAL AND METHODS This study was based on UK Biobank that recruited over 500,000 participants. The genetic risks were categorized into low, intermediate, and high groups according to tertiles of polygenic risk scores. Mixed exposure to various air pollutants was assessed using the weighted quantile sum (WQS) and also categorized based on tertiles. Within each genetic risk group, whether air pollutant mixture was associated with incident elderly-onset AD was estimated. RESULTS 337,910 participants were included in the final analysis, and the mean age was 57.1. The median years for follow-up were 12.0, and the incident cases of AD were 2545. The medium and high air pollution mixture was significantly associated with incident AD compared with the low pollution group, with HRs of 1.182 (P = 0.003) and 1.359 (P < 0.001), respectively. In contrast, HR for medium and high genetic susceptibility was only 1.065 (P = 0.249) and 1.153 (P = 0.008). The population-attributable fraction of air pollution and genetic risk was 15.5 % (P < 0.001) and 6.4 % (P = 0.004). Additionally, compared with low genetic risk and low air pollution, high genetic risk and high air pollution was significantly associated with the incidence of elderly-onset AD with a HR of up to 1.523 (P < 0.001). There were no interactive effects between each group of genetic risks and air pollution. When grouped by sex, females could observe a stronger effect by genetic and air pollutant mixture exposure. CONCLUSION Air pollution and genetics both independently enhance the risk of newly developed AD, and the effect of air pollutants is stronger than the investigated genes.
Collapse
Affiliation(s)
- Xiaoyu Gu
- Department of Dermatology | Hunan Engineering Research Center of Skin Health and Disease | Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha 410008, China; Furong Laboratory, Changsha, Hunan 410008, China
| | - Danrong Jing
- Department of Dermatology | Hunan Engineering Research Center of Skin Health and Disease | Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha 410008, China; Furong Laboratory, Changsha, Hunan 410008, China
| | - Yi Xiao
- Department of Dermatology | Hunan Engineering Research Center of Skin Health and Disease | Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha 410008, China; Furong Laboratory, Changsha, Hunan 410008, China
| | - Guowei Zhou
- Department of Dermatology | Hunan Engineering Research Center of Skin Health and Disease | Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha 410008, China; Furong Laboratory, Changsha, Hunan 410008, China
| | - Songchun Yang
- Department of Dermatology | Hunan Engineering Research Center of Skin Health and Disease | Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha 410008, China; Furong Laboratory, Changsha, Hunan 410008, China.
| | - Hong Liu
- Department of Dermatology | Hunan Engineering Research Center of Skin Health and Disease | Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha 410008, China; Furong Laboratory, Changsha, Hunan 410008, China.
| | - Xiang Chen
- Department of Dermatology | Hunan Engineering Research Center of Skin Health and Disease | Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha 410008, China; Furong Laboratory, Changsha, Hunan 410008, China.
| | - Minxue Shen
- Department of Dermatology | Hunan Engineering Research Center of Skin Health and Disease | Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha 410008, China; Furong Laboratory, Changsha, Hunan 410008, China; Department of Social Medicine and Health Management, Xiangya School of Public Health, Central South University, Changsha 410013, China.
| |
Collapse
|
10
|
Fadadu RP, Abuabara K, Balmes JR, Hanifin JM, Wei ML. Air Pollution and Atopic Dermatitis, from Molecular Mechanisms to Population-Level Evidence: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2526. [PMID: 36767891 PMCID: PMC9916398 DOI: 10.3390/ijerph20032526] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/19/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Atopic dermatitis (AD) has increased in prevalence to become the most common inflammatory skin condition globally, and geographic variation and migration studies suggest an important role for environmental triggers. Air pollution, especially due to industrialization and wildfires, may contribute to the development and exacerbation of AD. We provide a comprehensive, multidisciplinary review of existing molecular and epidemiologic studies on the associations of air pollutants and AD symptoms, prevalence, incidence, severity, and clinic visits. Cell and animal studies demonstrated that air pollutants contribute to AD symptoms and disease by activating the aryl hydrocarbon receptor pathway, promoting oxidative stress, initiating a proinflammatory response, and disrupting the skin barrier function. Epidemiologic studies overall report that air pollution is associated with AD among both children and adults, though the results are not consistent among cross-sectional studies. Studies on healthcare use for AD found positive correlations between medical visits for AD and air pollutants. As the air quality worsens in many areas globally, it is important to recognize how this can increase the risk for AD, to be aware of the increased demand for AD-related medical care, and to understand how to counsel patients regarding their skin health. Further research is needed to develop treatments that prevent or mitigate air pollution-related AD symptoms.
Collapse
Affiliation(s)
- Raj P. Fadadu
- Department of Dermatology, University of California, San Francisco, CA 94115, USA
- Dermatology Service, San Francisco VA Health Care System, San Francisco, CA 94121, USA
- School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Katrina Abuabara
- Department of Dermatology, University of California, San Francisco, CA 94115, USA
- School of Public Health, University of California, Berkeley, CA 94720, USA
| | - John R. Balmes
- School of Public Health, University of California, Berkeley, CA 94720, USA
- Division of Occupational and Environmental Medicine, University of California, San Francisco, CA 94143, USA
| | - Jon M. Hanifin
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Maria L. Wei
- Department of Dermatology, University of California, San Francisco, CA 94115, USA
- Dermatology Service, San Francisco VA Health Care System, San Francisco, CA 94121, USA
| |
Collapse
|
11
|
Liao M, Xiao Y, Li S, Su J, Li J, Zou B, Chen X, Shen M. Synergistic Effects between Ambient Air Pollution and Second-Hand Smoke on Inflammatory Skin Diseases in Chinese Adolescents. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10011. [PMID: 36011645 PMCID: PMC9408277 DOI: 10.3390/ijerph191610011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/14/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Atopic dermatitis (AD), chronic hand eczema (CHE), and urticaria are common inflammatory skin diseases among adolescents and associated with air quality. However, the synergistic effects of ambient air pollution and second-hand smoke (SHS) have been unclear. We conducted a cross-sectional study including 20,138 Chinese college students where dermatological examinations and a questionnaire survey were carried out. A generalized linear mixed model was applied for the association between individualized exposure of O3, CO, NO2, SO2, PM2.5, and PM10 and the prevalence of inflammatory skin diseases. Interactions between air pollutants and SHS were analyzed. As a result, CO, NO2, SO2, PM2.5, and PM10 were positively correlated with the prevalence of AD, CHE, and urticaria. Higher frequency of SHS exposure contributed to increased probabilities of AD (p = 0.042), CHE (p < 0.001), and urticaria (p = 0.002). Of note, CO (OR: 2.57 (1.16−5.69) in third quartile) and NO2 (OR: 2.38 (1.07−5.27) in third quartile) had positive interactions with SHS for AD, and PM2.5 synergized with SHS for CHE (OR: 2.25 (1.22−4.15) for second quartile). Subgroup analyses agreed with the synergistic results. In conclusion, SHS and ambient air pollution are both associated with inflammatory skin diseases, and they have a synergistic effect on the prevalence of AD and CHE.
Collapse
Affiliation(s)
- Mengting Liao
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, China
- Health Management Center, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yi Xiao
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, China
| | - Shenxin Li
- Department of Surveying and Remote Sensing Science, School of Geosciences and Info-Physics, Central South University, Changsha 410008, China
| | - Juan Su
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Ji Li
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Bin Zou
- Department of Surveying and Remote Sensing Science, School of Geosciences and Info-Physics, Central South University, Changsha 410008, China
| | - Xiang Chen
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Minxue Shen
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of Social Medicine and Health Management, Xiangya School of Public Health, Central South University, Changsha 410008, China
| |
Collapse
|
12
|
Wang H, Li XB, Chu XJ, Cao NW, Wu H, Huang RG, Li BZ, Ye DQ. Ambient air pollutants increase the risk of immunoglobulin E-mediated allergic diseases: a systematic review and meta-analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:49534-49552. [PMID: 35595897 PMCID: PMC9122555 DOI: 10.1007/s11356-022-20447-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 04/21/2022] [Indexed: 05/06/2023]
Abstract
Immunoglobulin E (IgE)-mediated allergic diseases, including eczema, atopic dermatitis (AD), and allergic rhinitis (AR), have increased prevalence in recent decades. Recent studies have proved that environmental pollution might have correlations with IgE-mediated allergic diseases, but existing research findings were controversial. Thus, we performed a comprehensive meta-analysis from published observational studies to evaluate the risk of long-term and short-term exposure to air pollutants on eczema, AD, and AR in the population (per 10-μg/m3 increase in PM2.5 and PM10; per 1-ppb increase in SO2, NO2, CO, and O3). PubMed, Embase, and Web of Science were searched to identify qualified literatures. The Cochran Q test was used to assess heterogeneity and quantified with the I2 statistic. Pooled effects and the 95% confidence intervals (CIs) were used to evaluate outcome effects. A total of 55 articles were included in the study. The results showed that long-term and short-term exposure to PM10 increased the risk of eczema (PM10, RRlong = 1.583, 95% CI: 1.328, 1.888; RRshort = 1.006, 95% CI: 1.003-1.008) and short-term exposure to NO2 (RRshort = 1.009, 95% CI: 1.008-1.011) was associated with eczema. Short-term exposure to SO2 (RRshort: 1.008, 95% CI: 1.001-1.015) was associated with the risk of AD. For AR, PM2.5 (RRlong = 1.058, 95% CI: 1.014-1.222) was harmful in the long term, and short-term exposure to PM10 (RRshort: 1.028, 95% CI: 1.008-1.049) and NO2 (RRshort: 1.018, 95% CI: 1.007-1.029) were risk factors. The findings indicated that exposure to air pollutants might increase the risk of IgE-mediated allergic diseases. Further studies are warranted to illustrate the potential mechanism for air pollutants and allergic diseases.
Collapse
Affiliation(s)
- Hua Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Xian-Bao Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Xiu-Jie Chu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Nv-Wei Cao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Hong Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Rong-Gui Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Bao-Zhu Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China.
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China.
| | - Dong-Qing Ye
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| |
Collapse
|
13
|
Zhao Z, Gao XH, Li W, Wang H, Liang Y, Tang J, Yao X, Zhao H, Luger T. Experts' Consensus on the Use of Pimecrolimus in Atopic Dermatitis in China: A TCS-Sparing Practical Approach. Dermatol Ther (Heidelb) 2022; 12:933-947. [PMID: 35313362 PMCID: PMC9021341 DOI: 10.1007/s13555-022-00696-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/14/2022] [Indexed: 11/29/2022] Open
Abstract
Introduction Atopic dermatitis (AD) is a chronic, pruritic, inflammatory skin disease with rising prevalence. Topical corticosteroids (TCS) are recommended as first-line therapy for patients with AD in China; however, corticophobia is a widespread concern, which can manifest as noncompliance: in a previous Chinese study, almost all parents whose children had AD were very concerned about the side effects of TCS and, as a result, nearly half did not use it in the event of recurrence. We propose a TCS-sparing treatment algorithm for the management of infants, children, adolescents, and adults with mild-to-moderate AD, to guide clinical practice in China. Methods A panel of eight experts in AD from China and one expert from Germany formed to develop a practical algorithm for the management of mild-to-moderate AD, focusing on pimecrolimus. Results Irrespective of body location, all patients with mild AD (including acute flares) and infants with moderate AD should apply the topical calcineurin inhibitor (TCI) pimecrolimus twice daily to the affected area until symptoms disappear. For children, adolescents, and adults with moderate AD, pimecrolimus should be applied twice daily to sensitive skin areas, and a TCI (either pimecrolimus or tacrolimus) should be applied twice daily to other body locations. Short-term administration of TCS, followed by TCI twice daily, is recommended for most patients with moderate AD experiencing acute flares, regardless of lesion site. Emollients should be used regularly. Conclusions The algorithm presented intends to simplify treatment of AD in China and guide clinical decision-making.
Collapse
Affiliation(s)
- Zuotao Zhao
- Department of Dermatology and Venereology National Clinical Research Center for Skin and Immune Diseases, Peking University First Hospital, 8 Xishiku St, Xicheng District, Beijing, China
| | - Xing-Hua Gao
- Department of Dermatology, The First Hospital, China Medical University, 77 Puhe Rd, Shenbei, Shenyang, Liaoning, China
| | - Wei Li
- Department of Dermatology, Huashan Hospital, Fudan University, 796 Jiangsu Rd, Changning District, Shanghai, China
| | - Hua Wang
- Department of Dermatology, Children's Hospital of Chongqing Medical University, 136 Zhongshan 2nd Rd, Liang Lu Kou, Yuzhong District, Chongqing, China
| | - Yunsheng Liang
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Nanfang Ave, Baiyun, Guangzhou, Guangdong, China
| | - Jianping Tang
- Department of Dermatology, Hunan Children's Hospital, 86 Ziyuan Rd, Yuhua District, Changsha, Hunan, China
| | - Xu Yao
- Department of Allergy and Rheumatology, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 9 Dongdan 3rd Alley, Dong Dan, Dongcheng, Beijing, China
| | - Hua Zhao
- Department of Dermatology and Venereology, Chinese PLA General Hospital, 4th Ring Road, Beijing, China
| | - Thomas Luger
- Department of Dermatology, University of Münster, Von-Esmarch-Straße 58, 48149, Münster, Germany.
| |
Collapse
|
14
|
Rodrigues de Souza I, Savio de Araujo-Souza P, Morais Leme D. Genetic variants affecting chemical mediated skin immunotoxicity. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2022; 25:43-95. [PMID: 34979876 DOI: 10.1080/10937404.2021.2013372] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The skin is an immune-competent organ and this function may be impaired by exposure to chemicals, which may ultimately result in immune-mediated dermal disorders. Interindividual variability to chemical-induced skin immune reactions is associated with intrinsic individual characteristics and their genomes. In the last 30-40 years, several genes influencing susceptibility to skin immune reactions were identified. The aim of this review is to provide information regarding common genetic variations affecting skin immunotoxicity. The polymorphisms selected for this review are related to xenobiotic-metabolizing enzymes (CYPA1 and CYPB1 genes), antioxidant defense (GSTM1, GSTT1, and GSTP1 genes), aryl hydrocarbon receptor signaling pathway (AHR and ARNT genes), skin barrier function transepidermal water loss (FLG, CASP14, and SPINK5 genes), inflammation (TNF, IL10, IL6, IL18, IL31, and TSLP genes), major histocompatibility complex (MHC) and neuroendocrine system peptides (CALCA, TRPV1, ACE genes). These genes present variants associated with skin immune responses and diseases, as well as variants associated with protecting skin immune homeostasis following chemical exposure. The molecular and association studies focusing on these genetic variants may elucidate their functional consequences and contribution in the susceptibility to skin immunotoxicity. Providing information on how genetic variations affect the skin immune system may reduce uncertainties in estimating chemical hazards/risks for human health in the future.
Collapse
Affiliation(s)
| | | | - Daniela Morais Leme
- Graduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Curitiba, Brazil
- National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of Chemistry, Araraquara, Brazil
| |
Collapse
|
15
|
Li X, Cao Y, An SJ, Xiang Y, Huang HX, Xu B, Zhang Y, Li YF, Lu YG, Cai TJ. The association between short-term ambient air pollution and acne vulgaris outpatient visits: a hospital-based time-series analysis in Xi'an. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:14624-14633. [PMID: 34617215 DOI: 10.1007/s11356-021-16607-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
Recent studies have suggested that exposure to ambient airborne pollutants is associated with inflammatory skin diseases, but the epidemiological evidence regarding the association between air pollution and acne vulgaris is limited. To address that, a hospital-based time-series analysis was conducted in Xi'an, a metropolitan in northwest China. A total of 71,625 outpatient visits for acne from 2010 to 2013 were identified. The mean daily concentrations of PM10, SO2, and NO2 were 142.6 μg/m3, 44.7 μg/m3, and 48.5 μg/m3, and all were higher than WHO air quality guidelines. A generalized additive model was used to analyze the relationship between short-term ambient air pollution exposure and outpatient visits for acne. The gender- and age-specific analyses were conducted as well. The results showed that the increase of SO2 and NO2 concentrations corresponded to a significant rise in the number of outpatient visits for acne at lag 0 in both single-lag and cumulative exposure models. Both SO2 and NO2 were positively associated with acne outpatient visits for both males and females. In age-specific analyses, the effect estimate of PM10 was only significant for adults over 30 years old; SO2 was significantly associated with acne visits in children and adolescents (<21 years) and young adults (21-30 years); and NO2 was significantly associated with acne visits in all age subgroups. In conclusion, short-term exposure to ambient air pollutants (PM10, SO2, or NO2) with the average levels above WHO limits was associated with increased risk of outpatient visits for both teenage acne and adult acne. Moreover, the effects of air pollutants may vary with age.
Collapse
Affiliation(s)
- Xiang Li
- Department of Plastic & Cosmetic Surgery, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, People's Republic of China
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), 30 Gaotanyan Main Street, Shapingba, Chongqing, People's Republic of China, 400038
| | - Yi Cao
- Department of Health Economics Management, Xijing Hospital, Air Force Medical University (Fourth Military Medical University), Xi'an, People's Republic of China
| | - Shu-Jie An
- Medical Department, Xijing Hospital, Air Force Medical University (Fourth Military Medical University), Xi'an, People's Republic of China
| | - Ying Xiang
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), 30 Gaotanyan Main Street, Shapingba, Chongqing, People's Republic of China, 400038
| | - He-Xiang Huang
- Department of Social Medicine and Health Service Management, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, People's Republic of China
| | - Bin Xu
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), 30 Gaotanyan Main Street, Shapingba, Chongqing, People's Republic of China, 400038
| | - Yao Zhang
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), 30 Gaotanyan Main Street, Shapingba, Chongqing, People's Republic of China, 400038
| | - Ya-Fei Li
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), 30 Gaotanyan Main Street, Shapingba, Chongqing, People's Republic of China, 400038
| | - Yuan-Gang Lu
- Department of Plastic & Cosmetic Surgery, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, People's Republic of China.
| | - Tong-Jian Cai
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), 30 Gaotanyan Main Street, Shapingba, Chongqing, People's Republic of China, 400038.
| |
Collapse
|
16
|
Harada K, Miller RL. Environmental exposures: evolving evidence for their roles in adult allergic disorders. Curr Opin Allergy Clin Immunol 2022; 22:24-28. [PMID: 34723869 PMCID: PMC8702460 DOI: 10.1097/aci.0000000000000794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE OF REVIEW Allergic disorders are the result of complex interactions between genetic predisposition and environmental exposures. Elucidating how specific environmental exposures contribute to allergic diseases in adults is crucial, especially as the world population ages in a rapidly changing environment. RECENT FINDINGS The effects of environmental exposures on allergic diseases remain understudied in adults. Although epidemiological studies suggest various environmental exposures are associated with the development and exacerbation of allergic diseases, further longitudinal studies are needed across various age groups in adults to pinpoint the exposures of concerns and the time windows of susceptibility. Mechanistic studies in adults are few. A multicomponent strategy targeting several allergens has been conditionally recommended for asthma, but recent findings on mitigation strategies remain limited. SUMMARY Further research on how environmental exposures cause and exacerbate allergic disorders is needed in adults, particularly across disease phenotypes. The effects of mitigation strategies against environmentally induced adult allergic diseases remain large research gaps. A better understanding of how and which environmental exposures contribute to allergic disorders is necessary to identify patients who are at higher risk and would benefit from specific interventions.
Collapse
Affiliation(s)
- Kaoru Harada
- Division of Allergy and Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Rachel L. Miller
- Division of Allergy and Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| |
Collapse
|
17
|
Wang J, Zhang Y, Li B, Zhao Z, Huang C, Zhang X, Deng Q, Lu C, Qian H, Yang X, Sun Y, Sundell J, Norbäck D. Eczema, facial erythema, and seborrheic dermatitis symptoms among young adults in China in relation to ambient air pollution, climate, and home environment. INDOOR AIR 2022; 32:e12918. [PMID: 34337784 DOI: 10.1111/ina.12918] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 07/12/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
A questionnaire survey on dermal symptoms and home environment was performed in eight Chinese cities (40 279 participants). Data on city level temperature, precipitation, PM10 , NO2, and gross domestic product (GDP) per capita were collected. In total, 2.2% had eczema, 2.4% facial erythema (FE) and 2.6% seborrheic dermatitis symptoms (SD). Higher temperature was associated with eczema (OR = 1.09). Higher GDP per capita was related to less SD. Higher PM10 was related to SD. Suburban living was protective for eczema (OR = 0.77) (vs. urban). Living in old buildings (built before 1991) was related to eczema (OR = 1.42). Living near heavily trafficked roads was related to FE (OR = 1.33) and SD (OR = 1.35). Having new furniture was related to all symptoms (OR = 1.26-1.47). Burning mosquito coils (OR = 1.37-1.57) and incense (OR = 1.33-1.37) were associated with eczema, FE, or SD. Presence of cockroaches and rats/mice was associated with FE or SD (OR = 1.31-1.40). Using air conditioner, daily cleaning and frequently exposing bedding to sunshine were protective (OR = 0.60-0.83). In conclusion, higher temperature, higher PM10 , urban living, living near heavily trafficked roads, old buildings, new furniture, burning mosquito coils and incense, and presence of cockroaches/rats/mice increased the risk of eczema, FE, or SD. Higher GDP, air conditioner, daily cleaning, and exposing bedding to sunshine were protective.
Collapse
Affiliation(s)
- Juan Wang
- Department of Medical Sciences, Occupational and Environmental Medicine, Uppsala University, Uppsala, Sweden
| | - Yinping Zhang
- School of Architecture, Tsinghua University, Beijing, China
| | - Baizhan Li
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Chongqing University, Chongqing, China
| | - Zhuohui Zhao
- Department of Environmental Health, Fudan University, Shanghai, China
| | - Chen Huang
- Department of Building Environment and Energy Engineering, School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, China
| | - Xin Zhang
- Institute of Environmental Science, Shanxi University, Taiyuan, China
| | - Qihong Deng
- Xiangya School of Public Health, Central South University, Changsha, China
- School of Energy Science and Engineering, Central South University, Changsha, China
| | - Chan Lu
- Xiangya School of Public Health, Central South University, Changsha, China
- School of Energy Science and Engineering, Central South University, Changsha, China
| | - Hua Qian
- School of Energy Environment, Southeast University, Nanjing, China
| | - Xu Yang
- College of Life Sciences, Central China Normal University, Wuhan, China
| | - Yuexia Sun
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Jan Sundell
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Dan Norbäck
- Department of Medical Sciences, Occupational and Environmental Medicine, Uppsala University, Uppsala, Sweden
| |
Collapse
|
18
|
Hadi HA, Tarmizi AI, Khalid KA, Gajdács M, Aslam A, Jamshed S. The Epidemiology and Global Burden of Atopic Dermatitis: A Narrative Review. Life (Basel) 2021; 11:936. [PMID: 34575085 PMCID: PMC8470589 DOI: 10.3390/life11090936] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 08/31/2021] [Accepted: 09/07/2021] [Indexed: 12/12/2022] Open
Abstract
The global epidemiology of atopic dermatitis (AD) in the current decade (2009-2019) has not been extensively reported. Epidemiological studies play an important role in presenting the risk factors of AD, as detailed prevalence and incidence data could demonstrate the burden of disease in the population of adults, adolescents, and children in different geographical regions. Thus, the primary objective of this review was to assess and summarize the epidemiological studies of the prevalence and incidence of AD in different age groups, focusing on data from studies published for 2009 to 2019. After a thorough literature search, six countries were identified from African, Asian, and European regions respectively, who published studies on AD. In contrast, only two studies were identified from Australia and New Zealand, three countries from North America and two from South America published AD studies, respectively. The highest prevalence of AD from included studies was noted among Swedish children with 34%, while the lowest prevalence was in Tunisian children with 0.65%; studies reporting incidence data were far less numerous. A common trend in the prevalence of AD was that children would have a higher prevalence as compared to adolescents and adults. The severity and morbidity of the disease showed variance with age, sex, socioeconomic characteristics, geographical location, and ethnicity. Environmental factors played an important role as causative agents in AD. The risk factors that were proven to cause and induce AD were skin barrier impairments due to FLG mutation, changes in the environment, and diet. FLG mutation may impair the skin barrier function by disruption of pH and hydration maintenance of the skin. Lastly, there were only a few studies on the incidence of AD in the 21st century. Therefore, epidemiological studies on childhood and adulthood AD in different continents are still needed, especially on the incidence of AD during adulthood.
Collapse
Affiliation(s)
- Hazrina Ab Hadi
- Dermatopharmaceutics Research Group, International Islamic University Malaysia, Bandar Indera Mahkota, Kuantan 25200, Pahang, Malaysia;
- Faculty of Pharmacy, International Islamic University Malaysia, Bandar Indera Mahkota, Kuantan 25200, Pahang, Malaysia;
| | - Aine Inani Tarmizi
- Faculty of Pharmacy, International Islamic University Malaysia, Bandar Indera Mahkota, Kuantan 25200, Pahang, Malaysia;
| | - Kamarul Ariffin Khalid
- Faculty of Medicine, International Islamic University Malaysia, Bandar Indera Mahkota, Kuantan 25200, Pahang, Malaysia;
| | - Márió Gajdács
- Department of Oral Biology and Experimental Dental Research, Faculty of Dentistry, University of Szeged, Tisza Lajos körút 63, 6720 Szeged, Hungary
- Institute of Medical Microbiology, Faculty of Medicine, Semmelweis University, Nagyvárad Tér 4, 1089 Budapest, Hungary
| | - Adeel Aslam
- Department of Pharmacy Practice, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Pahang, Malaysia;
| | - Shazia Jamshed
- Clinical Pharmacy and Practice, Faculty of Pharmacy, Universiti Sultan Zainal Abidin, Besut 22200, Terengganu, Malaysia;
| |
Collapse
|
19
|
Chao L, Lu M, An Z, Li J, Li Y, Zhao Q, Wang Y, Liu Y, Wu W, Song J. Short-term effect of NO 2 on outpatient visits for dermatologic diseases in Xinxiang, China: a time-series study. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:1-11. [PMID: 33559783 PMCID: PMC7871127 DOI: 10.1007/s10653-021-00831-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 01/23/2021] [Indexed: 05/10/2023]
Abstract
OBJECTIVES As the largest organ of the human body, the skin is the major exposure route of NO2. However, the evidence for a relationship between NO2 exposure and dermatologic diseases (DMs) is limited. This time-series study was conducted to assess the short-term effect of nitrogen dioxide (NO2) exposure on DMs outpatient visits in Xinxiang, China. METHODS Daily recordings of NO2 concentrations, meteorological data, and the outpatient visits data for DMs were collected in Xinxiang from January 1st, 2015, to December 31st, 2018. The analysis method used was based on the generalized additive model (GAM) with quasi-Poisson regression to investigate the relationship between NO2 exposure and DMs outpatient visits. Several covariates, such as long-term trends, seasonality, and weather conditions were controlled. RESULTS A total of 164,270 DMs outpatients were recorded. A 10 μg/m3 increase in NO2 concentrations during the period was associated with a 1.86% increase in DMs outpatient visits (95% confidence intervals [Cl]: 1.06-2.66%). The effect was stronger (around 6 times) in the cool seasons than in warmer seasons and younger patients (< 15 years of age) appeared to be more vulnerable. CONCLUSIONS The findings of this study indicate that short-term exposure to NO2 increases the risk of DMs in Xinxiang, China, especially in the cool seasons. Policymakers should implement more stringent air quality standards to improve air quality.
Collapse
Affiliation(s)
- Ling Chao
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Mengxue Lu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Zhen An
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Juan Li
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Yuchun Li
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Qian Zhao
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Yinbiao Wang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Yue Liu
- Chinese Center for Disease Control and Prevention, National Institute of Environmental Health, Beijing, 100021, China
| | - Weidong Wu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Jie Song
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China.
| |
Collapse
|
20
|
Fadadu RP, Grimes B, Jewell NP, Vargo J, Young AT, Abuabara K, Balmes JR, Wei ML. Association of Wildfire Air Pollution and Health Care Use for Atopic Dermatitis and Itch. JAMA Dermatol 2021; 157:658-666. [PMID: 33881450 PMCID: PMC8060890 DOI: 10.1001/jamadermatol.2021.0179] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
IMPORTANCE Air pollution is a worldwide public health issue that has been exacerbated by recent wildfires, but the relationship between wildfire-associated air pollution and inflammatory skin diseases is unknown. OBJECTIVE To assess the associations between wildfire-associated air pollution and clinic visits for atopic dermatitis (AD) or itch and prescribed medications for AD management. DESIGN, SETTING, AND PARTICIPANTS This cross-sectional time-series study assessed the associations of air pollution resulting from the California Camp Fire in November 2018 and 8049 dermatology clinic visits (4147 patients) at an academic tertiary care hospital system in San Francisco, 175 miles from the wildfire source. Participants included pediatric and adult patients with AD or itch from before, during, and after the time of the fire (October 2018 through February 2019), compared with those with visits in the same time frame of 2015 and 2016, when no large wildfires were near San Francisco. Data analysis was conducted from November 1, 2019, to May 30, 2020. EXPOSURES Wildfire-associated air pollution was characterized using 3 metrics: fire status, concentration of particulate matter less than 2.5 μm in diameter (PM2.5), and satellite-based smoke plume density scores. MAIN OUTCOMES AND MEASURES Weekly clinic visit counts for AD or itch were the primary outcomes. Secondary outcomes were weekly numbers of topical and systemic medications prescribed for AD in adults. RESULTS Visits corresponding to a total of 4147 patients (mean [SD] age, 44.6 [21.1] years; 2322 [56%] female) were analyzed. The rates of visits for AD during the Camp Fire for pediatric patients were 1.49 (95% CI, 1.07-2.07) and for adult patients were 1.15 (95% CI, 1.02-1.30) times the rate for nonfire weeks at lag 0, adjusted for temperature, relative humidity, patient age, and total patient volume at the clinics for pediatric patients. The adjusted rate ratios for itch clinic visits during the wildfire weeks were 1.82 (95% CI, 1.20-2.78) for the pediatric patients and 1.29 (95% CI, 0.96-1.75) for adult patients. A 10-μg/m3 increase in weekly mean PM2.5 concentration was associated with a 7.7% (95% CI, 1.9%-13.7%) increase in weekly pediatric itch clinic visits. The adjusted rate ratio for prescribed systemic medications in adults during the Camp Fire at lag 0 was 1.45 (95% CI, 1.03-2.05). CONCLUSIONS AND RELEVANCE This cross-sectional study found that short-term exposure to air pollution due to the wildfire was associated with increased health care use for patients with AD and itch. These results may provide a better understanding of the association between poor air quality and skin health and guide health care professionals' counseling of patients with skin disease and public health practice.
Collapse
Affiliation(s)
- Raj P Fadadu
- Department of Dermatology, University of California, San Francisco
- Dermatology Service, San Francisco Veterans Affairs Medical Center, San Francisco, California
- School of Public Health, University of California, Berkeley
| | - Barbara Grimes
- Department of Epidemiology and Biostatistics, University of California, San Francisco
| | - Nicholas P Jewell
- School of Public Health, University of California, Berkeley
- Department of Medical Statistics, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Jason Vargo
- Office of Health Equity, California Department of Public Health, Richmond
| | - Albert T Young
- Department of Dermatology, University of California, San Francisco
- Dermatology Service, San Francisco Veterans Affairs Medical Center, San Francisco, California
| | - Katrina Abuabara
- Department of Dermatology, University of California, San Francisco
- School of Public Health, University of California, Berkeley
| | - John R Balmes
- School of Public Health, University of California, Berkeley
- Division of Occupational and Environmental Medicine, University of California, San Francisco
| | - Maria L Wei
- Department of Dermatology, University of California, San Francisco
- Dermatology Service, San Francisco Veterans Affairs Medical Center, San Francisco, California
| |
Collapse
|
21
|
Chen T, Chen F, Wang K, Ma X, Wei X, Wang W, Huang P, Yang D, Xia Z, Zhao Z. Acute respiratory response to individual particle exposure (PM 1.0, PM 2.5 and PM 10) in the elderly with and without chronic respiratory diseases. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 271:116329. [PMID: 33370612 DOI: 10.1016/j.envpol.2020.116329] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 12/12/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
Limited data were on the acute respiratory responses in the elderly in response to personal exposure of particulate matter (PM). In order to evaluate the changes of airway inflammation and pulmonary functions in the elderly in response to individual exposure of particles (PM1.0, PM2.5 and PM10), we analyzed 43 elderly subjects with either asthma, chronic obstructive pulmonary disease (COPD) or Asthma COPD Overlap (ACO) and 40 age-matched subjects without asthma nor COPD in an urban community in Shanghai, China. Data were collected at the baseline and in 6 follow-ups from August 2016 to December 2018, once every 3 months except for the last twice with a 6-month interval. In each follow-up, pulmonary functions, fractional exhaled nitric oxide (FeNO), 7-day continuous personal exposure to airborne particles were measured. Multivariate linear mixed effect regression models were applied to investigate the quantitative changes of pulmonary functions and FeNO in two respective groups. The results showed that on average 4.7 follow-up visits were completed in each participant. In subjects with CRDs, an inter-quartile range (IQR) increase of personal exposure to PM1.0, PM2.5 and PM10 was significantly associated with an average increase of FeNO(Lag1) of 6.7 ppb (95%CI 1.2, 9.9 ppb), 6.2 ppb (95%CI 1.5, 12.0 ppb) and 5.6 ppb (95%CI 1.5, 11.0 ppb), respectively, and an average decrease of FEV1(Lag2) of -3.6 L (95%CI -6.0, -1.1 L), -3.6 L (95%CI -6.4, -0.8 L) and -3.2 L (95%CI -5.8, -0.6 L), respectively, in the single-pollutant model. These associations remained consistent in the two-pollutant models adjusting for gaseous air pollutants. Stratified analysis showed that subjects with lower BMI, females and non-allergies were more sensitive to particle exposure. No robust significant effects were observed in the subjects without CRDs. Our study provided data on the susceptibility of the elderly with CRDs to particle exposure of PM1.0 and PM2.5, and the modification effects by BMI, gender and history of allergies.
Collapse
Affiliation(s)
- Tianyi Chen
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Fei'er Chen
- Shanghai Municipal Center for Disease Control & Prevention, Shanghai, China
| | - Kan Wang
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Xuedong Ma
- Shanghai Minhang District Gumei Community Health Center affiliated to Fudan University, Shanghai, 201102, China
| | - Xinping Wei
- Shanghai Minhang District Gumei Community Health Center affiliated to Fudan University, Shanghai, 201102, China
| | - Weigang Wang
- Shanghai Minhang District Gumei Community Health Center affiliated to Fudan University, Shanghai, 201102, China
| | - Pengyu Huang
- Shanghai Minhang District Gumei Community Health Center affiliated to Fudan University, Shanghai, 201102, China
| | - Dong Yang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zhaolin Xia
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Zhuohui Zhao
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai, 200032, China; Key Laboratory of Public Health Safety of the Ministry of Education, NHC Key Laboratory of Health Technology Assessment (Fudan University), Shanghai Typhoon Institute/CMA, Shanghai Key Laboratory of Meteorology and Health, Shanghai, 200030, China.
| |
Collapse
|
22
|
Aftabi Y, Rafei S, Zarredar H, Amiri-Sadeghan A, Akbari-Shahpar M, Khoshkam Z, Seyedrezazadeh E, Khalili M, Mehrnejad F, Fereidouni S, Lawrence BP. Refinement of coding SNPs in the human aryl hydrocarbon receptor gene using ISNPranker: An integrative-SNP ranking web-tool. Comput Biol Chem 2020; 90:107416. [PMID: 33264727 DOI: 10.1016/j.compbiolchem.2020.107416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 12/14/2022]
Abstract
Different bioinformatic methods apply various approaches to predict how much the effect of a SNP could be deleterious and therefore their results may differ significantly. However, variation studies often need to consider an integrated prediction result to analyze the effect of SNPs. To address this problem, we used an algorithm to map ordinal predictions to a numeral space and averaging them, and based on it we developed the ISNPranker web-tool (http://isnpranker.semilab.ir/). It takes heterogonous outputs of different predictors and generates integrated numerical predictions and ranks SNPs based on them. Afterward, we used ISNPranker to identify the most deleterious coding SNPs (cSNPs) of the human aryl hydrocarbon receptor (AHR) gene. AHR is a ligand-activated transcription factor that governs many molecular and cellular mechanisms and cSNPs may affect its structure, interactions, and function. Forty validated cSNPs of AHR were initially analyzed using 16 publicly available SNP analyzers and the results were introduced to the ISNPranker and integrated predictions were obtained. The cSNPs were ranked in 34 levels of danger and rs200257782 in the ARNT dimerization domain (ADD121-289) of AHR was identified as the most deleterious cSNP. The rs148360742, which affect ADD40-79 and Hsp90 binding domain (HBD27-79) was in the second rank and the third and fourth ranks were occupied by ADD121-289-located variations rs571123681 and rs141667112 respectively. In conclusion, we introduced ISNPranker, which is a web-tool for integrative ranking of SNPs, and we showed that AHR structure and function may be highly sensitive to the cSNPs in the ARNT dimerization domain.
Collapse
Affiliation(s)
- Younes Aftabi
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, P.O. Box: 53714161, Tabriz, Iran.
| | - Saleh Rafei
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Habib Zarredar
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, P.O. Box: 53714161, Tabriz, Iran
| | - Amir Amiri-Sadeghan
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, P.O. Box: 53714161, Tabriz, Iran
| | - Mohsen Akbari-Shahpar
- Department of Computer Engineering, Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran
| | - Zahra Khoshkam
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, P.O. Box: 53714161, Tabriz, Iran; Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Tehran, Tehran, Iran
| | - Ensiyeh Seyedrezazadeh
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, P.O. Box: 53714161, Tabriz, Iran
| | - Majid Khalili
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, P.O. Box: 53714161, Tabriz, Iran
| | - Faramarz Mehrnejad
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Sasan Fereidouni
- Department of Interdisciplinary Life Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - B Paige Lawrence
- Departments of Environmental Medicine and Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
23
|
Arnedo-Pena A, Puig-Barberà J, Artero-Civera A, Romeu-Garcia MA, Meseguer-Ferrer N, Fenollosa-Amposta C, Vizcaino-Batllés A, Silvestre-Silvester E, Pac-Sa MR, Segura-Navas L, Dubón MA, Fabregat-Puerto J, Bellido-Blasco JB. Atopic dermatitis incidence and risk factors in young adults in Castellon (Spain): A prospective cohort study. Allergol Immunopathol (Madr) 2020; 48:694-700. [PMID: 32402624 DOI: 10.1016/j.aller.2020.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 01/29/2020] [Indexed: 12/27/2022]
Abstract
INTRODUCTION There are few atopic dermatitis (AD) incidence cohort studies in young adults, the etiology of this disease remains obscure, and AD risk factors in adults are not well understood. The objective of this study was to estimate AD ten-year incidence and prevalence in a cohort of adolescent aged 14-16 at inception in Castellon province in Valencia Region, Spain and describe related risk factors. MATERIAL AND METHODS From 2002 to 2012, a population-based prospective cohort study was carried out. Questionnaires from the International Study of Asthma and Allergies in Childhood (ISAAC) were used with an additional questionnaire for related factors completed by participants and their parents, respectively, in 2002. In 2012 the same questionnaires were completed by the participants' through a telephone interview, and incidence and prevalence of AD were estimated. Directed acyclic graphs, Poisson regression and inverse probability weighted regression adjustment were used. RESULTS The participation rate was 79.5% (1435/1805) with AD lifetime prevalence of 34.9% and AD incidence of 13.5 per 1000 person years. Females presented higher prevalence and incidence than males. After adjustment significant risk factors were being female, history of asthma or allergic rhinitis, family history of AD, history of respiratory infections, history of bronchitis, history of pneumonia, history of sinusitis, and birthplace outside Castellon province. The highest AD population attributable risks were female, 30.3%, and history of respiratory infections 15.3%. Differences with AD childhood risk factors were found. CONCLUSIONS AD incidence in our cohort was high and several risks factors were related to AD.
Collapse
Affiliation(s)
- A Arnedo-Pena
- Epidemiology Division, Public Health Center, Castelló de la Plana, Spain; Department Health Sciences, Public University Navarra, Pamplona, Spain; CIBER Salud Pública Epidemiología (CIBERESP), Barcelona, Spain.
| | | | | | - M A Romeu-Garcia
- Epidemiology Division, Public Health Center, Castelló de la Plana, Spain
| | - N Meseguer-Ferrer
- Epidemiology Division, Public Health Center, Castelló de la Plana, Spain
| | | | | | | | - M R Pac-Sa
- International Health, Sanidad Exterior, Castelló de la Plana, Spain
| | | | - M A Dubón
- Public Health Center, Castelló de la Plana, Spain
| | | | - J B Bellido-Blasco
- Epidemiology Division, Public Health Center, Castelló de la Plana, Spain; CIBER Salud Pública Epidemiología (CIBERESP), Barcelona, Spain; Department Health Sciences, Universitat Jaume I, Castelló de la Plana, Spain
| |
Collapse
|
24
|
Seité S, Taieb C, Lazic Strugar T, Lio P, Bobrova EE. Self-reported allergies in Russia and impact on skin. SAGE Open Med 2020; 8:2050312120957916. [PMID: 32963784 PMCID: PMC7488871 DOI: 10.1177/2050312120957916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 08/20/2020] [Indexed: 12/12/2022] Open
Abstract
Introduction: The rising prevalence of allergies can substantially impact the skin, which is one of the largest targets for allergic and immunologic responses. We present the results of an online survey assessing self-reported allergy prevalence in Russians, outline the populations who report allergies and characterize the skin conditions associated with allergy. Methods: An online survey was conducted in Russia of 2010 adults as a representative sample of the general Russian population. Results: A total of 34.9% of Russian adults (mean age: 41.3 ± 14.4 years old) reported having allergies. Reported allergies included skin allergies (73.3%), food allergies (53.9%) and respiratory allergies (43.4%), and 65.9% reported their allergies had been diagnosed by a doctor. In total, 75.1% of those who reported allergies also reported experiencing associated skin reactions, they were 1.5–5.5 times more likely to report a cutaneous disease and were 1.5 times to report sensitive skin compared to those who did not report allergies. In addition, those that reported allergies were also 2 times more likely to report experiencing skin reactions when using skincare products. Conclusion: It is estimated that over 35 million Russian adults have allergies. These results will help raise awareness about the burden of allergies and the need to develop solutions to mitigate their impact on health.
Collapse
Affiliation(s)
- Sophie Seité
- La Roche-Posay Dermatological Laboratories, Levallois-Perret, France
| | - Charles Taieb
- European Market Maintenance Assessment, Fontenay-sous-Bois, France
| | | | - Peter Lio
- Medical Dermatology Associates of Chicago, Chicago, IL, USA
| | - Elena E Bobrova
- Department of Allergology and Immunology Saint-Petersburg State Medical University, Saint-Petersburg, Russia
| |
Collapse
|
25
|
Dijkhoff IM, Drasler B, Karakocak BB, Petri-Fink A, Valacchi G, Eeman M, Rothen-Rutishauser B. Impact of airborne particulate matter on skin: a systematic review from epidemiology to in vitro studies. Part Fibre Toxicol 2020; 17:35. [PMID: 32711561 PMCID: PMC7382801 DOI: 10.1186/s12989-020-00366-y] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/14/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Air pollution is killing close to 5 million people a year, and harming billions more. Air pollution levels remain extremely high in many parts of the world, and air pollution-associated premature deaths have been reported for urbanized areas, particularly linked to the presence of airborne nano-sized and ultrafine particles. MAIN TEXT To date, most of the research studies did focus on the adverse effects of air pollution on the human cardiovascular and respiratory systems. Although the skin is in direct contact with air pollutants, their damaging effects on the skin are still under investigation. Epidemiological data suggested a correlation between exposure to air pollutants and aggravation of symptoms of chronic immunological skin diseases. In this study, a systematic literature review was conducted to understand the current knowledge on the effects of airborne particulate matter on human skin. It aims at providing a deeper understanding of the interactions between air pollutants and skin to further assess their potential risks for human health. CONCLUSION Particulate matter was shown to induce a skin barrier dysfunction and provoke the formation of reactive oxygen species through direct and indirect mechanisms, leading to oxidative stress and induced activation of the inflammatory cascade in human skin. Moreover, a positive correlation was reported between extrinsic aging and atopic eczema relative risk with increasing particulate matter exposure.
Collapse
Affiliation(s)
- Irini M Dijkhoff
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700, Fribourg, Switzerland
| | - Barbara Drasler
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700, Fribourg, Switzerland
| | - Bedia Begum Karakocak
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700, Fribourg, Switzerland
| | - Alke Petri-Fink
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700, Fribourg, Switzerland
| | - Giuseppe Valacchi
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara, Italy
- Department of Animal Sciences, PHHI NCRC, North Carolina State University, Kannapolis, NC, USA
| | | | - Barbara Rothen-Rutishauser
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700, Fribourg, Switzerland.
| |
Collapse
|
26
|
Vogel CFA, Van Winkle LS, Esser C, Haarmann-Stemmann T. The aryl hydrocarbon receptor as a target of environmental stressors - Implications for pollution mediated stress and inflammatory responses. Redox Biol 2020; 34:101530. [PMID: 32354640 PMCID: PMC7327980 DOI: 10.1016/j.redox.2020.101530] [Citation(s) in RCA: 277] [Impact Index Per Article: 55.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/20/2020] [Accepted: 03/31/2020] [Indexed: 02/08/2023] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor regulating the expression of genes, for instance encoding the monooxygenases cytochrome P450 (CYP) 1A1 and CYP1A2, which are important enzymes in metabolism of xenobiotics. The AHR is activated upon binding of polycyclic aromatic hydrocarbons (PAHs), persistent organic pollutants (POPs), and related ubiquitous environmental chemicals, to mediate their biological and toxic effects. In addition, several endogenous and natural compounds can bind to AHR, thereby modulating a variety of physiological processes. In recent years, ambient particulate matter (PM) associated with traffic related air pollution (TRAP) has been found to contain significant amounts of PAHs. PM containing PAHs are of increasing concern as a class of agonists, which can activate the AHR. Several reports show that PM and AHR-mediated induction of CYP1A1 results in excessive generation of reactive oxygen species (ROS), causing oxidative stress. Furthermore, exposure to PM and PAHs induce inflammatory responses and may lead to chronic inflammatory diseases, including asthma, cardiovascular diseases, and increased cancer risk. In this review, we summarize findings showing the critical role that the AHR plays in mediating effects of environmental pollutants and stressors, which pose a risk of impacting the environment and human health. PAHs present on ambient air pollution particles are ligands of the cellular AHR. AHR-dependent induction of CYP1, AKR, NOX and COX-2 genes can be a source of ROS generation. AHR signaling and NRF2 signaling interact to regulate the expression of antioxidant genes. Air pollution and ROS can affect inflammation, which is partially triggered by AHR and associated immune responses. Skin, lung, and the cardiovascular system are major target sites for air pollution-induced inflammation.
Collapse
Affiliation(s)
- Christoph F A Vogel
- Center for Health and the Environment, University of California, One Shields Avenue, Davis, CA, 95616, USA; Department of Environmental Toxicology, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Laura S Van Winkle
- Center for Health and the Environment, University of California, One Shields Avenue, Davis, CA, 95616, USA; School of Veterinary Medicine Department of Anatomy, University of California, One Shields Avenue, Davis, CA, 5616, USA
| | - Charlotte Esser
- IUF - Leibniz-Research Institute for Environmental Medicine, 40225, Düsseldorf, Germany
| | | |
Collapse
|
27
|
Hendricks AJ, Eichenfield LF, Shi VY. The impact of airborne pollution on atopic dermatitis: a literature review. Br J Dermatol 2020; 183:16-23. [PMID: 31794065 DOI: 10.1111/bjd.18781] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2019] [Indexed: 12/16/2022]
Abstract
The increasing prevalence of atopic dermatitis (AD) parallels a global rise in industrialization and urban living over recent decades. This shift in lifestyle is accompanied by greater cutaneous exposure to environmental pollutants during the course of daily activities. The objectives of this review are to highlight the effects of airborne pollution on epidermal barrier function, examine evidence on the relationship between pollutants and AD, synthesize a proposed mechanism for pollution-induced exacerbation of AD, and identify potential methods for the reduction and prevention of pollutant-induced skin damage. The literature review was done by searching the PubMed, Embase and Google Scholar databases. Inclusion criteria were in vitro and animal studies, clinical trials and case series. Non-English-language publications, review articles and case reports were excluded. Pollutants induce cutaneous oxidative stress and have been shown to damage skin barrier integrity by altering transepidermal water loss, inflammatory signalling, stratum corneum pH and the skin microbiome. AD represents a state of inherent barrier dysfunction, and both long- and short-term pollutant exposure have been linked to exacerbation of AD symptoms and increased AD rates in population studies. Airborne pollutants have a detrimental effect on skin barrier integrity and AD symptoms, and appear to pose a multifaceted threat in AD through several parallel mechanisms, including oxidative damage, barrier dysfunction, immune stimulation and propagation of the itch-scratch cycle. Future research is needed to elucidate specific mechanisms of pollution-induced epidermal barrier dysfunction and to identify efficacious methods of skin barrier repair and protection against pollutant-driven damage.
Collapse
Affiliation(s)
- A J Hendricks
- University of Arizona College of Medicine, Tucson, AZ, U.S.A
| | - L F Eichenfield
- Departments of Dermatology and Pediatrics, University of California San Diego, San Diego, CA, U.S.A.,Rady Children's Hospital Department of Pediatric and Adolescent Dermatology, San Diego, CA, U.S.A
| | - V Y Shi
- University of Arizona Department of Medicine, Division of Dermatology, Tucson, AZ, U.S.A
| |
Collapse
|
28
|
Krämer U, Behrendt H. [Air pollution and atopic eczema : Systematic review of findings from environmental epidemiological studies]. Hautarzt 2019; 70:169-184. [PMID: 30659336 DOI: 10.1007/s00105-018-4330-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND Among the many risk factors for the development of atopic eczema (AE), the influence of air pollution has recently been discussed more often. A systematic review about this topic however is lacking. AIMS Which effects of outdoor air pollution (particles, nitric oxides, sulfur dioxide, ozone or general traffic exhaust emissions) on AE can be demonstrated in a systematic analysis of available environmental epidemiologic studies? METHODS All environmental epidemiologic studies on AE and air pollution found in the literature database PubMed were identified. The most important key figures of these studies were tabulated, the quality of evidence was graded and the studies described. RESULTS A total of 57 studies were identified. Only one of the 15 cross-sectional studies with a large-scale exposure assessment found a significant association between AE and air pollution. In contrast 23 of 30 studies with small-scale exposure assessment found a significant association between AE and traffic related emissions-especially from trucks. Of the 30 studies, 14 were cohort studies (1 adult, 13 birth cohorts). The sole adult cohort found an association with intrinsic AE. In the East Asian cohorts (all published since 2015), an association between maternal exposure to traffic-related pollution and incidence of AE in the offspring was found. This was less clear in cohorts from Europe/US or simply not investigated. In 5/5 panel studies (all from South Korea), symptom severity of AE was found to be significantly and positively related to outdoor air pollution. CONCLUSIONS In a systematic analysis of environmental epidemiologic studies about air pollution and AE rather good evidence was found that, based on small-scale exposure measurements, especially truck traffic emissions increased AE prevalence, while large-scale exposure to larger particles (PM10) or SO2 was without effect. Considering pathophysiologic aspects traffic exhaust emissions seem to affect both skin barrier function and activation of immune responses.
Collapse
Affiliation(s)
- Ursula Krämer
- IUF - Leibniz Institut für Umweltmedizinische Forschung, Auf'm Hennekamp 50, 40225, Düsseldorf, Deutschland.
| | - Heidrun Behrendt
- Zentrum Allergie & Umwelt (ZAUM), Technische Universität und Helmholtz Zentrum München, München, Deutschland
| |
Collapse
|
29
|
Choe C, Ri J, Schleusener J, Lademann J, Darvin ME. The non-homogenous distribution and aggregation of carotenoids in the stratum corneum correlates with the organization of intercellular lipids in vivo. Exp Dermatol 2019; 28:1237-1243. [PMID: 31400168 DOI: 10.1111/exd.14018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/09/2019] [Accepted: 08/01/2019] [Indexed: 12/30/2022]
Abstract
The human stratum corneum (SC) contains an abundant amount of carotenoid antioxidants, quenching free radicals and thereby protecting the skin. For the precise measurements of the depth-dependent carotenoid concentration, confocal Raman microscopy is a suitable method. The quantitative concentration can be determined by the carotenoid-related peak intensity of a Gaussian function approached at ≈1524 cm-1 using non-linear regression. Results show that the carotenoid concentration is higher at the superficial layers of the SC then decreases to a minimum at 20% SC depth and increases again towards the bottom of the SC. In the present work, two carotenoid penetration pathways into the SC are postulated. The first pathway is from the stratum granulosum to the bottom of the SC, while in the second pathway, the carotenoids are delivered to the skin surface by sweat and/or sebum secretion and penetrate from outside. The carotenoids are aggregated at the superficial layers, which are shown by high correlation between the aggregation states of carotenoids and the lateral organization of lipids. At the 30%-40% SC depths, the ordered and dense lipid molecules intensify the lipid-carotenoid interactions and weaken the carotenoid-carotenoid interaction and thus exhibit the disaggregation of carotenoids. At 90%-100% SC depths, the carotenoid-lipid interaction is weakened and the carotenoids have a tendency to be aggregated. Thus, the molecular structural correlation of carotenoid and SC lipid might be reserved in the intercellular space of the SC and also serves as the skeleton of the intercellular lipids.
Collapse
Affiliation(s)
- ChunSik Choe
- Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Kim Il Sung University, Pyongyang, Korea
| | | | - Johannes Schleusener
- Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Juergen Lademann
- Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Maxim E Darvin
- Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
30
|
Minzaghi D, Pavel P, Dubrac S. Xenobiotic Receptors and Their Mates in Atopic Dermatitis. Int J Mol Sci 2019; 20:E4234. [PMID: 31470652 PMCID: PMC6747412 DOI: 10.3390/ijms20174234] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/19/2019] [Accepted: 08/26/2019] [Indexed: 02/07/2023] Open
Abstract
Atopic dermatitis (AD) is the most common inflammatory skin disease worldwide. It is a chronic, relapsing and pruritic skin disorder which results from epidermal barrier abnormalities and immune dysregulation, both modulated by environmental factors. AD is strongly associated with asthma and allergic rhinitis in the so-called 'atopic march.' Xenobiotic receptors and their mates are ligand-activated transcription factors expressed in the skin where they control cellular detoxification pathways. Moreover, they regulate the expression of genes in pathways involved in AD in epithelial cells and immune cells. Activation or overexpression of xenobiotic receptors in the skin can be deleterious or beneficial, depending on context, ligand and activation duration. Moreover, their impact on skin might be amplified by crosstalk among xenobiotic receptors and their mates. Because they are activated by a broad range of endogenous molecules, drugs and pollutants owing to their promiscuous ligand affinity, they have recently crystalized the attention of researchers, including in dermatology and especially in the AD field. This review examines the putative roles of these receptors in AD by critically evaluating the conditions under which the proteins and their ligands have been studied. This information should provide new insights into AD pathogenesis and ways to develop new therapeutic interventions.
Collapse
Affiliation(s)
- Deborah Minzaghi
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Petra Pavel
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Sandrine Dubrac
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, 6020 Innsbruck, Austria.
| |
Collapse
|
31
|
Hüls A, Abramson MJ, Sugiri D, Fuks K, Krämer U, Krutmann J, Schikowski T. Nonatopic eczema in elderly women: Effect of air pollution and genes. J Allergy Clin Immunol 2019; 143:378-385.e9. [DOI: 10.1016/j.jaci.2018.09.031] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/30/2018] [Accepted: 09/21/2018] [Indexed: 11/29/2022]
|
32
|
|
33
|
Commodore A, Mukherjee N, Chung D, Svendsen E, Vena J, Pearce J, Roberts J, Arshad SH, Karmaus W. Frequency of heavy vehicle traffic and association with DNA methylation at age 18 years in a subset of the Isle of Wight birth cohort. ENVIRONMENTAL EPIGENETICS 2018; 4:dvy028. [PMID: 30697444 PMCID: PMC6343046 DOI: 10.1093/eep/dvy028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 12/04/2018] [Accepted: 12/07/2018] [Indexed: 05/08/2023]
Abstract
Assessment of changes in DNA methylation (DNA-m) has the potential to identify adverse environmental exposures. To examine DNA-m among a subset of participants (n = 369) in the Isle of Wight birth cohort who reported variable near resident traffic frequencies. We used self-reported frequencies of heavy vehicles passing by the homes of study subjects as a proxy measure for TRAP, which were: never, seldom, 10 per day, 1-9 per hour and >10 per hour. Methylation of cytosine-phosphate-guanine (CpG) dinucleotide sequences in the DNA was assessed from blood samples collected at age 18 years (n = 369) in the F1 generation. We conducted an epigenome wide association study to examine CpGs related to the frequency of heavy vehicles passing by subjects' homes, and employed multiple linear regression models to assess potential associations. We repeated some of these analysis in the F2 generation (n = 140). Thirty-five CpG sites were associated with heavy vehicular traffic. After adjusting for confounders, we found 23 CpGs that were more methylated, and 11 CpGs that were less methylated with increasing heavy vehicular traffic frequency among all subjects. In the F2 generation, 2 of 31 CpGs were associated with traffic frequencies and the direction of the effect was the same as in the F1 subset while differential methylation of 7 of 31 CpG sites correlated with gene expression. Our findings reveal differences in DNA-m in participants who reported higher heavy vehicular traffic frequencies when compared to participants who reported lower frequencies.
Collapse
Affiliation(s)
- A Commodore
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - N Mukherjee
- Division of Epidemiology, Biostatistics, and Environmental Health, University of Memphis, Memphis, TN 38152, USA
| | - D Chung
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - E Svendsen
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - J Vena
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - J Pearce
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - J Roberts
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - S H Arshad
- Faculty of Medicine, University of Southampton, Southampton, UK
- The David Hide Asthma and Allergy Research Centre, Isle of Wight, UK
| | - W Karmaus
- Division of Epidemiology, Biostatistics, and Environmental Health, University of Memphis, Memphis, TN 38152, USA
| |
Collapse
|