1
|
F Fernández S, Pardo O, Sánchez-Illana Á, Gormaz M, Kuligowski J, Vento M, Garlito-Molina B, Coscollà C. Oxidative stress and cumulative exposure to environmental pollutants in lactating mothers living in the Valencian Region (Spain). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 375:126308. [PMID: 40311731 DOI: 10.1016/j.envpol.2025.126308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/07/2025] [Accepted: 04/24/2025] [Indexed: 05/03/2025]
Abstract
To widen our understanding of internal exposure to multiple chemicals and extract exposure-response associations from human biomonitoring (HBM) studies, the Exposure Load (EL) approach was used on data from the BETTERMILK project. Urinary levels of biomarkers of exposure to several contaminant groups -polycyclic aromatic hydrocarbons (PAHs), pesticides, bisphenols, phthalates, parabens, acrylamide, and metals - were analyzed, together with urinary concentrations of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8OHdG) as a biomarker of oxidative stress-induced DNA damage. Potential determinants of exposure, obtained through questionnaires, were cross-sectionally evaluated in Valencian breastfeeding mothers (year 2015, Spain). The 50th, 70th, 90th and 95th percentiles (P50, P70, P90 and P95, respectively) of each of the 41 selected biomarker groups were used as thresholds for EL calculations for 93 study participants who provided complete data for cumulative exposure assessment. Approximately 20 % of the mothers were exposed to ≥24 of the selected biomarker groups above the P50 and to ≥3 of these biomarkers above the P95 level. Concentrations exceeding health-based guidance values were observed for two phthalates, total As and acrylamide. A multiple linear regression model, with 8OHdG as the dependent variable and adjusted for potential confounders, revealed that an increased vegetable consumption (g·month-1) was associated with reduced urinary 8OHdG concentrations (-0.302; 95 % CI: -0.301, -0.303, p = 0.006). Bivariate analysis showed that PAHs, pesticides, parabens, and Cd were strongly correlated to higher urinary 8OHdG levels. These findings could be a starting point for designing larger longitudinal studies that consider toxicity, chemical residence time in the body, and a broader range of matrices and compound classes to which the target population might be exposed. These studies could further explore cause-effect relationships and inform preventive public health policies.
Collapse
Affiliation(s)
- Sandra F Fernández
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Av. Catalunya, 21, 46020, València, Spain; Department of Analytical Chemistry, University of Valencia, Doctor Moliner 50, 46100, Burjassot, Spain
| | - Olga Pardo
- Department of Analytical Chemistry, University of Valencia, Doctor Moliner 50, 46100, Burjassot, Spain
| | - Ángel Sánchez-Illana
- Department of Analytical Chemistry, University of Valencia, Doctor Moliner 50, 46100, Burjassot, Spain; Neonatal Research Group, Health Research Institute La Fe, Av. Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - María Gormaz
- Neonatal Research Group, Health Research Institute La Fe, Av. Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Julia Kuligowski
- Neonatal Research Group, Health Research Institute La Fe, Av. Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Máximo Vento
- Neonatal Research Group, Health Research Institute La Fe, Av. Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Borja Garlito-Molina
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Av. Catalunya, 21, 46020, València, Spain; Enviromental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water (IUPA), Universitat Jaume I, Av. Sos Baynat S/N, 12071, Castellón de la Plana, Spain
| | - Clara Coscollà
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Av. Catalunya, 21, 46020, València, Spain.
| |
Collapse
|
2
|
Peinado FM, Pérez-Cantero A, Olivas-Martínez A, Espín-Moreno L, Haro TD, Boada LD, Rodríguez-Carrillo A, Govarts E, Pedraza-Díaz S, Esteban-López M, Blaha L, Blahova L, Janasik B, Wasowicz W, Lignell S, Rambaud L, Riou M, Fillol C, Denys S, Murawski A, Brantsæter AL, Sakhi AK, Iszatt N, Schoeters G, Kolossa-Gehring M, Fernández MF, Mustieles V. Adolescent exposure to benzophenone ultraviolet filters: cross-sectional associations with obesity, cardiometabolic biomarkers, and asthma/allergy in six European biomonitoring studies. ENVIRONMENTAL RESEARCH 2025:121912. [PMID: 40409449 DOI: 10.1016/j.envres.2025.121912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 05/18/2025] [Accepted: 05/19/2025] [Indexed: 05/25/2025]
Abstract
BACKGROUND Exposure to benzophenone-1 (BP-1) and benzophenone-3 (BP-3), widely used as UV filters in personal care products, has been associated with adverse health effects. However, epidemiological evidence is limited and inconclusive, particularly in vulnerable populations such as teenagers. OBJECTIVE To examine the relation between BP-1 and BP-3 concentrations and obesity, cardiometabolic biomarkers, and asthma/allergy outcomes in European teenagers, including possible sex-specific associations. METHODS A multi-country cross-sectional study was conducted using pooled data from six aligned studies from the Human Biomonitoring for Europe Initiative (HBM4EU). Sociodemographic data, cardiometabolic biomarkers, and asthma/allergy outcomes were collected through questionnaires. Anthropometric data and BMI z-scores were calculated (n=1339). Plasma/serum cardiometabolic biomarkers and asthma/allergy outcomes were available for a subsample (n=173-594). Urinary BP-1 and BP-3 concentrations were adjusted for creatinine dilution using the traditional standardization (trad.) and the covariate-adjusted creatinine standardization (CAS) method. Generalized additive models, linear, logistic, and multinomial mixed models were applied, and sex-interaction terms were tested. RESULTS Each natural log-unit increase in urinary BP-3 (CAS) concentrations was associated with higher odds of obesity in the whole population (OR: 1.20; 95% CI: 1.04-1.38). Sex-specific associations were also found with BP-1 (CAS) and BP-3 (CAS) concentrations, which were associated with higher odds of obesity in male teenagers (OR: 1.25; 95% CI: 1.01-1.55; OR: 1.34; 95% CI: 1.09-1.65, respectively). Linear mixed models showed consistent findings toward higher BMI z-scores. A negative association was found between BP-1 (CAS) concentration and serum adiponectin levels in females (% change per loge-unit increase: -3.73, 95% CI: -7.32- -0.10). BP-3 (CAS) concentrations were also associated with higher odds of non-food allergies in males (OR: 1.27; 95% CI: 1.00-1.63). Traditional creatinine adjustment showed similar or slightly attenuated estimates compared to the CAS method. CONCLUSIONS BP-1 and BP-3 exposure was cross-sectionally associated with higher odds of obesity in European male teenagers, highlighting the need to update regulations and keep exposure levels as low as practically achievable. Longitudinal studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Francisco M Peinado
- University of Granada, Biomedical Research Center (CIBM), Granada, Spain; Instituto de Investigación Biosanitaria (ibs.GRANADA), Granada, Spain
| | - Ainhoa Pérez-Cantero
- University of Granada, Biomedical Research Center (CIBM), Granada, Spain; Instituto de Investigación Biosanitaria (ibs.GRANADA), Granada, Spain
| | - Alicia Olivas-Martínez
- Instituto de Investigación Biosanitaria (ibs.GRANADA), Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain
| | - Lydia Espín-Moreno
- University of Granada, Biomedical Research Center (CIBM), Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain
| | - Tomás de Haro
- Unidad de Gestión Clínica de Laboratorios, Hospital Universitario Clínico San Cecilio, Granada, Spain
| | - Luis D Boada
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria, Spain; CIBER de Fisiopatología de la Obesidad y la Nutrición (CIBERObn), Spain
| | - Andrea Rodríguez-Carrillo
- Instituto de Investigación Biosanitaria (ibs.GRANADA), Granada, Spain; VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| | - Eva Govarts
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| | - Susana Pedraza-Díaz
- National Centre for Environmental Health, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Marta Esteban-López
- National Centre for Environmental Health, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Ludek Blaha
- RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Lucie Blahova
- RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Beata Janasik
- Nofer Institute of Occupational Medicine, Department of Environmental and Biological Monitoring, Poland
| | - Wojciech Wasowicz
- Nofer Institute of Occupational Medicine, Department of Environmental and Biological Monitoring, Poland
| | - Sanna Lignell
- Department of Risk Benefit Assessment, Swedish Food Agency, Uppsala, Sweden
| | - Loïc Rambaud
- Department of Environmental and Occupational Health, Santé Publique France, French Public Health Agency (SpFrance), France
| | - Margaux Riou
- Department of Environmental and Occupational Health, Santé Publique France, French Public Health Agency (SpFrance), France
| | - Clémence Fillol
- Department of Environmental and Occupational Health, Santé Publique France, French Public Health Agency (SpFrance), France
| | - Sébastien Denys
- Department of Environmental and Occupational Health, Santé Publique France, French Public Health Agency (SpFrance), France
| | | | - Anne Lise Brantsæter
- Department of Food Safety and Centre for Sustainable Diets, Norwegian Institute of Public Health, Oslo, Norway
| | - Amrit Kaur Sakhi
- Department of Food Safety and Centre for Sustainable Diets, Norwegian Institute of Public Health, Oslo, Norway
| | - Nina Iszatt
- Department of Food Safety and Centre for Sustainable Diets, Norwegian Institute of Public Health, Oslo, Norway
| | - Greet Schoeters
- Department of Biomedical Sciences, University of Antwerp, Belgium
| | | | - Mariana F Fernández
- University of Granada, Biomedical Research Center (CIBM), Granada, Spain; Instituto de Investigación Biosanitaria (ibs.GRANADA), Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain.
| | - Vicente Mustieles
- Instituto de Investigación Biosanitaria (ibs.GRANADA), Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain; Servicio de Radiodiagnóstico, Hospital Universitario Clínico San Cecilio, Granada, Spain
| |
Collapse
|
3
|
Muncke J, Touvier M, Trasande L, Scheringer M. Health impacts of exposure to synthetic chemicals in food. Nat Med 2025; 31:1431-1443. [PMID: 40379996 DOI: 10.1038/s41591-025-03697-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 04/04/2025] [Indexed: 05/19/2025]
Abstract
Humans are widely exposed to synthetic chemicals, especially via food. The types of chemical contaminants in food (including food contact chemicals) are diverse, and many of these are known to be hazardous, with mounting evidence that some contribute to noncommunicable diseases. The increasing consumption of ultra-processed foods, which contain synthetic chemicals, also contributes to adverse health. If the chemical contamination of foods were better characterized, then this issue would likely receive more attention as an important opportunity for disease prevention. In this Review, we discuss types and sources of synthetic food contaminants, focusing on food contact chemicals and their presence in ultra-processed foods. We outline future research needs and highlight possible responses at different food system levels. A sustainable transition of the food system must address the health impacts of synthetic chemicals in food; we discuss existing solutions that do justice to the complexity of the issue while avoiding regrettable substitutions and rebound effects.
Collapse
Affiliation(s)
- Jane Muncke
- Food Packaging Forum Foundation, Zurich, Switzerland.
| | - Mathilde Touvier
- Nutritional Epidemiology Research Team (EREN), Center of Research in Epidemiology and Statistics, CNAM, INRAE, INSERM, Université Sorbonne Paris Nord and Université Paris Cité, Bobigny, France
| | - Leonardo Trasande
- Department of Pediatrics and Department of Population Health, New York University School of Medicine, New York City, NY, USA
- New York Wagner School of Public Service, New York City, NY, USA
| | | |
Collapse
|
4
|
Karakoltzidis A, Papaioannou N, Gabriel C, Chatzimpaloglou A, Andersson AM, Juul A, Halldorsson TI, Olafsdottir K, Klanova J, Piler P, Janasik B, Wasowicz W, Janev-Holcer N, Namorado S, Rambaud L, Riou M, Probst-Hensch N, Imboden M, Van Nieuwenhuyse A, Appenzeller BMR, Kolossa-Gehring M, Weber T, Stewart L, Sepai O, Esteban-López M, Castaño A, Gilles L, Govarts E, Rodriguez Martin L, Schoeters G, Karakitsios S, Sarigiannis DΑ. Polycyclic aromatic hydrocarbon (PAH) exposure among European adults: Evidence from the HBM4EU aligned studies. ENVIRONMENT INTERNATIONAL 2025; 198:109383. [PMID: 40132439 DOI: 10.1016/j.envint.2025.109383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 03/04/2025] [Accepted: 03/14/2025] [Indexed: 03/27/2025]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are persistent environmental pollutants with well-documented associations to adverse health effects, posing significant public health challenges across Europe. Human exposure to 13 urinary PAH metabolites was assessed in a harmonized cohort of European adults aged 20-39, representing diverse geographic regions across Europe: North (Iceland and Denmark), East (Poland and the Czech Republic), South (Croatia and Portugal), and West (France, Germany, Switzerland, and Luxembourg). This study aimed to achieve a unified understanding of PAH exposure by employing stringent participant selection criteria and harmonizing biomarker analyses by utilizing high-quality analytical protocols across multiple laboratories in Europe. Key findings revealed consistently elevated metabolite levels in smokers compared to non-smokers, with naphthalene metabolites dominating the profiles over phenanthrene and fluorene derivatives. Country-specific analyses highlighted Poland as having the highest naphthalene metabolite concentrations, while Luxembourg exhibited elevated pyrene metabolite levels. Urbanization influenced exposure, with slightly higher metabolite concentrations in town populations compared to rural areas. While sex-based stratification revealed no marked differences, gender emerged as a significant covariate in regression models, with women generally displaying higher exposure to naphthalene metabolites. Educational level further stratified exposure, with lower education correlating with increased PAH levels. Multivariate linear regression identified key exposure factors, including sampling season (i.e., summer, winter, autumn, and spring), dietary habits e.g., smoked foods, and proximity to smoke-prone environments. This dataset provides a significant baseline for evaluating the European Commission's Chemicals Strategy for Sustainability (CSS) and underscores the utility of harmonized human biomonitoring studies in informing targeted public health interventions.
Collapse
Affiliation(s)
- Achilleas Karakoltzidis
- Aristotle University of Thessaloniki, Department of Chemical Engineering, Environmental Engineering Laboratory, University Campus, Thessaloniki 54124, Greece; HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Bldg. B, 10th km Thessaloniki-Thermi Road, 57001, Greece
| | - Nafsika Papaioannou
- Aristotle University of Thessaloniki, Department of Chemical Engineering, Environmental Engineering Laboratory, University Campus, Thessaloniki 54124, Greece; HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Bldg. B, 10th km Thessaloniki-Thermi Road, 57001, Greece
| | - Catherine Gabriel
- Aristotle University of Thessaloniki, Department of Chemical Engineering, Environmental Engineering Laboratory, University Campus, Thessaloniki 54124, Greece; HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Bldg. B, 10th km Thessaloniki-Thermi Road, 57001, Greece
| | - Anthoula Chatzimpaloglou
- Aristotle University of Thessaloniki, Department of Chemical Engineering, Environmental Engineering Laboratory, University Campus, Thessaloniki 54124, Greece; HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Bldg. B, 10th km Thessaloniki-Thermi Road, 57001, Greece
| | - Anna-Maria Andersson
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; International Research Center for Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Denmark
| | - Anders Juul
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; International Research Center for Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Denmark; Department of Clinical Medicine, University of Copenhagen, Denmark
| | | | - Kristin Olafsdottir
- Department of Pharmacology and Toxicology, University of Iceland, Reykjavík, Iceland
| | - Jana Klanova
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
| | - Pavel Piler
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
| | - Beata Janasik
- Department of Environmental and Biological Monitoring, Nofer Institute of Occupational Medicine, Lodz. Poland
| | - Wojciech Wasowicz
- Department of Environmental and Biological Monitoring, Nofer Institute of Occupational Medicine, Lodz. Poland
| | - Natasa Janev-Holcer
- Croatian Institute of Public Health, Division for Environmental Health, Rockefellerova 7, 10000 Zagreb, Croatia; Faculty of Medicine in Rijeka, Department of Social Medicine and Epidemiology, Brace Branchetta 20/1, 51 000, Rijeka, Croatia
| | - Sónia Namorado
- Department of Epidemiology, National Institute of Health Doctor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal
| | - Loïc Rambaud
- Department of Environmental and Occupational Health, Santé publique France, 12 rue du Val d'Osne, 94415 Saint-Maurice Cedex, France
| | - Margaux Riou
- Department of Environmental and Occupational Health, Santé publique France, 12 rue du Val d'Osne, 94415 Saint-Maurice Cedex, France
| | - Nicole Probst-Hensch
- University of Basel, Basel, Switzerland; Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
| | - Medea Imboden
- University of Basel, Basel, Switzerland; Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
| | - An Van Nieuwenhuyse
- Department Health Protection, Laboratoire national de santé (LNS), 1, Rue Louis Rech, L-3555 Dudelange, Luxembourg
| | | | | | - Till Weber
- German Environment Agency (UBA), Corrensplatz 1, 14195 Berlin, Germany
| | - Lorraine Stewart
- UKHSA UK Health Security Agency, Harwell Science Park, Chilton OX11 0RQ, United Kingdom
| | - Ovnair Sepai
- UKHSA UK Health Security Agency, Harwell Science Park, Chilton OX11 0RQ, United Kingdom
| | - Marta Esteban-López
- National Centre for Environmental Health, Instituto de Salud Carlos III. Ctra. Majadahonda - Pozuelo Km 2, 28220, Madrid, Spain
| | - Argelia Castaño
- National Centre for Environmental Health, Instituto de Salud Carlos III. Ctra. Majadahonda - Pozuelo Km 2, 28220, Madrid, Spain
| | - Liese Gilles
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| | - Eva Govarts
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| | | | - Greet Schoeters
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium; University of Antwerp, Dept of Biomedical Sciences & Toxicological Centre, 2600 Wilrijk, Belgium
| | - Spyros Karakitsios
- Aristotle University of Thessaloniki, Department of Chemical Engineering, Environmental Engineering Laboratory, University Campus, Thessaloniki 54124, Greece; HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Bldg. B, 10th km Thessaloniki-Thermi Road, 57001, Greece; EnvE.X, K. Palama 11, Thessaloniki, Greece; National Hellenic Research Foundation, Athens, Greece
| | - Dimosthenis Α Sarigiannis
- Aristotle University of Thessaloniki, Department of Chemical Engineering, Environmental Engineering Laboratory, University Campus, Thessaloniki 54124, Greece; HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Bldg. B, 10th km Thessaloniki-Thermi Road, 57001, Greece; School for Advanced Study (IUSS), Science, Technology and Society Department, Environmental Health Engineering, Piazza della Vittoria 15, Pavia 27100, Italy; EnvE.X, K. Palama 11, Thessaloniki, Greece; National Hellenic Research Foundation, Athens, Greece.
| |
Collapse
|
5
|
Plass D, Beloconi A, Bessems J, Buekers J, Kienzler S, Martinez GS, Purece A, Vounatsou P. Estimating the environmental burden of disease resulting from exposure to chemicals in European countries - Potentials and challenges revealed in selected case studies. ENVIRONMENTAL RESEARCH 2025; 269:120828. [PMID: 39800302 DOI: 10.1016/j.envres.2025.120828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/19/2024] [Accepted: 01/09/2025] [Indexed: 01/25/2025]
Abstract
BACKGROUND The increased use of chemicals leads to a continuous deposition of chemicals in the environment and to a continuous increase in exposure of the global and the European population. Comprehensive burden of disease analyses are however still missing for many countries. METHODS Using the World Health Organization's Environmental Burden of Disease (EBD) approach and combining data from the European Human Biomonitoring (HBM) dashboard with disease and population data, we estimated the comprehensive attributable burden (AB) for the year 2021, in the best-case quantified by disability-adjusted life years (DALY). First analyses were performed for cadmium, per- and polyfluoroalkyl substances (PFAS) and phthalates. RESULTS For cadmium, the highest AB for chronic kidney disease was calculated for Czechia with about 142 (95% confidence interval (CI): 3-409) years lived with disability (YLDs) per 1,000,000 persons. For osteoporosis related to cadmium, the highest AB was estimated for Poland with 2,024 (95% CI: 946-2,761) DALYs per 1,000,000 persons. For perfluorooctanoic acid (PFOA), the highest AB was associated with hypertension in Spain with about 2,591 (95% CI: 1,003-4,193) years of life lost (YLL) per 1,000,000 persons. For phthalates, the highest AB due to DiNP-exposure associated with obesity was 11,324 (95% CI: 1,929-22,391) cases per 1,000,000 persons. The highest AB for diabetes mellitus due to DEHP-exposure was estimated with 1,324 (95% CI: 49-2,476) YLDs per 1,000,000 women in Poland. DISCUSSION Overall, we have identified many relevant challenges when estimating the burden attributable to the selected chemicals. Especially the missing data (e.g. HBM data for countries, age groups or sex) need to be tackled by more primary data or adequate gap filing techniques.
Collapse
Affiliation(s)
| | - Anton Beloconi
- Swiss Tropical and Public Health Institute (Swiss TPH), Basel, Switzerland
| | - Jos Bessems
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Jurgen Buekers
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | | | | | - Anthony Purece
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Penelope Vounatsou
- Swiss Tropical and Public Health Institute (Swiss TPH), Basel, Switzerland
| |
Collapse
|
6
|
Aricov L, Leontieș AR. Adsorption of Bisphenol A from Water Using Chitosan-Based Gels. Gels 2025; 11:180. [PMID: 40136885 PMCID: PMC11942317 DOI: 10.3390/gels11030180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/27/2025] [Accepted: 03/03/2025] [Indexed: 03/27/2025] Open
Abstract
The comonomer bisphenol A (BPA) finds applications in the plastics industry, where it is used in the production of polycarbonates, plastics, PVC, thermal paper, epoxy and vinyl ester resins, and polyurethane. The water, with which many of these materials come into contact, is one of the main sources of human exposure to BPA. When ingested or touched, BPA can damage organs, disrupt the endocrine and immune systems, generate inflammatory responses, and be involved in genotoxic processes. Therefore, the need to develop effective techniques for removing BPA from aqueous environments is imperative. This paper provides a comprehensive review regarding the effective removal of BPA from water, focusing on the performance and adsorption mechanisms of various adsorbents based on chitosan and chitosan composites. The chemical and physical factors, adsorption kinetics and models governing the adsorption process of BPA in chitosan materials are also examined. This review outlines that, despite considerable progress in the absorption of bisphenol using chitosan gels, further research is necessary to assess the efficacy of these adsorbents in treating real wastewater and in large-scale manufacture.
Collapse
Affiliation(s)
| | - Anca Ruxandra Leontieș
- “Ilie Murgulescu” Institute of Physical Chemistry, Romanian Academy, Splaiul Independenţei 202, 060021 Bucharest, Romania;
| |
Collapse
|
7
|
Jansen P, Den Hond E, De Brouwere K, Ali EA, Hassen HY, Gabaret I, Van Pottelbergh G. Integrating human biomonitoring exposure data into a primary care morbidity database: a feasibility study. Environ Health 2025; 24:1. [PMID: 39755621 DOI: 10.1186/s12940-024-01152-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 12/31/2024] [Indexed: 01/06/2025]
Abstract
BACKGROUND The detection of a local per- and polyfluoroalkyl substances (PFAS) pollution hotspot in Zwijndrecht (Belgium) necessitated immediate action to address health concerns of the local community. Several human biomonitoring (HBM) studies were initiated, gathering cross-sectional exposure data from more than 10,000 participants. The linkage of these HBM data with primary care health registries might be a useful new tool in environmental health analysis. AIM We assessed the feasibility of linking exposure data from HBM programs to health outcomes from the Intego registry, which collects data from general practitioners' electronic health records. This feasibility study uses exposure data from one of the completed PFAS HBM studies, which included 796 individuals. We describe the separate datasets, the process of integrating the HBM data into Intego, the analysis plan and the advantages and challenges of using this method. RESULTS We established the integration of HBM data into the Intego primary care morbidity database, adhering to stringent privacy regulations and quality standards to ensure result integrity. Because of the modest sample size used in this feasibility study, no conclusions about the impact of PFAS on health endpoints can be drawn. However, with PFAS data from more than 10,000 residents available soon, more robust studies will be possible with this new method. INTERPRETATION We introduce a novel approach for assessing the impact of environmental health hazards within primary care settings. The methods outlined here not only pave the way for larger-scale projects but also offer a promising avenue for long-term environmental health monitoring.
Collapse
Affiliation(s)
- Pieter Jansen
- Academic Center for General Practice, KU Leuven, Kapucijnenvoer 7 bus 7001 block h, Leuven, 3000, Belgium.
| | - Elly Den Hond
- Provincial Institute for Hygiene (PIH), Kronenburgstraat 45, Antwerp, 2000, Belgium
- Family Medicine and Population Health, University of Antwerp, Universiteitsplein 1, Wilrijk, 2610, Belgium
| | - Katleen De Brouwere
- Environmental Intelligence Unit, Flemish Institute for Technological Research (VITO), Boeretang 200, Mol, 2400, Belgium
| | - Endale Alemayehu Ali
- Academic Center for General Practice, KU Leuven, Kapucijnenvoer 7 bus 7001 block h, Leuven, 3000, Belgium
| | - Hamid Yimam Hassen
- Environmental Intelligence Unit, Flemish Institute for Technological Research (VITO), Boeretang 200, Mol, 2400, Belgium
| | - Ilona Gabaret
- Provincial Institute for Hygiene (PIH), Kronenburgstraat 45, Antwerp, 2000, Belgium
- Department of Care Flanders, Simon Bolivarlaan 17, Brussels, 1000, Belgium
| | - Gijs Van Pottelbergh
- Academic Center for General Practice, KU Leuven, Kapucijnenvoer 7 bus 7001 block h, Leuven, 3000, Belgium
| |
Collapse
|
8
|
Nübler S, Burkhardt T, Schäfer M, Müller J, Haji-Abbas-Zarrabi K, Pluym N, Scherer M, Scherer G, Esteban-López M, Castaño A, Mol HGJ, Koch HM, Antignac JP, Hajslova J, Vorkamp K, Göen T. External quality assurance schemes (EQUASs) and interlaboratory comparison investigations (ICIs) for the human biomonitoring of aromatic amines in urine as part of the quality assurance programme under HBM4EU. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 17:193-201. [PMID: 39585231 DOI: 10.1039/d4ay01309c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Exposure to aromatic amines may occur via tobacco smoke, hair dyes or tattoo inks, but also in the workplace during certain manufacturing processes. As some aromatic amines are known or suspected carcinogens, human biomonitoring (HBM) is essential to assess their exposure. Aromatic amines were among the selected chemicals in HBM4EU, a European-wide project to harmonise and advance HBM within 30 European countries. For this purpose, the analytical comparability and accuracy of participating laboratories were assessed by a QA/QC programme comprising interlaboratory comparison investigations (ICIs) and external quality assurance schemes (EQUASs). This paper presents the evaluation process and discusses the results of three ICI/EQUAS rounds for the determination of aromatic amines in urine conducted in 2019 and 2020. The final evaluation included ten participants which analysed the following six targeted aromatic amines over three rounds: aniline, ortho-toluidine (TOL), 4,4'-methylenedianiline (MDA), 4,4'-methylenebis(2-chloroaniline) (MOCA), 2,4-diaminotoluene (2,4-TDA), and 2,6-diaminotoluene (2,6-TDA). Most participants achieved satisfactory and highly comparable results, although low quantification limits were required to quantify the parameters at the level of exposure in the general population. Hydrolysis of the sample followed by liquid-liquid extraction and subsequent analysis of the derivatised analytes by means of GC-MS/MS were preferred for the sensitive and precise determination of aromatic amines in urine. This QA/QC programme succeeded in establishing a network of laboratories with high analytical comparability and accuracy for the analysis of aromatic amines in Europe.
Collapse
Affiliation(s)
- Stefanie Nübler
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute and Outpatient Clinic of Occupational, Social, and Environmental Medicine, Henkestraße 9-11, 91054 Erlangen, Germany.
| | - Therese Burkhardt
- ABF Analytisch-Biologisches Labor, ABF GmbH, Semmelweisstr. 5, 82152 Planegg, Germany
| | - Moritz Schäfer
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute and Outpatient Clinic of Occupational, Social, and Environmental Medicine, Henkestraße 9-11, 91054 Erlangen, Germany.
| | - Johannes Müller
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute and Outpatient Clinic of Occupational, Social, and Environmental Medicine, Henkestraße 9-11, 91054 Erlangen, Germany.
| | - Karin Haji-Abbas-Zarrabi
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute and Outpatient Clinic of Occupational, Social, and Environmental Medicine, Henkestraße 9-11, 91054 Erlangen, Germany.
| | - Nikola Pluym
- ABF Analytisch-Biologisches Labor, ABF GmbH, Semmelweisstr. 5, 82152 Planegg, Germany
| | - Max Scherer
- ABF Analytisch-Biologisches Labor, ABF GmbH, Semmelweisstr. 5, 82152 Planegg, Germany
| | - Gerhard Scherer
- ABF Analytisch-Biologisches Labor, ABF GmbH, Semmelweisstr. 5, 82152 Planegg, Germany
| | - Marta Esteban-López
- National Center for Environmental Health, Instituto de Salud Carlos III, Ctra. Majadahonda - Pozuelo km 2.2, 28220 Madrid, Spain
| | - Argelia Castaño
- National Center for Environmental Health, Instituto de Salud Carlos III, Ctra. Majadahonda - Pozuelo km 2.2, 28220 Madrid, Spain
| | - Hans G J Mol
- Wageningen Food Safety Research, Wageningen University and Research, Akkermaalsbos 2, Wageningen, 6708 WB, Netherlands
| | - Holger M Koch
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Jean-Philippe Antignac
- Oniris, INRAE, UMR 1329 Laboratoire d'Etude des Résidus et Contaminants dans les Aliments (LABERCA), F-44307 Nantes, France
| | - Jana Hajslova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology Prague, Technicka 5, 16000 Prague, Czech Republic
| | - Katrin Vorkamp
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Thomas Göen
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute and Outpatient Clinic of Occupational, Social, and Environmental Medicine, Henkestraße 9-11, 91054 Erlangen, Germany.
| |
Collapse
|
9
|
Namorado S, Martins C, Ogura J, Assunção R, Vasco E, Appenzeller B, I Halldorsson T, Janasik B, Kolossa-Gehring M, Van Nieuwenhuyse A, Ólafsdóttir K, Rambaud L, Riou M, Silva S, Wasowicz W, Weber T, Esteban-López M, Castaño A, Gilles L, Rodríguez Martin L, Govarts E, Schoeters G, Viegas S, Silva MJ, Alvito P. Exposure assessment of the European adult population to deoxynivalenol - Results from the HBM4EU Aligned Studies. Food Res Int 2024; 198:115281. [PMID: 39643334 DOI: 10.1016/j.foodres.2024.115281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 10/22/2024] [Accepted: 10/31/2024] [Indexed: 12/09/2024]
Abstract
Mycotoxins are natural toxins produced by fungi that may cause adverse health effects thus constituting a public health concern. Deoxynivalenol (DON), a mycotoxin affecting the immune system and causing intestinal disorders, was selected as a priority under the European Human Biomonitoring Initiative (HBM4EU). Urinary total DON levels (tDON) of 1270 participants from six countries were used to characterize the internal exposure of the adult European population and identify the most relevant determinants of exposure. tDON concentrations' P50 and P95 were in the range of 0.41-10.16 µg/L (0.39-9.05 µg/g crt) and 3.25-46.58 µg/L (2.12-33.50 µg/g crt) respectively. Higher tDON levels were observed for (i) male participants from France and Germany, (ii) samples collected in spring and summer, (iii) participants with a lower educational level, (iv) participants living in rural areas, (v) individuals without a job in France and Luxembourg, while in Portugal higher exposure was observed in working individuals, (vi) individuals with higher consumption of cereals and bread. The proportion of individuals with exposure levels exceeding the HBM-GV of 23 µg/L was 12.3 %, ranging from 0.8 % to 20.7 % in the individual countries. This study on mycotoxins exposure has used post harmonized questionnaire data and validated analytical methodologies for analysis and covered countries representing the four geographical regions of Europe, having produced much needed knowledge on the exposure of the European adult population to deoxynivalenol.
Collapse
Affiliation(s)
- Sónia Namorado
- Department of Epidemiology, National Institute of Health Dr. Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal; Comprehensive Health Research Center (CHRC), Universidade NOVA de Lisboa, Campo Mártires da Pátria, 1169-056 Lisbon, Portugal; NOVA National School of Public Health, Public Health Research Centre, NOVA University of Lisbon, Avenida Padre Cruz, 1600-560 Lisbon, Portugal.
| | - Carla Martins
- Comprehensive Health Research Center (CHRC), Universidade NOVA de Lisboa, Campo Mártires da Pátria, 1169-056 Lisbon, Portugal; NOVA National School of Public Health, Public Health Research Centre, NOVA University of Lisbon, Avenida Padre Cruz, 1600-560 Lisbon, Portugal
| | - Joana Ogura
- Department of Epidemiology, National Institute of Health Dr. Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal
| | - Ricardo Assunção
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, 2829-511 Caparica, Almada, Portugal
| | - Elsa Vasco
- Department of Food and Nutrition, National Institute of Health Dr. Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal
| | | | - Thorhallur I Halldorsson
- Department of Food and Nutrition, University of Iceland, Reykjavik, Iceland; Department of Pharmacology and Toxicology, University of Iceland, Reykjavik, Iceland
| | - Beata Janasik
- Nofer Institute of Occupational Medicine, Department of Environmental and Biological Monitoring, St. Te-resy 8, 91-348, Lodz, Poland
| | | | - An Van Nieuwenhuyse
- Department of Health Protection, Laboratoire National de Santé (LNS), Rue Louis Rech 1, 3555 Dudelange, Luxembourg
| | | | - Loïc Rambaud
- Department of Environmental and Occupational Health, Santé Publique France, The French Public Health Agency (SpFrance, ANSP), 12 rue du Val d'Osne, Saint-Maurice Cedex, 94415, France
| | - Margaux Riou
- Department of Environmental and Occupational Health, Santé Publique France, The French Public Health Agency (SpFrance, ANSP), 12 rue du Val d'Osne, Saint-Maurice Cedex, 94415, France
| | - Susana Silva
- Department of Epidemiology, National Institute of Health Dr. Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal
| | - Wojciech Wasowicz
- Nofer Institute of Occupational Medicine, Department of Environmental and Biological Monitoring, St. Te-resy 8, 91-348, Lodz, Poland
| | - Till Weber
- German Environment Agency (UBA), D-14195 Berlin, Germany
| | - Marta Esteban-López
- National Centre for Environmental Health, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Argelia Castaño
- National Centre for Environmental Health, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Liese Gilles
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| | | | - Eva Govarts
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| | - Greet Schoeters
- Department of Biomedical Sciences, University of Antwerp, Belgium
| | - Susana Viegas
- Comprehensive Health Research Center (CHRC), Universidade NOVA de Lisboa, Campo Mártires da Pátria, 1169-056 Lisbon, Portugal; NOVA National School of Public Health, Public Health Research Centre, NOVA University of Lisbon, Avenida Padre Cruz, 1600-560 Lisbon, Portugal
| | - Maria João Silva
- Department of Genetics, National Institute of Health Dr. Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal; Center for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Paula Alvito
- Department of Food and Nutrition, National Institute of Health Dr. Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal; Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
10
|
Szabados M, Csákó Z, Kakucs R, Középesy S, Czégény Z, Ciglova K, Dvorakova D, Szigeti T. Phthalate and DINCH metabolites in the urine of Hungarian schoolchildren: Cumulative risk assessment and exposure determinants. ENVIRONMENTAL RESEARCH 2024; 262:119834. [PMID: 39182753 DOI: 10.1016/j.envres.2024.119834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/30/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
A human biomonitoring study was conducted to assess the exposure of Hungarian children aged 8-11 years to ten phthalate esters (PEs) and DINCH between 2017 and 2018. In addition to collecting urine samples from 262 participants, a questionnaire was completed by the parents or legal guardians to identify potential determinants of exposure. The highest geometric mean concentration was observed for MiBP, followed by MBP, cx- MEHP, OH-MEHP and MEP. Three out of the four DINCH metabolites were detected in more than 90% of the samples. The comparison of the urinary concentrations measured in this study with those observed in the DEMOCOPHES study revealed a significant decreasing trend in all PE metabolites investigated in both studies between 2011/2012 and 2017/2018. Different approaches were used to assess the health risks associated with the exposure to PEs and DINCH. Our results highlighted that the hazard index (HI) values were higher than 1 in 17.6% of the children when the human biomonitoring guidance values were applied. In contrast, less than 3% of the children had HI values exceeding 1 when other sources of reference values were used. By applying a safety factor of 10 for the risk assessment, 17.6-91.6% of the children were characterized by HI values higher than 0.1, indicating the need for risk reduction measures. Overall, DnBP, DiBP and DEHP were identified as the main drivers of the mixture risk. Although PEs and DINCH are ubiquitous contaminants, there are still inconsistencies and gaps in our understanding of the determinants of exposure. The results of the multivariate regression analysis showed significant associations between PE or DINCH metabolite concentrations and certain individual characteristics, use of personal care products, home and school environment and food and beverages consumption 24 h prior to sample collection.
Collapse
Affiliation(s)
- Máté Szabados
- National Center for Public Health and Pharmacy, Albert Flórián út 2-6., 1097, Budapest, Hungary
| | - Zsófia Csákó
- National Center for Public Health and Pharmacy, Albert Flórián út 2-6., 1097, Budapest, Hungary
| | - Réka Kakucs
- National Center for Public Health and Pharmacy, Albert Flórián út 2-6., 1097, Budapest, Hungary
| | - Szilvia Középesy
- National Center for Public Health and Pharmacy, Albert Flórián út 2-6., 1097, Budapest, Hungary
| | - Zsuzsanna Czégény
- HUN-REN Research Centre for Natural Sciences, Institute of Materials and Environmental Chemistry, Magyar Tudósok Körútja 2, 1117, Budapest, Hungary
| | - Kateřina Ciglova
- University of Chemistry and Technology, Prague, Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, Technicka 5, 166 28, Prague, Czech Republic
| | - Darina Dvorakova
- University of Chemistry and Technology, Prague, Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, Technicka 5, 166 28, Prague, Czech Republic
| | - Tamás Szigeti
- National Center for Public Health and Pharmacy, Albert Flórián út 2-6., 1097, Budapest, Hungary.
| |
Collapse
|
11
|
Perrais M, Trächsel B, Lenglet S, Pruijm M, Ponte B, Vogt B, Augsburger M, Rousson V, Bochud M, Thomas A. Reference values for plasma and urine trace elements in a Swiss population-based cohort. Clin Chem Lab Med 2024; 62:2242-2255. [PMID: 38641868 DOI: 10.1515/cclm-2023-1433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/07/2024] [Indexed: 04/21/2024]
Abstract
OBJECTIVES Trace elements (TEs) are ubiquitous. TE concentrations vary among individuals and countries, depending on factors such as living area, workplaces and diet. Deficit or excessive TEs concentrations have consequences on the proper functioning of human organism so their biomonitoring is important. The aim of this project was to provide reference values for TEs concentrations in the Swiss population. METHODS The 1,078 participants to the SKiPOGH cohort included in this study were aged 18-90 years. Their 24-h urine and/or plasma samples were analyzed by inductively coupled plasma mass spectrometry (ICP-MS) to determine 24 TEs concentrations: Ag, Al, As, Be, Bi, Cd, Co, Cr, Cu, Hg, I, Li, Mn, Mo, Ni, Pb, Pd, Pt, Sb, Se, Sn, Tl, V and Zn. Statistical tests were performed to evaluate the influence of covariates (sex, age, BMI, smoking) on these results. Reference intervals for the Swiss adult population were also defined. RESULTS TEs concentrations were obtained for respectively 994 and 903 persons in plasma and urine matrices. It was possible to define percentiles of interest (P50 and P95) for almost all the TEs. Differences in TEs distribution between men and women were noticed in both matrices; age was also a cofactor. CONCLUSIONS This first Swiss biomonitoring of a large TEs-panel offers reference values in plasma and in urine for the Swiss population. The results obtained in this study were generally in line with clinical recommendations and comparable to levels reported in other population-based surveys.
Collapse
Affiliation(s)
- Maïwenn Perrais
- Unit of Forensic Chemistry and Toxicology, 658784 University Centre of Legal Medicine Lausanne-Geneva , Geneva University Hospital and University of Geneva, Geneva, Switzerland
- Faculty Unit of Toxicology, 658784 University Centre of Legal Medicine Lausanne-Geneva , Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Bastien Trächsel
- 569258 Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
| | - Sébastien Lenglet
- Unit of Forensic Chemistry and Toxicology, 658784 University Centre of Legal Medicine Lausanne-Geneva , Geneva University Hospital and University of Geneva, Geneva, Switzerland
| | - Menno Pruijm
- Service of Nephrology, Lausanne University Hospitals and University of Lausanne, Lausanne, Switzerland
| | - Belen Ponte
- Division of Nephrology and Hypertension, Geneva University Hospitals, Geneva, Switzerland
| | - Bruno Vogt
- 27252 University Department of Nephrology and Hypertension, Inselspital, University Hospital Bern , Bern, Switzerland
| | - Marc Augsburger
- Unit of Forensic Chemistry and Toxicology, 658784 University Centre of Legal Medicine Lausanne-Geneva , Geneva University Hospital and University of Geneva, Geneva, Switzerland
| | - Valentin Rousson
- 569258 Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
| | - Murielle Bochud
- 569258 Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
| | - Aurélien Thomas
- Unit of Forensic Chemistry and Toxicology, 658784 University Centre of Legal Medicine Lausanne-Geneva , Geneva University Hospital and University of Geneva, Geneva, Switzerland
- Faculty Unit of Toxicology, 658784 University Centre of Legal Medicine Lausanne-Geneva , Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
12
|
Côté J, Bouchard M. Toxicokinetic model of the pyrethroid pesticide lambda-cyhalothrin, main exposure route and dose reconstruction predictions in agricultural workers. PLoS One 2024; 19:e0309803. [PMID: 39441847 PMCID: PMC11498739 DOI: 10.1371/journal.pone.0309803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 08/20/2024] [Indexed: 10/25/2024] Open
Abstract
A toxicokinetic model of the pyrethroid insecticide lambda-cyhalothrin (LCT) was developed to relate absorbed doses to urinary cis-3-(2-chloro-3,3,3-trifluoroprop-1-en-1-yl)-2,2-dimethylcyclopropanecarboxylic acid (CFMP) metabolite levels used as a biomarker of exposure. The model then served to reconstruct absorbed doses in agricultural workers and their probability of exceeding the EFSA Acceptable occupational Exposure Level (AOEL). The toxicokinetic model was able to reproduce the temporal profiles of CFMP in the urine of operators spraying pesticides using the optimized model parameters (adjusted to human volunteer data). Modeling also showed that simulation of an inadvertent oral exposure mainly was the exposure scenario giving the best fit to CFMP urinary time-course data in applicators. With the dermal model parameters optimized from data in volunteers, simulation of a dermal exposure in applicators did not allow to reproduce the observed peak excretions and urinary metabolite levels; extremely high applied dermal doses would be required but still simulated dermal penetration rate would remain too slow. Simulation of an inhalation exposure allowed to reproduce the observed time-courses, but with unrealistic air concentrations. For applicators with the highest urinary concentrations, there was a probability of exceeding the AOEL at some points during the biomonitoring period [>50% probability of exceeding for 27% of 24-h samples]; for non-applicator workers the probability of exceeding the AOEL value was very low [corresponding value of 5%]. Furthermore, the median [95% CI] estimates of 10 000 Monte Carlo simulations led to a biological reference value corresponding to the AOEL of 116 [113-119] ng/kg bw/d and 7.5 [7.3-7.7] μg/L. Overall, 7% of applicators and 1% of workers performing weeding and strawberry picking had a probability of exceeding this biological reference value. As a next step, it would be interesting to apply these methods to multiple exposure to various contaminants.
Collapse
Affiliation(s)
- Jonathan Côté
- Department of Environmental and Occupational Health, Chair in Toxicological Risk Assessment and Management, and Public Health Research Center (CReSP), University of Montreal, Montreal, Quebec, Canada
| | - Michèle Bouchard
- Department of Environmental and Occupational Health, Chair in Toxicological Risk Assessment and Management, and Public Health Research Center (CReSP), University of Montreal, Montreal, Quebec, Canada
| |
Collapse
|
13
|
Braun G, Herberth G, Krauss M, König M, Wojtysiak N, Zenclussen AC, Escher BI. Neurotoxic mixture effects of chemicals extracted from blood of pregnant women. Science 2024; 386:301-309. [PMID: 39418383 DOI: 10.1126/science.adq0336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/05/2024] [Indexed: 10/19/2024]
Abstract
Human biomonitoring studies typically capture only a small and unknown fraction of the entire chemical universe. We combined chemical analysis with a high-throughput in vitro assay for neurotoxicity to capture complex mixtures of organic chemicals in blood. Plasma samples of 624 pregnant women from the German LiNA cohort were extracted with a nonselective extraction method for organic chemicals. 294 of >1000 target analytes were detected and quantified. Many of the detected chemicals as well as the whole extracts interfered with neurite development. Experimental testing of simulated complex mixtures of detected chemicals in the neurotoxicity assay confirmed additive mixture effects at concentrations less than individual chemicals' effect thresholds. The use of high-throughput target screening combined with bioassays has the potential to improve human biomonitoring and provide a new approach to including mixture effects in epidemiological studies.
Collapse
Affiliation(s)
- Georg Braun
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research - UFZ, Leipzig 04318, Germany
| | - Gunda Herberth
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research - UFZ, Leipzig 04318, Germany
| | - Martin Krauss
- Department of Exposure Science, Helmholtz Centre for Environmental Research - UFZ, Leipzig 04318, Germany
| | - Maria König
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research - UFZ, Leipzig 04318, Germany
| | - Niklas Wojtysiak
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research - UFZ, Leipzig 04318, Germany
| | - Ana C Zenclussen
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research - UFZ, Leipzig 04318, Germany
- Environmental Pediatric Immunology, Medical Faculty, Leipzig University, Leipzig 04103, Germany
- German Center for Child and Adolescent Health (DZKJ), partner site Leipzig/Dresden, Leipzig 04103, Germany
| | - Beate I Escher
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research - UFZ, Leipzig 04318, Germany
- German Center for Child and Adolescent Health (DZKJ), partner site Leipzig/Dresden, Leipzig 04103, Germany
- Environmental Toxicology, Department of Geosciences, Eberhard Karls University Tübingen, Tübingen 72074, Germany
| |
Collapse
|
14
|
Salamanca-Fernández E, Espín-Moreno L, Olivas-Martínez A, Pérez-Cantero A, Martín-Rodríguez JL, Poyatos RM, Barbone F, Rosolen V, Mariuz M, Ronfani L, Palkovičová Murínová Ľ, Fábelová L, Szigeti T, Kakucs R, Sakhi AK, Haug LS, Lindeman B, Snoj Tratnik J, Kosjek T, Jacobs G, Voorspoels S, Jurdáková H, Górová R, Petrovičová I, Kolena B, Esteban M, Pedraza-Díaz S, Kolossa-Gehring M, Remy S, Govarts E, Schoeters G, Fernández MF, Mustieles V. Associations between Urinary Phthalate Metabolites with BDNF and Behavioral Function among European Children from Five HBM4EU Aligned Studies. TOXICS 2024; 12:642. [PMID: 39330570 PMCID: PMC11436069 DOI: 10.3390/toxics12090642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/20/2024] [Accepted: 08/30/2024] [Indexed: 09/28/2024]
Abstract
Based on toxicological evidence, children's exposure to phthalates may contribute to altered neurodevelopment and abnormal regulation of brain-derived neurotrophic factor (BDNF). We analyzed data from five aligned studies of the Human Biomonitoring for Europe (HBM4EU) project. Ten phthalate metabolites and protein BDNF levels were measured in the urine samples of 1148 children aged 6-12 years from Italy (NACII-IT cohort), Slovakia (PCB-SK cohort), Hungary (InAirQ-HU cohort) and Norway (NEBII-NO). Serum BDNF was also available in 124 Slovenian children (CRP-SLO cohort). Children's total, externalizing and internalizing behavioral problems were assessed using the Child Behavior Checklist at 7 years of age (only available in the NACII-IT cohort). Adjusted linear and negative binomial regression models were fitted, together with weighted quantile sum (WQS) regression models to assess phthalate mixture associations. Results showed that, in boys but not girls of the NACII-IT cohort, each natural-log-unit increase in mono-n-butyl phthalate (MnBP) and Mono(2-ethyl-5-oxohexyl) phthalate (MEOHP) was cross-sectionally associated with higher externalizing problems [incidence rate ratio (IRR): 1.20; 95% CI: 1.02, 1.42 and 1.26; 95% CI: 1.03, 1.55, respectively]. A suggestive mixture association with externalizing problems was also observed per each tertile mixture increase in the whole population (WQS-IRR = 1.15; 95% CI: 0.97, 1.36) and boys (IRR = 1.20; 95% CI: 0.96, 1.49). In NACII-IT, PCB-SK, InAirQ-HU and NEBII-NO cohorts together, urinary phthalate metabolites were strongly associated with higher urinary BDNF levels, with WQS regression confirming a mixture association in the whole population (percent change (PC) = 25.9%; 95% CI: 17.6, 34.7), in girls (PC = 18.6%; 95% CI: 7.92, 30.5) and mainly among boys (PC = 36.0%; 95% CI: 24.3, 48.9). Among CRP-SLO boys, each natural-log-unit increase in ∑DINCH concentration was associated with lower serum BDNF levels (PC: -8.8%; 95% CI: -16.7, -0.3). In the NACII-IT cohort, each natural-log-unit increase in urinary BDNF levels predicted worse internalizing scores among all children (IRR: 1.15; 95% CI: 1.00, 1.32). Results suggest that (1) children's exposure to di-n-butyl phthalate (DnBP) and di(2-ethylhexyl) phthalate (DEHP) metabolites is associated with more externalizing problems in boys, (2) higher exposure to DINCH may associate with lower systemic BDNF levels in boys, (3) higher phthalate exposure is associated with higher urinary BDNF concentrations (although caution is needed since the possibility of a "urine concentration bias" that could also explain these associations in noncausal terms was identified) and (4) higher urinary BDNF concentrations may predict internalizing problems. Given this is the first study to examine the relationship between phthalate metabolite exposure and BDNF biomarkers, future studies are needed to validate the observed associations.
Collapse
Affiliation(s)
- Elena Salamanca-Fernández
- Biomedical Research Center (CIBM), Department of Radiology and Physical Medicine, University of Granada, 18012 Granada, Spain
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain
| | | | | | - Ainhoa Pérez-Cantero
- Biomedical Research Center (CIBM), Department of Radiology and Physical Medicine, University of Granada, 18012 Granada, Spain
| | - José L Martín-Rodríguez
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain
- Servicio de Radiodiagnóstico, Hospital Universitario Clínico San Cecilio, 18012 Granada, Spain
| | - Rafael M Poyatos
- Unidad de Gestión Clínica de Laboratorios, Hospital Universitario Clínico San Cecilio, 18012 Granada, Spain
| | - Fabio Barbone
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume 447, 34149 Trieste, Italy
| | - Valentina Rosolen
- Central Directorate for Health, Social Policies and Disability, Friuli Venezia Giulia Region, Via Cassa di Risparmio 10, 34121 Trieste, Italy
| | - Marika Mariuz
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume 447, 34149 Trieste, Italy
| | - Luca Ronfani
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume 447, 34149 Trieste, Italy
| | - Ľubica Palkovičová Murínová
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, 831 04 Bratislava, Slovakia
| | - Lucia Fábelová
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, 831 04 Bratislava, Slovakia
| | - Tamás Szigeti
- Center for Public Health and Pharmacy, Albert Flórián út 2-6, 1097 Budapest, Hungary
| | - Réka Kakucs
- Center for Public Health and Pharmacy, Albert Flórián út 2-6, 1097 Budapest, Hungary
| | - Amrit K Sakhi
- Norwegian Institute of Public Health, P.O. Box 222, Skøyen, N-0213 Oslo, Norway
| | - Line S Haug
- Norwegian Institute of Public Health, P.O. Box 222, Skøyen, N-0213 Oslo, Norway
| | - Birgitte Lindeman
- Norwegian Institute of Public Health, P.O. Box 222, Skøyen, N-0213 Oslo, Norway
| | | | - Tina Kosjek
- Jožef Stefan Institute, 1000 Ljubljana, Slovenia
| | - Griet Jacobs
- VITO GOAL, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium
| | - Stefan Voorspoels
- VITO GOAL, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium
| | - Helena Jurdáková
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, Mlynská Dolina, 84215 Bratislava, Slovakia
| | - Renáta Górová
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, Mlynská Dolina, 84215 Bratislava, Slovakia
| | - Ida Petrovičová
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nabrezie mladeze 91, 94974 Nitra, Slovakia
| | - Branislav Kolena
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nabrezie mladeze 91, 94974 Nitra, Slovakia
| | - Marta Esteban
- National Centre for Environmental Health, Instituto de Salud Carlos III, 28034 Madrid, Spain
| | - Susana Pedraza-Díaz
- National Centre for Environmental Health, Instituto de Salud Carlos III, 28034 Madrid, Spain
| | | | - Sylvie Remy
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| | - Eva Govarts
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| | - Greet Schoeters
- Department of Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - Mariana F Fernández
- Biomedical Research Center (CIBM), Department of Radiology and Physical Medicine, University of Granada, 18012 Granada, Spain
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), 28034 Madrid, Spain
| | - Vicente Mustieles
- Biomedical Research Center (CIBM), Department of Radiology and Physical Medicine, University of Granada, 18012 Granada, Spain
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), 28034 Madrid, Spain
- Servicio de Radiodiagnóstico, Hospital Universitario Clínico San Cecilio, 18012 Granada, Spain
| |
Collapse
|
15
|
Desalegn A, Schillemans T, Papadopoulou E, Sakhi AK, Haug LS, Henriette Caspersen I, Rodriguez-Carrillo A, Remy S, Schoeters G, Covaci A, Laeremans M, Fernández MF, Pedraza-Diaz S, Kold Jensen T, Frederiksen H, Åkesson A, Cox B, Cynthia D'Cruz S, Rambaud L, Riou M, Kolossa-Gehring M, Gerofke A, Murawski A, Vogel N, Gabriel C, Karakitsios S, Papaioannou N, Sarigiannis D, Barbone F, Rosolen V, Lignell S, Karin Lindroos A, Snoj Tratnik J, Stajnko A, Kosjek T, Tkalec Ž, Fabelova L, Palkovicova Murinova L, Kolena B, Wimmerova S, Szigeti T, Középesy S, van den Brand A, Zock JP, Janasik B, Wasowicz W, De Decker A, De Henauw S, Govarts E, Iszatt N. Urinary concentrations of phthalate/DINCH metabolites and body mass index among European children and adolescents in the HBM4EU Aligned Studies: A cross-sectional multi-country study. ENVIRONMENT INTERNATIONAL 2024; 190:108931. [PMID: 39142134 DOI: 10.1016/j.envint.2024.108931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND Phthalates are ubiquitous in the environment. Despite short half-lives, chronic exposure can lead to endocrine disruption. The safety of phthalate substitute DINCH is unclear. OBJECTIVE To evaluate associations between urinary concentrations of phthalate/DINCH metabolites and body mass index (BMI) z-score among children and adolescents. METHOD We used Human Biomonitoring for Europe Aligned Studies data from 2876 children (12 studies, 6-12 years, 2014-2021) and 2499 adolescents (10 studies, 12-18 years, 2014-2021) with up to 14 phthalate/DINCH urinary metabolites. We used multilevel linear regression to assess associations between phthalate/DINCH concentrations and BMI z-scores, testing effect modification by sex. In a subset, Bayesian kernel machine regression (BKMR) and quantile-based g-computation assessed important predictors and mixture effects. RESULTS In children, we found few associations in single pollutant models and no interactions by sex (p-interaction > 0.1). BKMR detected no relevant exposures (posterior inclusion probabilities, PIPs < 0.25), nor joint mixture effect. In adolescent single pollutant analysis, mono-ethyl phthalate (MEP) concentrations were associated with higher BMI z-score in males (β = 0.08, 95 % CI: 0.001,0.15, per interquartile range increase in ln-transformed concentrations, p-interaction = 0.06). Conversely, mono-isobutyl phthalate (MiBP) was associated with a lower BMI z-score in both sexes (β = -0.13, 95 % CI: -0.19, -0.07, p-interaction = 0.74), as was sum of di(2-ethylhexyl) phthalate (∑DEHP) metabolites in females only (β = -0.08, 95 % CI: -0.14, -0.02, p-interaction = 0.01). In BKMR, higher BMI z-scores were predicted by MEP (PIP=0.90) and MBzP (PIP=0.84) in males. Lower BMI z-scores were predicted by MiBP (PIP=0.999), OH-MIDP (PIP=0.88) and OH-MINCH (PIP=0.72) in both sexes, less robustly by DEHP (PIP=0.61) in females. In quantile g-computation, the overall mixture effect was null for males, and trended negative for females (β = -0.11, 95 % CI: -0.25, 0.03, per joint exposure quantile). CONCLUSION In this large Europe-wide study, we found age/sex-specific differences between phthalate metabolites and BMI z-score, stronger in adolescents. Longitudinal studies with repeated phthalate measurements are needed.
Collapse
Affiliation(s)
- Anteneh Desalegn
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway; PharmacoEpidemiology and Drug Safety Research Group, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Tessa Schillemans
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institute, Sweden
| | - Eleni Papadopoulou
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway; Centre for Sustainable Diets, Norwegian Institute of Public Health, Oslo, Norway; Division of Health Service, Global Health Cluster, Norwegian Institute of Public Health, Oslo, Norway
| | - Amrit K Sakhi
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway; Centre for Sustainable Diets, Norwegian Institute of Public Health, Oslo, Norway
| | - Line S Haug
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway; Centre for Sustainable Diets, Norwegian Institute of Public Health, Oslo, Norway
| | - Ida Henriette Caspersen
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway; Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Andrea Rodriguez-Carrillo
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium; Toxicological Center, University of Antwerp, Antwerp, Belgium
| | - Sylvie Remy
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Greet Schoeters
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium; Toxicological Center, University of Antwerp, Antwerp, Belgium
| | - Adrian Covaci
- Toxicological Center, University of Antwerp, Antwerp, Belgium
| | - Michelle Laeremans
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Mariana F Fernández
- Centre for Biomedical Research (CIBM) and School of Medicine, University of Granada, Spain,; Biosanitary Institute of Granada (ibs.GRANADA), Granada, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Susana Pedraza-Diaz
- National Centre for Environmental Health, Instituto de Salud Carlos III: Madrid, Madrid, Spain
| | - Tina Kold Jensen
- Department of Environmental Medicine, University of Southern Denmark, Odense, Denmark
| | - Hanne Frederiksen
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Denmark; International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Denmark
| | - Agneta Åkesson
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institute, Sweden
| | - Bianca Cox
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Shereen Cynthia D'Cruz
- Univ Rennes, EHESP, Inserm, Irset (Institut de recherche en santé, Environnement et travail) Rennes, France
| | - Loïc Rambaud
- Department of Environmental and Occupational Health, Sante Publique France, France
| | - Margaux Riou
- Department of Environmental and Occupational Health, Sante Publique France, France
| | | | | | | | - Nina Vogel
- German Environment Agency (UBA), Berlin, Germany
| | - Catherine Gabriel
- Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece; HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Bldg. B, 10th km Thessaloniki-Thermi Road, 57001, Greece
| | - Spyros Karakitsios
- Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece; HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Bldg. B, 10th km Thessaloniki-Thermi Road, 57001, Greece
| | - Nafsika Papaioannou
- Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece; HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Bldg. B, 10th km Thessaloniki-Thermi Road, 57001, Greece
| | - Dimosthenis Sarigiannis
- Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece; HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Bldg. B, 10th km Thessaloniki-Thermi Road, 57001, Greece; Environmental Health Engineering, Institute of Advanced Study, Palazzo del Broletto - Piazza Della Vittoria 15, 27100 Pavia, Italy
| | - Fabio Barbone
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume 447, 34149 Trieste, Italy
| | - Valentina Rosolen
- Central Directorate for Health, Social Policies and Disability, Friuli Venezia Giulia Region, Via Cassa Di Risparmio 10, 34121 Trieste, Italy
| | - Sanna Lignell
- Department of Risk Benefit Assessment, the Swedish Food Agency, Uppsala, Sweden
| | - Anna Karin Lindroos
- Department of Internal Medicine and Clinical Nutrition, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Janja Snoj Tratnik
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Anja Stajnko
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Tina Kosjek
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Žiga Tkalec
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Lucia Fabelova
- Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Slovakia
| | | | - Branislav Kolena
- Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Slovakia
| | - Sona Wimmerova
- Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Slovakia
| | | | | | - Annick van den Brand
- National Institute for Public Health and the Environment (RIVM), the Netherlands
| | - Jan-Paul Zock
- National Institute for Public Health and the Environment (RIVM), the Netherlands
| | - Beata Janasik
- Nofer Institute of Occupational Medicine, St. Teresy 8, Lodz, Poland
| | - Wojciech Wasowicz
- Nofer Institute of Occupational Medicine, St. Teresy 8, Lodz, Poland
| | - Annelies De Decker
- Provincial Institute of Hygiene, Kronenburgstraat 45, 2000 Antwerp, Belgium
| | - Stefaan De Henauw
- Department of Public Health and Primary Care, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Eva Govarts
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Nina Iszatt
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway; Centre for Sustainable Diets, Norwegian Institute of Public Health, Oslo, Norway.
| |
Collapse
|
16
|
Tagne-Fotso R, Riou M, Saoudi A, Zeghnoun A, Frederiksen H, Berman T, Montazeri P, Andersson AM, Rodriguez-Martin L, Akesson A, Berglund M, Biot P, Castaño A, Charles MA, Cocco E, Den Hond E, Dewolf MC, Esteban-Lopez M, Gilles L, Govarts E, Guignard C, Gutleb AC, Hartmann C, Kold Jensen T, Koppen G, Kosjek T, Lambrechts N, McEachan R, Sakhi AK, Snoj Tratnik J, Uhl M, Urquiza J, Vafeiadi M, Van Nieuwenhuyse A, Vrijheid M, Weber T, Zaros C, Tarroja-Aulina E, Knudsen LE, Covaci A, Barouki R, Kolossa-Gehring M, Schoeters G, Denys S, Fillol C, Rambaud L. Exposure to bisphenol A in European women from 2007 to 2014 using human biomonitoring data - The European Joint Programme HBM4EU. ENVIRONMENT INTERNATIONAL 2024; 190:108912. [PMID: 39116556 DOI: 10.1016/j.envint.2024.108912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND Bisphenol A (BPA; or 4,4'-isopropylidenediphenol) is an endocrine disrupting chemical. It was widely used in a variety of plastic-based manufactured products for several years. The European Food Safety Authority (EFSA) recently reduced the Tolerable Daily Intake (TDI) for BPA by 20,000 times due to concerns about immune-toxicity. OBJECTIVE We used human biomonitoring (HBM) data to investigate the general level of BPA exposure from 2007 to 2014 of European women aged 18-73 years (n = 4,226) and its determinants. METHODS Fifteen studies from 12 countries (Austria, Belgium, Denmark, France, Germany, Greece, Israel, Luxembourg, Slovenia, Spain, Sweden, and the United Kingdom) were included in the BPA Study protocol developed within the European Joint Programme HBM4EU. Seventy variables related to the BPA exposure were collected through a rigorous post-harmonization process. Linear mixed regression models were used to investigate the determinants of total urine BPA in the combined population. RESULTS Total BPA was quantified in 85-100 % of women in 14 out of 15 contributing studies. Only the Austrian PBAT study (Western Europe), which had a limit of quantification 2.5 to 25-fold higher than the other studies (LOQ=2.5 µg/L), found total BPA in less than 5 % of the urine samples analyzed. The geometric mean (GM) of total urine BPA ranged from 0.77 to 2.47 µg/L among the contributing studies. The lowest GM of total BPA was observed in France (Western Europe) from the ELFE subset (GM=0.77 µg/L (0.98 µg/g creatinine), n = 1741), and the highest levels were found in Belgium (Western Europe) and Greece (Southern Europe), from DEMOCOPHES (GM=2.47 µg/L (2.26 µg/g creatinine), n = 129) and HELIX-RHEA (GM=2.47 µg/L (2.44 µg/g creatinine), n = 194) subsets, respectively. One hundred percent of women in 14 out of 15 data collections in this study exceeded the health-based human biomonitoring guidance value for the general population (HBM-GVGenPop) of 0.0115 µg total BPA/L urine derived from the updated EFSA's BPA TDI. Variables related to the measurement of total urine BPA and those related to the main socio-demographic characteristics (age, height, weight, education, smoking status) were collected in almost all studies, while several variables related to BPA exposure factors were not gathered in most of the original studies (consumption of beverages contained in plastic bottles, consumption of canned food or beverages, consumption of food in contact with plastic packaging, use of plastic film or plastic containers for food, having a plastic floor covering in the house, use of thermal paper…). No clear determinants of total urine BPA concentrations among European women were found. A broader range of data planned for collection in the original questionnaires of the contributing studies would have resulted in a more thorough investigation of the determinants of BPA exposure in European women. CONCLUSION This study highlights the urgent need for action to further reduce exposure to BPA to protect the population, as is already the case in the European Union. The study also underscores the importance of pre-harmonizing HBM design and data for producing comparable data and interpretable results at a European-wide level, and to increase HBM uptake by regulatory agencies.
Collapse
Affiliation(s)
- Romuald Tagne-Fotso
- Department of Environmental and Occupational Health, Santé publique France, The French Public Health Agency (SpFrance, ANSP), 12 rue du Val d'Osne, Saint-Maurice Cedex 94415, France.
| | - Margaux Riou
- Department of Environmental and Occupational Health, Santé publique France, The French Public Health Agency (SpFrance, ANSP), 12 rue du Val d'Osne, Saint-Maurice Cedex 94415, France
| | - Abdessattar Saoudi
- Department of Data Support, Data Processing and Analysis, Santé publique France, Saint-Maurice, France
| | - Abdelkrim Zeghnoun
- Department of Data Support, Data Processing and Analysis, Santé publique France, Saint-Maurice, France
| | - Hanne Frederiksen
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Tamar Berman
- Israel Ministry of Health (MOH-IL), Jerusalem, Israel
| | - Parisa Montazeri
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Anna-Maria Andersson
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | | | - Agneta Akesson
- Institute of Environmental Medicine, Karolinska Institutet (KI), Stockholm, Sweden
| | - Marika Berglund
- Institute of Environmental Medicine, Karolinska Institutet (KI), Stockholm, Sweden
| | - Pierre Biot
- Federal Public Service Health, Food Chain Safety and Environment, Brussels, Belgium
| | - Argelia Castaño
- National Center for Environmental Health, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Marie-Aline Charles
- French Institute for Demographic Studies (INED), French Institute for Medical Research and Health (Inserm), French Blood Agency, ELFE Joint Unit, Aubervilliers, France; Inserm UMR 1153, Centre for Research in Epidemiology and Statistics (CRESS), Team Early Life Research on Later Health, University of Paris, Villejuif, France
| | - Emmanuelle Cocco
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg
| | - Elly Den Hond
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium; Provincial Institute of Hygiene (PIH), Antwerp, Belgium
| | | | - Marta Esteban-Lopez
- National Center for Environmental Health, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Liese Gilles
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Eva Govarts
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Cedric Guignard
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg
| | - Arno C Gutleb
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg
| | | | - Tina Kold Jensen
- Department of Public Health, Clinical Pharmacology, Pharmacy and Environmental Medicine, University of Southern Denmark (SDU), Odense, Denmark
| | - Gudrun Koppen
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Tina Kosjek
- Jozef Stefan Institute (JSI), Department of Environmental Sciences, Ljubljana, Slovenia
| | - Nathalie Lambrechts
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Rosemary McEachan
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, United Kingdom
| | | | - Janja Snoj Tratnik
- Jozef Stefan Institute (JSI), Department of Environmental Sciences, Ljubljana, Slovenia
| | - Maria Uhl
- German Environment Agency (UBA), Berlin, Germany
| | - Jose Urquiza
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Marina Vafeiadi
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Crete, Greece
| | - An Van Nieuwenhuyse
- Department Health Protection, Laboratoire national de santé (LNS), Dudelange, Luxembourg; Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven, Belgium
| | - Martine Vrijheid
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Till Weber
- German Environment Agency (UBA), Berlin, Germany
| | - Cécile Zaros
- French Institute for Demographic Studies (INED), French Institute for Medical Research and Health (Inserm), French Blood Agency, ELFE Joint Unit, Aubervilliers, France
| | | | | | - Adrian Covaci
- Toxicological Center, University of Antwerp, Belgium
| | - Robert Barouki
- Inserm UMR S-1124, University of Paris, T3S, Paris, France; Biochemistry, Metabolomics, and Proteomics Department, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | | | - Greet Schoeters
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium; Department of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium
| | - Sebastien Denys
- Department of Environmental and Occupational Health, Santé publique France, The French Public Health Agency (SpFrance, ANSP), 12 rue du Val d'Osne, Saint-Maurice Cedex 94415, France
| | - Clemence Fillol
- Department of Environmental and Occupational Health, Santé publique France, The French Public Health Agency (SpFrance, ANSP), 12 rue du Val d'Osne, Saint-Maurice Cedex 94415, France
| | - Loïc Rambaud
- Department of Environmental and Occupational Health, Santé publique France, The French Public Health Agency (SpFrance, ANSP), 12 rue du Val d'Osne, Saint-Maurice Cedex 94415, France
| |
Collapse
|
17
|
Carlin DJ, Rider CV. Combined Exposures and Mixtures Research: An Enduring NIEHS Priority. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:75001. [PMID: 38968090 PMCID: PMC11225971 DOI: 10.1289/ehp14340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/25/2024] [Accepted: 06/12/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND The National Institute of Environmental Health Sciences (NIEHS) continues to prioritize research to better understand the health effects resulting from exposure to mixtures of chemical and nonchemical stressors. Mixtures research activities over the last decade were informed by expert input during the development and deliberations of the 2011 NIEHS Workshop "Advancing Research on Mixtures: New Perspectives and Approaches for Predicting Adverse Human Health Effects." NIEHS mixtures research efforts since then have focused on key themes including a) prioritizing mixtures for study, b) translating mixtures data from in vitro and in vivo studies, c) developing cross-disciplinary collaborations, d) informing component-based and whole-mixture assessment approaches, e) developing sufficient similarity methods to compare across complex mixtures, f) using systems-based approaches to evaluate mixtures, and g) focusing on management and integration of mixtures-related data. OBJECTIVES We aimed to describe NIEHS driven research on mixtures and combined exposures over the last decade and present areas for future attention. RESULTS Intramural and extramural mixtures research projects have incorporated a diverse array of chemicals (e.g., polycyclic aromatic hydrocarbons, botanicals, personal care products, wildfire emissions) and nonchemical stressors (e.g., socioeconomic factors, social adversity) and have focused on many diseases (e.g., breast cancer, atherosclerosis, immune disruption). We have made significant progress in certain areas, such as developing statistical methods for evaluating multiple chemical associations in epidemiology and building translational mixtures projects that include both in vitro and in vivo models. DISCUSSION Moving forward, additional work is needed to improve mixtures data integration, elucidate interactions between chemical and nonchemical stressors, and resolve the geospatial and temporal nature of mixture exposures. Continued mixtures research will be critical to informing cumulative impact assessments and addressing complex challenges, such as environmental justice and climate change. https://doi.org/10.1289/EHP14340.
Collapse
Affiliation(s)
- Danielle J. Carlin
- Division of Extramural Research and Training, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Cynthia V. Rider
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| |
Collapse
|
18
|
Rodríguez-Carrillo A, Remy S, Koppen G, Wauters N, Mustieles V, Desalegn A, Iszatt N, den Hond E, Verheyen VJ, Fábelová L, Murinova LP, Pedraza-Díaz S, Esteban M, Poyatos RM, Govarts E, van Nuijs ALN, Covaci A, Schoeters G, Olea N, Fernández MF. Urinary phthalate/DINCH metabolites associations with kisspeptin and reproductive hormones in teenagers: A cross-sectional study from the HBM4EU aligned studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172426. [PMID: 38631641 DOI: 10.1016/j.scitotenv.2024.172426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND Exposure to phthalate/DINCH metabolites can induce human reproductive toxicity, however, their endocrine-disrupting mechanisms are not fully elucidated. OBJECTIVE To investigate the association between concentrations of phthalate/DINCH metabolites, serum kisspeptin, and reproductive hormones among European teenagers from three of the HBM4EU Aligned Studies. METHODS In 733 Belgian (FLEHS IV study), Slovak (PCB cohort follow-up), and Spanish (BEA study) teenagers, ten phthalate and two DINCH metabolites were measured in urine by high-performance liquid chromatography-tandem mass spectrometry. Serum kisspeptin (kiss54) protein, follicle-stimulating hormone (FSH), total testosterone (TT), estradiol (E2), and sex hormone-binding globulin (SHBG) levels were measured by immunosorbent assays. Free Androgen Index (FAI) was calculated as a proxy of free testosterone. Adjusted sex-stratified linear regression models for individual studies, mixed effect models (LME) accounting for random effects for pooled studies, and g-computation and Bayesian kernel machine regression (BKMR) models for the phthalate/DINCH mixture were performed. RESULTS The LME suggested that each IQR increase in ln-transformed levels of several phthalates was associated with lower kisspeptin [MnBP: %change (95%CI): -2.8 (-4.2;-0.4); MEHP: -1.4 (-3.4,0.2)] and higher FSH [∑DINP: 11.8 (-0.6;25.1)] levels in females from pooled studies. G-computation showed that the phthalates/DINCH mixture was associated with lower kisspeptin [-4.28 (-8.07;-0.34)] and higher FSH [22.13 (0.5;48.4)] also in females; BKMR showed similar although non-significant pattern. In males, higher phthalates metabolites [MEHP: -12.22 (-21.09;-1.18); oxo-MEHP: -12.73 (-22.34;-1.93)] were associated with lower TT and FAI, although higher DINCH [OH-MINCH: 16.31 (6.23;27.35), cx-MINCH: 16.80 (7.03;27.46), ∑DINCH: 17.37 (7.26;29.74)] were associated with higher TT levels. No mixture associations were found in males. CONCLUSION We observed sex-specific associations between urinary concentrations of phthalate/DINCH metabolites and the panel of selected effect biomarkers (kisspeptin and reproductive hormones). This suggests that exposure to phthalates would be associated with changes in kisspeptin levels, which would affect the HPG axis and thus influence reproductive health. However, further research is needed, particularly for phthalate replacements such as DINCH.
Collapse
Affiliation(s)
- Andrea Rodríguez-Carrillo
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium; Toxicological Centre, University of Antwerp, Universiteitsplein, 1, 2610 Wilrijk, Belgium
| | - Sylvie Remy
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| | - Gudrun Koppen
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| | - Natasha Wauters
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| | - Vicente Mustieles
- Biomedical Research Center & School of Medicine, University of Granada, 18016 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Spain
| | - Anteneh Desalegn
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Norway
| | - Nina Iszatt
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Norway
| | | | - Veerle J Verheyen
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| | - Lucia Fábelová
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, Bratislava, Slovakia
| | - Lubica Palkovicova Murinova
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, Bratislava, Slovakia
| | - Susana Pedraza-Díaz
- National Centre for Environmental Health, Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Esteban
- National Centre for Environmental Health, Instituto de Salud Carlos III, Madrid, Spain
| | - Rafael M Poyatos
- Unidad de Gestión Clínica de Laboratorios, Hospital Universitario Clínico San Cecilio, Granada, Spain
| | - Eva Govarts
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| | | | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein, 1, 2610 Wilrijk, Belgium
| | - Greet Schoeters
- Department of Radiology and Physical Medicine, School of Medicine, University of Granada, 18016 Granada, Spain
| | - Nicolás Olea
- Biomedical Research Center & School of Medicine, University of Granada, 18016 Granada, Spain; Department of Radiology and Physical Medicine, School of Medicine, University of Granada, 18016 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Spain
| | - Mariana F Fernández
- Biomedical Research Center & School of Medicine, University of Granada, 18016 Granada, Spain; Department of Radiology and Physical Medicine, School of Medicine, University of Granada, 18016 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Spain.
| |
Collapse
|
19
|
Gerofke A, Lange R, Vogel N, Schmidt P, Weber T, David M, Frederiksen H, Baken K, Govarts E, Gilles L, Martin LR, Martinsone Ž, Santonen T, Schoeters G, Scheringer M, Domínguez-Romero E, López ME, Calvo AC, Koch HM, Apel P, Kolossa-Gehring M. Phthalates and substitute plasticizers: Main achievements from the European human biomonitoring initiative HBM4EU. Int J Hyg Environ Health 2024; 259:114378. [PMID: 38631089 DOI: 10.1016/j.ijheh.2024.114378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/07/2024] [Accepted: 04/07/2024] [Indexed: 04/19/2024]
Abstract
Phthalates and the substitute plasticizer DINCH belong to the first group of priority substances investigated by the European Human Biomonitoring Initiative (HBM4EU) to answer policy-relevant questions and safeguard an efficient science-to-policy transfer of results. Human internal exposure levels were assessed using two data sets from all European regions and Israel. The first collated existing human biomonitoring (HBM) data (2005-2019). The second consisted of new data generated in the harmonized "HBM4EU Aligned Studies" (2014-2021) on children and teenagers for the ten most relevant phthalates and DINCH, accompanied by a quality assurance/quality control (QA/QC) program for 17 urinary exposure biomarkers. Exposures differed between countries, European regions, age groups and educational levels. Toxicologically derived Human biomonitoring guidance values (HBM-GVs) were exceeded in up to 5% of the participants of the HBM4EU Aligned Studies. A mixture risk assessment (MRA) including five reprotoxic phthalates (DEHP, DnBP, DiBP, BBzP, DiNP) revealed that for about 17% of the children and teenagers, health risks cannot be excluded. Concern about male reproductive health emphasized the need to include other anti-androgenic substances for MRA. Contaminated food and the use of personal care products were identified as relevant exposure determinants paving the way for new regulatory measures. Time trend analyses verified the efficacy of regulations: especially for the highly regulated phthalates exposure dropped significantly, while levels of the substitutes DINCH and DEHTP increased. The HBM4EU e-waste study, however, suggests that workers involved in e-waste management may be exposed to higher levels of restricted phthalates. Exposure-effect association studies indicated the relevance of a range of endpoints. A set of HBM indicators was derived to facilitate and accelerate science-to-policy transfer. Result indicators allow different groups and regions to be easily compared. Impact indicators allow health risks to be directly interpreted. The presented results enable successful science-to-policy transfer and support timely and targeted policy measures.
Collapse
Affiliation(s)
- Antje Gerofke
- German Environment Agency (UBA), Corrensplatz 1, 14195, Berlin, Germany.
| | - Rosa Lange
- German Environment Agency (UBA), Corrensplatz 1, 14195, Berlin, Germany
| | - Nina Vogel
- German Environment Agency (UBA), Corrensplatz 1, 14195, Berlin, Germany
| | - Phillipp Schmidt
- German Environment Agency (UBA), Corrensplatz 1, 14195, Berlin, Germany
| | - Till Weber
- German Environment Agency (UBA), Corrensplatz 1, 14195, Berlin, Germany
| | - Madlen David
- German Environment Agency (UBA), Corrensplatz 1, 14195, Berlin, Germany
| | - Hanne Frederiksen
- Department of Growth and Reproduction, Copenhagen University Hospital-Rigshospitalet, 2100, Copenhagen, Denmark; International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital-Rigshospitalet, 2100, Copenhagen, Denmark
| | - Kirsten Baken
- Brabant Advies, Brabantlaan 3, 5216 TV 's, Hertogenbosch, the Netherlands
| | - Eva Govarts
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| | - Liese Gilles
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| | | | - Žanna Martinsone
- Institute of Occupational Safety and Environmental Health, Rīga Stradiņš University, Dzirciema 16, LV-1007, Riga, Latvia
| | - Tiina Santonen
- Finnish Institute of Occupational Health (FIOH), P.O. Box 40, FI-00032, Tyoterveyslaitos, Finland
| | - Greet Schoeters
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium; University of Antwerp, Toxicological Center, Universiteitsplein 1, 2610, Wilrijk, Belgium; Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Martin Scheringer
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, 611 37, Czech Republic
| | - Elena Domínguez-Romero
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, 611 37, Czech Republic
| | - Marta Esteban López
- Environmental Toxicology Unit, National Centre for Environmental Health, Instituto de Salud Carlos III (ISCIII), 28220, Majadahonda, Spain
| | - Argelia Castaño Calvo
- Environmental Toxicology Unit, National Centre for Environmental Health, Instituto de Salud Carlos III (ISCIII), 28220, Majadahonda, Spain
| | - Holger M Koch
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance - Institute of the Ruhr-University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Petra Apel
- German Environment Agency (UBA), Corrensplatz 1, 14195, Berlin, Germany
| | | |
Collapse
|
20
|
Collins AR, Azqueta A, Schoeters G, Slingers G, Dusinska M, Langie SAS. In memory of Dr. Ir. Gudrun Koppen (1969-2024). MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2024; 895:503751. [PMID: 38575250 DOI: 10.1016/j.mrgentox.2024.503751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Affiliation(s)
- Andrew R Collins
- Norgenotech AS, Oslo Cancer Cluster Incubator, Oslo, Norway; & Department of Nutrition, University of Oslo, Oslo, Norway
| | - Amaya Azqueta
- Department of Pharmaceutical Science, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
| | - Greet Schoeters
- Prof. Em., Department of Biomedical Sciences & Toxicological Centre, University of Antwerp, Wilrijk, Belgium
| | - Gitte Slingers
- Environmental Intelligence, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Maria Dusinska
- Department of Environmental Chemistry and Health Effects, The Climate and Environmental Research Institute NILU, Kjeller, Norway
| | - Sabine A S Langie
- Department of Pharmacology and Toxicology, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
21
|
F Fernández S, Poteser M, Govarts E, Pardo O, Coscollà C, Schettgen T, Vogel N, Weber T, Murawski A, Kolossa-Gehring M, Rüther M, Schmidt P, Namorado S, Van Nieuwenhuyse A, Appenzeller B, Ólafsdóttir K, Halldorsson TI, Haug LS, Thomsen C, Barbone F, Mariuz M, Rosolen V, Rambaud L, Riou M, Göen T, Nübler S, Schäfer M, Zarrabi KHA, Sepai O, Martin LR, Schoeters G, Gilles L, Leander K, Moshammer H, Akesson A, Laguzzi F. Determinants of exposure to acrylamide in European children and adults based on urinary biomarkers: results from the "European Human Biomonitoring Initiative" HBM4EU participating studies. Sci Rep 2023; 13:21291. [PMID: 38042944 PMCID: PMC10693547 DOI: 10.1038/s41598-023-48738-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 11/29/2023] [Indexed: 12/04/2023] Open
Abstract
Little is known about exposure determinants of acrylamide (AA), a genotoxic food-processing contaminant, in Europe. We assessed determinants of AA exposure, measured by urinary mercapturic acids of AA (AAMA) and glycidamide (GAMA), its main metabolite, in 3157 children/adolescents and 1297 adults in the European Human Biomonitoring Initiative. Harmonized individual-level questionnaires data and quality assured measurements of AAMA and GAMA (urine collection: 2014-2021), the short-term validated biomarkers of AA exposure, were obtained from four studies (Italy, France, Germany, and Norway) in children/adolescents (age range: 3-18 years) and six studies (Portugal, Spain, France, Germany, Luxembourg, and Iceland) in adults (age range: 20-45 years). Multivariable-adjusted pooled quantile regressions were employed to assess median differences (β coefficients) with 95% confidence intervals (95% CI) in AAMA and GAMA (µg/g creatinine) in relation to exposure determinants. Southern European studies had higher AAMA than Northern studies. In children/adolescents, we observed significant lower AA associated with high socioeconomic status (AAMA:β = - 9.1 µg/g creatinine, 95% CI - 15.8, - 2.4; GAMA: β = - 3.4 µg/g creatinine, 95% CI - 4.7, - 2.2), living in rural areas (AAMA:β = - 4.7 µg/g creatinine, 95% CI - 8.6, - 0.8; GAMA:β = - 1.1 µg/g creatinine, 95% CI - 1.9, - 0.4) and increasing age (AAMA:β = - 1.9 µg/g creatinine, 95% CI - 2.4, - 1.4; GAMA:β = - 0.7 µg/g creatinine, 95% CI - 0.8, - 0.6). In adults, higher AAMA was also associated with high consumption of fried potatoes whereas lower AAMA was associated with higher body-mass-index. Based on this large-scale study, several potential determinants of AA exposure were identified in children/adolescents and adults in European countries.
Collapse
Affiliation(s)
- Sandra F Fernández
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Av. Catalunya, 21, 46020, Valencia, Spain
| | - Michael Poteser
- Center for Public Health, Department of Environmental Health, Medical University of Vienna, Vienna, Austria
| | - Eva Govarts
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Olga Pardo
- Public Health Directorate of Valencia, Av. Catalunya, 21, 46020, Valencia, Spain
- Department of Analytical Chemistry, University of Valencia, Doctor Moliner 50, 46100, Burjassot, Spain
| | - Clara Coscollà
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Av. Catalunya, 21, 46020, Valencia, Spain
| | - Thomas Schettgen
- Institute for Occupational, Social and Environmental Medicine, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Nina Vogel
- German Environment Agency (UBA), Dessau-Roßlau, Berlin, Germany
| | - Till Weber
- German Environment Agency (UBA), Dessau-Roßlau, Berlin, Germany
| | - Aline Murawski
- German Environment Agency (UBA), Dessau-Roßlau, Berlin, Germany
| | | | - Maria Rüther
- German Environment Agency (UBA), Dessau-Roßlau, Berlin, Germany
| | | | - Sónia Namorado
- Department of Epidemiology, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
- Comprehensive Health Research Center, Universidade NOVA de Lisboa, Lisbon, Portugal
- Public Health Research Centre, NOVA National School of Public Health, Universidade NOVA de Lisboa, Lisbon, Portugal
| | | | - Brice Appenzeller
- Human Biomonitoring Research Unit, Department of Precision Health, Luxembourg Institute of Health (LIH), 1 A-B, Rue Thomas Edison, 1445, Strassen, Luxembourg
| | - Kristín Ólafsdóttir
- Department of Pharmacology and Toxicology, University of Iceland, Reykjavík, Iceland
| | - Thorhallur I Halldorsson
- Faculty of Food Science and Nutrition, School of Health Sciences, University of Iceland, Reykjavík, Iceland
| | - Line S Haug
- Norwegian Institute of Public Health, Lovisenberggata 8, 0456, Oslo, Norway
| | - Cathrine Thomsen
- Norwegian Institute of Public Health, Lovisenberggata 8, 0456, Oslo, Norway
| | - Fabio Barbone
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Ospedale di Cattinara, Strada di Fiume 447, 34149, Trieste, Italy
| | - Marika Mariuz
- Central Directorate for Health, Social Policies and Disability, Friuli Venezia Giulia Region, Riva Nazario Sauro, 8, 34124, Trieste, Italy
| | - Valentina Rosolen
- Central Directorate for Health, Social Policies and Disability, Friuli Venezia Giulia Region, Riva Nazario Sauro, 8, 34124, Trieste, Italy
| | - Loïc Rambaud
- Santé Publique France, SpFrance, 12, Rue du Val d'Osne, 94415, Saint-Maurice, France
| | - Margaux Riou
- Santé Publique France, SpFrance, 12, Rue du Val d'Osne, 94415, Saint-Maurice, France
| | - Thomas Göen
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestraße 9-11, 91054, Erlangen, Germany
| | - Stefanie Nübler
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestraße 9-11, 91054, Erlangen, Germany
| | - Moritz Schäfer
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestraße 9-11, 91054, Erlangen, Germany
| | - Karin H A Zarrabi
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestraße 9-11, 91054, Erlangen, Germany
| | | | | | - Greet Schoeters
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
- Department of Biomedical Sciences, University of Antwerp, 2610, Antwerp, Belgium
| | - Liese Gilles
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Karin Leander
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Nobels Väg 13, Box 210, 17177, Stockholm, Sweden
| | - Hanns Moshammer
- Center for Public Health, Department of Environmental Health, Medical University of Vienna, Vienna, Austria
| | - Agneta Akesson
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Nobels Väg 13, Box 210, 17177, Stockholm, Sweden
| | - Federica Laguzzi
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Nobels Väg 13, Box 210, 17177, Stockholm, Sweden.
| |
Collapse
|
22
|
Rodríguez-Carrillo A, Salamanca-Fernández E, den Hond E, Verheyen VJ, Fábelová L, Murinova LP, Pedraza-Díaz S, Castaño A, García-Lario JV, Remy S, Govarts E, Schoeters G, Olea N, Freire C, Fernández MF. Association of exposure to perfluoroalkyl substances (PFAS) and phthalates with thyroid hormones in adolescents from HBM4EU aligned studies. ENVIRONMENTAL RESEARCH 2023; 237:116897. [PMID: 37598845 DOI: 10.1016/j.envres.2023.116897] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/24/2023] [Accepted: 08/13/2023] [Indexed: 08/22/2023]
Abstract
BACKGROUND Perfluoroalkyl substances (PFAS) and phthalates are synthetic chemicals widely used in various types of consumer products. There is epidemiological and experimental evidence that PFAS and phthalates may alter thyroid hormone levels; however, studies in children and adolescents are limited. AIM To investigate the association of exposure to PFAS and phthalate with serum levels of thyroid hormones in European adolescents. METHODS A cross-sectional study was conducted in 406 female and 327 male adolescents (14-17 years) from Belgium, Slovakia, and Spain participating in the Aligned Studies of the HBM4EU Project (FLEHS IV, PCB cohort, and BEA, respectively). Concentrations of perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS), perfluorononanoic acid (PFNA), free thyroxine (FT4), free triiodothyronine (FT3), and thyroid-stimulating hormone (TSH) were measured in sera from study participants, and urinary metabolites of six phthalates (DEP, DiBP, DnBP, BBzP, DEHP, and DiNP) and the non-phthalate plasticizer DINCH® were quantified in spot urine samples. Associations were assessed with linear regression and g-computational models for mixtures. Effect modification by sex was examined. RESULTS In females, serum PFOA and the PFAS mixture concentrations were associated with lower FT4 and higher FT3 levels; MEP and the sums of DEHP, DiNP, and DINCH® metabolites (∑DEHP, ∑DiNP, and ∑DINCH) were associated with higher FT4; ∑DEHP with lower FT3; and the phthalate/DINCH® metabolite mixture with higher FT4 and lower FT3. In males, PFOA was associated with lower FT4 and the PFAS mixture with higher TSH levels and lower FT4/TSH ratio; MEP and ∑DiNP were associated with higher FT4; and MBzP, ∑DEHP, and the phthalate/DINCH® metabolite mixture with lower TSH and higher FT4/TSH. PFOA, mono-(2-ethyl-5-hydroxyhexyl) phthalate (OH-MEHP), mono-(2-ethyl-5-oxohexyl) phthalate (oxo-MEHP), and monocarboxyoctyl phthalate (MCOP) made the greatest contribution to the mixture effect. CONCLUSIONS Results suggest that exposure to PFAS and phthalates is associated with sex-specific differences in thyroid hormone levels in adolescents.
Collapse
Affiliation(s)
- Andrea Rodríguez-Carrillo
- VITO Health, Flemish Institute for Technological Research (VITO), 2400, Mol, Belgium; Toxicological Centre, University of Antwerp, Universiteitsplein, 1, 2610, Wilrijk, Belgium
| | - Elena Salamanca-Fernández
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; Department of Radiology and Physical Medicine, University of Granada, 18071, Granada, Spain; Biomedical Research Centre, University of Granada, 18016, Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain
| | | | - Veerle J Verheyen
- VITO Health, Flemish Institute for Technological Research (VITO), 2400, Mol, Belgium
| | - Lucia Fábelová
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, Bratislava, Slovakia
| | - Lubica Palkovicova Murinova
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, Bratislava, Slovakia
| | - Susana Pedraza-Díaz
- National Centre for Environmental Health, Instituto de Salud Carlos III, Madrid, Spain
| | - Argelia Castaño
- National Centre for Environmental Health, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Sylvie Remy
- VITO Health, Flemish Institute for Technological Research (VITO), 2400, Mol, Belgium
| | - Eva Govarts
- VITO Health, Flemish Institute for Technological Research (VITO), 2400, Mol, Belgium
| | - Greet Schoeters
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Nicolás Olea
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; Department of Radiology and Physical Medicine, University of Granada, 18071, Granada, Spain; Biomedical Research Centre, University of Granada, 18016, Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain
| | - Carmen Freire
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; Biomedical Research Centre, University of Granada, 18016, Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain; Department of Legal Medicine, Toxicology and Physical Anthropology, University of Granada, 18071, Granada, Spain.
| | - Mariana F Fernández
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; Department of Radiology and Physical Medicine, University of Granada, 18071, Granada, Spain; Biomedical Research Centre, University of Granada, 18016, Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain
| |
Collapse
|
23
|
Rosolen V, Giordani E, Mariuz M, Parpinel M, Mustieles V, Gilles L, Govarts E, Rodriguez Martin L, Baken K, Schoeters G, Sepai O, Sovcikova E, Fabelova L, Kohoutek J, Jensen TK, Covaci A, Roggeman M, Melymuk L, Klánová J, Castano A, Esteban López M, Barbone F. Cognitive Performance and Exposure to Organophosphate Flame Retardants in Children: Evidence from a Cross-Sectional Analysis of Two European Mother-Child Cohorts. TOXICS 2023; 11:878. [PMID: 37999530 PMCID: PMC10675051 DOI: 10.3390/toxics11110878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/12/2023] [Accepted: 10/19/2023] [Indexed: 11/25/2023]
Abstract
The knowledge of the effects of organophosphate flame retardants on children's neurodevelopment is limited. The purpose of the present research is to evaluate the association between exposure to organophosphate flame retardants and children's neurodevelopment in two European cohorts involved in the Human Biomonitoring Initiative Aligned Studies. The participants were school-aged children belonging to the Odense Child Cohort (Denmark) and the PCB cohort (Slovakia). In each cohort, the children's neurodevelopment was assessed through the Full-Scale Intelligence Quotient score of the Wechsler Intelligence Scale for Children, using two different editions. The children's urine samples, collected at one point in time, were analyzed for several metabolites of organophosphate flame retardants. The association between neurodevelopment and each organophosphate flame retardant metabolite was explored by applying separate multiple linear regressions based on the approach of MM-estimation in each cohort. In the Danish cohort, the mean ± standard deviation for the neurodevelopment score was 98 ± 12; the geometric mean (95% confidence interval (95% CI)) of bis(1,3-dichloro-2-propyl) phosphate (BDCIPP) standardized by creatinine (crt) was 0.52 µg/g crt (95% CI = 0.49; 0.60), while that of diphenyl phosphate (DPHP) standardized by crt was 1.44 µg/g crt (95% CI = 1.31; 1.58). The neurodevelopment score showed a small, negative, statistically imprecise trend with BDCIPP standardized by crt (β = -1.30; 95%CI = -2.72; 0.11; p-value = 0.07) and no clear association with DPHP standardized by crt (β = -0.98; 95%CI = -2.96; 0.99; p-value = 0.33). The neurodevelopment score showed a negative trend with BDCIPP (β = -1.42; 95% CI = -2.70; -0.06; p-value = 0.04) and no clear association with DPHP (β = -1.09; 95% CI = -2.87; 0.68; p-value = 0.23). In the Slovakian cohort, the mean ± standard deviation for the neurodevelopment score was 81 ± 15; the geometric mean of BDCIPP standardized by crt was 0.18 µg/g crt (95% CI = 0.16; 0.20), while that of DPHP standardized by crt was 2.24 µg/g crt (95% CI = 2.00; 3.52). The association of the neurodevelopment score with BDCIPP standardized by crt was -0.49 (95%CI = -1.85; 0.87; p-value = 0.48), and with DPHP standardized by crt it was -0.35 (95%CI = -1.90; 1.20; p-value = 0.66). No clear associations were observed between the neurodevelopment score and BDCIPP/DPHP concentrations that were not standardized by crt. No clear associations were observed with bis(1-chloro-2-propyl) phosphate (BCIPP) in either cohort, due to the low detection frequency of this compound. In conclusion, this study provides only limited evidence of an inverse association between neurodevelopment and exposure to BDCIPP and DPHP. The timing of exposure and effect modification of other organophosphate flame retardant metabolites and other substances should be the subject of further investigations that address this scientific hypothesis.
Collapse
Affiliation(s)
- Valentina Rosolen
- Central Directorate for Health, Social Policies and Disability, Friuli Venezia Giulia Region, Via Cassa Di Risparmio 10, 34121 Trieste, Italy
| | - Elisa Giordani
- Department of Medicine, University of Udine, Via Colugna 50, 33100 Udine, Italy
| | - Marika Mariuz
- Department of Medicine, University of Udine, Via Colugna 50, 33100 Udine, Italy
| | - Maria Parpinel
- Department of Medicine, University of Udine, Via Colugna 50, 33100 Udine, Italy
| | - Vicente Mustieles
- Center for Biomedical Research, University of Granada, 18012 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada, 18012 Granada, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health, 28029 Madrid, Spain
| | - Liese Gilles
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| | - Eva Govarts
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| | | | - Kirsten Baken
- BrabantAdvies, Brabantlaan 3, 5216 TV ‘s-Hertogenbosch, The Netherlands
| | - Greet Schoeters
- Department of Biomedical Sciences & Toxicological Centre, University of Antwerp—Campus Drie Eiken, Universiteitsplein 1, Wilrijk, 2610 Antwerp, Belgium
| | - Ovnair Sepai
- Toxicology Department, Science Group, UK Health Security Agency, Harwell Science and Innovation Campus, Didcot OX11 0RQ, UK
| | - Eva Sovcikova
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, 83303 Bratislava, Slovakia
| | - Lucia Fabelova
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, 83303 Bratislava, Slovakia
| | - Jiři Kohoutek
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Tina Kold Jensen
- Department of Clinical Pharmacology, Pharmacy and Environmental Medicine, Institute of Public Health, University of Southern Denmark, 5000 Odense, Denmark
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Wilrijk, 2610 Antwerp, Belgium
| | - Maarten Roggeman
- Toxicological Centre, University of Antwerp, Wilrijk, 2610 Antwerp, Belgium
| | - Lisa Melymuk
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Jana Klánová
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Argelia Castano
- National Centre for Environmental Health, Instituto de Salud Carlos III, 28220 Majadahonda, Spain
| | - Marta Esteban López
- National Centre for Environmental Health, Instituto de Salud Carlos III, 28220 Majadahonda, Spain
| | - Fabio Barbone
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume, 447, 34149 Trieste, Italy
| |
Collapse
|
24
|
Rodríguez-Carrillo A, Remy S, Koppen G, Wauters N, Freire C, Olivas-Martínez A, Schillemans T, Åkesson A, Desalegn A, Iszatt N, den Hond E, Verheyen V, Fábelová L, Murinova LP, Pedraza-Díaz S, Castaño A, García-Lario JV, Cox B, Govarts E, Baken K, Tena-Sempere M, Olea N, Schoeters G, Fernández MF. PFAS association with kisspeptin and sex hormones in teenagers of the HBM4EU aligned studies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122214. [PMID: 37482334 DOI: 10.1016/j.envpol.2023.122214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/18/2023] [Accepted: 07/15/2023] [Indexed: 07/25/2023]
Abstract
Exposure to Perfluoroalkyl acids (PFAS) can impair human reproductive function, e.g., by delaying or advancing puberty, although their mechanisms of action are not fully understood. We therefore set out to evaluate the relationship between serum PFAS levels, both individually and as a mixture, on the Hypothalamic-Pituitary-Gonadal (HPG) axis by analyzing serum levels of reproductive hormones and also kisspeptin in European teenagers participating in three of the HBM4EU Aligned Studies. For this purpose, PFAS compounds were measured in 733 teenagers from Belgium (FLEHS IV study), Slovakia (PCB cohort follow-up), and Spain (BEA study) by high performance liquid chromatography-tandem mass spectrometry (HPLC/MS) in laboratories under the HBM4EU quality assurance quality control (QA/QC) program. In the same serum samples, kisspeptin 54 (kiss-54) protein, follicle-stimulating hormone (FSH), total testosterone (TT), estradiol (E2), and sex hormone-binding globulin (SHBG) levels were also measured using immunosorbent assays. Sex-stratified single pollutant linear regression models for separate studies, mixed single pollutant models accounting for random effects for pooled studies, and g-computation and Bayesian kernel machine regression (BKMR) models for the mixture of the three most available (PFNA, PFOA, and PFOS) were fit. PFAS associations with reproductive markers differed according to sex. Each natural log-unit increase of PFOA, PFNA, and PFOS were associated with higher TT [18.41 (6.18; 32.31), 15.60 (7.25; 24.61), 14.68 (6.18; 24.61), respectively] in girls, in the pooled analysis (all studies together). In males, G-computation showed that PFAS mixture was associated with lower FSH levels [-10.51 (-18.81;-1.36)]. The BKMR showed the same patterns observed in G-computation, including a significant increase on male Kiss-54 and SHBG levels. Overall, effect biomarkers may enhance the current epidemiological knowledge regarding the adverse effect of PFAS in human HPG axis, although further research is warranted.
Collapse
Affiliation(s)
- Andrea Rodríguez-Carrillo
- VITO Health, Flemish Institute for Technological Research (VITO), 2400, Mol, Belgium; Toxicological Centre, University of Antwerp, Universiteitsplein, 1, 2610, Wilrijk, Belgium
| | - Sylvie Remy
- VITO Health, Flemish Institute for Technological Research (VITO), 2400, Mol, Belgium
| | - Gudrun Koppen
- VITO Health, Flemish Institute for Technological Research (VITO), 2400, Mol, Belgium
| | - Natasha Wauters
- VITO Health, Flemish Institute for Technological Research (VITO), 2400, Mol, Belgium
| | - Carmen Freire
- Biomedical Research Center (CIBM), University of Granada, 18016 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Spain
| | | | - Tessa Schillemans
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Sweden
| | - Agneta Åkesson
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Spain
| | - Anteneh Desalegn
- Division of Food Safety, Norwegian Institute of Public Health, Norway
| | - Nina Iszatt
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Norway
| | | | - Veerle Verheyen
- VITO Health, Flemish Institute for Technological Research (VITO), 2400, Mol, Belgium
| | - Lucia Fábelová
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, Bratislava, Slovakia
| | - Lubica Palkovicova Murinova
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, Bratislava, Slovakia
| | - Susana Pedraza-Díaz
- National Centre for Environmental Health, Instituto de Salud Carlos III, Madrid, Spain
| | - Argelia Castaño
- National Centre for Environmental Health, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Bianca Cox
- VITO Health, Flemish Institute for Technological Research (VITO), 2400, Mol, Belgium
| | - Eva Govarts
- VITO Health, Flemish Institute for Technological Research (VITO), 2400, Mol, Belgium
| | - Kirsten Baken
- VITO Health, Flemish Institute for Technological Research (VITO), 2400, Mol, Belgium
| | - Manuel Tena-Sempere
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Menéndez Pidal s/n. 14004., Córdoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Campus de Rabanales, Ctra. Madrid-Cádiz, Km. 396. 14071. Córdoba, Spain; University Hospital Reina Sofía, Menéndez Pidal s/n. 14004, Córdoba, Spain; CIBER Pathophysiology of Obesity and Nutrition, Carlos III Health Institute, Menéndez Pidal s/n. 14004. Córdoba, Spain
| | - Nicolás Olea
- Biomedical Research Center (CIBM), University of Granada, 18016 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Spain; Department of Radiology and Physical Medicine, School of Medicine, University of Granada, 18016 Granada, Spain
| | - Greet Schoeters
- VITO Health, Flemish Institute for Technological Research (VITO), 2400, Mol, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Mariana F Fernández
- Biomedical Research Center (CIBM), University of Granada, 18016 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Spain; Department of Radiology and Physical Medicine, School of Medicine, University of Granada, 18016 Granada, Spain.
| |
Collapse
|
25
|
Rodriguez Martin L, Gilles L, Helte E, Åkesson A, Tägt J, Covaci A, Sakhi AK, Van Nieuwenhuyse A, Katsonouri A, Andersson AM, Gutleb AC, Janasik B, Appenzeller B, Gabriel C, Thomsen C, Mazej D, Sarigiannis D, Anastasi E, Barbone F, Tolonen H, Frederiksen H, Klanova J, Koponen J, Tratnik JS, Pack K, Gudrun K, Ólafsdóttir K, Knudsen LE, Rambaud L, Strumylaite L, Murinova LP, Fabelova L, Riou M, Berglund M, Szabados M, Imboden M, Laeremans M, Eštóková M, Janev Holcer N, Probst-Hensch N, Vodrazkova N, Vogel N, Piler P, Schmidt P, Lange R, Namorado S, Kozepesy S, Szigeti T, Halldorsson TI, Weber T, Jensen TK, Rosolen V, Puklova V, Wasowicz W, Sepai O, Stewart L, Kolossa-Gehring M, Esteban-López M, Castaño A, Bessems J, Schoeters G, Govarts E. Time Patterns in Internal Human Exposure Data to Bisphenols, Phthalates, DINCH, Organophosphate Flame Retardants, Cadmium and Polyaromatic Hydrocarbons in Europe. TOXICS 2023; 11:819. [PMID: 37888670 PMCID: PMC10610666 DOI: 10.3390/toxics11100819] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023]
Abstract
Human biomonitoring (HBM) data in Europe are often fragmented and collected in different EU countries and sampling periods. Exposure levels for children and adult women in Europe were evaluated over time. For the period 2000-2010, literature and aggregated data were collected in a harmonized way across studies. Between 2011-2012, biobanked samples from the DEMOCOPHES project were used. For 2014-2021, HBM data were generated within the HBM4EU Aligned Studies. Time patterns on internal exposure were evaluated visually and statistically using the 50th and 90th percentiles (P50/P90) for phthalates/DINCH and organophosphorus flame retardants (OPFRs) in children (5-12 years), and cadmium, bisphenols and polycyclic aromatic hydrocarbons (PAHs) in women (24-52 years). Restricted phthalate metabolites show decreasing patterns for children. Phthalate substitute, DINCH, shows a non-significant increasing pattern. For OPFRs, no trends were statistically significant. For women, BPA shows a clear decreasing pattern, while substitutes BPF and BPS show an increasing pattern coinciding with the BPA restrictions introduced. No clear patterns are observed for PAHs or cadmium. Although the causal relations were not studied as such, exposure levels to chemicals restricted at EU level visually decreased, while the levels for some of their substitutes increased. The results support policy efficacy monitoring and the policy-supportive role played by HBM.
Collapse
Affiliation(s)
- Laura Rodriguez Martin
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium; (L.G.); (K.G.); (M.L.); (J.B.); (G.S.); (E.G.)
| | - Liese Gilles
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium; (L.G.); (K.G.); (M.L.); (J.B.); (G.S.); (E.G.)
| | - Emilie Helte
- Institute of Environmental Medicine, Karolinska Institutet, 17177 Stockholm, Sweden; (E.H.); (A.Å.); (J.T.); (M.B.)
| | - Agneta Åkesson
- Institute of Environmental Medicine, Karolinska Institutet, 17177 Stockholm, Sweden; (E.H.); (A.Å.); (J.T.); (M.B.)
| | - Jonas Tägt
- Institute of Environmental Medicine, Karolinska Institutet, 17177 Stockholm, Sweden; (E.H.); (A.Å.); (J.T.); (M.B.)
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium;
| | - Amrit K. Sakhi
- Norwegian Institute of Public Health, 0456 Oslo, Norway; (A.K.S.); (C.T.)
| | - An Van Nieuwenhuyse
- Laboratoire National de Santé (LNS), Rue Louis Rech 1, 3555 Dudelange, Luxembourg;
| | | | - Anna-Maria Andersson
- Department of Growth and Reproduction, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark; (A.-M.A.); (H.F.)
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), University of Copenhagen, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Arno C. Gutleb
- Luxembourg Institute of Science and Technology (LIST), 4362 Esch-sur-Alzette, Luxembourg;
| | - Beata Janasik
- Nofer Institute of Occupational Medicine, 91-348 Lodz, Poland; (B.J.); (W.W.)
| | | | - Catherine Gabriel
- Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (C.G.); (D.S.)
- HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Bldg. B, 10th km Thessaloniki-Thermi Road, 57001 Thessaloniki, Greece
| | - Cathrine Thomsen
- Norwegian Institute of Public Health, 0456 Oslo, Norway; (A.K.S.); (C.T.)
| | - Darja Mazej
- Jožef Stefan Institute, 1000 Ljubljana, Slovenia; (D.M.); (J.S.T.)
| | - Denis Sarigiannis
- Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (C.G.); (D.S.)
- HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Bldg. B, 10th km Thessaloniki-Thermi Road, 57001 Thessaloniki, Greece
- Environmental Health Engineering, Institute of Advanced Study, Palazzo del Broletto–Piazza Della Vittoria 15, 27100 Pavia, Italy
| | - Elena Anastasi
- State General Laboratory, Ministry of Health, 2081 Nicosia, Cyprus; (A.K.); (E.A.)
| | - Fabio Barbone
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume, 447, 34149 Trieste, Italy;
| | - Hanna Tolonen
- Finnish Institute for Health and Welfare (THL), 00271 Helsinki, Finland; (H.T.); (J.K.)
| | - Hanne Frederiksen
- Department of Growth and Reproduction, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark; (A.-M.A.); (H.F.)
| | - Jana Klanova
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 625 00 Brno, Czech Republic; (J.K.); (P.P.)
| | - Jani Koponen
- Finnish Institute for Health and Welfare (THL), 00271 Helsinki, Finland; (H.T.); (J.K.)
| | | | - Kim Pack
- Department of Toxicology, Health-Related Environmental Monitoring, German Environment Agency (UBA), 14195 Berlin, Germany; (K.P.); (N.V.); (P.S.); (R.L.); (T.W.)
| | - Koppen Gudrun
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium; (L.G.); (K.G.); (M.L.); (J.B.); (G.S.); (E.G.)
| | - Kristin Ólafsdóttir
- Faculty of Food Science and Nutrition, University of Iceland, Hofsvallagata 53, 107 Reykjavik, Iceland; (K.Ó.); (T.I.H.)
| | - Lisbeth E. Knudsen
- Section of Environmental Health, University of Copenhagen, 1165 Copenhagen, Denmark;
| | - Loïc Rambaud
- Department of Environmental and Occupational Health, Santé Publique France, 94410 Saint Maurice, France (M.R.)
| | - Loreta Strumylaite
- Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania;
| | - Lubica Palkovicova Murinova
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, 833 03 Bratislava, Slovakia; (L.P.M.)
| | - Lucia Fabelova
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, 833 03 Bratislava, Slovakia; (L.P.M.)
| | - Margaux Riou
- Department of Environmental and Occupational Health, Santé Publique France, 94410 Saint Maurice, France (M.R.)
| | - Marika Berglund
- Institute of Environmental Medicine, Karolinska Institutet, 17177 Stockholm, Sweden; (E.H.); (A.Å.); (J.T.); (M.B.)
| | - Maté Szabados
- National Public Health Center, Albert Florian 2-6, 1097 Budapest, Hungary; (M.S.); (S.K.); (T.S.)
| | - Medea Imboden
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123 Allschwil, Switzerland; (M.I.); (N.P.-H.)
| | - Michelle Laeremans
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium; (L.G.); (K.G.); (M.L.); (J.B.); (G.S.); (E.G.)
| | - Milada Eštóková
- Department of Environment and Health, Public Health Authority, 83105 Bratislava, Slovakia;
| | - Natasa Janev Holcer
- Division for Environmental Health, Croatian Institute of Public Health, Rockefellerova 7, 10000 Zagreb, Croatia;
- Department of Social Medicine and Epidemiology, Faculty of Medicine, University of Rijeka, Bráce Branchetta 20/1, 51000 Rijeka, Croatia
| | - Nicole Probst-Hensch
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123 Allschwil, Switzerland; (M.I.); (N.P.-H.)
| | - Nicole Vodrazkova
- Centre for Health and Environment, National Institute of Public Health, 100 00 Prague, Czech Republic; (N.V.); (V.P.)
| | - Nina Vogel
- Department of Toxicology, Health-Related Environmental Monitoring, German Environment Agency (UBA), 14195 Berlin, Germany; (K.P.); (N.V.); (P.S.); (R.L.); (T.W.)
| | - Pavel Piler
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 625 00 Brno, Czech Republic; (J.K.); (P.P.)
| | - Phillipp Schmidt
- Department of Toxicology, Health-Related Environmental Monitoring, German Environment Agency (UBA), 14195 Berlin, Germany; (K.P.); (N.V.); (P.S.); (R.L.); (T.W.)
| | - Rosa Lange
- Department of Toxicology, Health-Related Environmental Monitoring, German Environment Agency (UBA), 14195 Berlin, Germany; (K.P.); (N.V.); (P.S.); (R.L.); (T.W.)
| | - Sónia Namorado
- Department of Epidemiology, National Institute of Health Doctor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal;
| | - Szilvia Kozepesy
- National Public Health Center, Albert Florian 2-6, 1097 Budapest, Hungary; (M.S.); (S.K.); (T.S.)
| | - Tamás Szigeti
- National Public Health Center, Albert Florian 2-6, 1097 Budapest, Hungary; (M.S.); (S.K.); (T.S.)
| | - Thorhallur I. Halldorsson
- Faculty of Food Science and Nutrition, University of Iceland, Hofsvallagata 53, 107 Reykjavik, Iceland; (K.Ó.); (T.I.H.)
| | - Till Weber
- Department of Toxicology, Health-Related Environmental Monitoring, German Environment Agency (UBA), 14195 Berlin, Germany; (K.P.); (N.V.); (P.S.); (R.L.); (T.W.)
| | - Tina Kold Jensen
- Department of Clinical Pharmacology, Pharmacy and Environmental Medicine, University of Southern Denmark, 5000 Odense, Denmark;
| | - Valentina Rosolen
- Central Directorate for Health, Social Policies and Disability, Friuli Venezia Giulia Region, Via Cassa di Risparmio 10, 34121 Trieste, Italy;
| | - Vladimira Puklova
- Centre for Health and Environment, National Institute of Public Health, 100 00 Prague, Czech Republic; (N.V.); (V.P.)
| | - Wojciech Wasowicz
- Nofer Institute of Occupational Medicine, 91-348 Lodz, Poland; (B.J.); (W.W.)
| | - Ovnair Sepai
- UKHSA UK Health Security Agency, Harwell Science Park, Chilton OX11 0RQ, UK; (O.S.); (L.S.)
| | - Lorraine Stewart
- UKHSA UK Health Security Agency, Harwell Science Park, Chilton OX11 0RQ, UK; (O.S.); (L.S.)
| | - Marike Kolossa-Gehring
- Department of Toxicology, Health-Related Environmental Monitoring, German Environment Agency (UBA), 14195 Berlin, Germany; (K.P.); (N.V.); (P.S.); (R.L.); (T.W.)
| | - Marta Esteban-López
- National Centre for Environmental Health, Instituto de Salud Carlos III, 28220 Majadahonda, Spain; (M.E.-L.); (A.C.)
| | - Argelia Castaño
- National Centre for Environmental Health, Instituto de Salud Carlos III, 28220 Majadahonda, Spain; (M.E.-L.); (A.C.)
| | - Jos Bessems
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium; (L.G.); (K.G.); (M.L.); (J.B.); (G.S.); (E.G.)
| | - Greet Schoeters
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium; (L.G.); (K.G.); (M.L.); (J.B.); (G.S.); (E.G.)
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium;
| | - Eva Govarts
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium; (L.G.); (K.G.); (M.L.); (J.B.); (G.S.); (E.G.)
| |
Collapse
|
26
|
Tagne-Fotso R, Zeghnoun A, Saoudi A, Balestier A, Pecheux M, Chaperon L, Oleko A, Marchand P, Le Bizec B, Vattier L, Bouchart V, Limon G, Le Gléau F, Denys S, Fillol C. Exposure of the general French population to herbicides, pyrethroids, organophosphates, organochlorines, and carbamate pesticides in 2014-2016: Results from the Esteban study. Int J Hyg Environ Health 2023; 254:114265. [PMID: 37748265 DOI: 10.1016/j.ijheh.2023.114265] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 09/27/2023]
Abstract
Esteban is a nationwide cross-sectional study conducted in France in 2014-2016, including 2503 adults aged 18-74 years old and 1104 children aged 6-17 years old, as part of the French Human Biomonitoring programme. The present paper describes the biological levels of five families of pesticides analysed on random sub-samples of 900 adults and 500 children for urine concentrations, and 759 adults and 255 children for serum concentrations, and the determinants of exposure. Organophosphates, carbamates and herbicides were measured in urine by UPLC-MS/MS; chlorophenols and pyrethroids were measured in urine by GC-MS/MS; specific organochlorines were measured in serum by GC-HRMS. Multivariate analyses were performed to identify the determinants of exposure using a generalized linear model. Pyrethroid metabolites were quantified in 99% of adults and children, with the exeption of F-PBA, which was quantified in 31% of adults and 27% of children, respectively. Carbamates and some specific organophosphates were barely or not quantified. DMTP was quantified in 82% of adults and 93% of children, and γ-HCH (lindane) was quantified in almost 50% of adults and children. Concentration levels of pesticide biomarkers were consistent with comparable international studies, except for β-HCH, DMTP, and the deltamethrin metabolite Br2CA, whose levels were sometimes higher in France. Household insecticide use and smoking were also associated with higher levels of pyrethroids. All pyrethroids concentration levels were below existing health-based HBM guidance values, HBM-GVsGenPop, except for 3-PBA, for which approximately 1% and 10% of children were above the lower and upper urine threshold values of 22 μg/L and 6.4 μg/L, respectively. Esteban provides a French nationwide description of 70 pesticide biomarkers for the first time in children. It also describes some pesticide biomarkers for the first time in adults, including glyphosate and AMPA. For the latter, urine concentration levels were overall higher in children than in adults. Our results highlight a possible beneficial impact of existing regulations on adult exposure to organochlorine and organophosphate pesticides between 2006 and 2016, as concentration levels decreased over this period.
Collapse
Affiliation(s)
- Romuald Tagne-Fotso
- Santé Publique France, The National Public Health Agency, 12 Rue Du Val D'Osne, Saint-Maurice Cedex, 94415, France.
| | - Abdelkrim Zeghnoun
- Santé Publique France, The National Public Health Agency, 12 Rue Du Val D'Osne, Saint-Maurice Cedex, 94415, France
| | - Abdessattar Saoudi
- Santé Publique France, The National Public Health Agency, 12 Rue Du Val D'Osne, Saint-Maurice Cedex, 94415, France
| | - Anita Balestier
- Santé Publique France, The National Public Health Agency, 12 Rue Du Val D'Osne, Saint-Maurice Cedex, 94415, France
| | - Marie Pecheux
- Santé Publique France, The National Public Health Agency, 12 Rue Du Val D'Osne, Saint-Maurice Cedex, 94415, France
| | - Laura Chaperon
- Santé Publique France, The National Public Health Agency, 12 Rue Du Val D'Osne, Saint-Maurice Cedex, 94415, France
| | - Amivi Oleko
- Santé Publique France, The National Public Health Agency, 12 Rue Du Val D'Osne, Saint-Maurice Cedex, 94415, France
| | | | | | | | | | | | | | - Sébastien Denys
- Santé Publique France, The National Public Health Agency, 12 Rue Du Val D'Osne, Saint-Maurice Cedex, 94415, France
| | - Clémence Fillol
- Santé Publique France, The National Public Health Agency, 12 Rue Du Val D'Osne, Saint-Maurice Cedex, 94415, France
| |
Collapse
|
27
|
Cox B, Wauters N, Rodríguez-Carrillo A, Portengen L, Gerofke A, Kolossa-Gehring M, Lignell S, Lindroos AK, Fabelova L, Murinova LP, Desalegn A, Iszatt N, Schillemans T, Åkesson A, Colles A, Den Hond E, Koppen G, Van Larebeke N, Schoeters G, Govarts E, Remy S. PFAS and Phthalate/DINCH Exposure in Association with Age at Menarche in Teenagers of the HBM4EU Aligned Studies. TOXICS 2023; 11:711. [PMID: 37624216 PMCID: PMC10459167 DOI: 10.3390/toxics11080711] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/03/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023]
Abstract
Early puberty has been found to be associated with adverse health outcomes such as metabolic and cardiovascular diseases and hormone-dependent cancers. The decrease in age at menarche observed during the past decades has been linked to an increased exposure to endocrine-disrupting compounds (EDCs). Evidence for the association between PFAS and phthalate exposure and menarche onset, however, is inconsistent. We studied the association between PFAS and phthalate/DINCH exposure and age at menarche using data of 514 teenagers (12 to 18 years) from four aligned studies of the Human Biomonitoring for Europe initiative (HBM4EU): Riksmaten Adolescents 2016-2017 (Sweden), PCB cohort (follow-up; Slovakia), GerES V-sub (Germany), and FLEHS IV (Belgium). PFAS concentrations were measured in blood, and phthalate/DINCH concentrations in urine. We assessed the role of each individual pollutant within the context of the others, by using different multi-pollutant approaches, adjusting for age, age- and sex-standardized body mass index z-score and household educational level. Exposure to di(2-ethylhexyl) phthalate (DEHP), especially mono(2-ethyl-5-hydroxyhexyl) phthalate (5OH-MEHP), was associated with an earlier age at menarche, with estimates per interquartile fold change in 5OH-MEHP ranging from -0.34 to -0.12 years in the different models. Findings from this study indicated associations between age at menarche and some specific EDCs at concentrations detected in the general European population, but due to the study design (menarche onset preceded the chemical measurements), caution is needed in the interpretation of causality.
Collapse
Affiliation(s)
- Bianca Cox
- VITO Health, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium; (N.W.); (A.R.-C.); (A.C.); (G.K.); (G.S.); (E.G.); (S.R.)
| | - Natasha Wauters
- VITO Health, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium; (N.W.); (A.R.-C.); (A.C.); (G.K.); (G.S.); (E.G.); (S.R.)
| | - Andrea Rodríguez-Carrillo
- VITO Health, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium; (N.W.); (A.R.-C.); (A.C.); (G.K.); (G.S.); (E.G.); (S.R.)
- Toxicological Centre, University of Antwerp, Universiteitsplein, 1, 2610 Wilrijk, Belgium
| | - Lützen Portengen
- Institute for Risk Assessment Sciences, Utrecht University, 3584 Utrecht, The Netherlands;
| | - Antje Gerofke
- German Environment Agency, Umweltbundesamt (UBA), 14195 Berlin, Germany; (A.G.); (M.K.-G.)
| | - Marike Kolossa-Gehring
- German Environment Agency, Umweltbundesamt (UBA), 14195 Berlin, Germany; (A.G.); (M.K.-G.)
| | - Sanna Lignell
- Swedish Food Agency, 751 26 Uppsala, Sweden; (S.L.); (A.K.L.)
| | | | - Lucia Fabelova
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, 831 01 Bratislava, Slovakia; (L.F.); (L.P.M.)
| | - Lubica Palkovicova Murinova
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, 831 01 Bratislava, Slovakia; (L.F.); (L.P.M.)
| | - Anteneh Desalegn
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, 0456 Oslo, Norway; (A.D.); (N.I.)
| | - Nina Iszatt
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, 0456 Oslo, Norway; (A.D.); (N.I.)
| | - Tessa Schillemans
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden; (T.S.); (A.Å.)
| | - Agneta Åkesson
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden; (T.S.); (A.Å.)
| | - Ann Colles
- VITO Health, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium; (N.W.); (A.R.-C.); (A.C.); (G.K.); (G.S.); (E.G.); (S.R.)
| | - Elly Den Hond
- Provincial Institute of Hygiene, Provincial Research Centre for Environment and Health, 2023 Antwerp, Belgium;
| | - Gudrun Koppen
- VITO Health, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium; (N.W.); (A.R.-C.); (A.C.); (G.K.); (G.S.); (E.G.); (S.R.)
| | - Nicolas Van Larebeke
- Analytical, Environmental and Geo-Chemistry, Vrije Universiteit Brussel, 1050 Brussels, Belgium;
| | - Greet Schoeters
- VITO Health, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium; (N.W.); (A.R.-C.); (A.C.); (G.K.); (G.S.); (E.G.); (S.R.)
- Department of Biomedical Sciences, University of Antwerp, 2000 Antwerp, Belgium
| | - Eva Govarts
- VITO Health, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium; (N.W.); (A.R.-C.); (A.C.); (G.K.); (G.S.); (E.G.); (S.R.)
| | - Sylvie Remy
- VITO Health, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium; (N.W.); (A.R.-C.); (A.C.); (G.K.); (G.S.); (E.G.); (S.R.)
| |
Collapse
|
28
|
Zare Jeddi M, Galea KS, Viegas S, Fantke P, Louro H, Theunis J, Govarts E, Denys S, Fillol C, Rambaud L, Kolossa-Gehring M, Santonen T, van der Voet H, Ghosh M, Costa C, Teixeira JP, Verhagen H, Duca RC, Van Nieuwenhuyse A, Jones K, Sams C, Sepai O, Tranfo G, Bakker M, Palmen N, van Klaveren J, Scheepers PTJ, Paini A, Canova C, von Goetz N, Katsonouri A, Karakitsios S, Sarigiannis DA, Bessems J, Machera K, Harrad S, Hopf NB. FAIR environmental and health registry (FAIREHR)- supporting the science to policy interface and life science research, development and innovation. FRONTIERS IN TOXICOLOGY 2023; 5:1116707. [PMID: 37342468 PMCID: PMC10278765 DOI: 10.3389/ftox.2023.1116707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 04/19/2023] [Indexed: 06/23/2023] Open
Abstract
The environmental impact on health is an inevitable by-product of human activity. Environmental health sciences is a multidisciplinary field addressing complex issues on how people are exposed to hazardous chemicals that can potentially affect adversely the health of present and future generations. Exposure sciences and environmental epidemiology are becoming increasingly data-driven and their efficiency and effectiveness can significantly improve by implementing the FAIR (findable, accessible, interoperable, reusable) principles for scientific data management and stewardship. This will enable data integration, interoperability and (re)use while also facilitating the use of new and powerful analytical tools such as artificial intelligence and machine learning in the benefit of public health policy, and research, development and innovation (RDI). Early research planning is critical to ensuring data is FAIR at the outset. This entails a well-informed and planned strategy concerning the identification of appropriate data and metadata to be gathered, along with established procedures for their collection, documentation, and management. Furthermore, suitable approaches must be implemented to evaluate and ensure the quality of the data. Therefore, the 'Europe Regional Chapter of the International Society of Exposure Science' (ISES Europe) human biomonitoring working group (ISES Europe HBM WG) proposes the development of a FAIR Environment and health registry (FAIREHR) (hereafter FAIREHR). FAIR Environment and health registry offers preregistration of studies on exposure sciences and environmental epidemiology using HBM (as a starting point) across all areas of environmental and occupational health globally. The registry is proposed to receive a dedicated web-based interface, to be electronically searchable and to be available to all relevant data providers, users and stakeholders. Planned Human biomonitoring studies would ideally be registered before formal recruitment of study participants. The resulting FAIREHR would contain public records of metadata such as study design, data management, an audit trail of major changes to planned methods, details of when the study will be completed, and links to resulting publications and data repositories when provided by the authors. The FAIREHR would function as an integrated platform designed to cater to the needs of scientists, companies, publishers, and policymakers by providing user-friendly features. The implementation of FAIREHR is expected to yield significant benefits in terms of enabling more effective utilization of human biomonitoring (HBM) data.
Collapse
Affiliation(s)
- Maryam Zare Jeddi
- National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Karen S. Galea
- Institute of Occupational Medicine (IOM), Research Avenue North, Riccarton, United Kingdom
| | - Susana Viegas
- NOVA National School of Public Health, Public Health Research Centre, Comprehensive Health Research Center, CHRC, NOVA University Lisbon, Lisbon, Portugal
| | - Peter Fantke
- Quantitative Sustainability Assessment, Department of Environmental and Resource Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Henriqueta Louro
- National Institute of Health Dr. Ricardo Jorge, Department of Human Genetics, Lisbon and ToxOmics - Centre for Toxicogenomics and Human Health, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Jan Theunis
- VITO HEALTH, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Eva Govarts
- VITO HEALTH, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Sébastien Denys
- SpF— Santé Publique France, Environmental and Occupational Health Division, Saint-Maurice, France
| | - Clémence Fillol
- SpF— Santé Publique France, Environmental and Occupational Health Division, Saint-Maurice, France
| | - Loïc Rambaud
- SpF— Santé Publique France, Environmental and Occupational Health Division, Saint-Maurice, France
| | | | - Tiina Santonen
- Finnish Institute of Occupational Health (FIOH), Helsinki, Finland
| | | | - Manosij Ghosh
- Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Carla Costa
- Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge, Porto, Portugal and EPIUnit—Instituto de Saúde Pública da Universidade do Porto, Porto, Portugal
| | - João Paulo Teixeira
- Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge, Porto, Portugal and EPIUnit—Instituto de Saúde Pública da Universidade do Porto, Porto, Portugal
| | - Hans Verhagen
- Nutrition Innovation Center for Food and Health (NICHE), University of Ulster, Coleraine, United Kingdom
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
- Food Safety and Nutrition Consultancy, Zeist, Netherlands
| | - Radu-Corneliu Duca
- Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
- Department of Health Protection, Laboratoire National de Santé (LNS), Dudelange, Luxembourg
| | - An Van Nieuwenhuyse
- Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
- Department of Health Protection, Laboratoire National de Santé (LNS), Dudelange, Luxembourg
| | - Kate Jones
- HSE—Health and Safety Executive, Buxton, United Kingdom
| | - Craig Sams
- HSE—Health and Safety Executive, Buxton, United Kingdom
| | - Ovnair Sepai
- UK Health Security Agency, Radiation, Chemical and Environmental Hazards Division, Chilton, United Kingdom
| | - Giovanna Tranfo
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Institute Against Accidents at Work (INAIL), Monte PorzioCatone(RM), Italy
| | - Martine Bakker
- National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Nicole Palmen
- National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Jacob van Klaveren
- National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Paul T. J. Scheepers
- Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, Netherlands
| | | | - Cristina Canova
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Padova, Italy
| | - Natalie von Goetz
- Federal Office of Public Health, Bern, Switzerland
- Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | | | - Spyros Karakitsios
- HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimosthenis A. Sarigiannis
- HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Complex Risk and Data Analysis Research Center, University School for Advanced Studies IUSS, Pavia, Italy
| | - Jos Bessems
- VITO HEALTH, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Kyriaki Machera
- Laboratory of Pesticides’ Toxicology, Department of Pesticides Control and Phytopharmacy, Benaki Phytopathological Institute, Kifissia, Greece
| | - Stuart Harrad
- School of Geography, Earth, and Environmental Sciences, University of Birmingham, United Kingdom
| | - Nancy B. Hopf
- Centre for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
29
|
Vorkamp K, Esteban López M, Gilles L, Göen T, Govarts E, Hajeb P, Katsonouri A, Knudsen LE, Kolossa-Gehring M, Lindh C, Nübler S, Pedraza-Díaz S, Santonen T, Castaño A. Coordination of chemical analyses under the European Human Biomonitoring Initiative (HBM4EU): Concepts, procedures and lessons learnt. Int J Hyg Environ Health 2023; 251:114183. [PMID: 37148759 DOI: 10.1016/j.ijheh.2023.114183] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/08/2023]
Abstract
The European Human Biomonitoring Initiative (HBM4EU) ran from 2017 to 2022 with the aim of advancing and harmonizing human biomonitoring in Europe. More than 40,000 analyses were performed on human samples in different human biomonitoring studies in HBM4EU, addressing the chemical exposure of the general population, temporal developments, occupational exposure and a public health intervention on mercury in populations with high fish consumption. The analyses covered 15 priority groups of organic chemicals and metals and were carried out by a network of laboratories meeting the requirements of a comprehensive quality assurance and control system. The coordination of the chemical analyses included establishing contacts between sample owners and qualified laboratories and monitoring the progress of the chemical analyses during the analytical phase, also addressing status and consequences of Covid-19 measures. Other challenges were related to the novelty and complexity of HBM4EU, including administrative and financial matters and implementation of standardized procedures. Many individual contacts were necessary in the initial phase of HBM4EU. However, there is a potential to develop more streamlined and standardized communication and coordination in the analytical phase of a consolidated European HBM programme.
Collapse
Affiliation(s)
- Katrin Vorkamp
- Aarhus University, Department of Environmental Science, Roskilde, Denmark.
| | - Marta Esteban López
- Instituto de Salud Carlos III, National Centre for Environmental Health, Majadahonda, Spain
| | - Liese Gilles
- VITO Health, Flemish Institute for Technological Research, Mol, Belgium
| | - Thomas Göen
- Friedrich-Alexander Universität Erlangen-Nürnberg, Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Erlangen, Germany
| | - Eva Govarts
- VITO Health, Flemish Institute for Technological Research, Mol, Belgium
| | - Parvaneh Hajeb
- Aarhus University, Department of Environmental Science, Roskilde, Denmark
| | | | - Lisbeth E Knudsen
- University of Copenhagen, Institute of Public Health, Copenhagen, Denmark
| | | | - Christian Lindh
- Lund University, Division of Occupational and Environmental Medicine, Lund, Sweden
| | - Stefanie Nübler
- Friedrich-Alexander Universität Erlangen-Nürnberg, Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Erlangen, Germany
| | - Susana Pedraza-Díaz
- Instituto de Salud Carlos III, National Centre for Environmental Health, Majadahonda, Spain
| | - Tiina Santonen
- Finnish Institute of Occupational Health, Helsinki, Finland
| | - Argelia Castaño
- Instituto de Salud Carlos III, National Centre for Environmental Health, Majadahonda, Spain
| |
Collapse
|
30
|
Nübler S, Esteban López M, Castaño A, Mol HGJ, Müller J, Schäfer M, Haji-Abbas-Zarrabi K, Hajslova J, Pulkrabova J, Dvorakova D, Urbancova K, Koch HM, Antignac JP, Sakhi AK, Vorkamp K, Burkhardt T, Scherer M, Göen T. External Quality Assurance Schemes (EQUASs) and Inter-laboratory Comparison Investigations (ICIs) for human biomonitoring of polycyclic aromatic hydrocarbon (PAH) biomarkers in urine as part of the quality assurance programme under HBM4EU. Int J Hyg Environ Health 2023; 250:114169. [PMID: 37099846 DOI: 10.1016/j.ijheh.2023.114169] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/28/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) were included as priority substances for human biomonitoring (HBM) in the European Human Biomonitoring Initiative (HBM4EU), which intended to harmonise and advance HBM across Europe. For this project, a specific Quality Assurance and Quality Control (QA/QC) programme applying Inter-laboratory Comparison Investigations (ICIs) and External Quality Assurance Schemes (EQUASs) was developed to ensure the comparability and accuracy of participating analytical laboratories. This paper presents the results of four ICI/EQUAS rounds for the determination of 13 PAH metabolites in urine, i.e. 1-naphthol, 2-naphthol, 1,2-dihydroxynaphthalene, 2-, 3- and 9-hydroxyfluorene, 1-, 2-, 3-, 4- and 9-hydroxyphenanthrene, 1-hydroxypyrene and 3-hydroxybenzo(a)pyrene. However, 4 PAH metabolites could not be evaluated as the analytical capacity of participating laboratories was too low. Across all rounds and biomarkers, 86% of the participants achieved satisfactory results, although low limits of quantification were required to quantify the urinary metabolites at exposure levels of the general population. Using high-performance liquid or gas chromatography coupled with mass spectrometry (HPLC-MS; GC-MS) and isotope dilution for calibration as well as performing an enzymatic deconjugation step proved to be favourable for the accurate determination of PAHs in urine. Finally, the HBM4EU QA/QC programme identified an international network of laboratories providing comparable results in the analysis of urinary PAH biomarkers, although covering all parameters initially selected was still too challenging.
Collapse
Affiliation(s)
- Stefanie Nübler
- Friedrich-Alexander Universität Erlangen-Nürnberg, Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Henkestraße 9-11, 91054, Erlangen, Germany
| | - Marta Esteban López
- National Center for Environmental Health, Instituto de Salud Carlos III, Ctra. Majadahonda a Pozuelo Km2,2, 28220, Madrid, Spain
| | - Argelia Castaño
- National Center for Environmental Health, Instituto de Salud Carlos III, Ctra. Majadahonda a Pozuelo Km2,2, 28220, Madrid, Spain
| | - Hans G J Mol
- Wageningen Food Safety Research, Part of Wageningen University and Research, Akkermaalsbos 2, 6708 WB, Wageningen, the Netherlands
| | - Johannes Müller
- Friedrich-Alexander Universität Erlangen-Nürnberg, Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Henkestraße 9-11, 91054, Erlangen, Germany
| | - Moritz Schäfer
- Friedrich-Alexander Universität Erlangen-Nürnberg, Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Henkestraße 9-11, 91054, Erlangen, Germany
| | - Karin Haji-Abbas-Zarrabi
- Friedrich-Alexander Universität Erlangen-Nürnberg, Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Henkestraße 9-11, 91054, Erlangen, Germany
| | - Jana Hajslova
- University of Chemistry and Technology Prague, Department of Food Analysis and Nutrition (VSCHT), Technicka 5, 16028, Prague, Czech Republic
| | - Jana Pulkrabova
- University of Chemistry and Technology Prague, Department of Food Analysis and Nutrition (VSCHT), Technicka 5, 16028, Prague, Czech Republic
| | - Darina Dvorakova
- University of Chemistry and Technology Prague, Department of Food Analysis and Nutrition (VSCHT), Technicka 5, 16028, Prague, Czech Republic
| | - Katerina Urbancova
- University of Chemistry and Technology Prague, Department of Food Analysis and Nutrition (VSCHT), Technicka 5, 16028, Prague, Czech Republic
| | - Holger M Koch
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
| | - Jean-Philippe Antignac
- Oniris, INRAE, UMR 1329, Laboratoire D'Etude des Résidus et Contaminants Dans les Aliments (LABERCA), F-44307, Nantes, France
| | | | - Katrin Vorkamp
- Aarhus University, Department of Environmental Science, Frederiksborgvej 399, 4000, Roskilde, Denmark
| | - Therese Burkhardt
- ABF Analytisch-Biologisches Forschungslabor GmbH, Semmelweisstr. 5, 82152, Planegg, Germany
| | - Max Scherer
- ABF Analytisch-Biologisches Forschungslabor GmbH, Semmelweisstr. 5, 82152, Planegg, Germany
| | - Thomas Göen
- Friedrich-Alexander Universität Erlangen-Nürnberg, Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Henkestraße 9-11, 91054, Erlangen, Germany.
| |
Collapse
|
31
|
Uhl M, Schoeters G, Govarts E, Bil W, Fletcher T, Haug LS, Hoogenboom R, Gundacker C, Trier X, Fernandez MF, Calvo AC, López ME, Coertjens D, Santonen T, Murínová ĽP, Richterová D, Brouwere KD, Hauzenberger I, Kolossa-Gehring M, Halldórsson ÞI. PFASs: What can we learn from the European Human Biomonitoring Initiative HBM4EU. Int J Hyg Environ Health 2023; 250:114168. [PMID: 37068413 DOI: 10.1016/j.ijheh.2023.114168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 04/19/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) were one of the priority substance groups selected which have been investigated under the ambitious European Joint programme HBM4EU (2017-2022). In order to answer policy relevant questions concerning exposure and health effects of PFASs in Europe several activities were developed under HBM4EU namely i) synthesis of HBM data generated in Europe prior to HBM4EU by developing new platforms, ii) development of a Quality Assurance/Quality Control Program covering 12 biomarkers of PFASs, iii) aligned and harmonized human biomonitoring studies of PFASs. In addition, some cohort studies (on mother-child exposure, occupational exposure to hexavalent chromium) were initiated, and literature researches on risk assessment of mixtures of PFAS, health effects and effect biomarkers were performed. The HBM4EU Aligned Studies have generated internal exposure reference levels for 12 PFASs in 1957 European teenagers aged 12-18 years. The results showed that serum levels of 14.3% of the teenagers exceeded 6.9 μg/L PFASs, which corresponds to the EFSA guideline value for a tolerable weekly intake (TWI) of 4.4 ng/kg for some of the investigated PFASs (PFOA, PFOS, PFNA and PFHxS). In Northern and Western Europe, 24% of teenagers exceeded this level. The most relevant sources of exposure identified were drinking water and some foods (fish, eggs, offal and locally produced foods). HBM4EU occupational studies also revealed very high levels of PFASs exposure in workers (P95: 192 μg/L in chrome plating facilities), highlighting the importance of monitoring PFASs exposure in specific workplaces. In addition, environmental contaminated hotspots causing high exposure to the population were identified. In conclusion, the frequent and high PFASs exposure evidenced by HBM4EU strongly suggests the need to take all possible measures to prevent further contamination of the European population, in addition to adopting remediation measures in hotspot areas, to protect human health and the environment. HBM4EU findings also support the restriction of the whole group of PFASs. Further, research and definition for additional toxicological dose-effect relationship values for more PFASs compounds is needed.
Collapse
Affiliation(s)
- Maria Uhl
- Environment Agency Austria, Vienna, Austria.
| | - Greet Schoeters
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium; University of Antwerp, Antwerp, Belgium
| | - Eva Govarts
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Wieneke Bil
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Tony Fletcher
- UK Health Security Agency, Chilton, Didcot, Oxfordshire, England, UK
| | | | - Ron Hoogenboom
- Wageningen Food Safety Research, Wageningen, the Netherlands
| | | | - Xenia Trier
- European Environment Agency, Copenhagen, Denmark
| | | | | | | | | | - Tiina Santonen
- Finnish Institute of Occupational Health, Helsinki, Uusimaa, Finland
| | | | | | - Katleen De Brouwere
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | | | | | | |
Collapse
|
32
|
Rodríguez-Carrillo A, Mustieles V, Salamanca-Fernández E, Olivas-Martínez A, Suárez B, Bajard L, Baken K, Blaha L, Bonefeld-Jørgensen EC, Couderq S, D'Cruz SC, Fini JB, Govarts E, Gundacker C, Hernández AF, Lacasaña M, Laguzzi F, Linderman B, Long M, Louro H, Neophytou C, Oberemn A, Remy S, Rosenmai AK, Saber AT, Schoeters G, Silva MJ, Smagulova F, Uhl M, Vinggaard AM, Vogel U, Wielsøe M, Olea N, Fernández MF. Implementation of effect biomarkers in human biomonitoring studies: A systematic approach synergizing toxicological and epidemiological knowledge. Int J Hyg Environ Health 2023; 249:114140. [PMID: 36841007 DOI: 10.1016/j.ijheh.2023.114140] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 02/08/2023] [Accepted: 02/15/2023] [Indexed: 02/26/2023]
Abstract
Human biomonitoring (HBM) studies have highlighted widespread daily exposure to environmental chemicals. Some of these are suspected to contribute to adverse health outcomes such as reproductive, neurological, and metabolic disorders, among other developmental and chronic impairments. One of the objectives of the H2020 European Human Biomonitoring Initiative (HBM4EU) was the development of informative effect biomarkers for application in a more systematic and harmonized way in large-scale European HBM studies. The inclusion of effect biomarkers would complement exposure data with mechanistically-based information on early and late adverse effects. For this purpose, a stepwise strategy was developed to identify and implement a panel of validated effect biomarkers in European HBM studies. This work offers an overview of the complete procedure followed, from comprehensive literature search strategies, selection of criteria for effect biomarkers and their classification and prioritization, based on toxicological data and adverse outcomes, to pilot studies for their analytical, physiological, and epidemiological validation. We present the example of one study that demonstrated the mediating role of the effect biomarker status of brain-derived neurotrophic factor BDNF in the longitudinal association between infant bisphenol A (BPA) exposure and behavioral function in adolescence. A panel of effect biomarkers has been implemented in the HBM4EU Aligned Studies as main outcomes, including traditional oxidative stress, reproductive, and thyroid hormone biomarkers. Novel biomarkers of effect, such as DNA methylation status of BDNF and kisspeptin (KISS) genes were also evaluated as molecular markers of neurological and reproductive health, respectively. A panel of effect biomarkers has also been applied in HBM4EU occupational studies, such as micronucleus analysis in lymphocytes and reticulocytes, whole blood comet assay, and malondialdehyde, 8-oxo-2'-deoxyguanosine and untargeted metabolomic profile in urine, to investigate, for example, biological changes in response to hexavalent chromium Cr(VI) exposure. The use of effect biomarkers in HBM4EU has demonstrated their ability to detect early biological effects of chemical exposure and to identify subgroups that are at higher risk. The roadmap developed in HBM4EU confirms the utility of effect biomarkers, and support one of the main objectives of HBM research, which is to link exposure biomarkers to mechanistically validated effect and susceptibility biomarkers in order to better understand the public health implications of human exposure to environmental chemicals.
Collapse
Affiliation(s)
- Andrea Rodríguez-Carrillo
- Biomedical Research Center (CIBM), University of Granada, Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; Department of Radiology and Physical Medicine, School of Medicine, University of Granada, 18016, Granada, Spain
| | - Vicente Mustieles
- Biomedical Research Center (CIBM), University of Granada, Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; Department of Radiology and Physical Medicine, School of Medicine, University of Granada, 18016, Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Spain
| | - Elena Salamanca-Fernández
- Biomedical Research Center (CIBM), University of Granada, Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; Department of Radiology and Physical Medicine, School of Medicine, University of Granada, 18016, Granada, Spain.
| | - Alicia Olivas-Martínez
- Biomedical Research Center (CIBM), University of Granada, Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain
| | - Beatriz Suárez
- Biomedical Research Center (CIBM), University of Granada, Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain
| | - Lola Bajard
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, CZ62500, Brno, Czech Republic
| | - Kirsten Baken
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Ludek Blaha
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, CZ62500, Brno, Czech Republic
| | - Eva Cecilie Bonefeld-Jørgensen
- Centre for Arctic Health & Molecular Epidemiology, Department of Public Health Aarhus University, Denmark; Greenland Centre for Health Research, University of Greenland, Nuuk, Greenland
| | - Stephan Couderq
- Physiologie Moléculaire et Adaptation, Département "Adaptation du Vivant", UMR 7221 MNHN/CNRS, Muséum National d'Histoire Naturelle, Paris, 75005, France
| | - Shereen Cynthia D'Cruz
- Univ Rennes, EHESP, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000, Rennes, France
| | - Jean-Baptiste Fini
- Physiologie Moléculaire et Adaptation, Département "Adaptation du Vivant", UMR 7221 MNHN/CNRS, Muséum National d'Histoire Naturelle, Paris, 75005, France
| | - Eva Govarts
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Claudia Gundacker
- Institute of Medical Genetics, Medical University of Vienna, Waehringer Strasse 10, A-1090, Vienna, Austria
| | - Antonio F Hernández
- Biomedical Research Center (CIBM), University of Granada, Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Spain; Department of Legal Medicine and Toxicology, University of Granada School of Medicine, Granada, Spain
| | - Marina Lacasaña
- Biomedical Research Center (CIBM), University of Granada, Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Spain; Department of Legal Medicine and Toxicology, University of Granada School of Medicine, Granada, Spain
| | - Federica Laguzzi
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Birgitte Linderman
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Manhai Long
- Centre for Arctic Health & Molecular Epidemiology, Department of Public Health Aarhus University, Denmark; Greenland Centre for Health Research, University of Greenland, Nuuk, Greenland
| | - Henriqueta Louro
- National Institute of Health Doutor Ricardo Jorge (INSA), Human Genetics Department, Toxicogenomics and Human Health (ToxOmics), NOVA Medical School/FCM, Universidade Nova de Lisboa, Av. Padre Cruz, 1649-016, Lisbon, Portugal
| | | | - Axel Oberemn
- German Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany
| | - Sylvie Remy
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | | | | | - Greet Schoeters
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium; Department of Biomedical Sciences and Toxicological Center, University of Antwerp, Belgium
| | - Maria Joao Silva
- National Institute of Health Doutor Ricardo Jorge (INSA), Human Genetics Department, Toxicogenomics and Human Health (ToxOmics), NOVA Medical School/FCM, Universidade Nova de Lisboa, Av. Padre Cruz, 1649-016, Lisbon, Portugal
| | - Fatima Smagulova
- Univ Rennes, EHESP, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000, Rennes, France
| | - Maria Uhl
- Environment Agency Austria (EAA), Vienna, Austria
| | - Anne Marie Vinggaard
- National Food Institute, Technical University of Denmark, 2800 Kgs, Lyngby, Denmark
| | - Ulla Vogel
- National Food Institute, Technical University of Denmark, 2800 Kgs, Lyngby, Denmark; The National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Maria Wielsøe
- Centre for Arctic Health & Molecular Epidemiology, Department of Public Health Aarhus University, Denmark
| | - Nicolás Olea
- Biomedical Research Center (CIBM), University of Granada, Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; Department of Radiology and Physical Medicine, School of Medicine, University of Granada, 18016, Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Spain
| | - Mariana F Fernández
- Biomedical Research Center (CIBM), University of Granada, Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; Department of Radiology and Physical Medicine, School of Medicine, University of Granada, 18016, Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Spain.
| |
Collapse
|
33
|
Vogel N, Schmidt P, Lange R, Gerofke A, Sakhi AK, Haug LS, Jensen TK, Frederiksen H, Szigeti T, Csákó Z, Murinova LP, Sidlovska M, Janasik B, Wasowicz W, Tratnik JS, Mazej D, Gabriel C, Karakitsios S, Barbone F, Rosolen V, Rambaud L, Riou M, Murawski A, Leseman D, Koppen G, Covaci A, Lignell S, Lindroos AK, Zvonar M, Andryskova L, Fabelova L, Richterova D, Horvat M, Kosjek T, Sarigiannis D, Maroulis M, Pedraza-Diaz S, Cañas A, Verheyen VJ, Bastiaensen M, Gilles L, Schoeters G, Esteban-López M, Castaño A, Govarts E, Koch HM, Kolossa-Gehring M. Current exposure to phthalates and DINCH in European children and adolescents - Results from the HBM4EU Aligned Studies 2014 to 2021. Int J Hyg Environ Health 2023; 249:114101. [PMID: 36805185 DOI: 10.1016/j.ijheh.2022.114101] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/02/2022] [Accepted: 12/08/2022] [Indexed: 02/19/2023]
Abstract
Phthalates are mainly used as plasticizers for polyvinyl chloride (PVC). Exposure to several phthalates is associated with different adverse effects most prominently on the development of reproductive functions. The HBM4EU Aligned Studies (2014-2021) have investigated current European exposure to ten phthalates (DEP, BBzP, DiBP, DnBP, DCHP, DnPeP, DEHP, DiNP, DiDP, DnOP) and the substitute DINCH to answer the open policy relevant questions which were defined by HBM4EU partner countries and EU institutions as the starting point of the programme. The exposure dataset includes ∼5,600 children (6-11 years) and adolescents (12-18 years) from up to 12 countries per age group and covering the North, East, South and West European regions. Study data from participating studies were harmonised with respect to sample size and selection of participants, selection of biomarkers, and quality and comparability of analytical results to provide a comparable perspective of European exposure. Phthalate and DINCH exposure were deduced from urinary excretions of metabolites, where concentrations were expressed as their key descriptor geometric mean (GM) and 95th percentile (P95). This study aims at reporting current exposure levels and differences in these between European studies and regions, as well as comparisons to human biomonitoring guidance values (HBM-GVs). GMs for children were highest for ∑DEHP metabolites (33.6 μg/L), MiBP (26.6 μg/L), and MEP (24.4 μg/L) and lowest for∑DiDP metabolites (1.91 μg/L) and ∑DINCH metabolites (3.57 μg/L). In adolescents highest GMs were found for MEP (43.3 μg/L), ∑DEHP metabolites (28.8 μg/L), and MiBP (25.6 μg/L) and lowest for ∑DiDP metabolites (= 2.02 μg/L) and ∑DINCH metabolites (2.51 μg/L). In addition, GMs and P95 stratified by European region, sex, household education level, and degree of urbanization are presented. Differences in average biomarker concentrations between sampling sites (data collections) ranged from factor 2 to 9. Compared to the European average, children in the sampling sites OCC (Denmark), InAirQ (Hungary), and SPECIMEn (The Netherlands) had the lowest concentrations across all metabolites and ESTEBAN (France), NAC II (Italy), and CROME (Greece) the highest. For adolescents, comparably higher metabolite concentrations were found in NEB II (Norway), PCB cohort (Slovakia), and ESTEBAN (France), and lower concentrations in POLAES (Poland), FLEHS IV (Belgium), and GerES V-sub (Germany). Multivariate analyses (Survey Generalized Linear Models) indicate compound-specific differences in average metabolite concentrations between the four European regions. Comparison of individual levels with HBM-GVs revealed highest rates of exceedances for DnBP and DiBP, with up to 3 and 5%, respectively, in children and adolescents. No exceedances were observed for DEP and DINCH. With our results we provide current, detailed, and comparable data on exposure to phthalates in children and - for the first time - in adolescents, and - for the first time - on DINCH in children and adolescents of all four regions of Europe which are particularly suited to inform exposure and risk assessment and answer open policy relevant questions.
Collapse
Affiliation(s)
- Nina Vogel
- German Environment Agency (UBA), Berlin, Germany.
| | | | - Rosa Lange
- German Environment Agency (UBA), Berlin, Germany
| | | | | | - Line S Haug
- Norwegian Institute of Public Health, Oslo, Norway
| | - Tina Kold Jensen
- IST - Clinical Pharmacology, Pharmacy and Environmental Medicine, Odense, Denmark
| | - Hanne Frederiksen
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | | | - Zsófia Csákó
- National Public Health Center, Budapest, Hungary
| | | | | | - Beata Janasik
- Nofer Institute of Occupational Medicine, Lodz, Poland
| | | | - Janja Snoj Tratnik
- Jozef Stefan Institute, Department of Environmental Sciences, Ljubljana, Slovenia
| | - Darja Mazej
- Jozef Stefan Institute, Department of Environmental Sciences, Ljubljana, Slovenia
| | - Catherine Gabriel
- Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece; HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Thessaloniki-Thermi, Greece
| | - Spyros Karakitsios
- Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece; HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Thessaloniki-Thermi, Greece
| | - Fabio Barbone
- Department of Medicine-DAME, University of Udine, Udine, Italy
| | - Valentina Rosolen
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy
| | - Loïc Rambaud
- Santé publique France, Environmental and Occupational Health Division, Saint-Maurice, France
| | - Margaux Riou
- Santé publique France, Environmental and Occupational Health Division, Saint-Maurice, France
| | | | - Daan Leseman
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Gudrun Koppen
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Adrian Covaci
- Toxicological Center, University of Antwerp, Wilrijk, Belgium
| | | | | | - Martin Zvonar
- RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Lenka Andryskova
- RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Lucia Fabelova
- Slovak Medical University, Faculty of Public Health, Bratislava, Slovakia
| | - Denisa Richterova
- Slovak Medical University, Faculty of Public Health, Bratislava, Slovakia
| | - Milena Horvat
- Jozef Stefan Institute, Department of Environmental Sciences, Ljubljana, Slovenia
| | - Tina Kosjek
- Jozef Stefan Institute, Department of Environmental Sciences, Ljubljana, Slovenia
| | - Denis Sarigiannis
- Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece; HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Thessaloniki-Thermi, Greece; Environmental Health Engineering, Institute of Advanced Study, Pavia, Italy
| | - Marios Maroulis
- Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece; HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Thessaloniki-Thermi, Greece
| | - Susana Pedraza-Diaz
- National Centre for Environmental Health, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Ana Cañas
- National Centre for Environmental Health, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Veerle J Verheyen
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | | | - Liese Gilles
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Greet Schoeters
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium; University of Antwerp, Dept of Biomedical Sciences and Toxicological Centre, Antwerp, Belgium
| | - Marta Esteban-López
- National Centre for Environmental Health, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Argelia Castaño
- National Centre for Environmental Health, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Eva Govarts
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Holger M Koch
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bochum, Germany
| | | |
Collapse
|
34
|
A step towards harmonising human biomonitoring study setup on European level: Materials provided and lessons learnt in HBM4EU. Int J Hyg Environ Health 2023; 249:114118. [PMID: 36773579 DOI: 10.1016/j.ijheh.2023.114118] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 12/21/2022] [Accepted: 01/24/2023] [Indexed: 02/11/2023]
Abstract
Internal exposure of the human body to potentially harmful chemical substances can be assessed by Human Biomonitoring (HBM). HBM can be used to generate conclusive data that may provide an overview of exposure levels in entire or specific population groups. This knowledge can promote the understanding of potential risks of the substances of interest or help monitoring the success of regulatory measures taken on the political level. Study planning and design are key elements of any epidemiologic study to generate reliable data. In the field of HBM, this has been done using differing approaches on various levels of population coverage so far. Comparison and combined usage of the resulting data would contribute to understanding exposure and its factors on a larger scale, however, the differences between studies make this a challenging and somewhat limited endeavour. This article presents templates for documents that are required to set up an HBM study, thus facilitating the generation of harmonised HBM data as a step towards standardisation of HBM in Europe. They are designed to be modular and adaptable to the specific needs of a single study while emphasising minimum requirements to ensure comparability. It further elaborates on the challenges encountered during the process of creating these documents during the runtime of the European Joint Programme HBM4EU in a multi-national expert team and draws up lessons learnt in the context of knowledge management.
Collapse
|
35
|
Harmonized human biomonitoring in European children, teenagers and adults: EU-wide exposure data of 11 chemical substance groups from the HBM4EU Aligned Studies (2014-2021). Int J Hyg Environ Health 2023; 249:114119. [PMID: 36773580 DOI: 10.1016/j.ijheh.2023.114119] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 12/19/2022] [Accepted: 01/24/2023] [Indexed: 02/11/2023]
Abstract
As one of the core elements of the European Human Biomonitoring Initiative (HBM4EU) a human biomonitoring (HBM) survey was conducted in 23 countries to generate EU-wide comparable HBM data. This survey has built on existing HBM capacity in Europe by aligning national or regional HBM studies, referred to as the HBM4EU Aligned Studies. The HBM4EU Aligned Studies included a total of 10,795 participants of three age groups: (i) 3,576 children aged 6-12 years, (ii) 3,117 teenagers aged 12-18 years and (iii) 4,102 young adults aged 20-39 years. The participants were recruited between 2014 and 2021 in 11-12 countries per age group, geographically distributed across Europe. Depending on the age group, internal exposure to phthalates and the substitute DINCH, halogenated and organophosphorus flame retardants, per- and polyfluoroalkyl substances (PFASs), cadmium, bisphenols, polycyclic aromatic hydrocarbons (PAHs), arsenic species, acrylamide, mycotoxins (deoxynivalenol (total DON)), benzophenones and selected pesticides was assessed by measuring substance specific biomarkers subjected to stringent quality control programs for chemical analysis. For substance groups analyzed in different age groups higher average exposure levels were observed in the youngest age group, i.e., phthalates/DINCH in children versus teenagers, acrylamide and pesticides in children versus adults, benzophenones in teenagers versus adults. Many biomarkers in teenagers and adults varied significantly according to educational attainment, with higher exposure levels of bisphenols, phthalates, benzophenones, PAHs and acrylamide in participants (from households) with lower educational attainment, while teenagers from households with higher educational attainment have higher exposure levels for PFASs and arsenic. In children, a social gradient was only observed for the non-specific pyrethroid metabolite 3-PBA and di-isodecyl phthalate (DiDP), with higher levels in children from households with higher educational attainment. Geographical variations were seen for all exposure biomarkers. For 15 biomarkers, the available health-based HBM guidance values were exceeded with highest exceedance rates for toxicologically relevant arsenic in teenagers (40%), 3-PBA in children (36%), and between 11 and 14% for total DON, Σ (PFOA + PFNA + PFHxS + PFOS), bisphenol S and cadmium. The infrastructure and harmonized approach succeeded in obtaining comparable European wide internal exposure data for a prioritized set of 11 chemical groups. These data serve as a reference for comparison at the global level, provide a baseline to compare the efficacy of the European Commission's chemical strategy for sustainability and will give leverage to national policy makers for the implementation of targeted measures.
Collapse
|
36
|
Santonen T, Mahiout S, Alvito P, Apel P, Bessems J, Bil W, Borges T, Bose-O'Reilly S, Buekers J, Cañas Portilla AI, Calvo AC, de Alba González M, Domínguez-Morueco N, López ME, Falnoga I, Gerofke A, Caballero MDCG, Horvat M, Huuskonen P, Kadikis N, Kolossa-Gehring M, Lange R, Louro H, Martins C, Meslin M, Niemann L, Díaz SP, Plichta V, Porras SP, Rousselle C, Scholten B, Silva MJ, Šlejkovec Z, Tratnik JS, Joksić AŠ, Tarazona JV, Uhl M, Van Nieuwenhuyse A, Viegas S, Vinggaard AM, Woutersen M, Schoeters G. How to use human biomonitoring in chemical risk assessment: Methodological aspects, recommendations, and lessons learned from HBM4EU. Int J Hyg Environ Health 2023; 249:114139. [PMID: 36870229 DOI: 10.1016/j.ijheh.2023.114139] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 03/06/2023]
Abstract
One of the aims of the European Human Biomonitoring Initiative, HBM4EU, was to provide examples of and good practices for the effective use of human biomonitoring (HBM) data in human health risk assessment (RA). The need for such information is pressing, as previous research has indicated that regulatory risk assessors generally lack knowledge and experience of the use of HBM data in RA. By recognising this gap in expertise, as well as the added value of incorporating HBM data into RA, this paper aims to support the integration of HBM into regulatory RA. Based on the work of the HBM4EU, we provide examples of different approaches to including HBM in RA and in estimations of the environmental burden of disease (EBoD), the benefits and pitfalls involved, information on the important methodological aspects to consider, and recommendations on how to overcome obstacles. The examples are derived from RAs or EBoD estimations made under the HBM4EU for the following HBM4EU priority substances: acrylamide, o-toluidine of the aniline family, aprotic solvents, arsenic, bisphenols, cadmium, diisocyanates, flame retardants, hexavalent chromium [Cr(VI)], lead, mercury, mixture of per-/poly-fluorinated compounds, mixture of pesticides, mixture of phthalates, mycotoxins, polycyclic aromatic hydrocarbons (PAHs), and the UV-filter benzophenone-3. Although the RA and EBoD work presented here is not intended to have direct regulatory implications, the results can be useful for raising awareness of possibly needed policy actions, as newly generated HBM data from HBM4EU on the current exposure of the EU population has been used in many RAs and EBoD estimations.
Collapse
Affiliation(s)
| | | | - Paula Alvito
- National Institute of Health Dr. Ricardo Jorge, 1649-016, Lisbon, Portugal; Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Petra Apel
- German Environment Agency (UBA), Corrensplatz 1, 14195, Berlin, Germany
| | - Jos Bessems
- VITO-Flemish Institute for Technological Research, Mol, Belgium
| | - Wieneke Bil
- National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Teresa Borges
- General-Directorate of Health, Ministry of Health, 1049-005, Lisbon, Portugal
| | - Stephan Bose-O'Reilly
- Department of Public Health, Health Services Research and Health Technology Assessment, UMIT - Private University for Health Sciences, Medical Informations und Technology, Hall i.T., Austria
| | - Jurgen Buekers
- VITO-Flemish Institute for Technological Research, Mol, Belgium
| | | | - Argelia Castaño Calvo
- National Centre for Environmental Health, Instituto de Salud Carlos III, Madrid, Spain
| | | | | | - Marta Esteban López
- National Centre for Environmental Health, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Antje Gerofke
- German Environment Agency (UBA), Corrensplatz 1, 14195, Berlin, Germany
| | | | | | | | | | | | - Rosa Lange
- German Environment Agency (UBA), Corrensplatz 1, 14195, Berlin, Germany
| | - Henriqueta Louro
- National Institute of Health Dr. Ricardo Jorge, 1649-016, Lisbon, Portugal; ToxOmics-Centre for Toxicogenomics and Human Health, NOVA Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal
| | - Carla Martins
- NOVA National School of Public Health, Public Health Research Centre, NOVA University Lisbon, 1600-560, Lisbon, Portugal; Comprehensive Health Research Center (CHRC), NOVA University Lisbon, 1600-560, Lisbon, Portugal
| | - Matthieu Meslin
- French Agency for Food, Environmental and Occupational Health & Safety, Anses, 14 rue Pierre et Marie Curie, 94701, Maisons-Alfort, France
| | - Lars Niemann
- German Federal Institute for Risk Assessment, Berlin, Germany
| | - Susana Pedraza Díaz
- National Centre for Environmental Health, Instituto de Salud Carlos III, Madrid, Spain
| | - Veronika Plichta
- Austrian Agency for Health and Food Safety, Department Risk Assessment, Spargelfeldstraße 191, 1220, Vienna, Austria
| | | | - Christophe Rousselle
- French Agency for Food, Environmental and Occupational Health & Safety, Anses, 14 rue Pierre et Marie Curie, 94701, Maisons-Alfort, France
| | - Bernice Scholten
- Research Group Risk Analysis for Products in Development, The Netherlands Organisation for Applied Scientific research (TNO), Utrecht, the Netherlands
| | - Maria João Silva
- National Institute of Health Dr. Ricardo Jorge, 1649-016, Lisbon, Portugal; ToxOmics-Centre for Toxicogenomics and Human Health, NOVA Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal
| | | | | | | | - Jose V Tarazona
- National Centre for Environmental Health, Instituto de Salud Carlos III, Madrid, Spain; European Food Safety Authority (EFSA), Parma, Italy
| | - Maria Uhl
- Environment Agency Austria, Spittelauer Lände 5, 1090, Vienna, Austria
| | | | - Susana Viegas
- NOVA National School of Public Health, Public Health Research Centre, NOVA University Lisbon, 1600-560, Lisbon, Portugal; Comprehensive Health Research Center (CHRC), NOVA University Lisbon, 1600-560, Lisbon, Portugal
| | | | - Marjolijn Woutersen
- National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Greet Schoeters
- VITO-Flemish Institute for Technological Research, Mol, Belgium; University of Antwerp, Dept of Biomedical Sciences, Antwerp, Belgium
| |
Collapse
|
37
|
Tuakashikila YM, Mata HM, Kabamba MM, Malumba AM, Tuakuila JK. Reference intervals for cd, hg, Mn and Pb in the general children population (3-14 years) of Kinshasa, Democratic Republic of Congo (DRC) between June 2019 and June 2020. Arch Public Health 2023; 81:40. [PMID: 36918930 PMCID: PMC10015835 DOI: 10.1186/s13690-023-01054-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/03/2023] [Indexed: 03/16/2023] Open
Abstract
The reference intervals (RIs), proposed by the International Federation of Clinical Chemistry and Laboratory Medicine (IFCC) and the International Union of Pure and Applied Chemistry (IUPAC), were derived for Cd, Hg, Mn and Pb in the blood and urine of the children population living in Kinshasa (n = 200, aged 3-14 years with 97 girls). Levels of metals were measured using coupled plasma mass (ICP-MS). In blood, the proposed RIs [P5-P95 (GM)] were 0.022-1.112 μg/L (0.074), 35.69-144.50 μg/L (71.43), 0.060 to 1.161 μg/L (0.208) and 6.597-15.740 μg/L (9.882) for Cd, Pb, Hg and Mn, respectively. Urinary levels [(P5-P95 (GM)] were 0.082-1.530 μg/L (0.366) for Cd, 1.827-18.500 μg/L (5.458) for Pb, 0.323-1.953 μg/L (0.709) for Hg and 0.070 to 1.703 μg/L (0.186) for Mn. As compared to the CDC updated blood Pb reference value (35 μg/L), Pb levels remain higher of public health concern. Cd and Mn levels were similar to those found in the same city in 2015 and databases involving non-occupationally exposed populations from other countries. Hg levels significantly lower than those found in the same city in 2015, probably due to exclusion criteria of metal exposure applying in the present survey (occupationally exposed to the studied metals, smoking habits, amalgam tooth fillings, fish consumption habit more than one time per week, etc.). These background metal exposures will be useful for future occupational and/or environmental surveys as well as undertaking a reliable regulation of chemical exposure in Kinshasa via a national HBM program.
Collapse
Affiliation(s)
- Y M Tuakashikila
- Laboratory of Analytical Chemistry and Environmental Toxicology, Faculty of Sciences, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - H M Mata
- Laboratory of Analytical Chemistry and Environmental Toxicology, Faculty of Sciences, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - M M Kabamba
- Laboratory of Analytical Chemistry and Environmental Toxicology, Faculty of Sciences, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - A M Malumba
- Laboratory of Analytical Chemistry and Environmental Toxicology, Faculty of Sciences, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - J K Tuakuila
- Laboratory of Analytical Chemistry and Environmental Toxicology, Faculty of Sciences, University of Kinshasa, Kinshasa, Democratic Republic of Congo. .,Faculty of Health Sciences, University of Sherbrooke, Quebec, Canada.
| |
Collapse
|
38
|
Vogel N, Lange R, Schmidt P, Rodriguez Martin L, Remy S, Springer A, Puklová V, Černá M, Rudnai P, Középesy S, Janasik B, Ligocka D, Fábelová L, Kolena B, Petrovicova I, Jajcaj M, Eštóková M, Esteban-Lopez M, Castaño A, Tratnik JS, Stajnko A, Knudsen LE, Toppari J, Main KM, Juul A, Andersson AM, Jørgensen N, Frederiksen H, Thomsen C, Sakhi AK, Åkesson A, Hartmann C, Dewolf MC, Koppen G, Biot P, Den Hond E, Voorspoels S, Gilles L, Govarts E, Murawski A, Gerofke A, Weber T, Rüther M, Gutleb AC, Guignard C, Berman T, Koch HM, Kolossa-Gehring M. Exposure to Phthalates in European Children, Adolescents and Adults since 2005: A Harmonized Approach Based on Existing HBM Data in the HBM4EU Initiative. TOXICS 2023; 11:241. [PMID: 36977006 PMCID: PMC10057641 DOI: 10.3390/toxics11030241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Phthalates are mainly used as plasticizers and are associated inter alia with adverse effects on reproductive functions. While more and more national programs in Europe have started monitoring internal exposure to phthalates and its substitute 1,2-Cyclohexanedicarboxylic acid (DINCH), the comparability of results from such existing human biomonitoring (HBM) studies across Europe is challenging. They differ widely in time periods, study samples, degree of geographical coverage, design, analytical methodology, biomarker selection, and analytical quality assurance level. The HBM4EU initiative has gathered existing HBM data of 29 studies from participating countries, covering all European regions and Israel. The data were prepared and aggregated by a harmonized procedure with the aim to describe-as comparably as possible-the EU-wide general population's internal exposure to phthalates from the years 2005 to 2019. Most data were available from Northern (up to 6 studies and up to 13 time points), Western (11; 19), and Eastern Europe (9; 12), e.g., allowing for the investigation of time patterns. While the bandwidth of exposure was generally similar, we still observed regional differences for Butyl benzyl phthalate (BBzP), Di(2-ethylhexyl) phthalate (DEHP), Di-isononyl phthalate (DiNP), and Di-isobutyl phthalate (DiBP) with pronounced decreases over time in Northern and Western Europe, and to a lesser degree in Eastern Europe. Differences between age groups were visible for Di-n-butyl phthalate (DnBP), where children (3 to 5-year olds and 6 to 11-year olds) had lower urinary concentrations than adolescents (12 to 19-year-olds), who in turn had lower urinary concentrations than adults (20 to 39-year-olds). This study is a step towards making internal exposures to phthalates comparable across countries, although standardized data were not available, targeting European data sets harmonized with respect to data formatting and calculation of aggregated data (such as developed within HBM4EU), and highlights further suggestions for improved harmonization in future studies.
Collapse
Affiliation(s)
- Nina Vogel
- German Environment Agency (UBA), Department of Toxicology, Health-Related Environmental Monitoring, 14195 Berlin, Germany
| | - Rosa Lange
- German Environment Agency (UBA), Department of Toxicology, Health-Related Environmental Monitoring, 14195 Berlin, Germany
| | - Phillipp Schmidt
- German Environment Agency (UBA), Department of Toxicology, Health-Related Environmental Monitoring, 14195 Berlin, Germany
| | | | - Sylvie Remy
- Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| | - Andrea Springer
- German Environment Agency (UBA), Department of Toxicology, Health-Related Environmental Monitoring, 14195 Berlin, Germany
| | - Vladimíra Puklová
- National Institute of Public Health, Centre for Health and Environment, 10000 Prague, Czech Republic
| | - Milena Černá
- National Institute of Public Health, Centre for Health and Environment, 10000 Prague, Czech Republic
| | - Péter Rudnai
- National Public Health Center, Environmental Health Unit of the Department of Public Health Laboratory, 1097 Budapest, Hungary
| | - Szilvia Középesy
- National Public Health Center, Environmental Health Unit of the Department of Public Health Laboratory, 1097 Budapest, Hungary
| | - Beata Janasik
- Nofer Institute of Occupational Medicine, 91-348 Lodz, Poland
| | - Danuta Ligocka
- Nofer Institute of Occupational Medicine, 91-348 Lodz, Poland
| | - Lucia Fábelová
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, 83303 Bratislava, Slovakia
| | - Branislav Kolena
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 94901 Nitra, Slovakia
| | - Ida Petrovicova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 94901 Nitra, Slovakia
| | - Michal Jajcaj
- Public Health Authority, Department of Environment and Health, 83105 Bratislava, Slovakia
| | - Milada Eštóková
- Public Health Authority, Department of Environment and Health, 83105 Bratislava, Slovakia
| | | | | | - Janja Snoj Tratnik
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia
| | - Anja Stajnko
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia
| | - Lisbeth E. Knudsen
- Department of Public Health, University of Copenhagen, 1165 Copenhagen, Denmark
| | - Jorma Toppari
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, 20520 Turku, Finland
- Department of Pediatrics, Turku University Hospital, 20521 Turku, Finland
| | - Katharina M. Main
- Department of Growth and Reproduction, Copenhagen University Hospital—Rigshospitalet, 2100 Copenhagen, Denmark
- International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital—Rigshospitalet, 2100 Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Anders Juul
- Department of Growth and Reproduction, Copenhagen University Hospital—Rigshospitalet, 2100 Copenhagen, Denmark
- International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital—Rigshospitalet, 2100 Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Anna-Maria Andersson
- Department of Growth and Reproduction, Copenhagen University Hospital—Rigshospitalet, 2100 Copenhagen, Denmark
- International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital—Rigshospitalet, 2100 Copenhagen, Denmark
| | - Niels Jørgensen
- Department of Growth and Reproduction, Copenhagen University Hospital—Rigshospitalet, 2100 Copenhagen, Denmark
- International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital—Rigshospitalet, 2100 Copenhagen, Denmark
| | - Hanne Frederiksen
- Department of Growth and Reproduction, Copenhagen University Hospital—Rigshospitalet, 2100 Copenhagen, Denmark
- International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital—Rigshospitalet, 2100 Copenhagen, Denmark
| | - Cathrine Thomsen
- Department of Food Safety, Norwegian Institute of Public Health, 0456 Oslo, Norway
| | - Amrit Kaur Sakhi
- Department of Food Safety, Norwegian Institute of Public Health, 0456 Oslo, Norway
| | - Agneta Åkesson
- Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | | | | | - Gudrun Koppen
- Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| | - Pierre Biot
- Federal Public Service Health, Food Chain Safety and Environment, 1060 Brussels, Belgium
| | - Elly Den Hond
- Department of Environment and Health, Provincial Institute of Hygiene (PIH), 2000 Antwerp, Belgium
| | - Stefan Voorspoels
- Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| | - Liese Gilles
- Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| | - Eva Govarts
- Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| | - Aline Murawski
- German Environment Agency (UBA), Department of Toxicology, Health-Related Environmental Monitoring, 14195 Berlin, Germany
| | - Antje Gerofke
- German Environment Agency (UBA), Department of Toxicology, Health-Related Environmental Monitoring, 14195 Berlin, Germany
| | - Till Weber
- German Environment Agency (UBA), Department of Toxicology, Health-Related Environmental Monitoring, 14195 Berlin, Germany
| | - Maria Rüther
- German Environment Agency (UBA), Department of Toxicology, Health-Related Environmental Monitoring, 14195 Berlin, Germany
| | - Arno C. Gutleb
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, L-4422 Belvaux, Luxembourg
| | - Cedric Guignard
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, L-4422 Belvaux, Luxembourg
| | - Tamar Berman
- Department of Environmental Health, Ministry of Health, Jerusalem 9446724, Israel
| | - Holger M. Koch
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance—Institute of the Ruhr University Bochum (IPA), 44789 Bochum, Germany
| | - Marike Kolossa-Gehring
- German Environment Agency (UBA), Department of Toxicology, Health-Related Environmental Monitoring, 14195 Berlin, Germany
| |
Collapse
|
39
|
Lobo Vicente J, Ganzleben C, Gasol R, Marnane I, Gilles L, Buekers J, Bessems J, Colles A, Gerofke A, David M, Barouki R, Uhl M, Sepai O, Loots I, Crabbé A, Coertjens D, Kolossa-Gehring M, Schoeters G. HBM4EU results support the Chemicals' Strategy for Sustainability and the Zero-Pollution Action Plan. Int J Hyg Environ Health 2023; 248:114111. [PMID: 36706581 DOI: 10.1016/j.ijheh.2023.114111] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/12/2022] [Accepted: 01/05/2023] [Indexed: 01/27/2023]
Abstract
One of the major goals of the European Human Biomonitoring Initiative (HBM4EU) was to bridge the gap between science and policy by consulting both policy makers and national scientists and generating evidence of the actual exposure of residents to chemicals and whether that exposure would be suggest a potential health risk. Residents' perspectives on chemical exposure and risk were also investigated. HBM4EU's research was designed to answer specific short-term and long-term policy questions at national and European levels, and for its results to directly support regulatory action on chemicals. A strategy was established to prioritise chemicals for analysis in human matrices, with a total of 18 substances/substance groups chosen to be investigated throughout the five-and a -half-year project. HBM4EU produced new evidence of human exposure levels, developed reference values for exposure, investigated determinants of exposure and derived health-based guidance values for those substances. In addition, HBM4EU promoted the use of human biomonitoring data in chemical risk assessment and developed innovative tools and methods linking chemicals to possible health impacts, such as effect biomarkers. Furthermore, HBM4EU advanced understand of effects from combined exposures and methods to identify emerging chemicals. With the aim of supporting policy implementation, science-to-policy workshops were organised, providing opportunities for joint reflection and dialogue on research results. I, and indicators were developed to assess temporal and spatial patterns in the exposure of European population. A sustainable human biomonitoring monitoring framework, producing comparable quality assured data would allow: the evaluation of time trends; the exploration of spatial trends: the evaluation of the influence of socio-economic conditions on chemical exposure. Therefore, such a framework should be included in the European Chemicals' Strategy for Sustainability and the data would support the Zero Pollution Action Plan.
Collapse
Affiliation(s)
- Joana Lobo Vicente
- European Environment Agency (EEA), Kongens Nytorv 6, 1050 Copenhagen K, Denmark.
| | - Catherine Ganzleben
- European Environment Agency (EEA), Kongens Nytorv 6, 1050 Copenhagen K, Denmark
| | - Roser Gasol
- European Environment Agency (EEA), Kongens Nytorv 6, 1050 Copenhagen K, Denmark
| | - Ian Marnane
- European Environment Agency (EEA), Kongens Nytorv 6, 1050 Copenhagen K, Denmark
| | - Liese Gilles
- VITO Health, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium
| | - Jurgen Buekers
- VITO Health, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium
| | - Jos Bessems
- VITO Health, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium
| | - Ann Colles
- VITO Health, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium
| | - Antje Gerofke
- German Environment Agency (UBA), Corrensplatz 1, 14195, Berlin, Germany
| | - Madlen David
- German Environment Agency (UBA), Corrensplatz 1, 14195, Berlin, Germany
| | | | - Maria Uhl
- Environment Agency, Spittelauer Lände 5, Vienna, 1090, Austria
| | - Ovnair Sepai
- United Kingdom Health Security Agency, Harwell Science Park, Chilton, OX11 0RQ, UK
| | - Ilse Loots
- University of Antwerp, Department of Sociology (CRESC and IMDO), Sint-Jacobstraat 2, 2000, Antwerp, Belgium
| | - Ann Crabbé
- University of Antwerp, Department of Sociology (CRESC and IMDO), Sint-Jacobstraat 2, 2000, Antwerp, Belgium
| | - Dries Coertjens
- University of Antwerp, Department of Sociology (CRESC and IMDO), Sint-Jacobstraat 2, 2000, Antwerp, Belgium
| | | | - Greet Schoeters
- VITO Health, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium; University of Antwerp, Dept of Biomedical Sciences and Toxicological Centre, Universiteitsplein 1, 2610, Wilrijk, Belgium
| |
Collapse
|
40
|
Buekers J, Baken K, Govarts E, Martin LR, Vogel N, Kolossa-Gehring M, Šlejkovec Z, Falnoga I, Horvat M, Lignell S, Lindroos AK, Rambaud L, Riou M, Pedraza-Diaz S, Esteban-Lopez M, Castaño A, Den Hond E, Baeyens W, Santonen T, Schoeters G. Human urinary arsenic species, associated exposure determinants and potential health risks assessed in the HBM4EU Aligned Studies. Int J Hyg Environ Health 2023; 248:114115. [PMID: 36689783 DOI: 10.1016/j.ijheh.2023.114115] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 12/21/2022] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
The European Joint Programme HBM4EU coordinated and advanced human biomonitoring (HBM) in Europe in order to provide science-based evidence for chemical policy development and improve chemical management. Arsenic (As) was selected as a priority substance under the HBM4EU initiative for which open, policy relevant questions like the status of exposure had to be answered. Internal exposure to inorganic arsenic (iAs), measured as Toxic Relevant Arsenic (TRA) (the sum of As(III), As(V), MMA, DMA) in urine samples of teenagers differed among the sampling sites (BEA (Spain) > Riksmaten adolescents (Sweden), ESTEBAN (France) > FLEHS IV (Belgium), SLO CRP (Slovenia)) with geometric means between 3.84 and 8.47 μg/L. The ratio TRA to TRA + arsenobetaine or the ratio TRA to total arsenic varied between 0.22 and 0.49. Main exposure determinants for TRA were the consumption of rice and seafood. When all studies were combined, Pearson correlation analysis showed significant associations between all considered As species. Higher concentrations of DMA, quantitatively a major constituent of TRA, were found with increasing arsenobetaine concentrations, a marker for organic As intake, e.g. through seafood, indicating that other sources of DMA than metabolism of inorganic As exist, e.g. direct intake of DMA or via the intake of arsenosugars or -lipids. Given the lower toxicity of DMA(V) versus iAs, estimating the amount of DMA not originating from iAs, or normalizing TRA for arsenobetaine intake could be useful for estimating iAs exposure and risk. Comparing urinary TRA concentrations with formerly derived biomonitoring equivalent (BE) for non-carcinogenic effects (6.4 μg/L) clearly shows that all 95th percentile exposure values in the different studies exceeded this BE. This together with the fact that cancer risk may not be excluded even at lower iAs levels, suggests a possible health concern for the general population of Europe.
Collapse
Affiliation(s)
- Jurgen Buekers
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium.
| | - Kirsten Baken
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Eva Govarts
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | | | - Nina Vogel
- German Environment Agency (UBA), Berlin, Germany
| | | | | | | | | | | | | | - Loïc Rambaud
- Department of Environmental and Occupational Health, Santé publique France, Saint-Maurice, France
| | - Margaux Riou
- Department of Environmental and Occupational Health, Santé publique France, Saint-Maurice, France
| | - Susana Pedraza-Diaz
- National Centre for Environmental Health, Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Esteban-Lopez
- National Centre for Environmental Health, Instituto de Salud Carlos III, Madrid, Spain
| | - Argelia Castaño
- National Centre for Environmental Health, Instituto de Salud Carlos III, Madrid, Spain
| | - Elly Den Hond
- Provincial Institute of Hygiene (PIH), Antwerp, Belgium
| | - Willy Baeyens
- Analytical, Environmental & Geo-Chemistry, Free Universtiy of Brussels (VUB), Brussels, Belgium
| | - Tiina Santonen
- Finnish Institute of Occupational Health, Helsinki, Finland
| | - Greet Schoeters
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
41
|
Apel P, Lamkarkach F, Lange R, Sissoko F, David M, Rousselle C, Schoeters G, Kolossa-Gehring M. Human biomonitoring guidance values (HBM-GVs) for priority substances under the HBM4EU initiative - New values derivation for deltamethrin and cyfluthrin and overall results. Int J Hyg Environ Health 2023; 248:114097. [PMID: 36577283 DOI: 10.1016/j.ijheh.2022.114097] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/27/2022]
Abstract
The European Initiative HBM4EU aimed to further establish human biomonitoring across Europe as an important tool for determining population exposure to chemicals and as part of health-related risk assessments, thus making it applicable for policy advice. Not only should analytical methods and survey design be harmonized and quality assured, but also the evaluation of human biomonitoring data. For the health-related interpretation of the data within HBM4EU, a strategy for deriving health-based human biomonitoring guidance values (HBM-GVs) for both the general population and workers was agreed on. On this basis, HBM-GVs for exposure biomarkers of 1,2-cyclohexane dicarboxylic acid diisononyl ester (DINCH), phthalates (diethyl hexyl phthalate (DEHP), di-n-butyl phthalate (DnBP), diisobutyl phthalate (DiBP), butyl benzyl phthalate (BBzP), and bis-(2-propylheptyl) phthalate (DPHP)), bisphenols A and S, pyrethroids (deltamethrin and cyfluthrin), solvents (1-methyl-2-pyrrolidone (NMP), 1-ethylpyrrolidin-2-one (NEP), N-dimethylformamide (DMF), N,N-dimethylacetamide (DMAC)), the heavy metal cadmium and the mycotoxin deoxynivalenol (DON) were developed and assigned a level of confidence. The approach to HBM-GV derivations, results, and limitations in data interpretation with special focus on the pyrethroids are presented in this paper.
Collapse
Affiliation(s)
- P Apel
- German Environment Agency (UBA), Corrensplatz 1, 14195, Berlin, Germany.
| | - F Lamkarkach
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 14 Rue Pierre et Marie Curie, 94701, Maisons-Alfort, Cedex, France
| | - R Lange
- German Environment Agency (UBA), Corrensplatz 1, 14195, Berlin, Germany
| | - F Sissoko
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 14 Rue Pierre et Marie Curie, 94701, Maisons-Alfort, Cedex, France
| | - M David
- German Environment Agency (UBA), Corrensplatz 1, 14195, Berlin, Germany
| | - C Rousselle
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 14 Rue Pierre et Marie Curie, 94701, Maisons-Alfort, Cedex, France
| | - G Schoeters
- VITO Health, Flemish Institute for Technological Research, 2400, Mol, Belgium; Department of Biomedical Sciences, University of Antwerp, 2610, Antwerp, Belgium
| | - M Kolossa-Gehring
- German Environment Agency (UBA), Corrensplatz 1, 14195, Berlin, Germany
| |
Collapse
|
42
|
Knudsen LE, Tolonen H, Scheepers PTJ, Loots I, Vorkamp K, Hajeb P, Sepai O, Gilles L, Splanemann P, Weise P, Kolossa-Gehring M. Implementation and coordination of an ethics framework in HBM4EU - Experiences and reflections. Int J Hyg Environ Health 2023; 248:114098. [PMID: 36565602 DOI: 10.1016/j.ijheh.2022.114098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/10/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022]
Abstract
Human biomonitoring involves the use of human samples and data to investigate exposure to environmental chemicals and their impact on human health. HBM4EU developed a coordinated and harmonized approach involving 29 countries in Europe plus Israel. Addressing ethical issues has been an indispensable prerequisite, from the application phase, grant agreement, project performance to the closing of the project. HBM4EU has established a better understanding of the ethics in such projects and the need for a standardised way of reporting and handling of ethics and data exchange, securing compliance with ethics standards, transparency, transferability and sustainability. The main reflections were: KNOWLEDGE: Ethics awareness, norms and practices are dynamic and increased throughout the project, much learning and experience is achieved by practice and dialogue. ATTITUDE Rules and standards were very diversely known and needed to adhere to local practices. ASSISTANCE Good results achieved from webinars, training, help desk, and individual consultations. STANDARDISATION Was achieved by templates and naming convention across documents. MANAGEMENT The establishment of the SharePoint directory with uploading of all requested documents assisted collaboration and exchange. Also, a designated task for ethics within the management/coordination work package and the enthusiasm of the task leader were essential. COMPLIANCE Some, but not all partners were very good at complying with deadlines and standards. TRANSFERABILITY AND SUSTAINABILITY All documents are archived in the SharePoint directory while a system assuring updating is recommended. TRANSPARENCY Assured by public access to annual ethics reports. The ethics reports bridged to the annual work plans (AWPs). EVALUATION The Ethics Check by the Commission was successful.
Collapse
Affiliation(s)
- Lisbeth E Knudsen
- Institute of Public Health, University of Copenhagen, Oester Farimagsgade 5, DK 1353, Copenhagen K, Denmark.
| | - Hanna Tolonen
- Department of Health and Welfare, Finnish Institute for Health and Welfare (THL), Helsinki, Finland.
| | - Paul T J Scheepers
- Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, the Netherlands.
| | - Ilse Loots
- Department of Sociology (CRESC) and IMDO, University of Antwerp, Antwerp, Belgium.
| | - Katrin Vorkamp
- Aarhus University, Department of Environmental Science, Frederiksborgvej 399, 4000, Roskilde, Denmark.
| | - Parvaneh Hajeb
- Aarhus University, Department of Environmental Science, Frederiksborgvej 399, 4000, Roskilde, Denmark
| | - Ovnair Sepai
- UK Health Security Agency, Harwell Science Park, OX11 0RQ, UK.
| | - Liese Gilles
- VITO Health, Flemish Institute for Technological Research (VITO), 2400, Mol, Belgium.
| | | | | | | |
Collapse
|
43
|
Czarny-Krzymińska K, Krawczyk B, Szczukocki D. Bisphenol A and its substitutes in the aquatic environment: Occurrence and toxicity assessment. CHEMOSPHERE 2023; 315:137763. [PMID: 36623601 DOI: 10.1016/j.chemosphere.2023.137763] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Bisphenol A is classified as a high production volume chemical commonly used in the manufacture of polycarbonate plastics, epoxy resins and thermal paper. The endocrine disrupting properties of this xenobiotic have led to the restriction and prohibition of its use in many consumer products. To date, many chemical compounds with a chemical structure similar to bisphenol A have been used in consumer products as its replacement. The ubiquitous occurrence of bisphenol A and its substitutes in the environment and their endocrine activity as well as adverse effects on aquatic organisms is a global concern, especially because many available literature reports show that many substitutes (e.g. bisphenol AF, bisphenol AP, bisphenol B, bisphenol C, bisphenol F, bisphenol G, bisphenol FL, tetrabromobisphenol A) exert adverse effects on aquatic organisms, similar to, or even stronger than bisphenol A. Therefore, the objective of this paper is to provide a comprehensive overview of the production, sources, occurrence and associated toxicity, as well as the endocrine activity of bisphenol A and its substitutes on aquatic species. The environmental levels and ecotoxicological data presented in this review allowed for a preliminary assessment and prediction of the risk of bisphenol A and its substitutes for aquatic organisms. Furthermore, the data collected in this paper highlight that several compounds applied in bisphenol A-free products are not safe alternatives and regulations regarding their use should be introduced.
Collapse
Affiliation(s)
- Karolina Czarny-Krzymińska
- Laboratory of Environmental Threats, Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, 91-403, Lodz, Tamka 12, Poland.
| | - Barbara Krawczyk
- Laboratory of Environmental Threats, Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, 91-403, Lodz, Tamka 12, Poland
| | - Dominik Szczukocki
- Laboratory of Environmental Threats, Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, 91-403, Lodz, Tamka 12, Poland
| |
Collapse
|
44
|
Richterová D, Govarts E, Fábelová L, Rausová K, Rodriguez Martin L, Gilles L, Remy S, Colles A, Rambaud L, Riou M, Gabriel C, Sarigiannis D, Pedraza-Diaz S, Ramos JJ, Kosjek T, Snoj Tratnik J, Lignell S, Gyllenhammar I, Thomsen C, Haug LS, Kolossa-Gehring M, Vogel N, Franken C, Vanlarebeke N, Bruckers L, Stewart L, Sepai O, Schoeters G, Uhl M, Castaño A, Esteban López M, Göen T, Palkovičová Murínová Ľ. PFAS levels and determinants of variability in exposure in European teenagers - Results from the HBM4EU aligned studies (2014-2021). Int J Hyg Environ Health 2023; 247:114057. [PMID: 36327670 PMCID: PMC9758614 DOI: 10.1016/j.ijheh.2022.114057] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/14/2022] [Accepted: 10/21/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND Perfluoroalkyl substances (PFAS) are man-made fluorinated chemicals, widely used in various types of consumer products, resulting in their omnipresence in human populations. The aim of this study was to describe current PFAS levels in European teenagers and to investigate the determinants of serum/plasma concentrations in this specific age group. METHODS PFAS concentrations were determined in serum or plasma samples from 1957 teenagers (12-18 years) from 9 European countries as part of the HBM4EU aligned studies (2014-2021). Questionnaire data were post-harmonized by each study and quality checked centrally. Only PFAS with an overall quantification frequency of at least 60% (PFOS, PFOA, PFHxS and PFNA) were included in the analyses. Sociodemographic and lifestyle factors were analysed together with food consumption frequencies to identify determinants of PFAS exposure. The variables study, sex and the highest educational level of household were included as fixed factors in the multivariable linear regression models for all PFAS and each dietary variable was added to the fixed model one by one and for each PFAS separately. RESULTS The European exposure values for PFAS were reported as geometric means with 95% confidence intervals (CI): PFOS [2.13 μg/L (1.63-2.78)], PFOA ([0.97 μg/L (0.75-1.26)]), PFNA [0.30 μg/L (0.19-0.45)] and PFHxS [0.41 μg/L (0.33-0.52)]. The estimated geometric mean exposure levels were significantly higher in the North and West versus the South and East of Europe. Boys had significantly higher concentrations of the four PFAS compared to girls and significantly higher PFASs concentrations were found in teenagers from households with a higher education level. Consumption of seafood and fish at least 2 times per week was significantly associated with 21% (95% CI: 12-31%) increase in PFOS concentrations and 20% (95% CI: 10-31%) increase in PFNA concentrations as compared to less frequent consumption of seafood and fish. The same trend was observed for PFOA and PFHxS but not statistically significant. Consumption of eggs at least 2 times per week was associated with 11% (95% CI: 2-22%) and 14% (95% CI: 2-27%) increase in PFOS and PFNA concentrations, respectively, as compared to less frequent consumption of eggs. Significantly higher PFOS concentrations were observed for participants consuming offal (14% (95% CI: 3-26%)), the same trend was observed for the other PFAS but not statistically significant. Local food consumption at least 2 times per week was associated with 40% (95% CI: 19-64%) increase in PFOS levels as compared to those consuming local food less frequently. CONCLUSION This work provides information about current levels of PFAS in European teenagers and potential dietary sources of exposure to PFAS in European teenagers. These results can be of use for targeted monitoring of PFAS in food.
Collapse
Affiliation(s)
- D Richterová
- Slovak Medical University in Bratislava, Faculty of Public Health, Department of Environmental Medicine, Bratislava, Slovakia
| | - E Govarts
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - L Fábelová
- Slovak Medical University in Bratislava, Faculty of Public Health, Department of Environmental Medicine, Bratislava, Slovakia
| | - K Rausová
- Slovak Medical University in Bratislava, Faculty of Public Health, Department of Environmental Medicine, Bratislava, Slovakia
| | - L Rodriguez Martin
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - L Gilles
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - S Remy
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - A Colles
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - L Rambaud
- Department of Environmental and Occupational Health, Santé Publique France, Saint-Maurice, France
| | - M Riou
- Department of Environmental and Occupational Health, Santé Publique France, Saint-Maurice, France
| | - C Gabriel
- Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece; HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Greece
| | - D Sarigiannis
- Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece; HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Greece; Environmental Health Engineering, Institute of Advanced Study, Pavia, Italy
| | - S Pedraza-Diaz
- National Centre for Environmental Health, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - J J Ramos
- National Centre for Environmental Health, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - T Kosjek
- Jožef Stefan Institute, Department of Environmental Sciences, Ljubljana, Slovenia
| | - J Snoj Tratnik
- Jožef Stefan Institute, Department of Environmental Sciences, Ljubljana, Slovenia
| | - S Lignell
- Swedish Food Agency, Uppsala, Sweden
| | | | - C Thomsen
- Norwegian Institute of Public Health, Oslo, Norway
| | - L S Haug
- Norwegian Institute of Public Health, Oslo, Norway
| | | | - N Vogel
- German Environment Agency (UBA), GerES V-sub, Germany
| | - C Franken
- Provincial Institute for Hygiene, Antwerp, Belgium
| | | | - L Bruckers
- BioStat, Data Science Institute, Hasselt University, Martelarenlaan 42, 3500, Hasselt, Belgium
| | - L Stewart
- Public Health England, Chilton, United Kingdom
| | - O Sepai
- Public Health England, Chilton, United Kingdom
| | - G Schoeters
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - M Uhl
- Umweltbundesamt, Vienna, Austria
| | - A Castaño
- National Centre for Environmental Health, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - M Esteban López
- National Centre for Environmental Health, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - T Göen
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ľ Palkovičová Murínová
- Slovak Medical University in Bratislava, Faculty of Public Health, Department of Environmental Medicine, Bratislava, Slovakia.
| |
Collapse
|
45
|
Bil W, Govarts E, Zeilmaker MJ, Woutersen M, Bessems J, Ma Y, Thomsen C, Haug LS, Lignell S, Gyllenhammar I, Palkovicova Murinova L, Fabelova L, Tratnik JS, Kosjek T, Gabriel C, Sarigiannis D, Pedraza-Diaz S, Esteban-López M, Castaño A, Rambaud L, Riou M, Franken C, Colles A, Vogel N, Kolossa-Gehring M, Halldorsson TI, Uhl M, Schoeters G, Santonen T, Vinggaard AM. Approaches to mixture risk assessment of PFASs in the European population based on human hazard and biomonitoring data. Int J Hyg Environ Health 2023; 247:114071. [PMID: 36446273 DOI: 10.1016/j.ijheh.2022.114071] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/25/2022] [Accepted: 11/05/2022] [Indexed: 11/27/2022]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are a highly persistent, mobile, and bioaccumulative class of chemicals, of which emissions into the environment result in long-lasting contamination with high probability for causing adverse effects to human health and the environment. Within the European Biomonitoring Initiative HBM4EU, samples and data were collected in a harmonized way from human biomonitoring (HBM) studies in Europe to derive current exposure data across a geographic spread. We performed mixture risk assessments based on recent internal exposure data of PFASs in European teenagers generated in the HBM4EU Aligned Studies (dataset with N = 1957, sampling years 2014-2021). Mixture risk assessments were performed based on three hazard-based approaches: the Hazard Index (HI) approach, the sum value approach as used by the European Food Safety Authority (EFSA) and the Relative Potency Factor (RPF) approach. The HI approach resulted in the highest risk estimates, followed by the RPF approach and the sum value approach. The assessments indicate that PFAS exposure may result in a health risk in a considerable fraction of individuals in the HBM4EU teenager study sample, thereby confirming the conclusion drawn in the recent EFSA scientific opinion. This study underlines that HBM data are of added value in assessing the health risks of aggregate and cumulative exposure to PFASs, as such data are able to reflect exposure from different sources and via different routes.
Collapse
Affiliation(s)
- W Bil
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands.
| | - E Govarts
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - M J Zeilmaker
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - M Woutersen
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - J Bessems
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Y Ma
- National Food Institute, Technical University of Denmark (DTU), Lyngby, Denmark
| | - C Thomsen
- Norwegian Institute of Public Health (NIPH), Oslo, Norway
| | - L S Haug
- Norwegian Institute of Public Health (NIPH), Oslo, Norway
| | - S Lignell
- Swedish Food Agency, Uppsala, Sweden
| | | | | | - L Fabelova
- Faculty of Public Health, Slovak Medical University (SZU), Bratislava, Slovakia
| | | | - T Kosjek
- Jožef Stefan Institute (IJS), Ljubljana, Slovenia
| | - C Gabriel
- Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki (AUTH), Thessaloniki, Greece; HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Thessaloniki, Greece
| | - D Sarigiannis
- Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki (AUTH), Thessaloniki, Greece; HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Thessaloniki, Greece; Environmental Health Engineering, Institute of Advanced Study, Pavia, Italy
| | - S Pedraza-Diaz
- National Centre for Environmental Health, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - M Esteban-López
- National Centre for Environmental Health, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - A Castaño
- National Centre for Environmental Health, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - L Rambaud
- Santé Publique France, Saint-Maurice, France
| | - M Riou
- Santé Publique France, Saint-Maurice, France
| | - C Franken
- Provincial Institute for Hygiene, Antwerp, Belgium
| | - A Colles
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - N Vogel
- German Environment Agency (UBA), Berlin, Germany
| | | | - T I Halldorsson
- Faculty of Food Science and Nutrition, University of Iceland (UI), Reykjavik, Iceland
| | - M Uhl
- Environment Agency Austria (EAA), Vienna, Austria
| | - G Schoeters
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - T Santonen
- Finnish Institute of Occupational Health (FIOH), Työterveyslaitos, Finland
| | - A M Vinggaard
- National Food Institute, Technical University of Denmark (DTU), Lyngby, Denmark
| |
Collapse
|
46
|
Nakayama SF, St-Amand A, Pollock T, Apel P, Bamai YA, Barr DB, Bessems J, Calafat AM, Castaño A, Covaci A, Duca RC, Faure S, Galea KS, Hays S, Hopf NB, Ito Y, Jeddi MZ, Kolossa-Gehring M, Kumar E, LaKind JS, López ME, Louro H, Macey K, Makris KC, Melnyk L, Murawski A, Naiman J, Nassif J, Noisel N, Poddalgoda D, Quirós-Alcalá L, Rafiee A, Rambaud L, Silva MJ, Ueyama J, Verner MA, Waras MN, Werry K. Interpreting biomonitoring data: Introducing the international human biomonitoring (i-HBM) working group's health-based guidance value (HB2GV) dashboard. Int J Hyg Environ Health 2023; 247:114046. [PMID: 36356350 PMCID: PMC10103580 DOI: 10.1016/j.ijheh.2022.114046] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/21/2022] [Accepted: 09/29/2022] [Indexed: 11/09/2022]
Abstract
Human biomonitoring (HBM) data measured in specific contexts or populations provide information for comparing population exposures. There are numerous health-based biomonitoring guidance values, but to locate these values, interested parties need to seek them out individually from publications, governmental reports, websites and other sources. Until now, there has been no central, international repository for this information. Thus, a tool is needed to help researchers, public health professionals, risk assessors, and regulatory decision makers to quickly locate relevant values on numerous environmental chemicals. A free, on-line repository for international health-based guidance values to facilitate the interpretation of HBM data is now available. The repository is referred to as the "Human Biomonitoring Health-Based Guidance Value (HB2GV) Dashboard". The Dashboard represents the efforts of the International Human Biomonitoring Working Group (i-HBM), affiliated with the International Society of Exposure Science. The i-HBM's mission is to promote the use of population-level HBM data to inform public health decision-making by developing harmonized resources to facilitate the interpretation of HBM data in a health-based context. This paper describes the methods used to compile the human biomonitoring health-based guidance values, how the values can be accessed and used, and caveats with using the Dashboard for interpreting HBM data. To our knowledge, the HB2GV Dashboard is the first open-access, curated database of HBM guidance values developed for use in interpreting HBM data. This new resource can assist global HBM data users such as risk assessors, risk managers and biomonitoring programs with a readily available compilation of guidance values.
Collapse
Affiliation(s)
- Shoji F Nakayama
- Exposure Dynamics Research Section, Health and Environmental Risk Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan.
| | - Annie St-Amand
- Healthy Environments and Consumer Safety Branch, Health Canada, 269 Laurier Ave W, A/L 4908D, Ottawa, ON, K1A 0K9, Canada.
| | - Tyler Pollock
- Healthy Environments and Consumer Safety Branch, Health Canada, 269 Laurier Ave W, A/L 4908D, Ottawa, ON, K1A 0K9, Canada.
| | - Petra Apel
- German Environment Agency, Berlin/ Dessau-Roßlau, Wörlitzer Platz 1, 06844, Dessau-Roßlau, Germany.
| | - Yu Ait Bamai
- Center for Environmental and Health Sciences, Hokkaido University, Kita12, Nishi 7, Kita-ku, Sapporo, Japan.
| | - Dana Boyd Barr
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Road NE, Atlanta, GA, 30322, USA.
| | | | - Antonia M Calafat
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, USA.
| | - Argelia Castaño
- National Center for Environmental Health, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain.
| | - Adrian Covaci
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium.
| | - Radu Corneliu Duca
- Unit Environmental Hygiene and Human Biological Monitoring, Department of Health Protection, Laboratoire national de santé, 1, Rue Louis Rech, L-3555, Dudelange, Luxembourg.
| | - Sarah Faure
- Healthy Environments and Consumer Safety Branch, Health Canada, 269 Laurier Ave W, A/L 4908D, Ottawa, ON, K1A 0K9, Canada.
| | - Karen S Galea
- Institute of Occupational Medicine (IOM), Research Avenue North, Riccarton, Edinburgh, EH14 4AP, UK.
| | - Sean Hays
- Summit Toxicology LLP, 615 Nikles Dr., Unit 102, Bozeman, MT, 59715, USA.
| | - Nancy B Hopf
- Center for Primary Care and Public Health, Route de la Corniche 2, 1066, Epalinges-Lausanne, Switzerland.
| | - Yuki Ito
- Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan.
| | - Maryam Zare Jeddi
- National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA, Bilthoven, the Netherlands.
| | - Marike Kolossa-Gehring
- German Environment Agency, Berlin/ Dessau-Roßlau, Wörlitzer Platz 1, 06844, Dessau-Roßlau, Germany.
| | - Eva Kumar
- Department of Health Security, Finnish Institute for Health and Welfare, Neulaniementie 4, FI-70210, Kuopio, Finland.
| | - Judy S LaKind
- LaKind Associates, LLC, 106 Oakdale Avenue, Catonsville, MD, 21228, USA; Department of Epidemiology and Public Health, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD, 21201, USA.
| | - Marta Esteban López
- National Center for Environmental Health, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain.
| | - Henriqueta Louro
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge (INSA), Av. Padre Cruz 1649-016 Lisbon, and Center for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School-FCM, UNL, Rua Câmara Pestana, 6 Ed. CEDOC II, 1150-082, Lisbon, Portugal.
| | - Kristin Macey
- Healthy Environments and Consumer Safety Branch, Health Canada, 269 Laurier Ave W, Ottawa, ON, K1A 0K9, Canada.
| | - Konstantinos C Makris
- Cyprus International Institute for Environmental and Public Health, School of Health Sciences, Cyprus University of Technology, Irinis 95, 3041, Limassol, Cyprus.
| | - Lisa Melnyk
- U.S. Environmental Protection Agency, Office of Research and Development/Center for Public Health and Environmental Assessment, 26 West Martin Luther King Drive, Cincinnati, OH, 45268, USA.
| | - Aline Murawski
- German Environment Agency, Berlin/ Dessau-Roßlau, Wörlitzer Platz 1, 06844, Dessau-Roßlau, Germany.
| | - Josh Naiman
- LaKind Associates, LLC, 504 S 44th St, Philadelphia, PA, 19104, USA.
| | - Julianne Nassif
- Association of Public Health Laboratories 8515 Georgia Avenue, Suite 700, Silver Spring, MD, 20910, USA.
| | - Nolwenn Noisel
- Department of Occupational and Environmental Health, School of Public Health, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montreal, Quebec, H3C 3J7, Canada.
| | - Devika Poddalgoda
- Healthy Environments and Consumer Safety Branch, Health Canada, 269 Laurier Ave W, Ottawa, ON, K1A 0K9, Canada.
| | - Lesliam Quirós-Alcalá
- Department of Environmental Health & Engineering, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD, 21205, USA.
| | - Ata Rafiee
- Department of Medicine, University of Alberta, 173B Heritage Medical Research Centre, 11207 - 87 Ave NW, Edmonton, AB, T6G 2S2, Canada.
| | - Loïc Rambaud
- Occupational and Environmental Health Division, Santé publique France, 12 rue du Val d'Osne, 94415, Saint-Maurice, France.
| | - Maria João Silva
- Human Genetics Department, National Institute of Health Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016, Lisboa, Portugal.
| | - Jun Ueyama
- Department of Biomolecular Sciences, Field of Omics Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, 461-8673, Japan.
| | - Marc-Andre Verner
- Department of Occupational and Environmental Health, School of Public Health, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montreal, Quebec, H3C 3J7, Canada.
| | - Maisarah Nasution Waras
- Toxicology Department, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Kepala Batas, P. Pinang, Malaysia.
| | - Kate Werry
- Healthy Environments and Consumer Safety Branch, Health Canada, 269 Laurier Ave W, A/L 4908D, Ottawa, ON, K1A 0K9, Canada.
| |
Collapse
|
47
|
Marx-Stoelting P, Rivière G, Luijten M, Aiello-Holden K, Bandow N, Baken K, Cañas A, Castano A, Denys S, Fillol C, Herzler M, Iavicoli I, Karakitsios S, Klanova J, Kolossa-Gehring M, Koutsodimou A, Vicente JL, Lynch I, Namorado S, Norager S, Pittman A, Rotter S, Sarigiannis D, Silva MJ, Theunis J, Tralau T, Uhl M, van Klaveren J, Wendt-Rasch L, Westerholm E, Rousselle C, Sanders P. A walk in the PARC: developing and implementing 21st century chemical risk assessment in Europe. Arch Toxicol 2023; 97:893-908. [PMID: 36645448 PMCID: PMC9968685 DOI: 10.1007/s00204-022-03435-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 12/14/2022] [Indexed: 01/17/2023]
Abstract
Current approaches for the assessment of environmental and human health risks due to exposure to chemical substances have served their purpose reasonably well. Nevertheless, the systems in place for different uses of chemicals are faced with various challenges, ranging from a growing number of chemicals to changes in the types of chemicals and materials produced. This has triggered global awareness of the need for a paradigm shift, which in turn has led to the publication of new concepts for chemical risk assessment and explorations of how to translate these concepts into pragmatic approaches. As a result, next-generation risk assessment (NGRA) is generally seen as the way forward. However, incorporating new scientific insights and innovative approaches into hazard and exposure assessments in such a way that regulatory needs are adequately met has appeared to be challenging. The European Partnership for the Assessment of Risks from Chemicals (PARC) has been designed to address various challenges associated with innovating chemical risk assessment. Its overall goal is to consolidate and strengthen the European research and innovation capacity for chemical risk assessment to protect human health and the environment. With around 200 participating organisations from all over Europe, including three European agencies, and a total budget of over 400 million euro, PARC is one of the largest projects of its kind. It has a duration of seven years and is coordinated by ANSES, the French Agency for Food, Environmental and Occupational Health & Safety.
Collapse
Affiliation(s)
- P. Marx-Stoelting
- grid.417830.90000 0000 8852 3623German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - G. Rivière
- grid.15540.350000 0001 0584 7022French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 94701 Maisons-Alfort, France
| | - M. Luijten
- National Institute for Health and Environment (RIVM), Bilthoven, The Netherlands
| | - K. Aiello-Holden
- grid.417830.90000 0000 8852 3623German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - N. Bandow
- grid.425100.20000 0004 0554 9748German Environment Agency (UBA), Wörlitzer Platz 1, 06844 Dessau, Germany
| | - K. Baken
- grid.6717.70000000120341548VITO (Flemish Institute for Technological Research), Boeretang 200, 2400 Mol, Belgium
| | - A. Cañas
- grid.413448.e0000 0000 9314 1427National Centre for Environmental Health, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - A. Castano
- grid.413448.e0000 0000 9314 1427National Centre for Environmental Health, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - S. Denys
- grid.493975.50000 0004 5948 8741Santé Publique France (SpFrance), 12, Rue du Val D’Osne, 94415 St. Maurice, France
| | - C. Fillol
- grid.493975.50000 0004 5948 8741Santé Publique France (SpFrance), 12, Rue du Val D’Osne, 94415 St. Maurice, France
| | - M. Herzler
- grid.417830.90000 0000 8852 3623German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - I. Iavicoli
- grid.4691.a0000 0001 0790 385XDepartment of Public Health, University of Naples Federico II (UNINA), Naples, Italy
| | - S. Karakitsios
- grid.4793.90000000109457005Aristoteles University Thessaloniki (AUTH), Thessaloniki, Greece
| | - J. Klanova
- Masaryk Uinversity, Recetox, Kotlarska 2, 61137 Brno, Czechia
| | - M. Kolossa-Gehring
- grid.425100.20000 0004 0554 9748German Environment Agency (UBA), Wörlitzer Platz 1, 06844 Dessau, Germany
| | - A. Koutsodimou
- General Chemical State Laboratory of Greece, Athens, Greece
| | - J. Lobo Vicente
- grid.453985.60000 0004 0619 3405European Environment Agency, Kongens Nytorv 6, 1050 Copenhagen K, Denmark
| | - I. Lynch
- grid.6572.60000 0004 1936 7486School of Geography, Earth and Environmental Sciences, University of Birmingham (UoB), Edgbaston, Birmingham, B15 2TT UK
| | - S. Namorado
- grid.422270.10000 0001 2287 695XNational Institute of Health Dr. Ricardo Jorge (INSA), Avenida Padre Cruz, 1649-016 Lisbon, Portugal
| | - S. Norager
- grid.270680.bEuropean Commission, DG Research and Innovation, Orban 09/199, 1049 Brussels, Belgium
| | - A. Pittman
- grid.15540.350000 0001 0584 7022French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 94701 Maisons-Alfort, France
| | - S. Rotter
- grid.417830.90000 0000 8852 3623German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - D. Sarigiannis
- grid.4793.90000000109457005Aristoteles University Thessaloniki (AUTH), Thessaloniki, Greece
| | - M. J. Silva
- grid.422270.10000 0001 2287 695XNational Institute of Health Dr. Ricardo Jorge (INSA), Avenida Padre Cruz, 1649-016 Lisbon, Portugal
| | - J. Theunis
- grid.6717.70000000120341548VITO (Flemish Institute for Technological Research), Boeretang 200, 2400 Mol, Belgium
| | - T. Tralau
- grid.417830.90000 0000 8852 3623German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - M. Uhl
- Austrian Federal Environments Agency, Vienna, Austria
| | - J. van Klaveren
- National Institute for Health and Environment (RIVM), Bilthoven, The Netherlands
| | - L. Wendt-Rasch
- grid.437386.d0000 0001 1523 2072Swedish Chemicals Agency (KemI), Vasagatan 12D, 172 67 Sundbyberg, Sweden
| | - E. Westerholm
- grid.437386.d0000 0001 1523 2072Swedish Chemicals Agency (KemI), Vasagatan 12D, 172 67 Sundbyberg, Sweden
| | - C. Rousselle
- grid.15540.350000 0001 0584 7022French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 94701 Maisons-Alfort, France
| | - P. Sanders
- grid.15540.350000 0001 0584 7022French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 94701 Maisons-Alfort, France
| |
Collapse
|
48
|
Gerofke A, David M, Schmidt P, Vicente JL, Buekers J, Gilles L, Colles A, Bessems J, Bastiaensen M, Covaci A, Den Hond E, Koppen G, Laeremans M, Verheyen VJ, Černá M, Klánová J, Krsková A, Zvonař M, Knudsen LE, Koch HM, Jensen TK, Rambaud L, Riou M, Vogel N, Gabriel C, Karakitsios S, Papaioannou N, Sarigiannis D, Kakucs R, Középesy S, Rudnai P, Szigeti T, Barbone F, Rosolen V, Guignard C, Gutleb AC, Sakhi AK, Haug LS, Janasik B, Ligocka D, Estokova M, Fabelova L, Kolena B, Murinova LP, Petrovicova I, Richterova D, Horvat M, Mazej D, Tratnik JS, Runkel AA, Castaño A, Esteban-López M, Pedraza-Díaz S, Åkesson A, Lignell S, Vlaanderen J, Zock JP, Schoeters G, Kolossa-Gehring M. From science to policy: How European HBM indicators help to answer policy questions related to phthalates and DINCH exposure. Int J Hyg Environ Health 2023; 247:114073. [PMID: 36434900 PMCID: PMC9758616 DOI: 10.1016/j.ijheh.2022.114073] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/19/2022] [Accepted: 11/07/2022] [Indexed: 11/25/2022]
Abstract
Within the European Human Biomonitoring (HBM) Initiative HBM4EU we derived HBM indicators that were designed to help answering key policy questions and support chemical policies. The result indicators convey information on chemicals exposure of different age groups, sexes, geographical regions and time points by comparing median exposure values. If differences are observed for one group or the other, policy measures or risk management options can be implemented. Impact indicators support health risk assessment by comparing exposure values with health-based guidance values, such as human biomonitoring guidance values (HBM-GVs). In general, the indicators should be designed to translate complex scientific information into short and clear messages and make it accessible to policy makers but also to a broader audience such as stakeholders (e.g. NGO's), other scientists and the general public. Based on harmonized data from the HBM4EU Aligned Studies (2014-2021), the usefulness of our indicators was demonstrated for the age group children (6-11 years), using two case examples: one phthalate (Diisobutyl phthalate: DiBP) and one non-phthalate substitute (Di-isononyl cyclohexane-1,2- dicarboxylate: DINCH). For the comparison of age groups, these were compared to data for teenagers (12-18 years), and time periods were compared using data from the DEMOCOPHES project (2011-2012). Our result indicators proved to be suitable for demonstrating the effectiveness of policy measures for DiBP and the need of continuous monitoring for DINCH. They showed similar exposure for boys and girls, indicating that there is no need for gender focused interventions and/or no indication of sex-specific exposure patterns. They created a basis for a targeted approach by highlighting relevant geographical differences in internal exposure. An adequate data basis is essential for revealing differences for all indicators. This was particularly evident in our studies on the indicators on age differences. The impact indicator revealed that health risks based on exposure to DiBP cannot be excluded. This is an indication or flag for risk managers and policy makers that exposure to DiBP still is a relevant health issue. HBM indicators derived within HBM4EU are a valuable and important complement to existing indicator lists in the context of environment and health. Their applicability, current shortcomings and solution strategies are outlined.
Collapse
Affiliation(s)
- Antje Gerofke
- German Environment Agency (UBA), Corrensplatz 1, 14195, Berlin, Germany.
| | - Madlen David
- German Environment Agency (UBA), Corrensplatz 1, 14195, Berlin, Germany
| | - Phillipp Schmidt
- German Environment Agency (UBA), Corrensplatz 1, 14195, Berlin, Germany
| | - Joana Lobo Vicente
- European Environment Agency, Kongens Nytorv 6, 1050, Copenhagen, Denmark
| | - Jurgen Buekers
- VITO - Flemish Institute for Technological Research, Unit Health, Boeretang 200, 2400, Mol, Belgium
| | - Liese Gilles
- VITO - Flemish Institute for Technological Research, Unit Health, Boeretang 200, 2400, Mol, Belgium
| | - Ann Colles
- VITO - Flemish Institute for Technological Research, Unit Health, Boeretang 200, 2400, Mol, Belgium
| | - Jos Bessems
- VITO - Flemish Institute for Technological Research, Unit Health, Boeretang 200, 2400, Mol, Belgium
| | | | - Adrian Covaci
- Toxicological Center, University of Antwerp, 2610 Wilrijk, Belgium
| | | | - Gudrun Koppen
- VITO - Flemish Institute for Technological Research, Unit Health, Boeretang 200, 2400, Mol, Belgium
| | - Michelle Laeremans
- VITO - Flemish Institute for Technological Research, Unit Health, Boeretang 200, 2400, Mol, Belgium
| | - Veerle J Verheyen
- VITO - Flemish Institute for Technological Research, Unit Health, Boeretang 200, 2400, Mol, Belgium
| | - Milena Černá
- National Institute of Public Health, Prague, Czech Republic
| | - Jana Klánová
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Andrea Krsková
- National Institute of Public Health, Prague, Czech Republic
| | - Martin Zvonař
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic; Faculty of Sport Studies, Masaryk University, Kamenice 753/5, Brno, Czech Republic
| | - Lisbeth E Knudsen
- Department of Public Health, University of Copenhagen Øster Farimagsgade 5 DK Copenhagen, Denmark
| | - Holger M Koch
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance - Institute of the Ruhr University Bochum (IPA), 44789, Bochum, Germany
| | - Tina Kold Jensen
- Faculty of Health Sciences, Department of Public Health, Clinical Pharmacology, Pharmacy and Environmental Medicine, University of Southern Denmark, Odense, Denmark
| | - Loïc Rambaud
- Santé publique France, French Public Health Agency (SpFrance), Saint-Maurice, France
| | - Margaux Riou
- Santé publique France, French Public Health Agency (SpFrance), Saint-Maurice, France
| | - Nina Vogel
- German Environment Agency (UBA), Corrensplatz 1, 14195, Berlin, Germany
| | - Catherine Gabriel
- Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece; HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Bldg. B, 10th km Thessaloniki-Thermi Road, 57001, Greece
| | - Spyros Karakitsios
- Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece; HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Bldg. B, 10th km Thessaloniki-Thermi Road, 57001, Greece
| | - Nafsika Papaioannou
- Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece; HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Bldg. B, 10th km Thessaloniki-Thermi Road, 57001, Greece
| | - Denis Sarigiannis
- Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece; HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Bldg. B, 10th km Thessaloniki-Thermi Road, 57001, Greece; Environmental Health Engineering, Institute of Advanced Study, Palazzo del Broletto - Piazza Della Vittoria 15, 27100, Pavia, Italy
| | - Réka Kakucs
- National Public Health Center, Albert Flórián út 2-6., 1097, Budapest, Hungary
| | - Szilvia Középesy
- National Public Health Center, Albert Flórián út 2-6., 1097, Budapest, Hungary
| | - Péter Rudnai
- National Public Health Center, Albert Flórián út 2-6., 1097, Budapest, Hungary
| | - Tamás Szigeti
- National Public Health Center, Albert Flórián út 2-6., 1097, Budapest, Hungary
| | - Fabio Barbone
- Department of Medicine-DAME, University of Udine, Via Colugna 50, 33100, Udine, Italy
| | - Valentina Rosolen
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", 34137, Trieste, Italy
| | - Cedric Guignard
- Luxembourg Institute of Science and Technology (LIST), Environmental Research and Innovation (ERIN) Department, 41, rue du Brill, L-4422 Belvaux, Luxembourg
| | - Arno C Gutleb
- Luxembourg Institute of Science and Technology (LIST), Environmental Research and Innovation (ERIN) Department, 41, rue du Brill, L-4422 Belvaux, Luxembourg
| | | | | | - Beata Janasik
- Nofer Institute of Occupational Medicine, St. Teresy 8, Lodz, Poland
| | - Danuta Ligocka
- Nofer Institute of Occupational Medicine, St. Teresy 8, Lodz, Poland
| | - Milada Estokova
- Public Health Authority of the Slovak Republic, Trnavska cesta 52, 826 45, Bratislava, Slovakia
| | - Lucia Fabelova
- Slovak Medical University, Faculty of Public Health, Limbova 12, 83303 Bratislava, Slovakia
| | - Branislav Kolena
- Constantine the Philosopher University in Nitra, Tr. A Hlinku 1, 94901 Nitra, Slovakia
| | | | - Ida Petrovicova
- Constantine the Philosopher University in Nitra, Tr. A Hlinku 1, 94901 Nitra, Slovakia
| | - Denisa Richterova
- Slovak Medical University, Faculty of Public Health, Limbova 12, 83303 Bratislava, Slovakia
| | - Milena Horvat
- Jožef Stefan Institute, Department of Environmental Sciences, Jamova cesta 39, 1000, Ljubljana, Slovenia
| | - Darja Mazej
- Jožef Stefan Institute, Department of Environmental Sciences, Jamova cesta 39, 1000, Ljubljana, Slovenia
| | - Janja Snoj Tratnik
- Jožef Stefan Institute, Department of Environmental Sciences, Jamova cesta 39, 1000, Ljubljana, Slovenia
| | - Agneta Annika Runkel
- Jožef Stefan Institute, Department of Environmental Sciences, Jamova cesta 39, 1000, Ljubljana, Slovenia
| | - Argelia Castaño
- National Centre for Environmental Health, Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Esteban-López
- National Centre for Environmental Health, Instituto de Salud Carlos III, Madrid, Spain
| | - Susana Pedraza-Díaz
- National Centre for Environmental Health, Instituto de Salud Carlos III, Madrid, Spain
| | - Agneta Åkesson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sanna Lignell
- Swedish Food Agency, PO Box 622, SE-751 26, Uppsala, Sweden
| | - Jelle Vlaanderen
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands
| | - Jan-Paul Zock
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Greet Schoeters
- VITO - Flemish Institute for Technological Research, Unit Health, Boeretang 200, 2400, Mol, Belgium
| | | |
Collapse
|
49
|
Schillemans T, Iszatt N, Remy S, Schoeters G, Fernández MF, D'Cruz SC, Desalegn A, Haug LS, Lignell S, Lindroos AK, Fábelová L, Murinova LP, Kosjek T, Tkalec Ž, Gabriel C, Sarigiannis D, Pedraza-Díaz S, Esteban-López M, Castaño A, Rambaud L, Riou M, Pauwels S, Vanlarebeke N, Kolossa-Gehring M, Vogel N, Uhl M, Govarts E, Åkesson A. Cross-sectional associations between exposure to per- and polyfluoroalkyl substances and body mass index among European teenagers in the HBM4EU aligned studies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120566. [PMID: 36334774 DOI: 10.1016/j.envpol.2022.120566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/28/2022] [Accepted: 10/29/2022] [Indexed: 05/26/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are widespread pollutants that may impact youth adiposity patterns. We investigated cross-sectional associations between PFAS and body mass index (BMI) in teenagers/adolescents across nine European countries within the Human Biomonitoring for Europe (HBM4EU) initiative. We used data from 1957 teenagers (12-18 yrs) that were part of the HBM4EU aligned studies, consisting of nine HBM studies (NEBII, Norway; Riksmaten Adolescents 2016-17, Sweden; PCB cohort (follow-up), Slovakia; SLO CRP, Slovenia; CROME, Greece; BEA, Spain; ESTEBAN, France; FLEHS IV, Belgium; GerES V-sub, Germany). Twelve PFAS were measured in blood, whilst weight and height were measured by field nurse/physician or self-reported in questionnaires. We assessed associations between PFAS and age- and sex-adjusted BMI z-scores using linear and logistic regression adjusted for potential confounders. Random-effects meta-analysis and mixed effects models were used to pool studies. We assessed mixture effects using molar sums of exposure biomarkers with toxicological/structural similarities and quantile g-computation. In all studies, the highest concentrations of PFAS were PFOS (medians ranging from 1.34 to 2.79 μg/L). There was a tendency for negative associations with BMI z-scores for all PFAS (except for PFHxS and PFHpS), which was borderline significant for the molar sum of [PFOA and PFNA] and significant for single PFOA [β-coefficient (95% CI) per interquartile range fold change = -0.06 (-0.17, 0.00) and -0.08 (-0.15, -0.01), respectively]. Mixture assessment indicated similar negative associations of the total mixture of [PFOA, PFNA, PFHxS and PFOS] with BMI z-score, but not all compounds showed associations in the same direction: whilst [PFOA, PFNA and PFOS] were negatively associated, [PFHxS] associated positively with BMI z-score. Our results indicated a tendency for associations of relatively low PFAS concentrations with lower BMI in European teenagers. More prospective research is needed to investigate this potential relationship and its implications for health later in life.
Collapse
Affiliation(s)
- Tessa Schillemans
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Sweden.
| | - Nina Iszatt
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Norway
| | - Sylvie Remy
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Greet Schoeters
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Mariana F Fernández
- Centre for Biomedical Research (CIBM) and School of Medicine, University of Granada, Granada, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Shereen Cynthia D'Cruz
- Univ Rennes, EHESP, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail), Rennes, France
| | - Anteneh Desalegn
- Division of Food Safety, Norwegian Institute of Public Health, Norway
| | - Line S Haug
- Division of Food Safety, Norwegian Institute of Public Health, Norway
| | | | | | - Lucia Fábelová
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, Bratislava, Slovakia
| | - Lubica Palkovicova Murinova
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, Bratislava, Slovakia
| | - Tina Kosjek
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Žiga Tkalec
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Catherine Gabriel
- Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece; HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Bldg. B, 10th Km Thessaloniki-Thermi Road, 57001, Greece
| | - Denis Sarigiannis
- Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece; HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Bldg. B, 10th Km Thessaloniki-Thermi Road, 57001, Greece; Environmental Health Engineering, Institute of Advanced Study, Palazzo Del Broletto - Piazza Della Vittoria 15, 27100, Pavia, Italy
| | - Susana Pedraza-Díaz
- National Centre for Environmental Health, Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Esteban-López
- National Centre for Environmental Health, Instituto de Salud Carlos III, Madrid, Spain
| | - Argelia Castaño
- National Centre for Environmental Health, Instituto de Salud Carlos III, Madrid, Spain
| | - Loïc Rambaud
- Department of Environmental and Occupational Health, Santé Publique France, Saint-Maurice, France
| | - Margaux Riou
- Department of Environmental and Occupational Health, Santé Publique France, Saint-Maurice, France
| | - Sara Pauwels
- Department of Public Health and Primary Care, KU, Leuven, Belgium
| | - Nik Vanlarebeke
- Department of Analytical and Environmental Chemistry, Free University of Brussels, Belgium
| | | | - Nina Vogel
- German Environment Agency, Umweltbundesamt (UBA), Berlin, Germany
| | - Maria Uhl
- Environment Agency Austria, Vienna, Austria
| | - Eva Govarts
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Agneta Åkesson
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Sweden
| |
Collapse
|
50
|
van der Schyff V, Kalina J, Govarts E, Gilles L, Schoeters G, Castaño A, Esteban-López M, Kohoutek J, Kukučka P, Covaci A, Koppen G, Andrýsková L, Piler P, Klánová J, Jensen TK, Rambaud L, Riou M, Lamoree M, Kolossa-Gehring M, Vogel N, Weber T, Göen T, Gabriel C, Sarigiannis DA, Sakhi AK, Haug LS, Murinova LP, Fabelova L, Tratnik JS, Mazej D, Melymuk L. Exposure to flame retardants in European children - Results from the HBM4EU aligned studies. Int J Hyg Environ Health 2023; 247:114070. [PMID: 36442457 PMCID: PMC9758617 DOI: 10.1016/j.ijheh.2022.114070] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/29/2022] [Accepted: 11/03/2022] [Indexed: 11/26/2022]
Abstract
Many legacy and emerging flame retardants (FRs) have adverse human and environmental health effects. This study reports legacy and emerging FRs in children from nine European countries from the HBM4EU aligned studies. Studies from Belgium, Czech Republic, Germany, Denmark, France, Greece, Slovenia, Slovakia, and Norway conducted between 2014 and 2021 provided data on FRs in blood and urine from 2136 children. All samples were collected and analyzed in alignment with the HBM4EU protocols. Ten halogenated FRs were quantified in blood, and four organophosphate flame retardants (OPFR) metabolites quantified in urine. Hexabromocyclododecane (HBCDD) and decabromodiphenyl ethane (DBDPE) were infrequently detected (<16% of samples). BDE-47 was quantified in blood from Greece, France, and Norway, with France (0.36 ng/g lipid) having the highest concentrations. BDE-153 and -209 were detected in <40% of samples. Dechlorane Plus (DP) was quantified in blood from four countries, with notably high median concentrations of 16 ng/g lipid in Slovenian children. OPFR metabolites had a higher detection frequency than other halogenated FRs. Diphenyl phosphate (DPHP) was quantified in 99% of samples across 8 countries at levels ∼5 times higher than other OPFR metabolites (highest median in Slovenia of 2.43 ng/g lipid). FR concentrations were associated with lifestyle factors such as cleaning frequency, employment status of the father of the household, and renovation status of the house, among others. The concentrations of BDE-47 in children from this study were similar to or lower than FRs found in adult matrices in previous studies, suggesting lower recent exposure and effectiveness of PBDE restrictions.
Collapse
Affiliation(s)
| | - Jiři Kalina
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Eva Govarts
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, 2400, Belgium
| | - Liese Gilles
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, 2400, Belgium
| | - Greet Schoeters
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, 2400, Belgium,Department of Biomedical Sciences, University of Antwerp, 2020, Antwerp, Belgium
| | - Argelia Castaño
- National Centre for Environmental Health, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Marta Esteban-López
- National Centre for Environmental Health, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Jiři Kohoutek
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Petr Kukučka
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Adrian Covaci
- Toxicological Center, University of Antwerp, 2610 Wilrijk, Belgium
| | - Gudrun Koppen
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, 2400, Belgium
| | - Lenka Andrýsková
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Pavel Piler
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Jana Klánová
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Tina Kold Jensen
- Department of Environmental Medicine, Institute of Public Health, University of Southern Denmark, Odense, 5000, Denmark
| | - Loic Rambaud
- Santé Publique France, French Public Health Agency (ANSP), Saint-Maurice, 94415, France
| | - Margaux Riou
- Santé Publique France, French Public Health Agency (ANSP), Saint-Maurice, 94415, France
| | - Marja Lamoree
- Vrije Universiteit, Amsterdam Institute for Life and Environment, Section Chemistry for Environment & Health, De Boelelaan 1108, 1081 HZ, Amsterdam, Netherlands
| | | | - Nina Vogel
- German Environment Agency (UBA), 06844 Dessau-Roßlau, Germany
| | - Till Weber
- German Environment Agency (UBA), 06844 Dessau-Roßlau, Germany
| | - Thomas Göen
- IPASUM - Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Henkestrasse 9-11, 91054, Erlangen, Germany
| | - Catherine Gabriel
- Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece,HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Bldg. B, 10th km Thessaloniki-Thermi Road, 57001, Greece
| | - Dimosthenis A. Sarigiannis
- Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece,HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Bldg. B, 10th km Thessaloniki-Thermi Road, 57001, Greece,Environmental Health Engineering, Institute of Advanced Study, Palazzo del Broletto, Piazza Della Vittoria 15, 27100, Pavia, Italy
| | - Amrit Kaur Sakhi
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Line Småstuen Haug
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | | | - Lucia Fabelova
- Faculty of Public Health, Slovak Medical University, Bratislava, 833 03, Slovakia
| | - Janja Snoj Tratnik
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana, 1000, Slovenia
| | - Darja Mazej
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana, 1000, Slovenia
| | - Lisa Melymuk
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic,Corresponding author.
| |
Collapse
|