1
|
Yang J, Zhou X, Qiao X, Shi M. Friend or foe: the role of platelets in acute lung injury. Front Immunol 2025; 16:1556923. [PMID: 40438116 PMCID: PMC12116376 DOI: 10.3389/fimmu.2025.1556923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 04/24/2025] [Indexed: 06/01/2025] Open
Abstract
Lung diseases, including acute lung injury (ALI) and acute respiratory distress syndrome (ARDS), are associated with various etiological factors and are characterized by high mortality rates. Current treatment strategies primarily focus on lung-protective ventilation and careful fluid management. Despite over 50 years of basic and clinical research, effective treatment options remain limited, and the search for novel strategies continues. Traditionally, platelets have been viewed primarily as contributors to blood coagulation; however, recent research has revealed their significant role in inflammation and immune regulation. While the relationship between platelet count and ALI/ARDS has remained unclear, emerging studies highlight the "dual role" of platelets in these conditions. On one hand, platelets interact with neutrophils to form neutrophil extracellular traps (NETs), promoting immune thrombosis and exacerbating lung inflammation. On the other hand, platelets also play a protective role by modulating inflammation, promoting regulatory T cell (Treg) activity, and assisting in alveolar macrophage reprogramming. This dual functionality of platelets has important implications for the pathogenesis and resolution of ALI/ARDS. This review examines the multifaceted roles of platelets in ALI/ARDS, focusing on their immunomodulatory effects, the platelet-neutrophil interaction, and the critical involvement of platelet-Treg cell complexes in shaping the inflammatory environment in ALI.
Collapse
Affiliation(s)
- Jichun Yang
- Department of Thoracic and Cardiovascular Surgery, Hua Shan Hospital, Affiliated with Fudan University, Shanghai, China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xun Zhou
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xinrui Qiao
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Meng Shi
- Department of Thoracic and Cardiovascular Surgery, Hua Shan Hospital, Affiliated with Fudan University, Shanghai, China
| |
Collapse
|
2
|
Averin A, Pelton SI, Weycker D, Huang L, Vietri J, Tort MJ, Arguedas Mohs AG, Cane A, Rozenbaum MH, Lapidot R. Early-life pneumonia and subsequent risk of respiratory disease among commercial-insured and medicaid-insured children with and without high-risk conditions. Respir Med 2025; 241:108050. [PMID: 40122404 DOI: 10.1016/j.rmed.2025.108050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 03/19/2025] [Accepted: 03/21/2025] [Indexed: 03/25/2025]
Abstract
BACKGROUND Evidence suggests that early-life community-acquired pneumonia (CAP) among healthy children increases their risk of subsequent chronic respiratory disorders. This study extends prior research by including children with and without comorbidities and conducting analyses using two databases. METHODS Data were obtained from the Optum Electronic Health Record Database (commercial subset) and Merative Medicaid Multi-State Database. Study populations comprised children hospitalized for CAP before age 2 years ("CAP patients") as well as matched "comparison patients." Rates of study outcomes-including chronic respiratory disease (CRD), reactive airway disease (RAD), CAP hospitalization-from age 2-5 years were calculated for CAP/comparison patients in each study population, overall and by comorbidity profile. FINDINGS Rates of study outcomes from age 2-5 years were markedly higher among CAP (vs. comparison) patients in commercial-insured and Medicaid-insured populations, by: 1·9 and 1·5 for CRD; 2·5 and 2·0 for RAD; 6·4 and 7·3 for CAP hospitalization. CAP patients with (vs. without) comorbidities had numerically higher rates of outcomes, but relative rates of outcomes for CAP (vs. comparison) patients were largely comparable irrespective of comorbidity profile. INTERPRETATION CAP before age 2 years is associated with increased rates of CRD from age 2-5 years and the proportion of children with subsequent CRD is highest among those with comorbidities. These observations suggest a potential causative role for early-life CAP in subsequent CRD.
Collapse
Affiliation(s)
| | - Stephen I Pelton
- Boston Medical Center, Boston, MA, USA; Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | | | | | | | | | | | | | | | - Rotem Lapidot
- Boston Medical Center, Boston, MA, USA; Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Division of Pediatric Infectious Diseases, Rambam Health Care Campus, Haifa, Israel; Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
3
|
Kotlyarov S, Oskin D. The Role of Inflammation in the Pathogenesis of Comorbidity of Chronic Obstructive Pulmonary Disease and Pulmonary Tuberculosis. Int J Mol Sci 2025; 26:2378. [PMID: 40141021 PMCID: PMC11942565 DOI: 10.3390/ijms26062378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/23/2025] [Accepted: 03/05/2025] [Indexed: 03/28/2025] Open
Abstract
The comorbid course of chronic obstructive pulmonary disease (COPD) and pulmonary tuberculosis is an important medical and social problem. Both diseases, although having different etiologies, have many overlapping relationships that mutually influence their course and prognosis. The aim of the current review is to discuss the role of different immune mechanisms underlying inflammation in COPD and pulmonary tuberculosis. These mechanisms are known to involve both the innate and adaptive immune system, including various cellular and intercellular interactions. There is growing evidence that immune mechanisms involved in the pathogenesis of both COPD and tuberculosis may jointly contribute to the tuberculosis-associated obstructive pulmonary disease (TOPD) phenotype. Several studies have reported prior tuberculosis as a risk factor for COPD. Therefore, the study of the mechanisms that link COPD and tuberculosis is of considerable clinical interest.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| | - Dmitry Oskin
- Department of Infectious Diseases and Phthisiology, Ryazan State Medical University, 390026 Ryazan, Russia
| |
Collapse
|
4
|
Kim J, Seo D, Yoo SY, Lee HJ, Kim J, Yeom JE, Lee JY, Park W, Hong KS, Lee W. Lung-homing nanoliposomes for early intervention in NETosis and inflammation during acute lung injury. NANO CONVERGENCE 2025; 12:8. [PMID: 39894864 PMCID: PMC11788270 DOI: 10.1186/s40580-025-00475-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 01/07/2025] [Indexed: 02/04/2025]
Abstract
Acute lung injury (ALI) is characterized by severe inflammation in lung tissue, excessive immune response and impaired lung function. In hospitalized high-risk patients and cases of secondary infection due to surgical contamination, it can lead to higher mortality rates and require immediate intervention. Currently, clinical treatments are limited in symptomatic therapy as mechanical ventilation and corticosteroids, having insufficient efficacy in mitigating the cause of progression to severe illness. Here we report a pulmonary targeting lung-homing nanoliposome (LHN) designed to attenuate excessive Neutrophil Extracellular Trap formation (NETosis) through sivelestat and DNase-1, coupled with an anti-inflammatory effect mediated by 25-hydroxycholesterol (25-HC), offering a promising intervention for the acute phase of ALI. Through intratracheal delivery, we intend prompt and constant action within the lungs to effectively prevent excessive NETosis. Isolated neutrophils from blood samples of severe ARDS patients demonstrated significant anti-NETosis effects, as well as reduced proinflammatory cytokine secretion. Furthermore, in a murine model of LPS-induced ALI, we confirmed improvements in lung histopathology, and early respiratory function. Also, attenuation of systemic inflammatory response syndrome (SIRS), with notable reductions in NETosis and neutrophil trafficking was investigated. This presents a targeted therapeutic approach that can be applied in early stages of high-risk patients to prevent severe pulmonary disease progression.
Collapse
Affiliation(s)
- Jungbum Kim
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Donghyuk Seo
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - So-Yeol Yoo
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hye-Jin Lee
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jisun Kim
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Ji Eun Yeom
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jae-Young Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Wooram Park
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Gyeonggi, 16419, Republic of Korea.
- Department of MetaBioHealth, Institute for Cross-disciplinary Studies, Sungkyunkwan University, Suwon, Gyeonggi, 16419, Republic of Korea.
| | - Kyung Soo Hong
- Division of Pulmonology and Allergy, Department of Internal Medicine, College of Medicine, Regional Center for Respiratory Diseases, Yeungnam University, Yeungnam University Medical Center, Daegu, 42415, Republic of Korea.
| | - Wonhwa Lee
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
- Department of MetaBioHealth, Institute for Cross-disciplinary Studies, Sungkyunkwan University, Suwon, Gyeonggi, 16419, Republic of Korea.
| |
Collapse
|
5
|
Fernández-Villa D, Herraiz A, de Wit K, Herranz F, Aguilar MR, Rojo L. Design of tunable hyaluronic acid and O'-carboxymethyl chitosan formulations for the minimally invasive delivery of multifunctional therapies targeting rheumatoid arthritis. Carbohydr Polym 2025; 349:123018. [PMID: 39638525 DOI: 10.1016/j.carbpol.2024.123018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/11/2024] [Accepted: 11/14/2024] [Indexed: 12/07/2024]
Abstract
The development of injectable, dual-component formulations based on natural-based polysaccharides is a promising strategy for the localized treatment of rheumatoid arthritis (RA). In the present study, biomimetic formulations consisting of aldehyde-functionalized hyaluronic acid (AHA) and O-carboxymethyl chitosan (OCC) were developed, presenting rapid in situ gelation rates and finely tunable physicochemical properties. These two properties allowed for the controlled delivery of anti-inflammatory, antioxidant, and pro-regenerative agents (i.e., strontium-methotrexate (SrMTX) and europium-tannic acid nanocomplexes (EuTA NCs), making them suitable for application in in vivo RA-models. Biological analyses demonstrated the system's cytocompatibility and its ability to modulate the activity of human articular chondrocytes at the secretome level and scavenge nitric oxide (NO). Moreover, the loaded cargoes not only extended the anti-inflammatory properties of the formulation but also the radiolabeling of EuTA NCs with 68Ga allowed the visualization of the gel by positron emission tomography (PET). Overall, this work presents the design and in vitro evaluation of an easily modulable polymeric system that allows the in situ release of a multifunctional therapy with promising perspectives for RA treatment.
Collapse
Affiliation(s)
- Daniel Fernández-Villa
- Instituto de Ciencia y Tecnología de Polímeros (ICTP) CSIC, 28006 Madrid, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain.
| | - Aitor Herraiz
- Instituto de Química Médica (IQM), CSIC, 28006 Madrid, Spain.
| | - Kyra de Wit
- Instituto de Ciencia y Tecnología de Polímeros (ICTP) CSIC, 28006 Madrid, Spain
| | - Fernando Herranz
- Instituto de Química Médica (IQM), CSIC, 28006 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain.
| | - María Rosa Aguilar
- Instituto de Ciencia y Tecnología de Polímeros (ICTP) CSIC, 28006 Madrid, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain.
| | - Luis Rojo
- Instituto de Ciencia y Tecnología de Polímeros (ICTP) CSIC, 28006 Madrid, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain.
| |
Collapse
|
6
|
Lin X, Xu E, Zhang T, Zhu Q, Liu Y, Tian Q. Cytokine-based nomogram for discriminating viral pneumonia from Mycoplasma pneumoniae pneumonia in children. Diagn Microbiol Infect Dis 2025; 111:116611. [PMID: 39577102 DOI: 10.1016/j.diagmicrobio.2024.116611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/24/2024]
Abstract
For children with pneumonia, differential diagnosis between viral infection and Mycoplasma pneumoniae (MP) infection is difficult. We retrospectively enrolled 336 hospitalized children who were diagnosed with community-acquired pneumonia and whose infection was exclusively viral or MP. We analyzed hematological indicators, biochemical markers, and cytokines. Least absolute shrinkage and selection operator (LASSO) regression analysis and logistic regression analysis were performed to identify and validate the factors that predicted the pathogenic diagnosis. The final predictive model incorporated four factors: tumor necrosis factor-α/interleukin (IL)-10, age, IL-8 and procalcitonin. This predictive model was visualized with a nomogram and had good performance. Using logistic regression analysis, the C-index of this predictive model was 0.878. Using receiver operating characteristic plot, the area under the curve was 0.8785. We established a model with a nomogram to discriminate viral infection from MP infection in hospitalized children with community-acquired pneumonia.
Collapse
Affiliation(s)
- Xiaoliang Lin
- Department of Respiratory Medicine, Xiamen Children's Hospital (Children's Hospital of Fudan University at Xiamen), No. 92-98 Yibin Road, 361006, Xiamen, China.
| | - Enhui Xu
- Department of Respiratory Medicine, Xiamen Children's Hospital (Children's Hospital of Fudan University at Xiamen), No. 92-98 Yibin Road, 361006, Xiamen, China
| | - Tan Zhang
- Department of Respiratory Medicine, Xiamen Children's Hospital (Children's Hospital of Fudan University at Xiamen), No. 92-98 Yibin Road, 361006, Xiamen, China
| | - Qiguo Zhu
- Department of Respiratory Medicine, Xiamen Children's Hospital (Children's Hospital of Fudan University at Xiamen), No. 92-98 Yibin Road, 361006, Xiamen, China
| | - Yan Liu
- Department of Respiratory Medicine, Xiamen Children's Hospital (Children's Hospital of Fudan University at Xiamen), No. 92-98 Yibin Road, 361006, Xiamen, China
| | - Qiao Tian
- Department of Respiratory Medicine, Xiamen Children's Hospital (Children's Hospital of Fudan University at Xiamen), No. 92-98 Yibin Road, 361006, Xiamen, China
| |
Collapse
|
7
|
Ryanto GRT, Suraya R, Nagano T. The Importance of Lung Innate Immunity During Health and Disease. Pathogens 2025; 14:91. [PMID: 39861052 PMCID: PMC11768135 DOI: 10.3390/pathogens14010091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
The lung is a vital organ for the body as the main source of oxygen input. Importantly, it is also an internal organ that has direct contact with the outside world. Innate immunity is a vital protective system in various organs, whereas, in the case of the lung, it helps maintain a healthy, functioning cellular and molecular environment and prevents any overt damage caused by pathogens or other inflammatory processes. Disturbances in lung innate immunity properties and processes, whether over-responsiveness of the process triggered by innate immunity or lack of responses due to dysfunctions in the immune cells that make up the innate immunity system of the lung, could be correlated to various pathological conditions. In this review, we discuss globally how the components of lung innate immunity are important not only for maintaining lung homeostasis but also during the pathophysiology of notable lung diseases beyond acute pulmonary infections, including chronic obstructive pulmonary disease (COPD), asthma, and pulmonary fibrosis.
Collapse
Affiliation(s)
- Gusty Rizky Teguh Ryanto
- Laboratory of Clinical Pharmaceutical Science, Kobe Pharmaceutical University, Kobe 658-8558, Japan
| | - Ratoe Suraya
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Tatsuya Nagano
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| |
Collapse
|
8
|
Li J, Zhai X, Yu C. Spatial distribution-based progression of spinal cord injury pathology: a key role for neuroimmune cells. Front Immunol 2025; 15:1505755. [PMID: 39850888 PMCID: PMC11754049 DOI: 10.3389/fimmu.2024.1505755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/19/2024] [Indexed: 01/25/2025] Open
Abstract
An external trauma, illness, or other pathological cause can harm the structure and function of the spinal cord, resulting in a significant neurological disorder known as spinal cord injury (SCI). In addition to impairing movement and sensory functions, spinal cord injury (SCI) triggers complex pathophysiological responses, with the spatial dynamics of immune cells playing a key role. The inflammatory response and subsequent healing processes following SCI are profoundly influenced by the spatial distribution and movement of immune cells. Despite significant advances in both scientific and clinical research, SCI therapy still faces several challenges. These challenges primarily stem from our limited understanding of the spatial dynamics of immune cell distribution and the processes that regulate their interactions within the microenvironment following injury. Therefore, a comprehensive investigation into the spatial dynamics of immune cells following SCI is essential to uncover their mechanisms in neuroinflammation and repair, and to develop novel therapeutic strategies.
Collapse
Affiliation(s)
- Jian Li
- Shanghai TCM-Integrated Hospital, Shanghai University of TCM, Department of Neurosurgery, Shanghai, China
| | - Xiaolei Zhai
- Department of Neurosurgery, Shuyang Hospital of Traditional Chinese Medicine, Affiliated Shuyang Hospital of Nanjing University of Chinese Medicine, Shuyang, China
| | - Chaochun Yu
- Shanghai TCM-Integrated Hospital, Shanghai University of TCM, Department of Neurosurgery, Shanghai, China
| |
Collapse
|
9
|
Cardoso KF, de Souza LRA, da Silva Santos BSÁ, de Carvalho KRA, da Silva Messias SG, de Faria Gonçalves AP, Kano FS, Alves PA, da Silva Campos MA, Xavier MP, Garcia CC, Russo RC, Gazzinelli RT, Costa ÉA, da Silva Martins NR, Miyaji EN, de Magalhães Vieira Machado A, Silva Araújo MS. Intranasal influenza-vectored vaccine expressing pneumococcal surface protein A protects against Influenza and Streptococcus pneumoniae infections. NPJ Vaccines 2024; 9:246. [PMID: 39702744 DOI: 10.1038/s41541-024-01033-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 11/21/2024] [Indexed: 12/21/2024] Open
Abstract
Streptococcus pneumoniae and influenza A virus (IAV) are significant agents of pneumonia cases and severe respiratory infections globally. Secondary bacterial infections, particularly by Streptococcus pneumoniae, are common in IAV-infected individuals, leading to critical outcomes. Despite reducing mortality, pneumococcal vaccines have high production costs and are serotype specific. The emergence of new circulating serotypes has led to the search for new prevention strategies that provide a broad spectrum of protection. In this context, vaccination using antigens present in all serotypes, such as Pneumococcal Surface Protein A (PspA), can offer broad coverage regardless of serotype. Employing the reverse genetics technique, our research group developed a recombinant influenza A H1N1 virus that expresses PspA (Flu-PspA), through the replacement of neuraminidase by PspA. This virus was evaluated as a bivalent vaccine against infections caused by influenza A and S. pneumoniae in mice. Initially, we evaluated the Flu-PspA virus's ability to infect cells and express PspA in vitro, its capacity to multiply in embryonated chicken eggs, and its safety when inoculated in mice. Subsequently, the protective effect against influenza A and Streptococcus pneumoniae lethal challenge infections in mice was assessed using different immunization protocols. Analysis of the production of antibodies against PspA4 protein and influenza, and the binding capacity of anti-PspA4 antibodies/complement deposition to different strains of S. pneumoniae were also evaluated. Our results demonstrate that the Flu-PspA virus vaccine efficiently induces PspA protein expression in vitro, and that it was able to multiply in embryonated chicken eggs even without exogenous neuraminidase. The Flu-PspA-based bivalent vaccine was demonstrated to be safe, stimulated high titers of anti-PspA and anti-influenza antibodies, and protected mice against homosubtypic and heterosubtypic influenza A and S. pneumoniae challenge. Moreover, an efficient binding of antibodies and complement deposition on the surface of pneumococcal strains ascribes the broad-spectrum vaccine response in vivo. In summary, this innovative approach holds promise for developing a dual-protective vaccine against two major respiratory pathogens.
Collapse
Affiliation(s)
- Kimberly Freitas Cardoso
- Laboratório de Imunologia de Doenças Virais, Instituto René Rachou-Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brasil
| | - Lara Regina Alves de Souza
- Laboratório de Imunologia de Doenças Virais, Instituto René Rachou-Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brasil
| | | | | | - Sarah Giarola da Silva Messias
- Grupo Integrado de Pesquisa em Biomarcadores, Instituto René Rachou-Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brasil
| | - Ana Paula de Faria Gonçalves
- Laboratório de Imunologia de Doenças Virais, Instituto René Rachou-Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brasil
| | - Flora Satiko Kano
- Grupo de Pesquisa em Biologia Molecular e Imunologia da Malária, Instituto René Rachou-Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brasil
| | - Pedro Augusto Alves
- Laboratório de Imunologia de Doenças Virais, Instituto René Rachou-Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brasil
| | - Marco Antônio da Silva Campos
- Laboratório de Imunologia de Doenças Virais, Instituto René Rachou-Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brasil
| | - Marcelo Pascoal Xavier
- Laboratório de Imunologia de Doenças Virais, Instituto René Rachou-Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brasil
| | - Cristiana Couto Garcia
- Grupo Integrado de Pesquisa em Biomarcadores, Instituto René Rachou-Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brasil
| | - Remo Castro Russo
- Laboratório de Imunologia e Mecânica Pulmonar, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Ricardo Tostes Gazzinelli
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Érica Azevedo Costa
- Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | | | | | | | - Márcio Sobreira Silva Araújo
- Grupo Integrado de Pesquisa em Biomarcadores, Instituto René Rachou-Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brasil.
| |
Collapse
|
10
|
Anwar S, Alhumaydhi FA, Rahmani AH, Kumar V, Alrumaihi F. A Review on Risk Factors, Traditional Diagnostic Techniques, and Biomarkers for Pneumonia Prognostication and Management in Diabetic Patients. Diseases 2024; 12:310. [PMID: 39727640 PMCID: PMC11726889 DOI: 10.3390/diseases12120310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/20/2024] [Accepted: 11/30/2024] [Indexed: 12/28/2024] Open
Abstract
People of all ages can contract pneumonia, and it can cause mild to severe disease and even death. In addition to being a major cause of death for elderly people and those with prior medical conditions such as diabetes, it isthe world's biggest infectious cause of death for children. Diabetes mellitus is a metabolic condition with a high glucose level and is a leading cause of lower limb amputation, heart attacks, strokes, blindness, and renal failure. Hyperglycemia is known to impair neutrophil activity, damage antioxidant status, and weaken the humoral immune system. Therefore, diabetic patients are more susceptible to pneumonia than people without diabetes and linked fatalities. The absence of quick, precise, simple, and affordable ways to identify the etiologic agents of community-acquired pneumonia has made diagnostic studies' usefulness contentious. Improvements in biological markers and molecular testing techniques have significantly increased the ability to diagnose pneumonia and other related respiratory infections. Identifying the risk factors for developing severe pneumonia and early testing in diabetic patients might lead to a significant decrease in the mortality of diabetic patients with pneumonia. In this regard, various risk factors, traditional testing techniques, and pathomechanisms are discussed in this review. Further, biomarkers and next-generation sequencing are briefly summarized. Finding biomarkers with the ability to distinguish between bacterial and viral pneumonia could be crucial because identifying the precise pathogen would stop the unnecessary use of antibiotics and effectively save the patient's life.
Collapse
Affiliation(s)
- Shehwaz Anwar
- Department of Medical Laboratory Technology, College of Nursing and Paramedical Sciences, Bareilly 243302, Uttar Pradesh, India
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (F.A.A.); (A.H.R.)
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (F.A.A.); (A.H.R.)
| | - Vikalp Kumar
- Department of Medical Laboratory Technology, College of Nursing and Paramedical Sciences, Bareilly 243302, Uttar Pradesh, India
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (F.A.A.); (A.H.R.)
| |
Collapse
|
11
|
Hui WF, Chan RWY, Hon KL. The cytokine profile of a child with invasive pneumococcal disease-associated acute respiratory distress syndrome treated with extracorporeal cytokine removal. Ther Apher Dial 2024; 28:951-953. [PMID: 39107931 DOI: 10.1111/1744-9987.14191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/03/2024] [Accepted: 07/24/2024] [Indexed: 10/30/2024]
Affiliation(s)
- Wun Fung Hui
- Department of Paediatrics and Adolescent Medicine, Hong Kong Children's Hospital, Kowloon, Hong Kong
| | - Renee Wan Yi Chan
- Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, New Territories, Hong Kong
- Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, New Territories, Hong Kong
- Laboratory for Paediatric Respiratory Research, Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, New Territories, Hong Kong
- CUHK-UMCU Joint Research Laboratory of Respiratory Virus & Immunobiology, Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, New Territories, Hong Kong
| | - Kam Lun Hon
- Department of Paediatrics and Adolescent Medicine, Hong Kong Children's Hospital, Kowloon, Hong Kong
| |
Collapse
|
12
|
Jin XY, Yang HY, Zhao GY, Dai CX, Zhang ZQ, Zhou DS, Yin Q, Dai EH. Comparative pathogenicity of influenza virus-induced pneumonia mouse model following intranasal and aerosolized intratracheal inoculation. Virol J 2024; 21:240. [PMID: 39354538 PMCID: PMC11446018 DOI: 10.1186/s12985-024-02516-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/23/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND Infection of mice with mouse-adapted strains of influenza virus has been widely used to establish mouse pneumonia models. Intranasal inoculation is the traditional route for constructing an influenza virus-induced pneumonia mouse model, while intratracheal inoculation has been gradually applied in recent years. In this article, the pathogenicity of influenza virus-induced pneumonia mouse models following intranasal and aerosolized intratracheal inoculation were compared. METHODS By comparing the two ways of influenza inoculation, intranasal and intratracheal, a variety of indices such as survival rate, body weight change, viral titer and load, pathological change, lung wet/dry ratio, and inflammatory factors were investigated. Meanwhile, the transcriptome was applied for the initial exploration of the mechanism underlying the variations in the results between the two inoculation methods. RESULTS The findings suggest that aerosolized intratracheal infection leads to more severe lung injury and higher viral loads in the lungs compared to intranasal infection, which may be influenced by the initial site of infection, sialic acid receptor distribution, and host innate immunity. CONCLUSION Intratracheal inoculation is a better method for modelling severe pneumonia in mice than intranasal infection.
Collapse
Affiliation(s)
- Xiu-Yu Jin
- Hebei Key Laboratory of Immune Mechanism of Major Infectious Diseases and New Technology of Diagnosis and Treatment, The Fifth Hospital of Shijiazhuang, Shijiazhuang, People's Republic of China
| | - Hui-Ying Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Guang-Yu Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Chen-Xi Dai
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Zai-Qing Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Dong-Sheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Qi Yin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China.
| | - Er-Hei Dai
- Hebei Key Laboratory of Immune Mechanism of Major Infectious Diseases and New Technology of Diagnosis and Treatment, The Fifth Hospital of Shijiazhuang, Shijiazhuang, People's Republic of China.
| |
Collapse
|
13
|
Guo S, Zhang J, Zhang Q, Xu S, Liu Y, Ma S, Hu X, Liu Y, Zhang X, Jiang R, Zhang Z, Zhang Z, Zhou Z, Wen L. Polygala tenuifolia willd. Extract alleviates LPS-induced acute lung injury in rats via TLR4/NF-κB pathway and NLRP3 inflammasome suppression. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155859. [PMID: 38972239 DOI: 10.1016/j.phymed.2024.155859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 06/03/2024] [Accepted: 07/03/2024] [Indexed: 07/09/2024]
Abstract
BACKGROUND Acute lung injury (ALI) has received considerable attention in the field of critical care as it can lead to high mortality rates. Polygala tenuifolia, a traditional Chinese medicine with strong expectorant properties, can be used to treat pneumonia. Owing to the complexity of its composition, the main active ingredient is not yet known. Thus, there is a need to identify its constituent compounds and mechanism of action in the treatment of ALI using advanced technological means. PURPOSE We investigated the anti-inflammatory mechanism and constituent compounds with regard to the effect of P. tenuifolia Willd. extract (EPT) in lipopolysaccharide (LPS)-induced ALI in vivo and in vitro. METHODS The UHPLC-Q-Exactive Orbitrap MS technology was used to investigate the chemical profile of EPT. Network pharmacology was used to predict the targets and pathways of action of EPT in ALI, and molecular docking was used to validate the binding of polygalacic acid to Toll-like receptor (TLR) 4. The main compounds were determined using LC-MS. A rat model of LPS-induced ALI was established, and THP-1 cells were stimulated with LPS and adenosine triphosphate (ATP) to construct an in vitro model. Pathological changes were observed using hematoxylin and eosin staining, Wright-Giemsa staining, and immunohistochemistry. The expression of inflammatory factors (NE, MPO, Ly-6 G, TNF-α, IL-1β, IL-6, and iNOS) was determined using enzyme-linked immunosorbent assay, real-time fluorescence quantitative polymerase chain reaction, and western blotting. The LPS + ATP-induced inflammation model in THP-1 cells was used to verify the in vivo experimental results. RESULTS Ninety-nine compounds were identified or tentatively deduced from EPT. Using network pharmacology, we found that TLR4/NF-κB may be a relevant pathway for the prevention and treatment of ALI by EPT. Polygalacic acid in EPT may be a potential active ingredient. EPT could alleviate LPS-induced histopathological lung damage and reduce the wet/dry lung weight ratio in the rat model of ALI. Moreover, EPT decreased the white blood cell and neutrophil counts in the bronchoalveolar lavage fluid and decreased the expression of genes and proteins of relevant inflammatory factors (NE, MPO, Ly-6 G, TNF-α, IL-1β, IL-6, and iNOS) in lung tissues. It also increased the expression of endothelial-type nitric oxide synthase expression. Western blotting confirmed that EPT may affect TLR4/NF-κB and NLRP3 signaling pathways in vivo. Similar results were obtained in THP-1 cells. CONCLUSION EPT reduced the release of inflammatory factors by affecting TLR4/NF-κB and NLRP3 signaling pathways, thereby attenuating the inflammatory response of ALI. Polygalacic acid is the likely compounds responsible for these effects.
Collapse
Affiliation(s)
- Shuyun Guo
- School of Basic Medicine, Hubei University of Traditional Chinese Medicine, Huangjia Lake West Road 16, Wuhan 430065, China
| | - Jianguang Zhang
- Qinghai-Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People's Republic of China, Southwest Minzu University, Chengdu 610225, China; Qinzhou Provincial Health School, Qinzhou 535000, China
| | - Qian Zhang
- School of Basic Medicine, Hubei University of Traditional Chinese Medicine, Huangjia Lake West Road 16, Wuhan 430065, China
| | - Shuang Xu
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Yuezhen Liu
- School of Pharmacy, Hubei University of Traditional Chinese Medicine, Huangjia Lake West Road 16, Wuhan 430065, China
| | - Shangzhi Ma
- School of Pharmacy, Hubei University of Traditional Chinese Medicine, Huangjia Lake West Road 16, Wuhan 430065, China
| | - Xiaodi Hu
- School of Pharmacy, Hubei University of Traditional Chinese Medicine, Huangjia Lake West Road 16, Wuhan 430065, China
| | - Yanju Liu
- School of Pharmacy, Hubei University of Traditional Chinese Medicine, Huangjia Lake West Road 16, Wuhan 430065, China
| | - Xiuqiao Zhang
- School of Pharmacy, Hubei University of Traditional Chinese Medicine, Huangjia Lake West Road 16, Wuhan 430065, China
| | - Ruixue Jiang
- School of Basic Medicine, Hubei University of Traditional Chinese Medicine, Huangjia Lake West Road 16, Wuhan 430065, China
| | - Zhifeng Zhang
- Qinghai-Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People's Republic of China, Southwest Minzu University, Chengdu 610225, China
| | - Zhihua Zhang
- School of Basic Medicine, Hubei University of Traditional Chinese Medicine, Huangjia Lake West Road 16, Wuhan 430065, China.
| | - Zhongshi Zhou
- School of Pharmacy, Hubei University of Traditional Chinese Medicine, Huangjia Lake West Road 16, Wuhan 430065, China.
| | - Li Wen
- School of Pharmacy, Hubei University of Traditional Chinese Medicine, Huangjia Lake West Road 16, Wuhan 430065, China.
| |
Collapse
|
14
|
Khazaeipour Z, Gholamzadeh M, Behnoush AH, Pestei K. The relationship of COVID-19 severity with laboratory findings and neutrophil-to-lymphocyte ratio in patients admitted to a large teaching hospital in Iran: A cross-sectional study. Health Sci Rep 2024; 7:e70045. [PMID: 39246725 PMCID: PMC11377493 DOI: 10.1002/hsr2.70045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 06/05/2024] [Accepted: 08/20/2024] [Indexed: 09/10/2024] Open
Abstract
Background and Aims COVID-19 patients might be admitted to the hospital based on their clinical manifestations or to the intensive care unit (ICU) due to the severity of their symptoms or critical situation. Our main objective was to investigate clinical and demographic factors influencing COVID-19 patients' admission to the ICU and length of stay (LOS) using extracted data from the hospital information systems in Iran. Methods The data of hospitalized patients with confirmed COVID-19 were retrieved from the health information system of Imam Khomeini Hospital Complex, Tehran, Iran between March 2020 and February 2022. The primary outcome was the ICU admission, and the secondary outcome was the LOS. The correlation analysis between laboratory findings and demographic data with ICU admission and LOS was done using SPSS 21.0, and p < 0.05 was considered significant. Results Of all the 4156 patients, 2391 (57.5%) were male and the mean age was 58.69 ± 8.19 years. Of these, 9.5% of patients were admitted to ICU at any time point during their hospital stay. Age and laboratory variables such as neutrophil-to-lymphocyte ratio (NLR), ALT (U/L), albumin (g/dL), plasma glucose (mg/dL), ferritin levels (ng/mL), and phosphorous levels (mg/dL) shown the significant relationship with ICU admission. Also, being a smoker and having hypoxemia had a significant relationship with longer stays in the hospital. In this study, we validated a cut-off value of 4.819 for NLR, calculated at hospitalization, as a useful predictor of disease progression and occurrence of serious clinical outcomes, such as ICU admission. Conclusion The study examined various clinical factors associated with ICU admission in COVID-19 patients. The findings suggest that certain factors can increase the risk of ICU admission and influence the length of hospital stay which should be focused in future studies.
Collapse
Affiliation(s)
- Zahra Khazaeipour
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute Tehran University of Medical Sciences Tehran Iran
| | - Marsa Gholamzadeh
- Health Information Management and Medical Informatics Department, School of Allied Medical Sciences Tehran University of Medical Sciences Tehran Iran
| | | | - Khalil Pestei
- Department of Anesthesiology, Imam Khomeini Hospital Complex Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
15
|
Lim JO, Kim WI, Pak SW, Lee SJ, Moon C, Shin IS, Kim SH, Kim JC. Pycnogenol-Assisted Alleviation of Titanium Dioxide Nanoparticle-Induced Lung Inflammation via Thioredoxin-Interacting Protein Downregulation. Antioxidants (Basel) 2024; 13:972. [PMID: 39199218 PMCID: PMC11351339 DOI: 10.3390/antiox13080972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 09/01/2024] Open
Abstract
Titanium dioxide nanoparticles (TiO2NPs) are used in products that are applied to the human body, such as cosmetics and food, but their biocompatibility remains controversial. Pycnogenol (PYC), a natural extract of pine bark, exerts anti-inflammatory and antioxidant effects. In this study, we investigated whether PYC effectively alleviates pulmonary toxicity induced by airway exposure to TiO2NPs, and the beneficial effects of PYC were explained through the analysis of changes to the mechanism of cytotoxicity. TiO2NPs induced pulmonary inflammation and mucus production, increased the levels of malondialdehyde, and upregulated thioredoxin-interacting protein (TXNIP) and cleaved-caspase 3 (Cas3) in the lungs of mice. However, PYC treatment reduced the levels of all toxicity markers of TiO2NPs and restored glutathione levels. These antioxidant and anti-inflammatory effects of PYC were also demonstrated in TiO2NP-exposed human airway epithelial cells by increasing the mRNA levels of antioxidant enzymes and decreasing the expression of TXNIP, cleaved-Cas3, and inflammatory mediators. Taken together, our results showed that PYC attenuated TiO2NP-induced lung injury via TXNIP downregulation. Therefore, our results suggest the potential of PYC as an effective anti-inflammatory and antioxidant agent against TiO2NP-induced pulmonary toxicity.
Collapse
Affiliation(s)
- Je-Oh Lim
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea; (J.-O.L.); (W.-I.K.); (S.-W.P.); (S.-J.L.); (C.M.); (I.-S.S.)
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju 58245, Republic of Korea
| | - Woong-Il Kim
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea; (J.-O.L.); (W.-I.K.); (S.-W.P.); (S.-J.L.); (C.M.); (I.-S.S.)
| | - So-Won Pak
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea; (J.-O.L.); (W.-I.K.); (S.-W.P.); (S.-J.L.); (C.M.); (I.-S.S.)
| | - Se-Jin Lee
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea; (J.-O.L.); (W.-I.K.); (S.-W.P.); (S.-J.L.); (C.M.); (I.-S.S.)
| | - Changjong Moon
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea; (J.-O.L.); (W.-I.K.); (S.-W.P.); (S.-J.L.); (C.M.); (I.-S.S.)
| | - In-Sik Shin
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea; (J.-O.L.); (W.-I.K.); (S.-W.P.); (S.-J.L.); (C.M.); (I.-S.S.)
| | - Sung-Hwan Kim
- Jeonbuk Department of Inhalation Research, Korea Institute of Toxicology, Jeongup 56212, Republic of Korea
| | - Jong-Choon Kim
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea; (J.-O.L.); (W.-I.K.); (S.-W.P.); (S.-J.L.); (C.M.); (I.-S.S.)
| |
Collapse
|
16
|
Wang X, Geng Z, Bao Y, Zhong J, Ma J, Cui X, Shi Y. Shufeng Jiedu capsule alleviates influenza A (H1N1) virus induced acute lung injury by regulating the lung inflammatory microenvironment. Heliyon 2024; 10:e33237. [PMID: 39021925 PMCID: PMC11252743 DOI: 10.1016/j.heliyon.2024.e33237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/13/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
Background Death caused by respiratory tract infection is one of the leading causes of death in the world today. Shufeng Jiedu Capsule (SFJDC) is a traditional Chinese medicine that has been widely used clinically for coronavirus disease 2019 (COVID-19), H1N1 influenza virus pneumonia and other diseases. Its pharmacological effect is to inhibit inflammation and improve the body's ability to clear viruses. However, the mechanism of SFJDC in the treatment of viral pneumonia, especially its effect on the inflammatory-immune microenvironment of lung tissue remains unclear. Methods Mice with H1N1 influenza virus pneumonia were used as a model to verify the efficacy of SFJDC through death protection, lung index, viral load, and HE staining of lung tissue. The levels of inflammatory cytokines and chemokines in lung tissue were investigated by multi-analyte immunoassay. The number and proportion of cells in peripheral blood were detected by blood routine. The percentage of infiltrating immune cells in lung tissue was detected by flow cytometry and immunofluorescence. Results SFJDC (2.2 g/kg·d-1 and 1.1 g/kg·d-1) increased survival rate (P<0.01, P<0.05), prolonged the survival period of mice, and alleviated the histopathological damage in lung (P<0.01). SFJDC (2.2 g/kg·d-1, 1.1 g/kg·d-1 and 0.055 g/kg·d-1) increased body weight(P<0.01, P<0.05), improved activity status, reduced the lung index (P<0.01, P<0.05) and viral load (P<0.01). SFJDC (2.2 g/kg·d-1 and 1.1 g/kg·d-1) reduced interleukin-1β (IL-1β), interleukin-18(IL-18), tumour necrosis factor α (TNF-α), monocyte chemoattractant protein (MCP), chemokine (C-X-C motif) ligand 1 (CXCL1) (P<0.01, P<0.05), and SFJDC (2.2 g/kg·d-1) increased IL-10 levels (P<0.05) to regulate inflammation. SFJDC (2.2 g/kg·d-1) increased the percentages of CD4+ T cells (P<0.01), CD8+ T cells (P<0.05), and B cells(P<0.05), and decreased F4/80+ macrophages (P<0.05). Conclusion Our findings indicated that SFJDC could inhibit inflammation and lung injury while maintaining the function of the adaptive immune response mediated by T and B cells, and promote the clearance of the virus, thereby treating influenza A (H1N1) virus-induced pneumonia.
Collapse
Affiliation(s)
- Xiaorui Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100025, China
| | - Zihan Geng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100025, China
| | - Yanyan Bao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100025, China
| | - Juying Zhong
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100025, China
| | - Jing Ma
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100025, China
| | - Xiaolan Cui
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100025, China
| | - Yujing Shi
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100025, China
| |
Collapse
|
17
|
Zhu L, Fang S, Zhang Y, Sun X, Yang P, Lu W, Yu L. Effects of sn-2 Palmitic Triacylglycerols and the Ratio of OPL to OPO in Human Milk Fat Substitute on Metabolic Regulation in Sprague-Dawley Rats. Nutrients 2024; 16:1299. [PMID: 38732546 PMCID: PMC11085268 DOI: 10.3390/nu16091299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
In this study, the influence of total sn-2 palmitic triacylglycerols (TAGs) and ratio of 1-oleoyl-2-palmitoyl-3-linoleoylglycerol (OPL) to 1,3-dioleoyl-2-palmitoylglycerol (OPO) in human milk fat substitute (HMFS) on the metabolic changes were investigated in Sprague-Dawley rats. Metabolomics and lipidomics profiling analysis indicated that increasing the total sn-2 palmitic TAGs and OPL to OPO ratio in HMFS could significantly influence glycine, serine and threonine metabolism, glycerophospholipid metabolism, glycerolipid metabolism, sphingolipid metabolism, bile acid biosynthesis, and taurine and hypotaurine metabolism pathways in rats after 4 weeks of feeding, which were mainly related to lipid, bile acid and energy metabolism. Meanwhile, the up-regulation of taurine, L-tryptophan, and L-cysteine, and down-regulations of lysoPC (18:0) and hypoxanthine would contribute to the reduction in inflammatory response and oxidative stress, and improvement of immunity function in rats. In addition, analysis of targeted biochemical factors also revealed that HMFS-fed rats had significantly increased levels of anti-inflammatory factor (IL-4), immunoglobulin A (IgA), superoxide dismutase (SOD), and glutathione peroxidase (GSH-px), and decreased levels of pro-inflammatory factors (IL-6 and TNF-α) and malondialdehyde (MDA), compared with those of the control fat-fed rats. Collectively, these observations present new in vivo nutritional evidence for the metabolic regulatory effects of the TAG structure and composition of human milk fat substitutes on the host.
Collapse
Affiliation(s)
- Lin Zhu
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (L.Z.); (S.F.); (X.S.); (P.Y.); (W.L.)
| | - Shuaizhen Fang
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (L.Z.); (S.F.); (X.S.); (P.Y.); (W.L.)
| | - Yaqiong Zhang
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (L.Z.); (S.F.); (X.S.); (P.Y.); (W.L.)
| | - Xiangjun Sun
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (L.Z.); (S.F.); (X.S.); (P.Y.); (W.L.)
| | - Puyu Yang
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (L.Z.); (S.F.); (X.S.); (P.Y.); (W.L.)
| | - Weiying Lu
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (L.Z.); (S.F.); (X.S.); (P.Y.); (W.L.)
| | - Liangli Yu
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA;
| |
Collapse
|
18
|
Cavallazzi R, Ramirez JA. Definition, Epidemiology, and Pathogenesis of Severe Community-Acquired Pneumonia. Semin Respir Crit Care Med 2024; 45:143-157. [PMID: 38330995 DOI: 10.1055/s-0044-1779016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
The clinical presentation of community-acquired pneumonia (CAP) can vary widely among patients. While many individuals with mild symptoms can be managed as outpatients with excellent outcomes, there is a distinct subgroup of patients who present with severe CAP. In these cases, the mortality rate can reach approximately 25% within 30 days and even up to 50% within a year. It is crucial to focus attention on these patients who are at higher risk. Among the various definitions of severe CAP found in the literature, one commonly used criterion is the requirement for admission to intensive care unit. Notable epidemiological characteristics of these patients include the impact of acute cardiovascular diseases on clinical outcomes and the enduring, independent effect of pneumonia on long-term outcomes. Factors such as pathogen virulence, the presence of comorbidities, and the host response are important contributors to the pathogenesis of severe CAP. In these patients, the host response may be dysregulated and compartmentalized. Gaining a better understanding of the epidemiology and pathogenesis of severe CAP will provide a foundation for the development of new therapies for this condition. This manuscript aims to review the definition, epidemiology, and pathogenesis of severe CAP, shedding light on important aspects that can aid in the improvement of patient care and outcomes.
Collapse
Affiliation(s)
- Rodrigo Cavallazzi
- Division of Pulmonary, Critical Care Medicine, and Sleep Disorders, University of Louisville, Louisville, Kentucky
| | - Julio A Ramirez
- Norton Infectious Diseases Institute, Norton Healthcare, Louisville, Kentucky
| |
Collapse
|
19
|
Gao Y, Zhou A, Chen K, Zhou X, Xu Y, Wu S, Ning X. A living neutrophil Biorobot synergistically blocks multifaceted inflammatory pathways in macrophages to effectively neutralize cytokine storm. Chem Sci 2024; 15:2243-2256. [PMID: 38332816 PMCID: PMC10848682 DOI: 10.1039/d3sc03438k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 12/20/2023] [Indexed: 02/10/2024] Open
Abstract
Cytokine storm is a potentially life-threatening immune response typically correlated with lung injury, particularly in people with underlying disease states, such as pneumonia. Therefore, the prompt treatment of cytokine storm is essential for successful recovery from a potentially fatal condition. Herein, a living anti-inflammatory Biorobot (firefighter), composed of neutrophils encapsulating mannose-decorated liposomes of the NF-κB inhibitor TPCA-1 and STING inhibitor H-151 (M-Lip@TH, inflammatory retardant), is developed for alleviating hyperinflammatory cytokine storm through targeting multiple inflammatory pathways in macrophages. Biorobot fully inherits the chemotaxis characteristics of neutrophils, and efficiently delivers and releases therapeutic M-Lip@TH at the inflammatory site. Subsequently, M-Lip@TH selectively targets macrophages and simultaneously blocks the transcription factor NF-κB pathway and STING pathway, thereby preventing the overproduction of cytokines. Animal studies show that Biorobot selectively targets LPS-induced acute lung injury, and not only inhibits the NF-κB pathway to suppress the release of various pro-inflammatory cytokines and chemokines, but also blocks the STING pathway to prevent an overactive immune response, which helps to neutralize cytokine storms. Particularly, Biorobot reduces lung inflammation and injury, improves lung function, and increases the survival rates of pneumonia mice. Therefore, Biorobot represents a rational combination therapy against cytokine storm, and may provide insights into the treatment of diseases involving overactive immune responses.
Collapse
Affiliation(s)
- Ya Gao
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University Nanjing 210093 China
| | - Anwei Zhou
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University Nanjing 210093 China
| | - Kerong Chen
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University Nanjing 210093 China
| | - Xinyuan Zhou
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University Nanjing 210093 China
| | - Yurui Xu
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University Nanjing 210093 China
| | - Shuangshuang Wu
- Jiangsu Provincial Key Laboratory of Geriatrics, Department of Geriatrics, The First Affiliated Hospital with Nanjing Medical University Nanjing 210029 China
| | - Xinghai Ning
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University Nanjing 210093 China
| |
Collapse
|
20
|
Peña-Valencia K, Riaño W, Herrera-Diaz M, López L, Marín D, Gonzalez S, Agudelo-García O, Rodríguez-Sabogal IA, Vélez L, Rueda ZV, Keynan Y. Markers of Inflammation, Tissue Damage, and Fibrosis in Individuals Diagnosed with Human Immunodeficiency Virus and Pneumonia: A Cohort Study. Pathogens 2024; 13:84. [PMID: 38251391 PMCID: PMC10820350 DOI: 10.3390/pathogens13010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024] Open
Abstract
Previous studies have noted that persons living with human immunodeficiency virus (HIV) experience persistent lung dysfunction after an episode of community-acquired pneumonia (CAP), although the underlying mechanisms remain unclear. We hypothesized that inflammation during pneumonia triggers increased tissue damage and accelerated pulmonary fibrosis, resulting in a gradual loss of lung function. We carried out a prospective cohort study of people diagnosed with CAP and/or HIV between 2016 and 2018 in three clinical institutions in Medellín, Colombia. Clinical data, blood samples, and pulmonary function tests (PFTs) were collected at baseline. Forty-one patients were included, divided into two groups: HIV and CAP (n = 17) and HIV alone (n = 24). We compared the concentrations of 17 molecules and PFT values between the groups. Patients with HIV and pneumonia presented elevated levels of cytokines and chemokines (IL-6, IL-8, IL-18, IL-1RA, IL-10, IP-10, MCP-1, and MIP-1β) compared to those with only HIV. A marked pulmonary dysfunction was evidenced by significant reductions in FEF25, FEF25-75, and FEV1. The correlation between these immune mediators and lung function parameters supports the connection between pneumonia-associated inflammation and end organ lung dysfunction. A low CD4 cell count (<200 cells/μL) predicted inflammation and lung dysfunction. These results underscore the need for targeted clinical approaches to mitigate the adverse impacts of CAP on lung function in this population.
Collapse
Affiliation(s)
- Katherine Peña-Valencia
- Escuela de Microbiología, Universidad de Antioquia, Medellin 050010, Colombia;
- Grupo de Investigación en Salud Pública, Facultad de Medicina, Universidad Pontificia Bolivariana, Medellin 050010, Colombia; (W.R.); (L.L.); (D.M.); (Z.V.R.)
- Grupo Bacterias & Cáncer, School of Medicine, Universidad de Antioquia, Medellin 050010, Colombia;
| | - Will Riaño
- Grupo de Investigación en Salud Pública, Facultad de Medicina, Universidad Pontificia Bolivariana, Medellin 050010, Colombia; (W.R.); (L.L.); (D.M.); (Z.V.R.)
- School of Medicine, Universidad de Antioquia, Medellin 050010, Colombia;
| | - Mariana Herrera-Diaz
- Department of Medical Microbiology and Infectious Disease, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; (M.H.-D.); (S.G.)
| | - Lucelly López
- Grupo de Investigación en Salud Pública, Facultad de Medicina, Universidad Pontificia Bolivariana, Medellin 050010, Colombia; (W.R.); (L.L.); (D.M.); (Z.V.R.)
- School of Medicine, Universidad Pontificia Bolivariana, Medellin 050010, Colombia
| | - Diana Marín
- Grupo de Investigación en Salud Pública, Facultad de Medicina, Universidad Pontificia Bolivariana, Medellin 050010, Colombia; (W.R.); (L.L.); (D.M.); (Z.V.R.)
- School of Medicine, Universidad Pontificia Bolivariana, Medellin 050010, Colombia
| | - Sandra Gonzalez
- Department of Medical Microbiology and Infectious Disease, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; (M.H.-D.); (S.G.)
- JC Wilt Infectious Diseases Research Center, Winnipeg, MB R3E 3L5, Canada
| | - Olga Agudelo-García
- Grupo Bacterias & Cáncer, School of Medicine, Universidad de Antioquia, Medellin 050010, Colombia;
| | - Iván Arturo Rodríguez-Sabogal
- School of Medicine, Universidad de Antioquia, Medellin 050010, Colombia;
- Infectious Diseases Section, Hospital Universitario San Vicente Fundación, Medellin 050010, Colombia;
| | - Lázaro Vélez
- Infectious Diseases Section, Hospital Universitario San Vicente Fundación, Medellin 050010, Colombia;
| | - Zulma Vanessa Rueda
- Grupo de Investigación en Salud Pública, Facultad de Medicina, Universidad Pontificia Bolivariana, Medellin 050010, Colombia; (W.R.); (L.L.); (D.M.); (Z.V.R.)
- Department of Medical Microbiology and Infectious Disease, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; (M.H.-D.); (S.G.)
| | - Yoav Keynan
- Department of Medical Microbiology and Infectious Disease, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; (M.H.-D.); (S.G.)
- Grupo Investigador de Problemas en Enfermedades Infecciosas-GRIPE, Facultad de Medicina, Universidad de Antioquia, Medellin 050010, Colombia
- Department of Internal Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Department of Community Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
21
|
Chen TC, Wang TC, Yiu ZZN, Lee MS, Chen LC, Chan KA, Griffiths CEM, Ashcroft DM. Risk of serious infection and infection mortality in patients with psoriasis: A nationwide cohort study using the Taiwan National Health Insurance claims database. J Eur Acad Dermatol Venereol 2024; 38:136-144. [PMID: 37611288 DOI: 10.1111/jdv.19466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 08/11/2023] [Indexed: 08/25/2023]
Abstract
BACKGROUND The risks of serious infections that lead to hospitalization and mortality in patients with psoriasis in Asia have not been comprehensively studied. OBJECTIVES We examined the incidence of serious infection and infection mortality in patients with psoriasis. METHODS This population-based retrospective cohort study used the Taiwan National Health Insurance claims database from 2000 to 2017. Adult patients with psoriasis were identified by a relevant International Classification of Diseases (ICD) code and matched to six comparators without psoriasis on age and sex. Psoriasis patients were categorized as having moderate-to-severe disease once exposed to systemic therapies, phototherapy or biologic therapies. The incidence of serious infection and infection mortality were identified by ICD codes from inpatient hospitalization and death registration. Cox proportional hazard models were used to compare the risk, and the results were adjusted for covariates and presented as adjusted hazard ratios (aHR) and 95% confidence interval (95% CI). RESULTS Overall, 185,434 psoriasis patients and 1,112,581 comparators were included. A higher rate of serious infection (aHR: 1.21, 95% CI: 1.19-1.22) was found in patients with psoriasis compared to matched comparators without psoriasis, and the risk was enhanced when patients had moderate-to-severe psoriasis (aHR: 1.30, 95% CI: 1.27-1.34). Specifically, there was an increased risk of serious infection due to respiratory infections (aHR: 1.11, 95% CI: 1.09-1.13), skin/soft-tissue infections (aHR: 1.57, 95% CI: 1.52-1.62), sepsis (aHR: 1.23, 95% CI: 1.19-1.27), urinary tract infections (aHR: 1.11, 95% CI: 1.08-1.14), hepatitis B (aHR: 1.18, 95% CI: 1.06-1.30) and hepatitis C (aHR: 1.49, 95% CI: 1.32-1.69). Furthermore, psoriasis patients were associated with a higher risk of infection-related mortality (aHR: 1.15, 95% CI: 1.11-1.18) compared to matched comparators. CONCLUSION Patients with psoriasis had a higher risk of serious infection and infection mortality, which was enhanced by moderate-to-severe psoriasis. Practitioners should be aware of the increased risk in patients with psoriasis, but it should not be a barrier to offering effective treatment.
Collapse
Affiliation(s)
- Teng-Chou Chen
- Centre for Pharmacoepidemiology and Drug Safety, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Department of Pharmacy, School of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ting-Chun Wang
- Health Data Research Center, National Taiwan University, Taipei, Taiwan
| | - Zenas Z N Yiu
- Dermatology Centre, Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Meng-Sui Lee
- Department of Dermatology, Taipei City Hospital, Taipei, Taiwan
- Department of Dermatology, National Yang-Ming Chiao Tung University, Taipei, Taiwan
| | - Li-Chia Chen
- Centre for Pharmacoepidemiology and Drug Safety, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - K Arnold Chan
- Health Data Research Center, National Taiwan University, Taipei, Taiwan
| | - Christopher E M Griffiths
- Dermatology Centre, Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- NIHR Manchester Biomedical Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Darren M Ashcroft
- Centre for Pharmacoepidemiology and Drug Safety, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- NIHR Manchester Biomedical Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- NIHR Greater Manchester Patient Safety Translational Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| |
Collapse
|
22
|
Zhou W, Dai Q, Su N, Liu Z, Hu J. IGF2BP2‑dependent STIM1 inhibition protects against LPS‑induced pneumonia in vitro by alleviating endoplasmic reticulum stress and the inflammatory response. Exp Ther Med 2023; 26:575. [PMID: 38023363 PMCID: PMC10652236 DOI: 10.3892/etm.2023.12273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/03/2023] [Indexed: 12/01/2023] Open
Abstract
Pneumonia is a disease caused by inflammation and has high morbidity and mortality rates. Stromal interaction molecule 1 (STIM1) is involved in the regulation of inflammatory processes. However, to the best of the authors' knowledge, the role of STIM1 in pneumonia has not yet been reported. In the present study, lipopolysaccharide (LPS) was administered to A549 cells to construct a cell damage model. The expression of STIM1 in the model cells was detected by western blotting and reverse transcription-quantitative PCR. Then, STIM1 expression was inhibited and cell survival was detected by Cell Counting Kit-8 and flow cytometry. The expression of inflammatory factors was detected by enzyme-linked immunosorbent assay and endoplasmic reticulum stress (ERS)-related proteins were detected by immunofluorescence and western blotting. Subsequently, the relationship between insulin-like growth factor 2 mRNA binding protein 2 (IGF2BP2) and STIM1 was verified by RNA-binding protein immunoprecipitation assay and actinomycin D treatment. Finally, the regulatory mechanism of IGF2BP2 and STIM1 in LPS-induced A549 cells was further investigated. The results of the present study demonstrated that STIM1 expression was increased in LPS-induced A549 cells and that STIM1 knockdown inhibited LPS-induced A549 cell apoptosis and alleviated LPS-induced A549 cell inflammation and ERS. In addition, IGF2BP2 enhanced the stability of STIM1 mRNA and knockdown of IGF2BP2-regulated STIM1 expression alleviated LPS-induced ERS and inflammatory responses in A549 cells. In conclusion, knockdown of IGF2BP2-regulated STIM1 improved cell damage in the LPS-induced pneumonia cell model by alleviating ERS and the inflammatory response.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Pathology, Guangzhou Chest Hospital, Guangzhou, Guangdong 510095, P.R. China
| | - Qigang Dai
- Department of Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510699, P.R. China
| | - Ning Su
- Department of Oncology, Guangzhou Chest Hospital, Guangzhou, Guangdong 510095, P.R. China
| | - Zhihui Liu
- Department of Clinical Laboratory, Guangzhou Chest Hospital, Guangzhou, Guangdong 510095, P.R. China
| | - Jinxing Hu
- Department of Tuberculosis, Guangzhou Chest Hospital, Guangzhou, Guangdong 510095, P.R. China
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, Guangdong 511495, P.R. China
| |
Collapse
|
23
|
Bian W, Xie Y, Shang Y, Zhao L, Yang Z, Ma X, He Y, Yu W, Xi W, Yang D, Wang F, Chen Y, Gong P, Gao Z. Relationship between clinical features and droplet digital PCR copy number in non-HIV patients with pneumocystis pneumonia. BMC Infect Dis 2023; 23:833. [PMID: 38012564 PMCID: PMC10683233 DOI: 10.1186/s12879-023-08580-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 09/04/2023] [Indexed: 11/29/2023] Open
Abstract
OBJECTIVE Droplet digital PCR (ddPCR) is a novel assay to detect pneumocystis jjrovecii (Pj) which has been defined to be more sensitive than qPCR in recent studies. We aimed to explore whether clinical features of pneumocystis pneumonia (PCP) were associated with ddPCR copy numbers of Pj. METHODS A total of 48 PCP patients were retrospectively included. Pj detection was implemented by ddPCR assay within 4 h. Bronchoalveolar fluid (BALF) samples were collected from 48 patients with molecular diagnosis as PCP via metagenomic next generation sequencing (mNGS) or quantitative PCR detection. Univariate and multivariate logistic regression were performed to screen out possible indicators for the severity of PCP. The patients were divided into two groups according to ddPCR copy numbers, and their clinical features were further analyzed. RESULTS Pj loading was a pro rata increase with serum (1,3)-beta-D glucan, D-dimmer, neutrophil percentage, procalcitonin and BALF polymorphonuclear leucocyte percentage, while negative correlation with albumin, PaO2/FiO2, BALF cell count, and BALF lymphocyte percentage. D-dimmer and ddPCR copy number of Pj were independent indicators for moderate/severe PCP patients with PaO2/FiO2 lower than 300. We made a ROC analysis of ddPCR copy number of Pj for PaO2/FiO2 index and grouped the patients according to the cut-off value (2.75). The high copy numbers group was characterized by higher level of inflammatory markers. Compared to low copy number group, there was lower level of the total cell count while higher level of polymorphonuclear leucocyte percentage in BALF in the high copy numbers group. Different from patients with high copy numbers, those with high copy numbers had a tendency to develop more severe complications and required advanced respiratory support. CONCLUSION The scenarios of patients infected with high ddPCR copy numbers of Pj showed more adverse clinical conditions. Pj loading could reflect the severity of PCP to some extent.
Collapse
Affiliation(s)
- Wenjie Bian
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, No.11, Xizhimen South Street, Beijing, China
| | - Yu Xie
- Department of Respiratory Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Shang
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, No.11, Xizhimen South Street, Beijing, China
| | - Lili Zhao
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, No.11, Xizhimen South Street, Beijing, China
| | - Zhengwu Yang
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, No.11, Xizhimen South Street, Beijing, China
| | - Xinqian Ma
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, No.11, Xizhimen South Street, Beijing, China
| | - Yukun He
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, No.11, Xizhimen South Street, Beijing, China
| | - Wenyi Yu
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, No.11, Xizhimen South Street, Beijing, China
| | - Wen Xi
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, No.11, Xizhimen South Street, Beijing, China
| | - Donghong Yang
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, No.11, Xizhimen South Street, Beijing, China
| | - Fang Wang
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, No.11, Xizhimen South Street, Beijing, China
| | - Yanwen Chen
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, No.11, Xizhimen South Street, Beijing, China
| | - Pihua Gong
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, No.11, Xizhimen South Street, Beijing, China.
| | - Zhancheng Gao
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, No.11, Xizhimen South Street, Beijing, China.
| |
Collapse
|
24
|
García-Escobar A, Vera-Vera S, Tébar-Márquez D, Rivero-Santana B, Jurado-Román A, Jiménez-Valero S, Galeote G, Cabrera JÁ, Moreno R. Neutrophil-to-lymphocyte ratio an inflammatory biomarker, and prognostic marker in heart failure, cardiovascular disease and chronic inflammatory diseases: New insights for a potential predictor of anti-cytokine therapy responsiveness. Microvasc Res 2023; 150:104598. [PMID: 37633337 DOI: 10.1016/j.mvr.2023.104598] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 08/28/2023]
Abstract
In the 20th century, research focused on cholesterol and lipoproteins as the key mechanism in establishing atherosclerotic cardiovascular disease (ASCVD). Given that some studies demonstrated subclinical atherosclerosis in subjects without conventional cardiovascular risk factors, the elevated low-density lipoprotein (LDL) levels alone cannot account for the entire burden of atherosclerosis. Hence, large-scale clinical trials demonstrated the operation of immune and inflammatory pathways in ASCVD. In this regard, the evidence establishes that cells of the immune system, both the innate (neutrophils, macrophages) and adaptive (T cell and other lymphocytes) limbs, contribute to atherosclerosis and atherothrombosis. Besides, basic science studies have identified proatherogenic cytokines such as interleukin (IL)-1, IL-12, and IL-18. In this regard, some studies showed that antiinflammatory therapy targeting the immune system by modulating or blocking interleukins, also known as anti-cytokine therapy, can reduce the risk of major cardiovascular adverse events. The neutrophils play a key role in the innate immune system, representing the acute phase of an inflammatory response. In contrast, lymphocytes represent the adaptive immune system and promote the induction of autoimmune inflammation, especially in the chronic inflammatory response. Through the literature review, we will highlight the inflammatory pathway for the physiopathology of ASCVD, HF, and COVID-19. In this regard, the neutrophil-to-lymphocyte ratio (NLR) integrates the innate immune and adaptive immune systems, making the NLR a biomarker of inflammation. In addition, we provided an update on the evidence showing that high NLR is associated with worse prognosis in heart failure (HF), ASCVD, and COVID-19, as well as their clinical applications showing that the normalization of NLR after anti-cytokine therapy is a potential predictor of therapy responsiveness and is associated with reduction of major adverse cardiovascular events.
Collapse
Affiliation(s)
- Artemio García-Escobar
- Cardiology Department, Interventional Cardiology Section, La Paz University Hospital, Madrid, Spain; Institute for Health Research La Paz University Hospital (IDIPAZ), Madrid, Spain; Biomedical Research Network Center on Cardiovascular Disease (CIBERCV), Institute of Health Carlos III, Madrid, Spain; Cardiology Department, Quirónsalud University Hospital Madrid, Spain.
| | - Silvio Vera-Vera
- Cardiology Department, Interventional Cardiology Section, La Paz University Hospital, Madrid, Spain; Institute for Health Research La Paz University Hospital (IDIPAZ), Madrid, Spain; Biomedical Research Network Center on Cardiovascular Disease (CIBERCV), Institute of Health Carlos III, Madrid, Spain
| | - Daniel Tébar-Márquez
- Cardiology Department, Interventional Cardiology Section, La Paz University Hospital, Madrid, Spain; Institute for Health Research La Paz University Hospital (IDIPAZ), Madrid, Spain; Biomedical Research Network Center on Cardiovascular Disease (CIBERCV), Institute of Health Carlos III, Madrid, Spain
| | - Borja Rivero-Santana
- Cardiology Department, Interventional Cardiology Section, La Paz University Hospital, Madrid, Spain; Institute for Health Research La Paz University Hospital (IDIPAZ), Madrid, Spain; Biomedical Research Network Center on Cardiovascular Disease (CIBERCV), Institute of Health Carlos III, Madrid, Spain
| | - Alfonso Jurado-Román
- Cardiology Department, Interventional Cardiology Section, La Paz University Hospital, Madrid, Spain; Institute for Health Research La Paz University Hospital (IDIPAZ), Madrid, Spain; Biomedical Research Network Center on Cardiovascular Disease (CIBERCV), Institute of Health Carlos III, Madrid, Spain
| | - Santiago Jiménez-Valero
- Cardiology Department, Interventional Cardiology Section, La Paz University Hospital, Madrid, Spain; Institute for Health Research La Paz University Hospital (IDIPAZ), Madrid, Spain; Biomedical Research Network Center on Cardiovascular Disease (CIBERCV), Institute of Health Carlos III, Madrid, Spain
| | - Guillermo Galeote
- Cardiology Department, Interventional Cardiology Section, La Paz University Hospital, Madrid, Spain; Institute for Health Research La Paz University Hospital (IDIPAZ), Madrid, Spain; Biomedical Research Network Center on Cardiovascular Disease (CIBERCV), Institute of Health Carlos III, Madrid, Spain
| | | | - Raúl Moreno
- Cardiology Department, Interventional Cardiology Section, La Paz University Hospital, Madrid, Spain; Institute for Health Research La Paz University Hospital (IDIPAZ), Madrid, Spain; Biomedical Research Network Center on Cardiovascular Disease (CIBERCV), Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
25
|
Duan Y, Nafeisa D, Lian M, Song J, Yang J, Hou Z, Wang J. Development of a nomogram to estimate the risk of community-acquired pneumonia in adults with acute asthma exacerbations. THE CLINICAL RESPIRATORY JOURNAL 2023; 17:1169-1181. [PMID: 37793902 PMCID: PMC10632081 DOI: 10.1111/crj.13706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 08/23/2023] [Accepted: 09/19/2023] [Indexed: 10/06/2023]
Abstract
OBJECTIVE The aim of this study is to investigate the clinical characteristics of acute asthma exacerbations (AEs) with community-acquired pneumonia (CAP) in adults and establish a CAP prediction model for hospitalized patients with AEs. METHODS We retrospectively collected clinical data from 308 patients admitted to Beijing Luhe Hospital, Capital Medical University, for AEs from December 2017 to August 2021. The patients were divided into CAP and non-CAP groups based on whether they had CAP. We used the Lasso regression technique and multivariate logistic regression analysis to select optimal predictors. We then developed a predictive nomogram based on the optimal predictors. The bootstrap method was used for internal validation. We used the area under the receiver operating characteristic curve (AUC), calibration curve, and decision curve analysis (DCA) to assess the nomogram's discrimination, accuracy, and clinical practicability. RESULTS The prevalence of CAP was 21% (65/308) among 308 patients hospitalized for AEs. Independent predictors of CAP in patients hospitalized with an AE (P < 0.05) were C-reactive protein > 10 mg/L, fibrinogen > 4 g/L, leukocytes > 10 × 109 /L, fever, use of systemic corticosteroids before admission, and early-onset asthma. The AUC of the nomogram was 0.813 (95% CI: 0.753-0.872). The concordance index of internal validation was 0.794. The calibration curve was satisfactorily consistent with the diagonal line. The DCA indicated that the nomogram provided a higher clinical net benefit when the threshold probability of patients was 3% to 89%. CONCLUSIONS The nomogram performed well in predicting the risk of CAP in hospitalized patients with AEs, thereby providing rapid guidance for clinical decision-making.
Collapse
Affiliation(s)
- Yufan Duan
- Department of Pulmonary and Critical Care Medicine, Beijing Luhe HospitalCapital Medical UniversityBeijingChina
| | - Dilixiati Nafeisa
- Department of Pulmonary and Critical Care Medicine, Beijing Luhe HospitalCapital Medical UniversityBeijingChina
| | - Mengyu Lian
- Department of Pulmonary and Critical Care Medicine, Beijing Luhe HospitalCapital Medical UniversityBeijingChina
| | - Jie Song
- Department of Pulmonary and Critical Care Medicine, Beijing Luhe HospitalCapital Medical UniversityBeijingChina
| | - Jingjing Yang
- Department of Pulmonary and Critical Care Medicine, Beijing Luhe HospitalCapital Medical UniversityBeijingChina
| | - Ziliang Hou
- Department of Pulmonary and Critical Care Medicine, Beijing Luhe HospitalCapital Medical UniversityBeijingChina
| | - Jinxiang Wang
- Department of Pulmonary and Critical Care Medicine, Beijing Luhe HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
26
|
Misplon JA, Lo CY, Crabbs TA, Price GE, Epstein SL. Adenoviral-vectored universal influenza vaccines administered intranasally reduce lung inflammatory responses upon viral challenge 15 months post-vaccination. J Virol 2023; 97:e0067423. [PMID: 37830821 PMCID: PMC10617573 DOI: 10.1128/jvi.00674-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/04/2023] [Indexed: 10/14/2023] Open
Abstract
IMPORTANCE Vaccines targeting highly conserved proteins can protect broadly against diverse viral strains. When a vaccine is administered to the respiratory tract, protection against disease is especially powerful. However, it is important to establish that this approach is safe. When vaccinated animals later encounter viruses, does reactivation of powerful local immunity, including T cell responses, damage the lungs? This study investigates the safety of mucosal vaccination of the respiratory tract. Non-replicating adenoviral vaccine vectors expressing conserved influenza virus proteins were given intranasally. This vaccine-induced protection persists for at least 15 months. Vaccination did not exacerbate inflammatory responses or tissue damage upon influenza virus infection. Instead, vaccination with nucleoprotein reduced cytokine responses and histopathology, while neutrophil and T cell responses resolved earlier. The results are promising for safe vaccination at the site of infection and thus have implications for the control of influenza and other respiratory viruses.
Collapse
Affiliation(s)
- Julia A. Misplon
- Division of Cellular and Gene Therapies, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Chia-Yun Lo
- Division of Cellular and Gene Therapies, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Torrie A. Crabbs
- Experimental Pathology Laboratories, Inc., Durham, North Carolina, USA
| | - Graeme E. Price
- Division of Cellular and Gene Therapies, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Suzanne L. Epstein
- Division of Cellular and Gene Therapies, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
27
|
Guan X, Jin L, Zhou H, Chen J, Wan H, Bao Y, Yang J, Yu D, Wan H. Polydatin prevent lung epithelial cell from Carbapenem-resistant Klebsiella pneumoniae injury by inhibiting biofilm formation and oxidative stress. Sci Rep 2023; 13:17736. [PMID: 37853059 PMCID: PMC10584862 DOI: 10.1038/s41598-023-44836-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 10/12/2023] [Indexed: 10/20/2023] Open
Abstract
Carbapenem-resistant Klebsiella pneumoniae (CRKP) causes severe inflammation in various infectious diseases, such as bloodstream infections, respiratory and urinary tract infections, which leads to high mortality. Polydatin (PD), an active ingredient of Yinhuapinggan granule, has attracted worldwide attention for its powerful antioxidant, anti-inflammatory, antitumor, and antibacterial capacity. However, very little is known about the effect of PD on CRKP. In this research, we evaluated the inhibitory effects of PD on both the bacterial level and the bacterial-cell co-culture level on anti-biofilm and efflux pumps and the other was the inhibitory effect on apoptosis, reactive oxygen species (ROS), mitochondrial membrane potential (MMP) after CRKP induction. Additionally, we validated the mechanism of action by qRT-PCR and western blot in human lung epithelial cells. Firstly, PD was observed to have an inhibitory effect on the biofilm of CRKP and the efflux pump AcrAB-TolC. Mechanically, CRKP not only inhibited the activation of Nuclear Factor erythroid 2-Related Factor 2 (Nrf-2) but also increased the level of ROS in cells. These results showed that PD could inhibit ROS and activate Nrf-2 production. Together, our research demonstrated that PD inhibited bacterial biofilm formation and efflux pump AcrAB-TolC expression and inhibited CRKP-induced cell damage by regulating ROS and Nrf-2-regulated antioxidant pathways.
Collapse
Affiliation(s)
- Xiaodan Guan
- Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Liang Jin
- Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, People's Republic of China
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Huifen Zhou
- Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Jing Chen
- Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Haofang Wan
- Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Yida Bao
- Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Jiehong Yang
- Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Daojun Yu
- Hangzhou First People's Hospital, Hangzhou, 310003, Zhejiang, People's Republic of China.
| | - Haitong Wan
- Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, People's Republic of China.
| |
Collapse
|
28
|
Manda-Handzlik A, Cieloch A, Kuźmicka W, Mroczek A, Stelmaszczyk-Emmel A, Demkow U, Wachowska M. Secretomes of M1 and M2 macrophages decrease the release of neutrophil extracellular traps. Sci Rep 2023; 13:15633. [PMID: 37730741 PMCID: PMC10511515 DOI: 10.1038/s41598-023-42167-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 09/06/2023] [Indexed: 09/22/2023] Open
Abstract
The release of neutrophil extracellular traps (NETs) can be either beneficial or detrimental for the host, thus it is necessary to maintain a balance between formation and clearance of NETs. Multiple physiological factors eliciting NET release have been identified, yet the studies on natural signals limiting NET formation have been scarce. Accordingly, our aim was to analyze whether cytokines or immune cells can inhibit NET formation. To that end, human granulocytes were incubated with interleukin (IL)-4, IL-10, transforming growth factor beta-2 or adenosine and then stimulated to release NETs. Additionally, neutrophils were cultured in the presence of natural killer (NK) cells, regulatory T cells (Tregs), pro-inflammatory or anti-inflammatory macrophages (M1 or M2 macrophages), or in the presence of NK/Tregs/M1 macrophages or M2 macrophages-conditioned medium and subsequently stimulated to release NETs. Our studies showed that secretome of M1 and M2 macrophages, but not of NK cells and Tregs, diminishes NET formation. Co-culture experiments did not reveal any effect of immune cells on NET release. No effect of cytokines or adenosine on NET release was found. This study highlights the importance of paracrine signaling at the site of infection and is the first to show that macrophage secretome can regulate NET formation.
Collapse
Affiliation(s)
- Aneta Manda-Handzlik
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Zwirki i Wigury 63a Street, 02-091, Warsaw, Poland.
| | - Adrianna Cieloch
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Zwirki i Wigury 63a Street, 02-091, Warsaw, Poland
- Doctoral School, Medical University of Warsaw, Zwirki i Wigury 61 Street, 02-091, Warsaw, Poland
| | - Weronika Kuźmicka
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Zwirki i Wigury 63a Street, 02-091, Warsaw, Poland
| | - Agnieszka Mroczek
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Zwirki i Wigury 63a Street, 02-091, Warsaw, Poland
- Doctoral School, Medical University of Warsaw, Zwirki i Wigury 61 Street, 02-091, Warsaw, Poland
| | - Anna Stelmaszczyk-Emmel
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Zwirki i Wigury 63a Street, 02-091, Warsaw, Poland
| | - Urszula Demkow
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Zwirki i Wigury 63a Street, 02-091, Warsaw, Poland
| | - Małgorzata Wachowska
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Zwirki i Wigury 63a Street, 02-091, Warsaw, Poland
| |
Collapse
|
29
|
Hendel MK, Rizzuto D, Grande G, Calderón-Larrañaga A, Laukka EJ, Fratiglioni L, Vetrano DL. Impact of Pneumonia on Cognitive Aging: A Longitudinal Propensity-Matched Cohort Study. J Gerontol A Biol Sci Med Sci 2023; 78:1453-1460. [PMID: 36526613 PMCID: PMC10395566 DOI: 10.1093/gerona/glac253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Indexed: 08/03/2023] Open
Abstract
BACKGROUND Acute clinical events, such as pneumonia, may impact physical functionality but their effect on cognition and the possible duration of this effect remains to be quantified. This study investigated the impact of pneumonia on cognitive trajectories and dementia development in older people. METHODS Data were obtained from 60+ years old individuals, who were assessed from 2001 to 2018 in the population-based SNAC-K study (Sweden). Participants were eligible if they were not institutionalized, had no dementia, and did not experience pneumonia 5 years prior to baseline (N = 2 063). A propensity score was derived to match 1:3 participants hospitalized with a diagnosis of pneumonia (N = 178), to nonexposed participants (N = 534). Mixed linear models were used to model cognitive decline. The hazard of dementia, clinically diagnosed by physicians following Diagnostic and Statistical Manual of Mental Disorders (DSM)-IV, was estimated using Cox regression models. RESULTS We found a transient impact of pneumonia on cognitive decline in the first 2.5 years (B = -0.94, 95% confidence interval [CI] -1.75, -0.15). The hazard ratio (HR) for dementia was not statistically significantly increased in pneumonia participants (HR = 1.17, 95%CI 0.82, 1.66). CONCLUSIONS The transient impact of pneumonia on cognitive function suggests an increased need of health care for patients after a pneumonia-related hospitalization and reinforces the relevance of pneumonia prevention.
Collapse
Affiliation(s)
- Merle K Hendel
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Debora Rizzuto
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden
- Gerontology Research Center, Stockholm, Sweden
| | - Giulia Grande
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Amaia Calderón-Larrañaga
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden
- Gerontology Research Center, Stockholm, Sweden
| | - Erika J Laukka
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden
- Gerontology Research Center, Stockholm, Sweden
| | - Laura Fratiglioni
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden
- Gerontology Research Center, Stockholm, Sweden
| | - Davide L Vetrano
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden
- Gerontology Research Center, Stockholm, Sweden
| |
Collapse
|
30
|
Lupi L, Bordin A, Sales G, Colaianni D, Vitiello A, Biscontin A, Reale A, Garzino-Demo A, Antonini A, Ottaviano G, Mucignat C, Parolin C, Calistri A, De Pittà C. Persistent and transient olfactory deficits in COVID-19 are associated to inflammation and zinc homeostasis. Front Immunol 2023; 14:1148595. [PMID: 37520523 PMCID: PMC10380959 DOI: 10.3389/fimmu.2023.1148595] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 06/29/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction The Coronavirus Disease 2019 (COVID-19) is mainly a respiratory syndrome that can affect multiple organ systems, causing a variety of symptoms. Among the most common and characteristic symptoms are deficits in smell and taste perception, which may last for weeks/months after COVID-19 diagnosis owing to mechanisms that are not fully elucidated. Methods In order to identify the determinants of olfactory symptom persistence, we obtained olfactory mucosa (OM) from 21 subjects, grouped according to clinical criteria: i) with persistent olfactory symptoms; ii) with transient olfactory symptoms; iii) without olfactory symptoms; and iv) non-COVID-19 controls. Cells from the olfactory mucosa were harvested for transcriptome analyses. Results and discussion RNA-Seq assays showed that gene expression levels are altered for a long time after infection. The expression profile of micro RNAs appeared significantly altered after infection, but no relationship with olfactory symptoms was found. On the other hand, patients with persistent olfactory deficits displayed increased levels of expression of genes involved in the inflammatory response and zinc homeostasis, suggesting an association with persistent or transient olfactory deficits in individuals who experienced SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Lorenzo Lupi
- Department of Biology, University of Padova, Padova, Italy
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Anna Bordin
- Department of Neurosciences, Otolaryngology Section, University of Padova, Padova, Italy
| | - Gabriele Sales
- Department of Biology, University of Padova, Padova, Italy
| | | | - Adriana Vitiello
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | | | - Alberto Reale
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Alfredo Garzino-Demo
- Department of Molecular Medicine, University of Padova, Padova, Italy
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, Maryland, United States
| | - Angelo Antonini
- Parkinson and Movement Disorders Unit, Department of Neurosciences, University of Padova, Padova, Italy
- Department of Neurosciences, University of Padova, Padova, Italy
| | - Giancarlo Ottaviano
- Department of Neurosciences, Otolaryngology Section, University of Padova, Padova, Italy
| | - Carla Mucignat
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Cristina Parolin
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Arianna Calistri
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | | |
Collapse
|
31
|
Sadeghi P, Pezeshki PS, Rezaei N. Coronavirus disease 2019 (COVID-19) in pediatric patients with autoimmune disorders. Eur J Pediatr 2023; 182:2967-2988. [PMID: 37074460 PMCID: PMC10113973 DOI: 10.1007/s00431-023-04958-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/25/2023] [Accepted: 03/30/2023] [Indexed: 04/20/2023]
Abstract
UNLABELLED Coronavirus disease 2019 (COVID-19) infection in pediatric patients with autoimmune disorders is an area of particular concern since autoimmune diseases can increase the risk of complications from the virus. However, as the infection rates were significantly higher in adults compared to children, this at-risk group of children was relatively underrepresented in COVID-19 research. The underlying inflammatory basis of autoimmune diseases and medications that affect the immune system, such as corticosteroids, could increase the risk of severe infection in this group of patients. COVID-19 could reportedly lead to a variety of alterations in the immune system. These alterations are plausibly dependent on the underlying immune-mediated diseases or prior use of immunomodulatory drugs. Patients administrating immunomodulatory agents, especially those with severe immune system dysregulation, can experience severe symptoms of COVID-19. Nonetheless, receiving immunosuppressive medications can benefit patients by preventing cytokine storm syndromes and lung tissue damage, threatening outcomes of COVID-19. CONCLUSION In this review, we sought to evaluate the currently available literature on the impact of autoimmune disease and its related therapeutic approaches on the COVID-19 infection course of disease in children and reflect on the gaps in the evidence and the need for further research in this field. WHAT IS KNOWN • The majority of children infected with COVID-19 demonstrate mild to moderate clinical manifestations compared to adults, whereas those children with pre-existing autoimmune conditions are at a greater risk for severe symptoms. •There is currently limited understanding of the pathophysiology and clinical outcomes of COVID-19 in pediatric patients with autoimmune disorders due to scattered reports and inadequate evidence. WHAT IS NEW • Generally, children with autoimmune disorders have more unfavorable outcomes than healthy children; yet, the severity is not extreme, and is highly dependent on their autoimmune disease type and severity, as well as the medication they are taking.
Collapse
Affiliation(s)
- Parniyan Sadeghi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Parmida Sadat Pezeshki
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, 14194, Tehran, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
32
|
Abbasifard M, Fakhrabadi AH, Bahremand F, Khorramdelazad H. Evaluation of the interaction between tumor growth factor-β and interferon type I pathways in patients with COVID-19: focusing on ages 1 to 90 years. BMC Infect Dis 2023; 23:248. [PMID: 37072722 PMCID: PMC10112317 DOI: 10.1186/s12879-023-08225-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 04/05/2023] [Indexed: 04/20/2023] Open
Abstract
BACKGROUND Evidence revealed that age could affect immune responses in patients with the acute respiratory syndrome of coronavirus 2 (SARS-CoV-2) infection. This study investigated the impact of age on immune responses, especially on the interaction between the tumor growth factor-β (TGF-β) and interferon type-I (IFN-I) axes in the pathogenesis of novel coronavirus disease 2019 (COVID-19). METHODS This age-matched case-control investigation enrolled 41 COVID-19 patients and 40 healthy controls categorized into four groups, including group 1 (up to 20 years), group 2 (20-40 years), group 3 (40-60 years), and group 4 (over 60 years). Blood samples were collected at the time of admission. The expression of TGF-βRI, TGF-βRII, IFNARI, IFNARII, interferon regulatory factor 9 (IRF9), and SMAD family member 3 (SMAD3) was measured using the real-time PCR technique. In addition, serum levels of TGF-β, IFN-α, and SERPINE1 were measured by the enzyme-linked immunosorbent assay (ELISA) technique. All biomarkers were measured and analyzed in the four age studies groups. RESULTS The expression of TGF-βRI, TGF-βRII, IFNARI, IFNARII, IRF9, and SMAD3 was markedly upregulated in all age groups of patients compared with the matched control groups. Serum levels of IFN-α and SERPINE1 were significantly higher in patient groups than in control groups. While TGF-β serum levels were only significantly elevated in the 20 to 40 and over 60 years patient group than in matched control groups. CONCLUSIONS These data showed that the age of patients, at least at the time of admission, may not significantly affect TGF-β- and IFN-I-associated immune responses. However, it is possible that the severity of the disease affects these pathway-mediated responses, and more studies with a larger sample size are needed to verify it.
Collapse
Affiliation(s)
- Mitra Abbasifard
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Internal Medicine, Ali-Ibn-Abi-Talib Hospital, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Ali Hasani Fakhrabadi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Internal Medicine, Ali-Ibn-Abi-Talib Hospital, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Fatemeh Bahremand
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Internal Medicine, Ali-Ibn-Abi-Talib Hospital, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
33
|
Calvert BA, Quiroz EJ, Lorenzana Z, Doan N, Kim S, Senger CN, Anders JJ, Wallace WD, Salomon MP, Henley J, Ryan AL. Neutrophilic inflammation promotes SARS-CoV-2 infectivity and augments the inflammatory responses in airway epithelial cells. Front Immunol 2023; 14:1112870. [PMID: 37006263 PMCID: PMC10061003 DOI: 10.3389/fimmu.2023.1112870] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/03/2023] [Indexed: 03/18/2023] Open
Abstract
Introduction In response to viral infection, neutrophils release inflammatory mediators as part of the innate immune response, contributing to pathogen clearance through virus internalization and killing. Pre- existing co-morbidities correlating to incidence to severe COVID-19 are associated with chronic airway neutrophilia. Furthermore, examination of COVID-19 explanted lung tissue revealed a series of epithelial pathologies associated with the infiltration and activation of neutrophils, indicating neutrophil activity in response to SARS-CoV-2 infection. Methods To determine the impact of neutrophil-epithelial interactions on the infectivity and inflammatory responses to SARS-CoV-2 infection, we developed a co-culture model of airway neutrophilia. This model was infected with live SARS-CoV-2 virus the epithelial response to infection was evaluated. Results SARS-CoV-2 infection of airway epithelium alone does not result in a notable pro-inflammatory response from the epithelium. The addition of neutrophils induces the release of proinflammatory cytokines and stimulates a significantly augmented proinflammatory response subsequent SARS-CoV-2 infection. The resulting inflammatory responses are polarized with differential release from the apical and basolateral side of the epithelium. Additionally, the integrity of the \epithelial barrier is impaired with notable epithelial damage and infection of basal stem cells. Conclusions This study reveals a key role for neutrophil-epithelial interactions in determining inflammation and infectivity.
Collapse
Affiliation(s)
- Ben A. Calvert
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa, IA, United States
| | - Erik J. Quiroz
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa, IA, United States
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA, United States
| | - Zareeb Lorenzana
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Ngan Doan
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Seongjae Kim
- The Salk Institute of Biological Studies, La Jolla, CA, United States
| | - Christiana N. Senger
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Jeffrey J. Anders
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa, IA, United States
| | - Wiliam D. Wallace
- Department of Pathology, University of Southern California, Los Angeles, CA, United States
| | - Matthew P. Salomon
- Department of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Jill Henley
- Department of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Amy L. Ryan
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa, IA, United States
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
34
|
Balanza N, Erice C, Ngai M, McDonald CR, Weckman AM, Wright J, Richard-Greenblatt M, Varo R, López-Varela E, Sitoe A, Vitorino P, Bramugy J, Lanaspa M, Acácio S, Madrid L, Baro B, Kain KC, Bassat Q. Prognostic accuracy of biomarkers of immune and endothelial activation in Mozambican children hospitalized with pneumonia. PLOS GLOBAL PUBLIC HEALTH 2023; 3:e0001553. [PMID: 36963048 PMCID: PMC10021812 DOI: 10.1371/journal.pgph.0001553] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/24/2023] [Indexed: 02/25/2023]
Abstract
Pneumonia is a leading cause of child mortality. However, currently we lack simple, objective, and accurate risk-stratification tools for pediatric pneumonia. Here we test the hypothesis that measuring biomarkers of immune and endothelial activation in children with pneumonia may facilitate the identification of those at risk of death. We recruited children <10 years old fulfilling WHO criteria for pneumonia and admitted to the Manhiça District Hospital (Mozambique) from 2010 to 2014. We measured plasma levels of IL-6, IL-8, Angpt-2, sTREM-1, sFlt-1, sTNFR1, PCT, and CRP at admission, and assessed their prognostic accuracy for in-hospital, 28-day, and 90-day mortality. Healthy community controls, within same age strata and location, were also assessed. All biomarkers were significantly elevated in 472 pneumonia cases versus 80 controls (p<0.001). IL-8, sFlt-1, and sTREM-1 were associated with in-hospital mortality (p<0.001) and showed the best discrimination with AUROCs of 0.877 (95% CI: 0.782 to 0.972), 0.832 (95% CI: 0.729 to 0.935) and 0.822 (95% CI: 0.735 to 0.908), respectively. Their performance was superior to CRP, PCT, oxygen saturation, and clinical severity scores. IL-8, sFlt-1, and sTREM-1 remained good predictors of 28-day and 90-day mortality. These findings suggest that measuring IL-8, sFlt-1, or sTREM-1 at hospital presentation can guide risk-stratification of children with pneumonia, which could enable prioritized care to improve survival and resource allocation.
Collapse
Affiliation(s)
- Núria Balanza
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Clara Erice
- Sandra-Rotman Centre for Global Health, Toronto General Research Institute, University Health Network-Toronto General Hospital, Toronto, Ontario, Canada
| | - Michelle Ngai
- Sandra-Rotman Centre for Global Health, Toronto General Research Institute, University Health Network-Toronto General Hospital, Toronto, Ontario, Canada
- Tropical Disease Unit, Division of Infectious Diseases, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Chloe R. McDonald
- Sandra-Rotman Centre for Global Health, Toronto General Research Institute, University Health Network-Toronto General Hospital, Toronto, Ontario, Canada
| | - Andrea M. Weckman
- Sandra-Rotman Centre for Global Health, Toronto General Research Institute, University Health Network-Toronto General Hospital, Toronto, Ontario, Canada
- Tropical Disease Unit, Division of Infectious Diseases, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Julie Wright
- Sandra-Rotman Centre for Global Health, Toronto General Research Institute, University Health Network-Toronto General Hospital, Toronto, Ontario, Canada
- Tropical Disease Unit, Division of Infectious Diseases, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Melissa Richard-Greenblatt
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Rosauro Varo
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique
| | - Elisa López-Varela
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique
- Desmond Tutu TB Centre, Department of Pediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Antonio Sitoe
- Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique
| | - Pio Vitorino
- Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique
| | - Justina Bramugy
- Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique
| | - Miguel Lanaspa
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique
| | - Sozinho Acácio
- Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique
| | - Lola Madrid
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique
- Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Bàrbara Baro
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Kevin C. Kain
- Sandra-Rotman Centre for Global Health, Toronto General Research Institute, University Health Network-Toronto General Hospital, Toronto, Ontario, Canada
- Tropical Disease Unit, Division of Infectious Diseases, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Quique Bassat
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique
- ICREA, Barcelona, Spain
- Pediatrics Department, Hospital Sant Joan de Déu (University of Barcelona), Barcelona, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| |
Collapse
|
35
|
Rodriguez AL, Fowler VL, Huether M, Reddick D, Tait-Burkard C, O’Shea M, Perkins S, Dias N, Buterbaugh R, Benchaoui HA. Effects of a water-soluble formulation of tylvalosin on disease caused by porcine reproductive and respiratory syndrome virus alone in sows or in combination with Mycoplasma hyopneumoniae in piglets. BMC Vet Res 2023; 19:31. [PMID: 36726139 PMCID: PMC9890818 DOI: 10.1186/s12917-023-03571-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 01/09/2023] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND The effect of a water-soluble formulation of tylvalosin (Aivlosin® 625 mg/g granules) on disease caused by porcine reproductive and respiratory syndrome virus (PRRSV) and Mycoplasma hyopneumoniae (Mhyop) was investigated in two animal studies. In a PRRSV challenge model in pregnant sows (n = 18), six sows received water medicated at target dose of 5 mg tylvalosin/kg body weight/day from 3 days prior to challenge until the end of gestation. Six sows were left untreated, with a third group remaining untreated and unchallenged. Sows were challenged with PRRSV-2 at approximately 85 days of gestation. Cytokines, viremia, viral shedding, sow reproductive parameters and piglet performance to weaning were evaluated. In a dual infection study (n = 16), piglets were challenged with Mhyop on days 0, 1 and 2, and with PRRSV-1 on day 14 and euthanized on day 24. From day 10 to 20, eight piglets received water medicated at target dose of 20 mg tylvalosin/kg body weight/day and eight piglets were left untreated. Cytokines, viremia, bacteriology and lung lesions were evaluated. RESULTS In the PRRSV challenge study in pregnant sows, tylvalosin significantly reduced the levels of serum IL-8 (P < 0.001), IL-12 (P = 0.032), TNFα (P < 0.001) and GM-CSF (P = 0.001). IL-8 (P = 0.100) tended to be lower in uterus of tylvalosin sows. All piglets from tylvalosin sows surviving to weaning were PRRSV negative in faecal swabs at weaning compared to 33.3% PRRSV positive piglets from untreated sows (P = 0.08). In the dual challenge study in piglet, tylvalosin reduced serum IL1β, IL-4, IL-6, IL-8, IL-10, IL-12, IL-1α, IL-13, IL-17A, IL-18, GM-CSF, TGFβ1, TNFα, CCL3L1, MIG, PEPCAM-1 (P < 0.001) and increased serum IFNα, IL-1ra and MIP-1b (P < 0.001). In the lungs, tylvalosin reduced IL-8, IL-10 and IL-12 compared to untreated pigs (P < 0.001) and tended to reduce TNFα (P = 0.082). Lung lavage samples from all tylvalosin treated piglets were negative for Mhyop (0 cfu/mL) compared to the untreated piglets which had mean Mhyop counts of 2.68 × 104 cfu/mL (P = 0.023). CONCLUSION Overall, tylvalosin reduced both local and systemic proinflammatory cytokines after challenge with respiratory pathogens in sows and in piglets. Tylvalosin was effective in reducing Mhyop recovery from the lungs and may reduce virus shedding in piglets following transplacental PRRSV infection in sows.
Collapse
Affiliation(s)
| | | | | | - David Reddick
- Moredun Scientific Ltd, Pentlands Science Park, Bush Loan, Penicuik, Midlothian, EH26 0PZ UK
| | - Christine Tait-Burkard
- grid.4305.20000 0004 1936 7988The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG UK
| | - Marie O’Shea
- grid.4305.20000 0004 1936 7988The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG UK
| | | | - Nirosh Dias
- grid.505215.6RTI, LLC, 801 32nd Ave, Brookings, SD 57006 USA
| | | | | |
Collapse
|
36
|
Differential Effects of Cytokine Versus Hypoxic Preconditioning of Human Mesenchymal Stromal Cells in Pulmonary Sepsis Induced by Antimicrobial-Resistant Klebsiella pneumoniae. Pharmaceuticals (Basel) 2023. [DOI: 10.3390/ph16020149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Background: Pulmonary sepsis is a leading cause of hospital mortality, and sepses arising from antimicrobial-resistant (AMR) bacterial strains are particularly difficult to treat. Here we investigated the potential of mesenchymal stromal cells (MSCs) to combat established Klebsiella pneumoniae pneumosepsis and further evaluated MSC preconditioning and pre-activation methods. Methods: The potential for naïve and preconditioned MSCs to enhance wound healing, reduce inflammation, preserve metabolic activity, and enhance bacterial killing was assessed in vitro. Rats were subjected to intratracheal K. pneumoniae followed by the intravenous administration of MSCs. Physiological indices, blood, bronchoalveolar lavage (BAL), and tissues were obtained 72 h later. Results: In vitro assays confirmed that preconditioning enhances MSC function, accelerating pulmonary epithelial wound closure, reducing inflammation, attenuating cell death, and increasing bacterial killing. Cytomix-pre-activated MSCs are superior to naïve and hypoxia-exposed MSCs in attenuating Klebsiella pneumosepsis, improving lung compliance and oxygenation, reducing bacteria, and attenuating histologic injuries in lungs. BAL inflammatory cytokines were reduced, correlating with decreases in polymorphonuclear (PMN) cells. MSCs increased PMN apoptosis and the CD4:CD8 ratio in BAL. Systemically, granulocytes, classical monocytes, and the CD4:CD8 ratio were reduced, and nonclassical monocytes were increased. Conclusions: Preconditioning with cytokines, but not hypoxia, enhances the therapeutic potential of MSCs in clinically relevant models of K. pneumoniae-induced pneumosepsis.
Collapse
|
37
|
Shokri‐Afra H, Moradi M, Musavi H, Moradi‐Sardareh H, Moradi poodeh B, Kazemi Veisari A, Oladi Z, Ebrahimi M. Serum calprotectin can indicate current and future severity of COVID-19. J Clin Lab Anal 2022; 37:e24809. [PMID: 36525302 PMCID: PMC9833977 DOI: 10.1002/jcla.24809] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/07/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Predictive and prognostic biomarkers to guide 2019 novel coronavirus disease (COVID-19) are critically evolving. Dysregulated immune responses are the pivotal cause of severity mainly mediated by neutrophil activation. Thus, we evaluated the association of calprotectin, neutrophil secretory protein, and other mediators of inflammation with the severity and outcomes of COVID-19. METHODS This two-center prospective study focused on PCR-proven COVID-19 patients (n = 76) with different clinical presentations and SARS-CoV-2 negative control subjects (n = 24). Serum calprotectin (SC) was compared with IL-6 and other laboratory parameters. RESULTS Median levels of SC were significantly higher in COVID-19 patients in comparison to the control group (3760 vs. 2100 ng/ml, p < 0.0001). Elevated SC was significantly respective of disease severity (3760 ng/ml in mild up to 5700 ng/ml in severe cases, p < 0.0001). Moreover, the significant positive and negative correlations of SC with disease severity and oxygenation status indicated disease progression and respiratory worsening, respectively. It was found that SC was high in severe patients during hospitalization and significantly declined to normal after recovery. The logistic analysis identified the independent predictive power of SC for respiratory status or clinical severity. Indeed, SC behaved as a better discriminator for both outcomes, as it exhibited the largest area under the curve (receiver operating curve analysis), with the highest specificity and sensitivity when the predictive value of inflammatory biomarkers was compared. CONCLUSION Calprotectin can be used as a reliable prognostic tool to predict the poor clinical outcomes of COVID-19 patients.
Collapse
Affiliation(s)
- Hajar Shokri‐Afra
- Gut and Liver Research Center, Non‐communicable Diseases InstituteMazandaran University of Medical SciencesSariIran
| | - Mona Moradi
- Pediatric Infectious Diseases Research Center, Communicable Diseases InstituteMazandaran University of Medical SciencesSariIran
| | - Hadis Musavi
- Department of Clinical Biochemistry, School of MedicineBabol University of Medical SciencesBabolIran
| | - Hemen Moradi‐Sardareh
- Department of Research and TechnologyAsadabad School of Medical ScienceAsadabadIran,Biomad companyOsloNorway
| | - Bahman Moradi poodeh
- Department of Laboratory Sciences, Lahijan BranchIslamic Azad UniversityLahijanIran
| | - Arash Kazemi Veisari
- Gut and Liver Research Center, Non‐communicable Diseases InstituteMazandaran University of Medical SciencesSariIran
| | - Ziaeddin Oladi
- Department of Internal Medicine, School of Medicine, Ghaem Shahr Razi HospitalMazandaran University of Medical SciencesSariIran
| | - Mahboobe Ebrahimi
- Gut and Liver Research Center, Non‐communicable Diseases InstituteMazandaran University of Medical SciencesSariIran
| |
Collapse
|
38
|
Influence of SARS-COV-2 Infection on Cytokine Production by Mitogen-Stimulated Peripheral Blood Mononuclear Cells and Neutrophils in COVID-19 Intensive Care Unit Patients. Microorganisms 2022; 10:microorganisms10112194. [PMID: 36363785 PMCID: PMC9695671 DOI: 10.3390/microorganisms10112194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/30/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
We sought to investigate the influence of SARS-CoV-2 infection on the cytokine profiles of peripheral blood mononuclear cells (PBMCs) and neutrophils from coronavirus disease 2019 (COVID-19) intensive care unit (ICU) patients. Neutrophils and PBMCs were separated and stimulated with the mitogen phytohemagglutinin. Culture supernatants of mitogen-stimulated PBMCs and neutrophils from 88 COVID-19 ICU patients and 88 healthy controls were evaluated for levels of granulocyte-macrophage colony-stimulating factor (GM-CSF), interferon (IFN)-α, IFN-γ, interleukin (IL)-2, -4, -5, -6, -9, -10, -12, -17A, and tumor necrosis factor (TNF)-α using anti-cytokine antibody MACSPlex capture beads. Cytokine profiles of PBMCs showed significantly lower levels of GM-CSF, IFN-γ, IL-6, IL-9, IL-10, IL-17A, and TNF-α (p < 0.0001) in COVID-19 ICU patients. In contrast, COVID-19 ICU patients showed higher median levels of IL-2 (p < 0.001) and IL-5 (p < 0.01) by PBMCs. As for neutrophils, COVID-19 ICU patients showed significantly lower levels of GM-CSF, IFN-γ, IL-2, IL-4, IL-5, IL-6, IL-9, IL-10, IL-17A, IL-12, TNF-α (p < 0.0001), and IFN-α (p < 0.01). T-helper (Th)1:Th2 cytokine ratios revealed lower inflammatory cytokine for PBMCs and neutrophils in COVID-19 ICU patients. Cytokine production profiles and Th1:Th2 cytokine ratios suggest that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has an immunomodulatory effect on PBMCs and neutrophils. This study also suggests that the increased levels of several cytokines in the serum are not sourced from PBMCs and neutrophils.
Collapse
|
39
|
Desai A, Aliberti S, Amati F, Stainer A, Voza A. Cardiovascular Complications in Community-Acquired Pneumonia. Microorganisms 2022; 10:2177. [PMID: 36363769 PMCID: PMC9695472 DOI: 10.3390/microorganisms10112177] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 11/15/2023] Open
Abstract
Community-acquired pneumonia (CAP) is accountable for high mortality in both pediatric and adult populations worldwide, about one-third of hospitalized patients pass away within a year of being discharged from the facility. The high mortality and morbidity rates are closely related to cardiovascular complications that are consequent or concomitant to the acute episode of pneumonia. An updated perspective on the major pathophysiological mechanisms, prevalence, risk factors, outcomes, and relevant treatments of cardiovascular events in CAP patients is provided in the current study. It is possible to evaluate the pathophysiology of cardiac disease in this population based on plaque-related events, such as acute myocardial infarction, or events unrelated to plaque, such as arrhythmias and heart failure. With an absolute rate of cardiovascular problems ranging broadly from 10% to 30%, CAP raises the risk of both plaque-related and plaque-unrelated events. Both in- and out-patients may experience these issues at admission, throughout hospitalization, or even up to a year following discharge. At long-term follow-up, cardiac events account for more than 30% of deaths in CAP patients, making them a significant cause of mortality. If patients at risk for cardiac events are stratified, diagnostic tools, monitoring, and preventive measures may be applied to these patients. A prospective evaluation of cardioprotective treatments is urgently required from a research point of view.
Collapse
Affiliation(s)
- Antonio Desai
- IRCCS Humanitas Research Hospital, Emergency Department, Via Manzoni 56, Rozzano, 20089 Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
| | - Stefano Aliberti
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- IRCCS Humanitas Research Hospital, Respiratory Unit, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Francesco Amati
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- IRCCS Humanitas Research Hospital, Respiratory Unit, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Anna Stainer
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- IRCCS Humanitas Research Hospital, Respiratory Unit, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Antonio Voza
- IRCCS Humanitas Research Hospital, Emergency Department, Via Manzoni 56, Rozzano, 20089 Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
| |
Collapse
|
40
|
Abeysuriya V, Seneviratne SL, de Silva AP, Mowjood R, Mowjood S, de Silva T, de Mel P, de Mel C, Chandrasena L, Wijesinha RS, Fernando A, de Mel S. Combination of cycle threshold time, absolute lymphocyte count and neutrophil:lymphocyte ratio is predictive of hypoxia in patients with SARS-CoV-2 infection. Trans R Soc Trop Med Hyg 2022; 116:628-635. [PMID: 34894631 PMCID: PMC8754692 DOI: 10.1093/trstmh/trab182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/24/2021] [Accepted: 11/16/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND There is currently no clinically validated biomarker to predict respiratory compromise in sudden acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Cycle threshold time (Ct), absolute lymphocyte count (AL) and neutrophil:lymphocyte ratio (NLR) have been previously evaluated for this purpose. We hypothesized that the combination of these parameters at presentation may be predictive of hypoxia (oxygen saturation <92%). METHODS Data were collected on 118 patients with SARS-CoV-2 infection between May 2020 and April 2021. Demographics, clinical parameters and laboratory and radiological investigation results were recorded. Respiratory compromise (RC) was defined based on symptoms and signs, hypoxia and chest X-ray abnormalities. RESULTS RC occurred in 61 (51.7%) of patients. The Ct, AL and NLR at median day 3 of illness were significantly different between patients with and without RC (Ct, RC vs not: 19.46±2.64 vs 22.62±3.37, p=0.0001; AL, RC vs not: 531.49±289.09 vs 764.69±481.79, p=0.0001; NLR, RC vs not: 3.42±0.75 vs 2.59±0.55, p=0.0001). Receiver operating characteristics analysis showed that a Ct <19.9, AL <630.8×103/μL and NLR >3.12 at median day 3 of symptoms was predictive of hypoxia on day 7 of illness (area under the curve 0.805, sensitivity 96.7%, specificity 69.1%). The predictive value for the parameters combined was significantly superior to their individual predictive power. CONCLUSIONS Ct, AL and NLR used in combination on day 3 of symptoms are predictive of hypoxia on day 7 of SARS-CoV-2 illness.
Collapse
Affiliation(s)
- Visula Abeysuriya
- Nawaloka Hospital Research and Education Foundation, Nawaloka Hospitals PLC, Colombo, Sri Lanka
| | - Suranjith L Seneviratne
- Nawaloka Hospital Research and Education Foundation, Nawaloka Hospitals PLC, Colombo, Sri Lanka
- Institute of Immunity and Transplantation, Royal Free Hospital and University College London, UK
| | - Arjuna P de Silva
- Department of Medicine, Faculty of Medicine, University of Kelaniya, Sri Lanka
| | - Riaz Mowjood
- Department of Respiratory Disease, Nawaloka Hospitals PLC, Colombo, Sri Lanka
| | - Shazli Mowjood
- Department of Respiratory Disease, Nawaloka Hospitals PLC, Colombo, Sri Lanka
| | - Thushara de Silva
- Department of Respiratory Disease, Nawaloka Hospitals PLC, Colombo, Sri Lanka
| | - Primesh de Mel
- Nawaloka Hospital Research and Education Foundation, Nawaloka Hospitals PLC, Colombo, Sri Lanka
| | - Chandima de Mel
- Nawaloka Hospital Research and Education Foundation, Nawaloka Hospitals PLC, Colombo, Sri Lanka
| | - Lal Chandrasena
- Nawaloka Hospital Research and Education Foundation, Nawaloka Hospitals PLC, Colombo, Sri Lanka
| | - R S Wijesinha
- Princess Alexandra Hospital, Princess Alexandra Hospital NHS Trust, UK
| | | | - Sanjay de Mel
- Department of Haematology-Oncology, National University Cancer Institute, National University Health System Singapore, Singapore
| |
Collapse
|
41
|
Schuermann LE, Bergmann CB, Goetzman H, Caldwell CC, Satish L. Heat-killed probiotic Lactobacillus plantarum affects the function of neutrophils but does not improve survival in murine burn injury. Burns 2022; 49:877-888. [PMID: 35850881 DOI: 10.1016/j.burns.2022.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 11/30/2022]
Abstract
Probiotics have become of interest as therapeutics in trauma or sepsis-induced inflammation due to their ability to affects the immune response. However, their use is still under debate due to the potential risk of septicemia. Therefore, heat-killed probiotics offer a potential alternative, with recent research suggesting a comparable immunomodulating potential and increased safety. In a previous study, we demonstrated decreased mortality by administration of live Lactobacillus plantarum in a mouse burn-sepsis model. Neutrophils are an essential innate defense against pathogens. Therefore, our present study aims to understand the impact of heat-killed probiotic L. plantarum (HKLP) on neutrophil function. Utilizing an in vitro stimulation with HKLP and a burn-infection in vivo model, we determined that administration of HKLP induced significant release of granulocyte-colony stimulating factor (G-CSF) and stimulated the release of pro-and anti-inflammatory cytokines. HKLP had no impact on neutrophil function, such as phagocytosis, oxidative burst, and NETosis, but increased apoptosis and activated neutrophils. HKLP did not improve survival. Together, contrary to our hypothesis, heat-killed probiotics did not improve neutrophil function and survival outcome in a murine severe burn injury model.
Collapse
Affiliation(s)
- Lauren E Schuermann
- Research Department, Shriners Hospitals for Children-Cincinnati, Cincinnati, OH, USA
| | - Christian B Bergmann
- Division of Research, Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Holly Goetzman
- Division of Research, Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Charles C Caldwell
- Research Department, Shriners Hospitals for Children-Cincinnati, Cincinnati, OH, USA; Division of Research, Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Latha Satish
- Research Department, Shriners Hospitals for Children-Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
42
|
Chen Y, Zhang W, Xin L, Wang Z, Zheng M, Vijayalakshmi A. Modulatory apoptotic effects of sinomenine on Mycoplasma pneumonia through the attenuation of inflammation via ERK/JNK/NF-κB signaling pathway. Arch Microbiol 2022; 204:441. [PMID: 35773566 DOI: 10.1007/s00203-022-03039-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 06/01/2022] [Indexed: 11/25/2022]
Abstract
Mycoplasma pneumoniae (MPP) induced pneumonia is a common disease of children. Sinomenine (SIN) is an isoquinoline mainly sequestered from Sinomenium acutum. It is a promising drug for treating arthritis, lung, colon, liver and gastric cancer. Hence, the present study investigated the role and mechanism of SIN treatment in MPP induced pneumonia in experimental in-vivo mice model. The BALB/c male mice were separated into four groups (n = 6 mice/group): normal, MPP, MPP + SIN (20 mg/kg bw), and SIN (20 mg/kg bw) alone. Results were expressed as mean ± SD. Data were analyzed using one way Analysis of Variance (ANOVA) with the Dunnett's post hoc test using SPSS v 18.0. P value < 0.05 was considered significant. The total protein, cell count, inflammatory cytokines, MP-IgM, Monocyte chemo attractant protein-1 (MCP-1), and MP-DNA were measured. The protein expressions of Bax/Bcl-2, ERK, JNK, NF-κB were analyzed and histopathology of lungs was examined. SIN treatment significantly (p < 0.05) reduced the total proteins, cell counts in BALF, inflammatory cytokines, MP-IgM, MCP-1, MP-DNA and reversed the histological alterations. SIN attenuated the apoptotic pathway through the modulation of Bax/Bcl-2 expression. SIN alleviated pulmonary inflammatory mediators and apoptosis in MPP-infected mice via suppression of ERK/JNK/NF-κB signaling. SIN administration diminished inflammation and lung fibrosis by inhibiting apoptosis in MPP mice. Hence, SIN is a potential natural protective remedy for MPP.
Collapse
Affiliation(s)
- Yao Chen
- Department of Respiratory, Xi'an Children's Hospital, Xi'an City, 710000, China
| | - Wen Zhang
- Department of Respiratory, Xi'an Children's Hospital, Xi'an City, 710000, China
| | - Lihong Xin
- Department of Respiratory, Xi'an Children's Hospital, Xi'an City, 710000, China
| | - Zhen Wang
- Department of Respiratory, Xi'an Children's Hospital, Xi'an City, 710000, China
| | - Mao Zheng
- Department of Emergency, Xi'an Children's Hospital, Xi'an City, 710000, China.
| | - Annamalai Vijayalakshmi
- Department of Biochemistry, Rabiammal Ahamed Maideen College for Women, Thiruvarur, Tamil Nadu, 610001, India
| |
Collapse
|
43
|
Gennari-Felipe M, Borges L, Dermargos A, Weimann E, Curi R, Pithon-Curi TC, Hatanaka E. Hypertonic Solution in Severe COVID-19 Patient: A Potential Adjuvant Therapy. Front Med (Lausanne) 2022; 9:917008. [PMID: 35801207 PMCID: PMC9253300 DOI: 10.3389/fmed.2022.917008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) features hyper-inflammation, cytokine storm, neutrophil function changes, and sodium chloride (NaCl) homeostasis disruption, while the treatment with NaCl hypertonic solutions (HS) controls electrolytic body homeostasis and cell functions. HS treatment is a simple, popular, economic, and feasible therapy to regulate leukocyte function with a robust anti-inflammatory effect in many inflammatory diseases. The purpose of this narrative review is to highlight the knowledge on the use of HS approaches against viral infection over the past years and to describe the mechanisms involved in the release of neutrophil extracellular traps (NETs) and production of cytokine in severe lung diseases, such as COVID-19. We reported the consequences of hyponatremia in COVID-19 patients, and the immunomodulatory effects of HS, either in vitro or in vivo. We also described the relationship between electrolyte disturbances and COVID-19 infection. Although there is still a lack of clinical trials, hypertonic NaCl solutions have marked effects on neutrophil function and NETs formation, emerging as a promising adjuvant therapy in COVID-19.
Collapse
Affiliation(s)
- Matheus Gennari-Felipe
- Instituto de Ciências da Atividade Física e Esportes, Universidade Cruzeiro do Sul, São Paulo, Brazil
| | - Leandro Borges
- Instituto de Ciências da Atividade Física e Esportes, Universidade Cruzeiro do Sul, São Paulo, Brazil
| | - Alexandre Dermargos
- Instituto de Ciências da Atividade Física e Esportes, Universidade Cruzeiro do Sul, São Paulo, Brazil
| | - Eleine Weimann
- Instituto de Ciências da Atividade Física e Esportes, Universidade Cruzeiro do Sul, São Paulo, Brazil
| | - Rui Curi
- Instituto de Ciências da Atividade Física e Esportes, Universidade Cruzeiro do Sul, São Paulo, Brazil
- Seção de Produção de Imunobiológicos, Centro Bioindustrial, Instituto Butantan, São Paulo, Brazil
| | | | - Elaine Hatanaka
- Instituto de Ciências da Atividade Física e Esportes, Universidade Cruzeiro do Sul, São Paulo, Brazil
- *Correspondence: Elaine Hatanaka,
| |
Collapse
|
44
|
Calvert BA, Quiroz EJ, Lorenzana Z, Doan N, Kim S, Senger CN, Wallace WD, Salomon MP, Henley J, Ryan AL. Neutrophilic inflammation promotes SARS-CoV-2 infectivity and augments the inflammatory responses in airway epithelial cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2021.08.09.455472. [PMID: 34401877 PMCID: PMC8366793 DOI: 10.1101/2021.08.09.455472] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In response to viral infection, neutrophils release inflammatory mediators as part of the innate immune response, contributing to pathogen clearance through virus internalization and killing. Pre-existing co- morbidities correlating to incidence of severe COVID-19 are associated with chronic airway neutrophilia. Furthermore, examination of COVID-19 explanted lung tissue revealed a series of epithelial pathologies associated with the infiltration and activation of neutrophils, indicating neutrophil activity in response to SARS- CoV-2 infection. To determine the impact of neutrophil-epithelial interactions on the infectivity and inflammatory responses to SARS-CoV-2 infection, we developed a co-culture model of airway neutrophilia. SARS-CoV-2 infection of the airway epithelium alone does not result in a notable pro-inflammatory response from the epithelium. The addition of neutrophils induces the release of proinflammatory cytokines and stimulates a significantly augmented pro-inflammatory response subsequent SARS-CoV-2 infection. The resulting inflammatory response is polarized with differential release from the apical and basolateral side of the epithelium. Additionally, the integrity of the epithelial barrier is impaired with notable epithelial damage and infection of basal stem cells. This study reveals a key role for neutrophil-epithelial interactions in determining inflammation and infectivity in response to SARS-CoV-2 infection.
Collapse
Affiliation(s)
- BA Calvert
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - EJ Quiroz
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Z Lorenzana
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, CA, USA
| | - N Doan
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, CA, USA
| | - S Kim
- The Salk Institute of Biological Studies, 10010 North Torey Pines Road, La Jolla, Ca, USA
| | - CN Senger
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA
| | - WD Wallace
- Department of Pathology, University of Southern California, Los Angeles, CA, USA
| | - MP Salomon
- Department of Medicine, University of Southern California, Los Angeles, CA, USA
| | - J Henley
- Department of Medicine, University of Southern California, Los Angeles, CA, USA
| | - AL Ryan
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
45
|
Kennedy II DE, Mody P, Gout JF, Tan W, Seo KS, Olivier AK, Rosch JW, Thornton JA. Contribution of Puma to Inflammatory Resolution During Early Pneumococcal Pneumonia. Front Cell Infect Microbiol 2022; 12:886901. [PMID: 35694536 PMCID: PMC9177954 DOI: 10.3389/fcimb.2022.886901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/25/2022] [Indexed: 11/17/2022] Open
Abstract
Apoptosis of cells at the site of infection is a requirement for shutdown of inflammatory signaling, avoiding tissue damage, and preventing progression of sepsis. Puma+/+ and Puma-/- mice were challenged with TIGR4 strain pneumococcus and cytokines were quantitated from lungs and blood using a magnetic bead panel analysis. Puma-/- mice exhibited higher lung and blood cytokine levels of several major inflammatory cytokines, including IL-6, G-CSF, RANTES, IL-12, IFN-ϒ, and IP-10. Puma-/- mice were more susceptible to bacterial dissemination and exhibited more weight loss than their wild-type counterparts. RNA sequencing analysis of whole pulmonary tissue revealed Puma-dependent regulation of Nrxn2, Adam19, and Eln. Enrichment of gene ontology groups differentially expressed in Puma-/- tissues were strongly correlated to IFN-β and -ϒ signaling. Here, we demonstrate for the first time the role of Puma in prohibition of the cytokine storm during bacterial pneumonia. These findings further suggest a role for targeting immunomodulation of IFN signaling during pulmonary inflammation. Additionally, our findings suggest previously undemonstrated roles for genes encoding regulatory and binding proteins during the early phase of the innate immune response of pneumococcal pneumonia.
Collapse
Affiliation(s)
- Daniel E. Kennedy II
- Department of Biological Sciences, Mississippi State University, Starkville, MS, United States
| | - Perceus Mody
- Department of Biological Sciences, Mississippi State University, Starkville, MS, United States
| | - Jean-Francois Gout
- Department of Biological Sciences, Mississippi State University, Starkville, MS, United States
| | - Wei Tan
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| | - Keun Seok Seo
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| | - Alicia K. Olivier
- Department of Population and Pathobiology, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| | - Jason W. Rosch
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Justin A. Thornton
- Department of Biological Sciences, Mississippi State University, Starkville, MS, United States
- *Correspondence: Justin A. Thornton,
| |
Collapse
|
46
|
Hulsebus HJ, Najarro KM, McMahan RH, Boe DM, Orlicky DJ, Kovacs EJ. Ethanol Intoxication Impairs Respiratory Function and Bacterial Clearance and Is Associated With Neutrophil Accumulation in the Lung After Streptococcus pneumoniae Infection. Front Immunol 2022; 13:884719. [PMID: 35603143 PMCID: PMC9116899 DOI: 10.3389/fimmu.2022.884719] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/11/2022] [Indexed: 11/27/2022] Open
Abstract
Alcohol consumption is commonplace in the United States and its prevalence has increased in recent years. Excessive alcohol use is linked to an increased risk of infections including pneumococcal pneumonia, mostly commonly caused by Streptococcus pneumoniae. In addition, pneumonia patients with prior alcohol use often require more intensive treatment and longer hospital stays due to complications of infection. The initial respiratory tract immune response to S. pneumoniae includes the production of pro-inflammatory cytokines and chemokines by resident cells in the upper and lower airways which activate and recruit leukocytes to the site of infection. However, this inflammation must be tightly regulated to avoid accumulation of toxic by-products and subsequent tissue damage. A majority of previous work on alcohol and pneumonia involve animal models utilizing high concentrations of ethanol or chronic exposure and offer conflicting results about how ethanol alters immunity to pathogens. Further, animal models often employ a high bacterial inoculum which may overwhelm the immune system and obscure results, limiting their applicability to the course of human infection. Here, we sought to determine how a more moderate ethanol exposure paradigm affects respiratory function and innate immunity in mice after intranasal infection with 104 colony forming units of S. pneumoniae. Ethanol-exposed mice displayed respiratory dysfunction and impaired bacterial clearance after infection compared to their vehicle-exposed counterparts. This altered response was associated with increased gene expression of neutrophil chemokines Cxcl1 and Cxcl2 in whole lung homogenates, elevated concentrations of circulating granulocyte-colony stimulating factor (G-CSF), and higher neutrophil numbers in the lung 24 hours after infection. Taken together, these findings suggest that even a more moderate ethanol consumption pattern can dramatically modulate the innate immune response to S. pneumoniae after only 3 days of ethanol exposure and provide insight into possible mechanisms related to the compromised respiratory immunity seen in alcohol consumers with pneumonia.
Collapse
Affiliation(s)
- Holly J Hulsebus
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Immunology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Kevin M Najarro
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Rachel H McMahan
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Devin M Boe
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Immunology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - David J Orlicky
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Elizabeth J Kovacs
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Immunology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
47
|
Klén R, Purohit D, Gómez-Huelgas R, Casas-Rojo JM, Antón-Santos JM, Núñez-Cortés JM, Lumbreras C, Ramos-Rincón JM, García Barrio N, Pedrera-Jiménez M, Lalueza Blanco A, Martin-Escalante MD, Rivas-Ruiz F, Onieva-García MÁ, Young P, Ramirez JI, Titto Omonte EE, Gross Artega R, Canales Beltrán MT, Valdez PR, Pugliese F, Castagna R, Huespe IA, Boietti B, Pollan JA, Funke N, Leiding B, Gómez-Varela D. Development and evaluation of a machine learning-based in-hospital COVID-19 disease outcome predictor (CODOP): A multicontinental retrospective study. eLife 2022; 11:e75985. [PMID: 35579324 PMCID: PMC9129872 DOI: 10.7554/elife.75985] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/24/2022] [Indexed: 11/29/2022] Open
Abstract
New SARS-CoV-2 variants, breakthrough infections, waning immunity, and sub-optimal vaccination rates account for surges of hospitalizations and deaths. There is an urgent need for clinically valuable and generalizable triage tools assisting the allocation of hospital resources, particularly in resource-limited countries. We developed and validate CODOP, a machine learning-based tool for predicting the clinical outcome of hospitalized COVID-19 patients. CODOP was trained, tested and validated with six cohorts encompassing 29223 COVID-19 patients from more than 150 hospitals in Spain, the USA and Latin America during 2020-22. CODOP uses 12 clinical parameters commonly measured at hospital admission for reaching high discriminative ability up to 9 days before clinical resolution (AUROC: 0·90-0·96), it is well calibrated, and it enables an effective dynamic risk stratification during hospitalization. Furthermore, CODOP maintains its predictive ability independently of the virus variant and the vaccination status. To reckon with the fluctuating pressure levels in hospitals during the pandemic, we offer two online CODOP calculators, suited for undertriage or overtriage scenarios, validated with a cohort of patients from 42 hospitals in three Latin American countries (78-100% sensitivity and 89-97% specificity). The performance of CODOP in heterogeneous and geographically disperse patient cohorts and the easiness of use strongly suggest its clinical utility, particularly in resource-limited countries.
Collapse
Affiliation(s)
- Riku Klén
- Turku PET Centre, University of Turku and Turku University HospitalTurkuFinland
| | - Disha Purohit
- Max Planck Institute of Experimental MedicineGöttingenGermany
| | - Ricardo Gómez-Huelgas
- Internal Medicine Department, Regional University Hospital of Málaga, Biomedical Research Institute of Málaga (IBIMA), University of Málaga (UMA)MálagaSpain
| | | | | | | | - Carlos Lumbreras
- Internal Medicine Department, 12 de Octubre University HospitalMadridSpain
| | - José Manuel Ramos-Rincón
- Internal Medicine Department, General University Hospital of Alicante, Alicante Institute for 22 Health and Biomedical Research (ISABIAL)AlicanteSpain
| | | | | | | | | | | | | | - Pablo Young
- Hospital Británico of Buenos AiresBuenos AiresArgentina
| | | | | | | | | | | | | | | | - Ivan A Huespe
- Hospital Italiano de Buenos AiresBuenos AiresArgentina
| | - Bruno Boietti
- Hospital Italiano de Buenos AiresBuenos AiresArgentina
| | | | - Nico Funke
- Max Planck Institute for Experimental MedicineGöttingenGermany
| | - Benjamin Leiding
- Institute for Software and Systems Engineering at TU ClausthalClausthalGermany
| | - David Gómez-Varela
- Max Planck Institute for Experimental MedicineGöttingenGermany
- Systems Biology of Pain, Division of Pharmacology & Toxicology, Department of Pharmaceutical Sciences, University of ViennaViennaAustria
| |
Collapse
|
48
|
Çelik E, Kara SS, Çevik Ö. The Potential Use of Saliva as a Biofluid for Systemic Inflammatory Response Monitoring in Children with Pneumonia. Indian J Pediatr 2022; 89:477-483. [PMID: 34595601 DOI: 10.1007/s12098-021-03973-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 08/19/2021] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To investigate the levels of C-reactive protein, procalcitonin, calprotectin, interleukin 1 beta (IL-1β), IL-6, and tumor necrosis factor-alpha (TNF-α) in both saliva and serum in children with community-acquired pneumonia and to compare the saliva response with the systemic response. METHODS Forty hospitalized children with community-acquired pneumonia aged between 1 mo and 15 y; and 40 healthy controls were included. Both serum and saliva samples were collected on admission and at the time of discharge. RESULTS Calculated differences between values for each serum and salivary parameter on admission and before discharge named delta (Δ) values were used for correlation analysis. Salivary Δ values of each parameter were moderately/strongly correlated with their corresponding serum Δ levels [IL-1β ÷ (r = 0.554, p < 0.001); IL-6 ÷ (r = 0.484, p = 0.002); PCT ÷ (r = 0.737, p < 0.001); TNF-α ÷ (r = 0.587, p < 0.001); CRP ÷ (r = 0.703, p < 0.001); and calprotectin ÷ (r = 0.774, p < 0.001)]. CONCLUSIONS This study will evaluate the reflection of systemic changes in saliva and the efficacy of saliva in pediatric patients with pneumonia. Results will highlight saliva potential use as a biofluid for systemic monitoring in this patient group.
Collapse
Affiliation(s)
- Elif Çelik
- Department of Pediatrics, Faculty of Medicine, Adnan Menderes University, Aydın, 09010, Turkey.
| | - Soner Sertan Kara
- Department of Pediatric Infectious Disease, Faculty of Medicine, Adnan Menderes University, Aydın, Turkey
| | - Özge Çevik
- Department of Biochemistry, Faculty of Medicine, Adnan Menderes University, Aydın, Turkey
| |
Collapse
|
49
|
Wang B, Guo W, Qiu C, Sun Y, Zhao C, Wu C, Lai X, Feng X. Alveolar macrophage‐derived NRP2 curtails lung injury while boosting host defense in bacterial pneumonia. J Leukoc Biol 2022; 112:499-512. [PMID: 35435271 DOI: 10.1002/jlb.4a1221-770r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/02/2022] [Indexed: 11/09/2022] Open
Affiliation(s)
- Bing Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Disease Hospital Chinese Academy of Medical Sciences & Peking Union Medical College Tianjin China
| | - Wei Guo
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Disease Hospital Chinese Academy of Medical Sciences & Peking Union Medical College Tianjin China
| | - Chen Qiu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Disease Hospital Chinese Academy of Medical Sciences & Peking Union Medical College Tianjin China
| | - Yunyan Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Disease Hospital Chinese Academy of Medical Sciences & Peking Union Medical College Tianjin China
- Department of Hematology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University Yunnan Cancer Center Kunming China
| | - Chunxiao Zhao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Disease Hospital Chinese Academy of Medical Sciences & Peking Union Medical College Tianjin China
| | - Caihong Wu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Disease Hospital Chinese Academy of Medical Sciences & Peking Union Medical College Tianjin China
| | - Xun Lai
- Department of Hematology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University Yunnan Cancer Center Kunming China
| | - Xiaoming Feng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Disease Hospital Chinese Academy of Medical Sciences & Peking Union Medical College Tianjin China
- Central Laboratory Fujian Medical University Union Hospital Fuzhou China
| |
Collapse
|
50
|
A targetable ‘rogue’ neutrophil-subset, [CD11b+DEspR+] immunotype, is associated with severity and mortality in acute respiratory distress syndrome (ARDS) and COVID-19-ARDS. Sci Rep 2022; 12:5583. [PMID: 35379853 PMCID: PMC8977568 DOI: 10.1038/s41598-022-09343-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 03/07/2022] [Indexed: 12/14/2022] Open
Abstract
Neutrophil-mediated secondary tissue injury underlies acute respiratory distress syndrome (ARDS) and progression to multi-organ-failure (MOF) and death, processes linked to COVID-19-ARDS. This secondary tissue injury arises from dysregulated neutrophils and neutrophil extracellular traps (NETs) intended to kill pathogens, but instead cause cell-injury. Insufficiency of pleiotropic therapeutic approaches delineate the need for inhibitors of dysregulated neutrophil-subset(s) that induce subset-specific apoptosis critical for neutrophil function-shutdown. We hypothesized that neutrophils expressing the pro-survival dual endothelin-1/VEGF-signal peptide receptor, DEspR, are apoptosis-resistant like DEspR+ cancer-cells, hence comprise a consequential pathogenic neutrophil-subset in ARDS and COVID-19-ARDS. Here, we report the significant association of increased peripheral DEspR+CD11b+ neutrophil-counts with severity and mortality in ARDS and COVID-19-ARDS, and intravascular NET-formation, in contrast to DEspR[-] neutrophils. We detect DEspR+ neutrophils and monocytes in lung tissue patients in ARDS and COVID-19-ARDS, and increased neutrophil RNA-levels of DEspR ligands and modulators in COVID-19-ARDS scRNA-seq data-files. Unlike DEspR[-] neutrophils, DEspR+CD11b+ neutrophils exhibit delayed apoptosis, which is blocked by humanized anti-DEspR-IgG4S228P antibody, hu6g8, in ex vivo assays. Ex vivo live-cell imaging of Rhesus-derived DEspR+CD11b+ neutrophils showed hu6g8 target-engagement, internalization, and induction of apoptosis. Altogether, data identify DEspR+CD11b+ neutrophils as a targetable ‘rogue’ neutrophil-subset associated with severity and mortality in ARDS and COVID-19-ARDS.
Collapse
|