1
|
Bonsaglia ECR, Rossi BF, Possebon FS, Silva NCC, Gonçalves JL, Castilho IG, Fernandes Junior A, dos Santos MV, Rall VLM. In Vitro Adhesion and Invasion Rates of Staphylococcus aureus Isolated from Mastitic Cows Are Modulated by the agr System and MSCRAMM Genes. Vet Sci 2025; 12:270. [PMID: 40267004 PMCID: PMC11945600 DOI: 10.3390/vetsci12030270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/04/2025] [Accepted: 03/09/2025] [Indexed: 04/25/2025] Open
Abstract
Mastitis, an inflammatory condition of the udder, can be caused by the entry of Staphylococcus aureus, whose adhesion to the mammary epithelial cells is influenced by virulence factors such as microbial surface components recognizing adhesive matrix molecules (MSCRAMMs) and the accessory gene regulator (agr) system. Our goal was to determine the adhesion and invasion rates of S. aureus isolates from clinical (mild and moderate) and subclinical mastitis and to assess the impact of MSCRAMM genes and agr types on disease severity. Clinical isolates predominantly carried agrII (p < 0.0083) and multiple MSCRAMM genes, correlating with high adhesion capacity but reduced invasion capacity regardless of clinical severity. Remarkably, subclinical isolates, mainly agr-negative (85.7%), showed increased cellular invasion (p < 0.0001), possibly due to reduced expression of agr-mediated virulence factors. These findings contribute to the understanding of the pathogen-host dynamics in bovine mastitis and highlight the importance of both MSCRAMMs and the agr system in modulating disease severity. These insights can inform targeted interventions for mastitis prevention and treatment.
Collapse
Affiliation(s)
- Erika Carolina Romão Bonsaglia
- Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Sciences, University of São Paulo (USP), Pirassununga 13635-900, Brazil;
| | - Bruna Fernanda Rossi
- Department of Chemical and Biological Sciences, Institute of Biosciences, Sao Paulo State University, Botucatu 18618-691, Brazil; (B.F.R.); (I.G.C.); (A.F.J.); (V.L.M.R.)
| | - Fabio Sossai Possebon
- Department of Animal Production and Preventive Veterinary Medicine, Sao Paulo State University, Botucatu 18618-691, Brazil;
- Institute of Biotechnology, Sao Paulo State University (UNESP), Botucatu 18618-691, Brazil
| | - Nathalia Cristina Cirone Silva
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas (UNICAMP), Campinas 13083-862, Brazil;
| | - Juliano Leonel Gonçalves
- Bacteriology, Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Michigan State University, Lansing, MI 48910, USA;
| | - Ivana Giovannetti Castilho
- Department of Chemical and Biological Sciences, Institute of Biosciences, Sao Paulo State University, Botucatu 18618-691, Brazil; (B.F.R.); (I.G.C.); (A.F.J.); (V.L.M.R.)
| | - Ary Fernandes Junior
- Department of Chemical and Biological Sciences, Institute of Biosciences, Sao Paulo State University, Botucatu 18618-691, Brazil; (B.F.R.); (I.G.C.); (A.F.J.); (V.L.M.R.)
| | - Marcos Veiga dos Santos
- Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Sciences, University of São Paulo (USP), Pirassununga 13635-900, Brazil;
| | - Vera Lúcia Mores Rall
- Department of Chemical and Biological Sciences, Institute of Biosciences, Sao Paulo State University, Botucatu 18618-691, Brazil; (B.F.R.); (I.G.C.); (A.F.J.); (V.L.M.R.)
| |
Collapse
|
2
|
Stevens EJ, Li JD, Hector TE, Drew GC, Hoang K, Greenrod STE, Paterson S, King KC. Within-host competition causes pathogen molecular evolution and perpetual microbiota dysbiosis. THE ISME JOURNAL 2025; 19:wraf071. [PMID: 40244062 PMCID: PMC12066030 DOI: 10.1093/ismejo/wraf071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/31/2025] [Accepted: 04/11/2025] [Indexed: 04/18/2025]
Abstract
Pathogens newly invading a host must compete with resident microbiota. This within-host microbial warfare could lead to more severe disease outcomes or constrain the evolution of virulence. By passaging a widespread pathogen (Staphylococcus aureus) and a natural microbiota community across populations of nematode hosts, we show that the pathogen displaced microbiota and reduced species richness, but maintained its virulence across generations. Conversely, pathogen populations and microbiota passaged in isolation caused more host harm relative to their respective no-host controls. For the evolved pathogens, this increase in virulence was partly mediated by enhanced biofilm formation and expression of the global virulence regulator agr. Whole genome sequencing revealed shifts in the mode of selection from directional (on pathogens evolving in isolation) to fluctuating (on pathogens evolving in host microbiota). This approach also revealed that competitive interactions with the microbiota drove early pathogen genomic diversification. Metagenome sequencing of the passaged microbiota shows that evolution in pathogen-infected hosts caused a significant reduction in community stability (dysbiosis), along with restrictions on the co-existence of some species based on nutrient competition. Our study reveals how microbial competition during novel infection could determine the patterns and processes of evolution with major consequences for host health.
Collapse
Affiliation(s)
- Emily J Stevens
- Department of Biology, University of Oxford, Oxford, Oxfordshire, OX1 3SZ, United Kingdom
- School of Life Sciences, Keele University, Keele, Staffordshire, ST5 5BG, United Kingdom
| | - Jingdi D Li
- Department of Biology, University of Oxford, Oxford, Oxfordshire, OX1 3SZ, United Kingdom
| | - Tobias E Hector
- Department of Biology, University of Oxford, Oxford, Oxfordshire, OX1 3SZ, United Kingdom
| | - Georgia C Drew
- Department of Biology, University of Oxford, Oxford, Oxfordshire, OX1 3SZ, United Kingdom
| | - Kim Hoang
- Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, 30322, United States
| | - Samuel T E Greenrod
- Department of Biology, University of Oxford, Oxford, Oxfordshire, OX1 3SZ, United Kingdom
| | - Steve Paterson
- Institute of Infection, Veterinary, and Ecological Sciences, University of Liverpool, Liverpool, Wirral, CH64 7TE, United Kingdom
| | - Kayla C King
- Department of Biology, University of Oxford, Oxford, Oxfordshire, OX1 3SZ, United Kingdom
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| |
Collapse
|
3
|
Deepak SJ, Kannan P, Savariraj WR, Ayyasamy E, Tuticorin Maragatham Alagesan SK, Ravindran NB, Sundaram S, Mohanadasse NQ, Kang Q, Cull CA, Amachawadi RG. Characterization of Staphylococcus aureus isolated from milk samples for their virulence, biofilm, and antimicrobial resistance. Sci Rep 2024; 14:25635. [PMID: 39465266 PMCID: PMC11514165 DOI: 10.1038/s41598-024-75076-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 10/01/2024] [Indexed: 10/29/2024] Open
Abstract
The Staphylococcus aureus (S. aureus) one of the important food borne pathogen from milk, which was investigated in this study. The isolates were screened for antimicrobial resistance, enterotoxin genes, biofilm formation, spa typing, coagulase gene polymorphism and accessory gene regulator types. The prevalence of S. aureus in milk samples was 34.4% (89/259). Methicillin resistant S. aureus (MRSA) was found at 27% (24/89) of the isolates, were classified as community acquired based on SCCmec typing. The 24.71% (22/89) isolates demonstrated multiple antimicrobial resistance (MAR) pattern. However, none of the isolates carried vancomycin and mupirocin resistance genes. The isolates were positive for sea and sed enterotoxin genes and exhibited high frequency of biofilm formation. The High-Resolution Melting and conventional spa typing revealed that the isolates had both animal and community-associated S. aureus clustered origins. Coagulase gene polymorphism and agr typing demonstrated variable genotypic patterns. The finding of this study establishes the prevalence of community associated, enterotoxigenic, biofilm forming and antimicrobial resistance among S. aureus from milk in Chennai city. This emphasizing a potential threat to public health which needs a continuous monitoring system and strategies to mitigate their spread across the food chain and achieve food safety.
Collapse
Affiliation(s)
| | - Porteen Kannan
- Department of Veterinary Public Health and Epidemiology, Madras Veterinary College, TANUVAS, Chennai, 600 007, India.
| | - Wilfred Ruban Savariraj
- Department of Livestock Products and Technology, Veterinary College, KVAFSU, Bengaluru, 560 024, India
| | - Elango Ayyasamy
- Veterinary College and Research Institute, TANUVAS, Salem, 636 112, India
| | | | - Narendra Babu Ravindran
- Department of Livestock Products and Technology, Madras Veterinary College, TANUVAS, Chennai, 600 007, India
| | - Sureshkannan Sundaram
- Department of Veterinary Public Health and Epidemiology, Madras Veterinary College, TANUVAS, Chennai, 600 007, India
| | | | - Qing Kang
- Department of Statistics, Kansas State University, Manhattan, KS, 66506 0802, USA
| | - Charley A Cull
- Veterinary & Biomedical Research Center, Inc., Manhattan, KS, 66502 9007, USA
| | - Raghavendra G Amachawadi
- Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506 5606, USA.
| |
Collapse
|
4
|
Elghazaly EM, Torky HA, Tawfik RG. Effect of silver nanoparticles and REP-PCR typing of Staphylococcus aureus isolated from various sources. Sci Rep 2024; 14:21997. [PMID: 39313528 PMCID: PMC11420343 DOI: 10.1038/s41598-024-71781-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/30/2024] [Indexed: 09/25/2024] Open
Abstract
This is the primary study at Matrouh Governorate to unveil antibiotic resistance, biofilm formation, silver nanoparticles (Ag-NPs) effect using electron microscopy, and REP-PCR analysis of Staphylococcus aureus strains isolated from COVID-19 patients, contaminated food, and Morel's diseased sheep and goats. A total of 15 S. aureus strains were isolated; five from each of the COVID-19 patients, Morel's diseased sheep and goats, and contaminated food. All strains were considered multidrug-resistant (MDR). All strains showed the presence of biofilm. Morphological changes in the cell surface of the bacterium were evidenced, and penetration with the rupture of some bacterial cells. Based on REP-PCR analysis, 4 clusters (C1-C4) with dissimilarity between clusters C1 and C2 8% and between C3 and C4 15%. Cluster I included 3 strains from contaminated food with a similarity of 97%, and Cluster II included 2 strains from contaminated food and 2 from COVID-19-infected patients with a similarity of 96% (confirming the zoonotic nature of this pathogen). Cluster III contained 4 strains isolated from Morel's diseased sheep & goats with a similarity ratio of 99% in comparison the 4th cluster contained 3 strains isolated from COVID-patients and one from Morel's diseased sheep & goats with a similarity ratio of 92%.
Collapse
Affiliation(s)
- Eman M Elghazaly
- Microbiology Department, Faculty of Veterinary Medicine, Matrouh University, Matrouh, Egypt.
| | - Helmy A Torky
- Microbiology Department, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Rasha Gomaa Tawfik
- Microbiology Department, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
5
|
Fang L, Cosgriff C, Alonzo F. Determinants of maturation of the Staphylococcus aureus autoinducing peptide. J Bacteriol 2024; 206:e0019524. [PMID: 39177535 PMCID: PMC11412329 DOI: 10.1128/jb.00195-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/23/2024] [Indexed: 08/24/2024] Open
Abstract
The accessory gene regulatory (Agr) system is required for virulence factor gene expression and pathogenesis of Staphylococcus aureus. The Agr system is activated in response to the accumulation of a cyclic autoinducing peptide (AIP), which is matured and secreted by the bacterium. The precursor of AIP, AgrD, consists of the AIP flanked by an N-terminal [Formula: see text]-helical Leader and a charged C-terminal tail. AgrD is matured to AIP by the action of two proteases, AgrB and MroQ. AgrB cleaves the C-terminal tail and promotes the formation of a thiolactone ring, whereas MroQ cleaves the N-terminal Leader in a manner that depends on the four-amino acid linker immediately following a conserved IG helix breaker motif. However, the attributes of AgrD that dictate the sequence of events in peptide maturation are not fully defined. Here, we used engineered AgrD peptide intermediates to ascertain the sufficiency of MroQ for N-terminal peptide cleavage, peptide export, and generation of mature AIP. We found that MroQ promotes the removal of the N-terminal Leader peptide from both linear and cyclic peptide intermediates, while peptide cyclization remained essential for signaling. The expression of the Leader peptide in isolation was sufficient for MroQ-dependent cleavage proximal to the four-amino-acid linker. In addition, active site mutations within AgrB destabilized full-length AgrD and thiolactone-containing intermediates and prevented the release of the Leader peptide. Altogether, our data support a tandem peptide maturation event involving both MroQ and AgrB that appears to couple protease activity and export of bioactive AIP.IMPORTANCEThe accessory gene regulatory (Agr) system is important for S. aureus pathogenesis. Activation of the Agr system requires recognition of a cyclic peptide pheromone, which must be fully matured to exert its biological activity. The complete events in cyclic peptide maturation and export from the bacterial cell remain to be fully defined. We and others recently discovered that the membrane peptidase MroQ is required for pheromone maturation. This study builds off the identification of MroQ and considers the attributes of the pheromone pro-peptide that are required for MroQ-mediated processing as well as uncovers features important for peptide stability and export. Overall, the findings in this study have implications for understanding bacterial pheromone maturation and virulence.
Collapse
Affiliation(s)
- Liwei Fang
- Department of
Microbiology and Immunology, University of
Illinois, Chicago,
Illinois, USA
| | - Chance Cosgriff
- Department of
Microbiology and Immunology, Loyola University Chicago Stritch School of
Medicine, Maywood,
Illinois, USA
| | - Francis Alonzo
- Department of
Microbiology and Immunology, University of
Illinois, Chicago,
Illinois, USA
| |
Collapse
|
6
|
Rimi SS, Ashraf MN, Sigma SH, Ahammed MT, Siddique MP, Zinnah MA, Rahman MT, Islam MS. Biofilm formation, agr typing and antibiotic resistance pattern in methicillin-resistant Staphylococcus aureus isolated from hospital environments. PLoS One 2024; 19:e0308282. [PMID: 39102390 PMCID: PMC11299820 DOI: 10.1371/journal.pone.0308282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 07/20/2024] [Indexed: 08/07/2024] Open
Abstract
Biofilm development significantly enhances the virulence of methicillin-resistant Staphylococcus aureus (MRSA), leading to severe infections and decreased susceptibility to antibiotics, especially in strains associated with hospital environments. This study examined the occurrence of MRSA, their ability to form biofilms, agr typing, and the antibiotic resistance profiles of biofilm-forming MRSA strains isolated from environmental surfaces at Mymensingh Medical College Hospital (MMCH). From 120 swab samples, 86 (71.67%) tested positive for S. aureus. MRSA was identified in 86 isolates using the disk diffusion technique, and by polymerase chain reaction (PCR), 56 (65.1%) isolates were confirmed to carry the mecA gene. The Crystal Violet Microtiter Plate (CVMP) test revealed that 80.35% (45 isolates) were biofilm-forming and 19.6% (11 isolates) were non-biofilm-forming. Out of 45 biofilm producer isolates 37.5% and 42.9% isolates exhibited strong and intermediate biofilm-forming characteristics, respectively. Molecular analysis revealed that 17.78% of MRSA isolates carried at least one gene related to biofilm formation, specifically icaA, icaB, and icaD genes were discovered in 13.33%, 8.89%, 6.67% of the MRSA isolates, respectively. In agr typing, the most prevalent group was agr I (71.11%), followed by group III (17.78%) and group II (11.11%). Group IV was not detected. The distribution of agr gene groups showed a significant difference among biofilm-forming isolates (p < 0.05). In agr group I, 18.75% of isolates carried the icaA gene, 12.5% carried the icaB gene, and 9.37% carried the icaD gene. Biofilm-forming genes were not detected in any of the isolates from agr groups II or III. There are no statistically significant differences between agr groups and the presence of these genes (p > 0.05). Antibiotic resistance varied significantly among agr groups, with agr group I displaying the highest resistance, agr group II, and agr group III exhibiting the least resistance (p < 0.05). Seventy-three (73.3%) of the isolates were multi-drug resistant, with agr group I displaying nineteen MDR patterns. The occurrence of MRSA in hospital environments and their capacity to form biofilm raises concerns for public health. These findings support the importance of further research focused on agr quorum sensing systems as a basis for developing novel antibacterial agents.
Collapse
Affiliation(s)
- Sabrina Sultana Rimi
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md. Nahid Ashraf
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Sanzila Hossain Sigma
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md. Tanjir Ahammed
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Mahbubul Pratik Siddique
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Mohammad Ali Zinnah
- Department of Microbiology and Public Health, Faculty of Veterinary Medicine and Animal Science, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Md. Tanvir Rahman
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md. Shafiqul Islam
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| |
Collapse
|
7
|
Vittorakis E, Vică ML, Zervaki CO, Vittorakis E, Maraki S, Mavromanolaki VE, Schürger ME, Neculicioiu VS, Papadomanolaki E, Sinanis T, Giannoulaki G, Xydaki E, Kastanakis SG, Junie LM. Examining the Prevalence and Antibiotic Susceptibility of S. aureus Strains in Hospitals: An Analysis of the pvl Gene and Its Co-Occurrence with Other Virulence Factors. Microorganisms 2023; 11:microorganisms11040841. [PMID: 37110264 PMCID: PMC10140963 DOI: 10.3390/microorganisms11040841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/17/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
S. aureus is a pathogenic bacterium that causesinfections. Its virulence is due to surface components, proteins, virulence genes, SCCmec, pvl, agr, and SEs, which are low molecular weight superantigens. SEs are usually encoded by mobile genetic elements, and horizontal gene transfer accounts for their widespread presence in S. aureus. This study analyzed the prevalence of MRSA and MSSA strains of S. aureus in two hospitals in Greece between 2020–2022 and their susceptibility to antibiotics. Specimens collected were tested using the VITEK 2 system and the PCR technique to detect SCCmec types, agr types, pvl genes, and sem and seg genes. Antibiotics from various classes were also tested. This study examined the prevalence and resistance of S. aureus strains in hospitals. It found a high prevalence of MRSA and that the MRSA strains were more resistant to antibiotics. The study also identified the genotypes of the S. aureus isolates and the associated antibiotic resistances. This highlights the need for continued surveillance and effective strategies to combat the spread of MRSA in hospitals. This study examined the prevalence of the pvl gene and its co-occurrence with other genes in S. aureus strains, as well as their antibiotic susceptibility. The results showed that 19.15% of the isolates were pvl-positive and 80.85% were pvl-negative. The pvl gene co-existed with other genes, such as the agr and enterotoxin genes. The results could inform treatment strategies for S. aureus infections.
Collapse
Affiliation(s)
- Eftychios Vittorakis
- Department of Microbiology, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (E.V.)
- Department of Cell and Molecular Biology, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Agios Georgios General Hospital of Chania, 73100 Crete, Greece
| | - Mihaela Laura Vică
- Department of Cell and Molecular Biology, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | | | | | - Sofia Maraki
- Department of Clinical Microbiology and Microbial Pathogenesis, University Hospital of Heraklion, 70013 Crete, Greece
| | - Viktoria Eirini Mavromanolaki
- Department of Clinical Microbiology and Microbial Pathogenesis, University Hospital of Heraklion, 70013 Crete, Greece
| | - Michael Ewald Schürger
- Department of Cell and Molecular Biology, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Vlad Sever Neculicioiu
- Department of Microbiology, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (E.V.)
| | | | | | | | | | | | - Lia Monica Junie
- Department of Microbiology, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (E.V.)
- Correspondence:
| |
Collapse
|
8
|
Juxtaposing Caenorhabditis elegans-Pathogenic Mould Model with Other Models; How Reliable Is This Nematode Model? A Mini Review. Curr Microbiol 2023; 80:105. [PMID: 36790616 DOI: 10.1007/s00284-023-03209-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/01/2023] [Indexed: 02/16/2023]
Abstract
The application of Caenorhabditis elegans as a pathogenic model has spanned decades. Its use for pathogenic mould modeling has been attracting some attention lately, though not without some reservations. Several studies have shown C. elegans to be a reliable model for evaluating moulds' virulence factors and patterns as well as for screening the pathogenicity of mutant strains alongside their parental/wild type and revertant/complementary strains. There is a very high degree of reported similarities between the virulence patterns demonstrated in C. elegans and those of other invertebrate and vertebrate models. We have here presented several works in which this nematode model was adopted for virulence evaluation, and other comparative research in which virulence in C. elegans model were juxtaposed with other models. We have further presented possible reasons why there might have been variations of virulence in a few cases, thereby validating C. elegans to be an effective and reliable tool in the study of pathogenic moulds.
Collapse
|
9
|
Glajzner P, Szewczyk EM, Szemraj M. Pathogenic potential and antimicrobial resistance of Staphylococcus pseudintermedius isolated from human and animals. Folia Microbiol (Praha) 2022; 68:231-243. [PMID: 36221001 PMCID: PMC10104922 DOI: 10.1007/s12223-022-01007-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 09/23/2022] [Indexed: 11/04/2022]
Abstract
Crossing of interspecies barriers by microorganisms is observed. In recent years, Staphylococcus pseudintermedius-a species formerly thought to be animal-has also been isolated from human clinical materials. Many virulence factors are responsible for the colonization, which is the first step an infection, of the new host organism. We analyzed the factors influencing this colonization as well as susceptibility to antibiotics in fourteen S. pseudintermedius strains isolated from clinical cases from humans and animals. The occurrence of genes responsible for binding elastin, fibronectin, and fibrinogen and some phenotypic features, although different between strains, is comparable in both groups. However, the animal isolates had more genes coding for virulence factors. All isolates tested had the exfoliating toxin gene and the leukotoxin determining genes, but only the human strains had enterotoxin genes. The assessment of antibiotic resistance of strains of both groups indicates their broad resistance to antibiotics commonly used in veterinary medicine. Antibiotic resistance was more common among animal isolates. The multilocus sequence typing analysis of the studied strains was performed. The results indicated a large diversity of the S. pseudintermedius population in both studied groups of strains. Equipped with important virulence factors, they showed the ability to infect animals and humans. The clonal differentiation of the methicillin-susceptible strains and the multidrug resistance of the strains of both studied groups should be emphasized. The considerable genetic diversity of strains from a limited geographical area indicates the processes of change taking place within this species. Thus, careful observation of the ongoing process of variation is necessary, as they may lead to the selection of S. pseudintermedius, which will pose a significant threat to humans.
Collapse
Affiliation(s)
- Paulina Glajzner
- Department of Pharmaceutical Microbiology and Microbiological Diagnostics, Medical University of Lodz, ul. Muszyńskiego 1, 90-001, Lodz, Poland
| | - Eligia M Szewczyk
- Department of Pharmaceutical Microbiology and Microbiological Diagnostics, Medical University of Lodz, ul. Muszyńskiego 1, 90-001, Lodz, Poland
| | - Magdalena Szemraj
- Department of Pharmaceutical Microbiology and Microbiological Diagnostics, Medical University of Lodz, ul. Muszyńskiego 1, 90-001, Lodz, Poland.
| |
Collapse
|
10
|
Pereira GDN, Rosa RDS, Dias AA, Gonçalves DJS, Seribelli AA, Pinheiro-Hubinger L, Eller LKW, de Carvalho TB, Pereira VC. Characterization of the virulence, agr typing and antimicrobial resistance profile of Staphylococcus aureus strains isolated from food handlers in Brazil. Braz J Infect Dis 2022; 26:102698. [PMID: 36037845 PMCID: PMC9483590 DOI: 10.1016/j.bjid.2022.102698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 07/12/2022] [Accepted: 08/05/2022] [Indexed: 10/27/2022] Open
|
11
|
Montagut EJ, Acosta G, Albericio F, Royo M, Godoy-Tena G, Lacoma A, Prat C, Salvador JP, Marco MP. Direct Quantitative Immunochemical Analysis of Autoinducer Peptide IV for Diagnosing and Stratifying Staphylococcus aureus Infections. ACS Infect Dis 2022; 8:645-656. [PMID: 35175740 PMCID: PMC8922274 DOI: 10.1021/acsinfecdis.1c00670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An immunochemical strategy to detect and quantify AIP-IV, the quorum sensing (QS) signaling molecule produced by Staphylococcus aureus agr type IV, is reported here for the first time. Theoretical calculations and molecular modeling studies have assisted on the design and synthesis of a suitable peptide hapten (AIPIVS), allowing to obtain high avidity and specific antibodies toward this peptide despite its low molecular weight. The ELISA developed achieves an IC50 value of 2.80 ± 0.17 and an LOD of 0.19 ± 0.06 nM in complex media such as 1/2 Tryptic Soy Broth. Recognition of other S. aureus AIPs (I-III) is negligible (cross-reactivity below 0.001%), regardless of the structural similarities. A pilot study with a set of clinical isolates from patients with airways infection or colonization demonstrates the potential of this ELISA to perform biomedical investigations related to the role of QS in pathogenesis and the association between dysfunctional agr or the agr type with unfavorable clinical outcomes. The AIP-IV levels could be quantified in the low nanomolar range in less than 1 h after inoculating agr IV-genotyped isolates in the culture broth, while those genotyped as I-III did not show any immunoreactivity after a 48 h growth, pointing to the possibility to use this technology for phenotyping S. aureus. The research strategy here reported can be extended to the rest of the AIP types of S. aureus, allowing the development of powerful multiplexed chips or point-of-care (PoC) diagnostic devices to unequivocally identify its presence and its agr type on samples from infected patients.
Collapse
Affiliation(s)
- Enrique-J. Montagut
- Nanobiotechnology for Diagnostics (Nb4D), Department of Surfactants and Nanobiotechnology, Institute for Advanced Chemistry of Catalonia (IQAC) of the Spanish Council for Scientific Research (CSIC), 08750 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid Spain
| | - Gerardo Acosta
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid Spain
- Multivalent Systems for Nanomedicine (MS4N), Department of Surfactants and Nanobiotechnology, Institute for Advanced Chemistry of Catalonia (IQAC) of the Spanish Council for Scientific Research (CSIC), 08750 Barcelona, Spain
| | - Fernando Albericio
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid Spain
- Multivalent Systems for Nanomedicine (MS4N), Department of Surfactants and Nanobiotechnology, Institute for Advanced Chemistry of Catalonia (IQAC) of the Spanish Council for Scientific Research (CSIC), 08750 Barcelona, Spain
- Department of Organic Chemistry, Faculty of Chemistry, University of Barcelona, 08028 Barcelona, Spain
- School of Chemistry and Physics, University of KwaZulu-Natal, 4000 Durban, South Africa
| | - Miriam Royo
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid Spain
- Multivalent Systems for Nanomedicine (MS4N), Department of Surfactants and Nanobiotechnology, Institute for Advanced Chemistry of Catalonia (IQAC) of the Spanish Council for Scientific Research (CSIC), 08750 Barcelona, Spain
| | - Gerard Godoy-Tena
- Servei de Microbiologia, Hospital Universitari Germans Trias i Pujol, Institut d’Investigació Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Alicia Lacoma
- Servei de Microbiologia, Hospital Universitari Germans Trias i Pujol, Institut d’Investigació Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - Cristina Prat
- Servei de Microbiologia, Hospital Universitari Germans Trias i Pujol, Institut d’Investigació Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, 3584 Utrecht, the Netherlands
| | - Juan-Pablo Salvador
- Nanobiotechnology for Diagnostics (Nb4D), Department of Surfactants and Nanobiotechnology, Institute for Advanced Chemistry of Catalonia (IQAC) of the Spanish Council for Scientific Research (CSIC), 08750 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid Spain
| | - María-Pilar Marco
- Nanobiotechnology for Diagnostics (Nb4D), Department of Surfactants and Nanobiotechnology, Institute for Advanced Chemistry of Catalonia (IQAC) of the Spanish Council for Scientific Research (CSIC), 08750 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid Spain
| |
Collapse
|
12
|
Ibrahim ES, Arafa AA, Dorgam SM, Eid RH, Atta NS, El-Dabae WH, Gaber ES. Molecular characterization of genes responsible for biofilm formation in Staphylococcus aureus isolated from mastitic cows. Vet World 2022; 15:205-212. [PMID: 35369599 PMCID: PMC8924378 DOI: 10.14202/vetworld.2022.205-212] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/31/2021] [Indexed: 11/23/2022] Open
Abstract
Background and Aim: Mastitis is considered a significant disease of lactating animals. There are new attitudes for recognizing genes responsible for causing this disease to overcome and change the manipulation of this problem. This study aimed to isolate and identify Staphylococcusaureus strains from mastitic bovine animals and detect some specific biofilm-forming genes (icaA, icaD, and biofilm-associated protein [bap] genes clfA, fnbA, agrI, agrII, agrIII, agrIV, and cna). Materials and Methods: A total of 121 mastitic milk samples were analyzed using biochemical tests (catalase test, oxidative-fermentative test, and coagulase test) and Gram stain. Multiplex polymerase chain reaction was applied to characterize biofilm genes (icaA, icaD, bap, clfA, and fnbA) in addition to (agrI, agrII, agrIII, agrIV, and cna). Results: Among the 121 milk samples, 35 staphylococci isolates were derived with an incidence of 28.92% (35/121); among them, 19 are coagulase positive. Ninety percent of the isolates had ica genes (icaA and icaD) while bap gene was not recognized in any isolate. In addition, the incidence of fnbA, can, andclfA was 89.5% each. The prevalence of agr specific groups (agrI, agrII, agrIII, and agrIV) was 78.9%, 52.6%, 10.5%, and 15.8%, respectively. Conclusion: This study concluded that S. aureus has variant mechanisms of pathogenicity to form biofilm devoid of carrying a specific gene.
Collapse
Affiliation(s)
- Eman Shafeek Ibrahim
- Department of Microbiology and Immunology, National Research Centre, Dokki, Giza, Egypt
| | - Amany Ahmed Arafa
- Department of Microbiology and Immunology, National Research Centre, Dokki, Giza, Egypt
| | - Sohad Mohamed Dorgam
- Department of Microbiology and Immunology, National Research Centre, Dokki, Giza, Egypt
| | - Rasha Hamdy Eid
- Udder Health and Neonatal Disease, Animal Reproduction Research Institute, Giza, Egypt
| | - Nagwa Sayed Atta
- Department of Microbiology and Immunology, National Research Centre, Dokki, Giza, Egypt
| | | | - Eslam Sadek Gaber
- Department of Microbiology and Immunology, National Research Centre, Dokki, Giza, Egypt
| |
Collapse
|
13
|
Ben Chehida F, Gharsa H, Tombari W, Selmi R, Khaldi S, Daaloul M, Ben Slama K, Messadi L. First Report of Antimicrobial Susceptibility and Virulence Gene Characterization Associated with Staphylococcus aureus Carriage in Healthy Camels from Tunisia. Animals (Basel) 2021; 11:ani11092754. [PMID: 34573722 PMCID: PMC8468875 DOI: 10.3390/ani11092754] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/29/2021] [Accepted: 09/03/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The one-humped camel (Camelus dromedarius) is an important livestock species and is present in more than 46 national entities, with 80% of the camel population inhabiting Africa. In these regions, the role of camels in the livestock economy is highly valuable and a part of this camel herd is valorized on national or international markets for meat production, live animal export or milk production. Even if camels are the species that is most adapted to the harsh conditions of arid/semi-arid rangelands, they can be susceptible to a high number of pathogens, including S. aureus. This latter is often associated with asymptomatic carriage but can also be responsible for several diseases, therefore causing considerable economical losses. Continued monitoring and control assume particular importance in containing the spread of the bacterium since it constitutes an important zoonotic disease. Abstract A total of 318 nasal and rectal swabs were collected from 159 apparently healthy camels (Camelus dromedarius) randomly selected from five regions in southern and central Tunisia and screened for Staphylococcus aureus carriage. Staphylococcus spp. were recovered from 152 of 159 camels studied (95.6%) and in total 258 swabs (81%) were positive. Among these isolates, 16 were coagulase positive Staphylococcus (CoPS) (6.2%) and were characterized by biochemical and molecular tests as S. aureus. These were isolated from 14 camels (8.8%) with co-carriage in nasal and rectal mucosa by two camels. All S. aureus isolates recovered were methicillin-susceptible Staphylococcus aureus (MSSA) and were characterized by spa typing and PFGE. Three different spa types were recovered: t729, t4013 and a spa type newly registered as t19687, which was the most common. PFGE analysis revealed seven different patterns and these were characterized by MLST, which revealed five different sequence types (ST6, ST88, ST3583 and two new sequences, ST6504 and ST6506). All isolates harbored different virulence genes, including hld, encoding delta hemolysin; lukE–lukD, encoding bicomponent leukotoxin LukE–LukD; the clfB gene, encoding clumping factor B; the laminin gene, encoding laminin-binding protein; and cap8, encoding capsule type 8. Fifteen isolates harbored hemolysin beta (hlb) and fourteen encoded hemolysin alpha (hla) and hemolysin G2 (hlgv). Adhesin factors, including clfA and fnbB, were detected in five and four isolates respectively. Binding proteins, including collagen (cbp) and elastin-binding protein (ebp), were detected in two S. aureus isolates while fibrinogen-binding protein (fib) was identified in four isolates. This study provides the first set of genotyping data on the population structure and presence of toxin genes of S. aureus strains in Tunisian camels.
Collapse
Affiliation(s)
- Faten Ben Chehida
- Laboratory of Microbiology, Immunology and General Pathology, Institution of Agricultural Research and Higher Education, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Sidi Thabet 2020, Tunisia; (W.T.); (R.S.); (M.D.); (L.M.)
- Correspondence: ; Tel.: +216-71-552-200
| | - Haythem Gharsa
- Laboratory of Microorganisms and Active Biomolecules, Higher Institute of Applied Biological Sciences of Tunis, University of Tunis El Manar, Tunis 2092, Tunisia; (H.G.); (K.B.S.)
| | - Wafa Tombari
- Laboratory of Microbiology, Immunology and General Pathology, Institution of Agricultural Research and Higher Education, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Sidi Thabet 2020, Tunisia; (W.T.); (R.S.); (M.D.); (L.M.)
| | - Rachid Selmi
- Laboratory of Microbiology, Immunology and General Pathology, Institution of Agricultural Research and Higher Education, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Sidi Thabet 2020, Tunisia; (W.T.); (R.S.); (M.D.); (L.M.)
- Veterinary Service, General Directorate of Military Health, Ministry of National Defense, Tunis 1008, Tunisia
| | - Sana Khaldi
- Department of Sciences and Pathology of Animal Reproduction, Institution of Agricultural Research and Higher Education, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Sidi Thabet 2020, Tunisia;
| | - Monia Daaloul
- Laboratory of Microbiology, Immunology and General Pathology, Institution of Agricultural Research and Higher Education, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Sidi Thabet 2020, Tunisia; (W.T.); (R.S.); (M.D.); (L.M.)
| | - Karim Ben Slama
- Laboratory of Microorganisms and Active Biomolecules, Higher Institute of Applied Biological Sciences of Tunis, University of Tunis El Manar, Tunis 2092, Tunisia; (H.G.); (K.B.S.)
| | - Lilia Messadi
- Laboratory of Microbiology, Immunology and General Pathology, Institution of Agricultural Research and Higher Education, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Sidi Thabet 2020, Tunisia; (W.T.); (R.S.); (M.D.); (L.M.)
| |
Collapse
|
14
|
Derakhshan S, Navidinia M, Haghi F. Antibiotic susceptibility of human-associated Staphylococcus aureus and its relation to agr typing, virulence genes, and biofilm formation. BMC Infect Dis 2021; 21:627. [PMID: 34210263 PMCID: PMC8247160 DOI: 10.1186/s12879-021-06307-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/10/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND AND OBJECTIVE Carriage of virulence factors confers some evolutionary benefit to bacteria, which favors the resistant strains. We aimed to analyze whether antibiotic susceptibility of Staphylococcus aureus strains is affected by agr typing, biofilm formation ability, and virulence profiles. METHODS A total of 123 S. aureus clinical isolates were subjected to antimicrobial susceptibility testing by disk diffusion method, biofilm formation by microtiter plate method, as well as polymerase chain reaction screening to identify virulence genes and the accessory gene regulator (agr) types I-IV. A P value < 0.05 was considered significant. RESULTS The most prevalent virulence gene was staphyloxanthin crtN, followed by hemolysin genes, capsular cap8H, toxic shock toxin tst, and enterotoxin sea, respectively. Resistant isolates were more commonly found in the agr-negative group than in the agr-positive group. Isolates of agr type III were more virulent than agr I isolates. Strong biofilm producers showed more antibiotic susceptibility and carried more virulence genes than non-strong biofilm producers. Associations were found between the presence of virulence genes and susceptibility to antibiotics. Carriage of the virulence genes and agr was higher in the inpatients; while, resistance and strong biofilms were more prevalent in the outpatients. CONCLUSION These findings indicated the presence of several virulence factors, biofilm production capacity, agr types and resistance to antibiotics in clinical S. aureus isolates. Considering the importance of S. aureus for human medicine, an understanding of virulence and resistance relationships would help to reduce the impact of S. aureus infections.
Collapse
Affiliation(s)
- Safoura Derakhshan
- Liver and Digestive Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - Masoumeh Navidinia
- School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fakhri Haghi
- Department of Microbiology and Immunology, Faculty of Medical Sciences, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
15
|
Dehbashi S, Tahmasebi H, Zeyni B, Arabestani MR. Regulation of virulence and β-lactamase gene expression in Staphylococcus aureus isolates: cooperation of two-component systems in bloodstream superbugs. BMC Microbiol 2021; 21:192. [PMID: 34172010 PMCID: PMC8228909 DOI: 10.1186/s12866-021-02257-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 06/13/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Methicillin-resistant Staphylococcus aureus (MRSA)-bloodstream infections (BSI) are predominantly seen in the hospital or healthcare-associated host. Nevertheless, the interactions of virulence factor (VFs) regulators and β-lactam resistance in MRSA-BSI are unclear. This study aims to characterize the molecular relationship of two-component systems of VFs and the expression of the β-lactamase gene in MRSA-BSI isolates. In this study, 639 samples were collected from BSI and identified by phenotypic methods. We performed extensive molecular characterization, including SCCmec type, agr type, VFs gene profiles determinations, and MLST on isolates. Also, a quantitative real-time PCR (q-RT PCR) assay was developed for identifying the gene expressions. RESULTS Ninety-one (91) S. aureus and 61 MRSA (67.0%) strains were detected in BSI samples. The presence of VFs and SCCmec genes in MRSA isolates were as follows: tst (31.4%), etA (18.0%), etB (8.19%), lukS-PVL (31.4%), lukF-PV (18.0%), lukE-lukD (16.3%), edin (3.2%), hla (16.3%), hlb (18.0%), hld (14.7%), hlg (22.9%), SCCmecI (16.3%), SCCmecII (22.9%), SCCmecIII (36.0%), SCCmecIV (21.3%), and SCCmecV (16.3%). Quantitative real-time PCR showed overexpression of mecRI and mecI in the toxigenic isolates. Moreover, RNAIII and sarA genes were the highest expressions of MRSA strains. The multi-locus sequence typing data confirmed a high prevalence of CC5, CC8, and CC30. However, ST30, ST22, and ST5 were the most prevalent in the resistant and toxigenic strains. CONCLUSION We demonstrated that although regulation of β-lactamase gene expressions is a significant contributor to resistance development, two-component systems also influence antibiotic resistance development in MRSA-BSI isolates. This indicates that resistant strains might have pathogenic potential. We also confirmed that some MLST types are more successful colonizers with a potential for MRSA-BSI.
Collapse
Affiliation(s)
- Sanaz Dehbashi
- Microbiology Department, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hamed Tahmasebi
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Behrouz Zeyni
- Microbiology Department, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Reza Arabestani
- Microbiology Department, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran. .,Nutrition health Research center, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
16
|
Dhungel L, Burcham L, Park JY, Sampathkumar HD, Cudjoe A, Seo KS, Jordan H. Responses to chemical cross-talk between the Mycobacterium ulcerans toxin, mycolactone, and Staphylococcus aureus. Sci Rep 2021; 11:11746. [PMID: 34083568 PMCID: PMC8175560 DOI: 10.1038/s41598-021-89177-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/22/2021] [Indexed: 02/01/2023] Open
Abstract
Buruli ulcer is a neglected tropical disease caused by the environmental pathogen, Mycobacterium ulcerans whose major virulence factor is mycolactone, a lipid cytotoxic molecule. Buruli ulcer has high morbidity, particularly in rural West Africa where the disease is endemic. Data have shown that infected lesions of Buruli ulcer patients can be colonized by quorum sensing bacteria such as Staphylococcus aureus, S. epidermidis, and Pseudomonas aeruginosa, but without typical pathology associated with those pathogens' colonization. M. ulcerans pathogenesis may not only be an individual act but may also be dependent on synergistic or antagonistic mechanisms within a polymicrobial network. Furthermore, co-colonization by these pathogens may promote delayed wound healing, especially after the initiation of antibiotic therapy. Hence, it is important to understand the interaction of M. ulcerans with other bacteria encountered during skin infection. We added mycolactone to S. aureus and incubated for 3, 6 and 24 h. At each timepoint, S. aureus growth and hemolytic activity was measured, and RNA was isolated to measure virulence gene expression through qPCR and RNASeq analyses. Results showed that mycolactone reduced S. aureus hemolytic activity, suppressed hla promoter activity, and attenuated virulence genes, but did not affect S. aureus growth. RNASeq data showed mycolactone greatly impacted S. aureus metabolism. These data are relevant and significant as mycolactone and S. aureus sensing and response at the transcriptional, translational and regulation levels will provide insight into biological mechanisms of interspecific interactions that may play a role in regulation of responses such as effects between M. ulcerans, mycolactone, and S. aureus virulence that will be useful for treatment and prevention.
Collapse
Affiliation(s)
- Laxmi Dhungel
- Department of Biological Sciences, Mississippi State University, P.O. Box GY, Starkville, MS, 39762, USA
| | - Lindsey Burcham
- Department of Biological Sciences, Mississippi State University, P.O. Box GY, Starkville, MS, 39762, USA
| | - Joo Youn Park
- Department of Biological Sciences, Mississippi State University, P.O. Box GY, Starkville, MS, 39762, USA
| | - Harshini Devi Sampathkumar
- Department of Biological Sciences, Mississippi State University, P.O. Box GY, Starkville, MS, 39762, USA
| | | | - Keun Seok Seo
- Department of Biological Sciences, Mississippi State University, P.O. Box GY, Starkville, MS, 39762, USA
| | - Heather Jordan
- Department of Biological Sciences, Mississippi State University, P.O. Box GY, Starkville, MS, 39762, USA.
| |
Collapse
|
17
|
Sharabiani HR, Sadeghi J, Pirzade T, Rezaee MA, Ghotaslou R, Laghousi D, Sefidan FY, Kafil HS, Nikbakht M, Mazraeh FN, Hematyar Y. Comparison of superantigens and attachment factors genes of Staphylococcus aureus in clinical isolates and nasal colonizers in the same patients. Microb Pathog 2021; 154:104860. [PMID: 33771631 DOI: 10.1016/j.micpath.2021.104860] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Staphylococcus aureus (S. aureus) is a bacterial pathogen can cause a wide range of nosocomial infections. Nasal colonization by S.aureus plays important role both in the epidemiology and pathogenesis of infection. OBJECTIVES The purpose of this study was to investigate the association of clinical isolates and nasal colonizers of S. aureus in the same patients by molecular methods, and their antibiotic susceptibility pattern. METHODS A total of 181 S. aureus isolates were collected from 100 patients admitted that including 100 clinical isolates and 81 nasal swabs from the same patients (19 cases were found as noncarriers). Superantigens and adhesion genes were identified by PCR. Molecular typing of the isolates was performed by repetitive element polymerase chain reaction (Rep-PCR). Antimicrobial susceptibility pattern of the isolates was conducted by disk diffusion. MIC of the isolates to vancomycin was determined by microbroth dilution. The ability of S. aureus isolates to form biofilm was determined by microtiter plate assay. RESULTS The most frequent adhesion gene in both clinical isolates and nasal colonizer was clfA with 93% and 76%, respectively. Staphylococcal enterotoxin A (SEA) was the most commonly superantigen (68%) in both nasal colonizers (71.6%) and clinical isolates (65%). The highest resistance rate was to erythromycin (45.3%) with 36% and 56.8% in clinical and nasal colonizer isolates, respectively. All S. aureus isolates were susceptible to linezolid and vancomycin. Multiple drug resistance (MDR) was detected in 36% (n = 65) of the isolates. Biofilm formation was identified in 160 (88.4%) isolates with 87% and 90% in clinical isolates and nasal colonizers, respectively. Repetitive element polymerase chain reaction (Rep-PCR) typing divided 181 S. aureus isolates into six clusters. Twelve isolates from clinical isolates and nasal carriers were closely related. CONCLUSION There is a high concordance rate between colonizing and clinical isolates of S. aureus in terms of adhesion factors and superantigen genes. It is suggested that nasal decolonization could be effective in the preventing of S. aureus infections.
Collapse
Affiliation(s)
- Hamideh Richi Sharabiani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javid Sadeghi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Tahere Pirzade
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Ahangarzadeh Rezaee
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Ghotaslou
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Delara Laghousi
- Social Determinants of Health Research Center, Health Management and Safety Promotion Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Fateme Yeghane Sefidan
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mojtaba Nikbakht
- Meshginshahr Health Center Laboratory, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Fariba Naeimi Mazraeh
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yalda Hematyar
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
18
|
Vila T, Kong EF, Montelongo-Jauregui D, Van Dijck P, Shetty AC, McCracken C, Bruno VM, Jabra-Rizk MA. Therapeutic implications of C. albicans-S. aureus mixed biofilm in a murine subcutaneous catheter model of polymicrobial infection. Virulence 2021; 12:835-851. [PMID: 33682623 PMCID: PMC7946022 DOI: 10.1080/21505594.2021.1894834] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Biofilm-associated polymicrobial infections tend to be challenging to treat. Candida albicans and Staphylococcus aureus are leading pathogens due to their ability to form biofilms on medical devices. However, the therapeutic implications of their interactions in a host is largely unexplored. In this study, we used a mouse subcutaneous catheter model for in vivo-grown polymicrobial biofilms to validate our in vitro findings on C. albicans-mediated enhanced S. aureus tolerance to vancomycin in vivo. Comparative assessment of S. aureus recovery from catheters with single- or mixed-species infection demonstrated failure of vancomycin against S. aureus in mice with co-infected catheters. To provide some mechanistic insights, RNA-seq analysis was performed on catheter biofilms to delineate transcriptional modulations during polymicrobial infections. C. albicans induced the activation of the S. aureus biofilm formation network via down-regulation of the lrg operon, repressor of autolysis, and up-regulation of the ica operon and production of polysaccharide intercellular adhesin (PIA), indicating an increase in eDNA production, and extracellular polysaccharide matrix, respectively. Interestingly, virulence factors important for disseminated infections, and superantigen-like proteins were down-regulated during mixed-species infection, whereas capsular polysaccharide genes were up-regulated, signifying a strategy favoring survival, persistence and host immune evasion. In vitro follow-up experiments using DNA enzymatic digestion, lrg operon mutant strains, and confocal scanning microscopy confirmed the role of C. albicans-mediated enhanced eDNA production in mixed-biofilms on S. aureus tolerance to vancomycin. Combined, these findings provide mechanistic insights into the therapeutic implications of interspecies interactions, underscoring the need for novel strategies to overcome limitations of current therapies.
Collapse
Affiliation(s)
- Taissa Vila
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD, USA
| | - Eric F Kong
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD, USA
| | - Daniel Montelongo-Jauregui
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD, USA
| | - Patrick Van Dijck
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven-Heverlee, Belgium.,VIB-KU Leuven Center for Microbiology, Flanders, Belgium
| | - Amol C Shetty
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Carrie McCracken
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Vincent M Bruno
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mary Ann Jabra-Rizk
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD, USA.,Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
19
|
Rossi BF, Bonsaglia ECR, Pantoja JCF, Santos MV, Gonçalves JL, Fernandes Júnior A, Rall VLM. Short communication: Association between the accessory gene regulator (agr) group and the severity of bovine mastitis caused by Staphylococcus aureus. J Dairy Sci 2020; 104:3564-3568. [PMID: 33358797 DOI: 10.3168/jds.2020-19275] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 10/15/2020] [Indexed: 11/19/2022]
Abstract
Staphylococcus aureus can elicit mild to more severe degrees of mastitis in cattle, depending on the response of the host's immune system and the virulence factors of the specific isolate. Several virulence factors are controlled by a global regulatory system, designated accessory gene regulator (agr). Thus, the objective was to examine associations between different capsular and agr types and the severity of bovine mastitis caused by S. aureus. All isolates were obtained from bovine subclinical (n = 50), mild clinical (n = 73), and moderate clinical mastitis cases (n = 28). Isolates containing the agrI gene and lacking the agr locus (agr-) were more prevalent among subclinical than clinical mastitis cases, whereas isolates containing the agrII and agrIII genes were more prevalent among clinical mastitis cases. The capsular types 5 (cap5) and 8 (cap8) were found in 42 and 44%, respectively, of the isolates obtained from subclinical cases and in 38.6 and 58.4%, respectively, of those isolated from clinical mastitis cases. Capsular type was not associated with type of mastitis (subclinical, mild clinical, or moderate clinical). We found a strong association between agr type and type of mastitis, suggesting that knowledge of S. aureus genetic profiles could be an additional tool to control this disease.
Collapse
Affiliation(s)
- Bruna F Rossi
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University, Rua Dr. Plínio Pinto e Silva, 18618-691, Botucatu-SP, Brazil
| | - Erika C R Bonsaglia
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University, Rua Dr. Plínio Pinto e Silva, 18618-691, Botucatu-SP, Brazil
| | - Jose C F Pantoja
- Department of Animal Production and Preventive Veterinary Medicine, São Paulo State University, Rua Prof. Dr. Walter Mauricio Correa, 18618-681, Botucatu-SP, Brazil
| | - Marcos V Santos
- Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Science, University of São Paulo, Avenida Duque de Caxias Norte, 225, 13635-900, Pirassununga, São Paulo, Brazil
| | - Juliano L Gonçalves
- Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Science, University of São Paulo, Avenida Duque de Caxias Norte, 225, 13635-900, Pirassununga, São Paulo, Brazil
| | - Ary Fernandes Júnior
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University, Rua Dr. Plínio Pinto e Silva, 18618-691, Botucatu-SP, Brazil
| | - Vera L M Rall
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University, Rua Dr. Plínio Pinto e Silva, 18618-691, Botucatu-SP, Brazil.
| |
Collapse
|
20
|
The antimicrobial peptide Brevinin-2ISb enhances the innate immune response against methicillin-resistant Staphylococcus aureus by activating DAF-2/DAF-16 signaling in Caenorhabditis elegans, as determined by in vivo imaging. JOURNAL OF BIO-X RESEARCH 2020. [DOI: 10.1097/jbr.0000000000000079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
21
|
Lee SO, Lee S, Lee JE, Song KH, Kang CK, Wi YM, San-Juan R, López-Cortés LE, Lacoma A, Prat C, Jang HC, Kim ES, Kim HB, Lee SH. Dysfunctional accessory gene regulator (agr) as a prognostic factor in invasive Staphylococcus aureus infection: a systematic review and meta-analysis. Sci Rep 2020; 10:20697. [PMID: 33244173 PMCID: PMC7691521 DOI: 10.1038/s41598-020-77729-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022] Open
Abstract
The accessory gene regulator (agr) locus of Staphylococcus aureus is a quorum-sensing virulence regulator. Although there are many studies concerning the effect of dysfunctional agr on the outcomes of S. aureus infection, there is no systematic review to date. We systematically searched for clinical studies reporting outcomes of invasive S. aureus infections and the proportion of dysfunctional agr among their causative strains, and we performed a meta-analysis to obtain estimates of the odds of outcomes of invasive S. aureus infection with dysfunctional versus functional agr. Of 289 articles identified by our research strategy, 20 studies were meta-analysed for crude analysis of the impact of dysfunctional agr on outcomes of invasive S. aureus infection. Dysfunctional agr was generally associated with unfavourable outcomes (OR 1.32, 95% CI 1.05–1.66), and the impact of dysfunctional agr on outcome was more prominent in invasive methicillin-resistant S. aureus (MRSA) infections (OR 1.54, CI 1.20–1.97). Nine studies were meta-analysed for the impact of dysfunctional agr on the 30-day mortality of invasive S. aureus infection. Invasive MRSA infection with dysfunctional agr exhibited higher 30-day mortality (OR 1.40, CI 1.03–1.90) than that with functional agr. On the other hand, invasive MSSA infection with dysfunctional agr exhibited lower 30-day mortality (OR 0.51, CI 0.27–0.95). In the post hoc subgroup analysis by the site of MRSA infection, dysfunctional agr was associated with higher 30-day mortality in MRSA pneumonia (OR 2.48, CI 1.17–5.25). The effect of dysfunctional agr on the outcome of invasive S. aureus infection may vary depending on various conditions, such as oxacillin susceptibility and the site of infection. Dysfunctional agr was generally associated with unfavourable clinical outcomes and its effect was prominent in MRSA and pneumonia. Dysfunctional agr may be applicable for outcome prediction in cases of invasive MRSA infection with hardly eradicable foci such as pneumonia.
Collapse
Affiliation(s)
- Soon Ok Lee
- Department of Internal Medicine, Pusan National University School of Medicine and Medical Research Institute, Pusan National University Hospital, 179 Gudeok-ro, Seo-gu, Busan, 49241, Republic of Korea
| | - Shinwon Lee
- Department of Internal Medicine, Pusan National University School of Medicine and Medical Research Institute, Pusan National University Hospital, 179 Gudeok-ro, Seo-gu, Busan, 49241, Republic of Korea.
| | - Jeong Eun Lee
- Department of Internal Medicine, Pusan National University School of Medicine and Medical Research Institute, Pusan National University Hospital, 179 Gudeok-ro, Seo-gu, Busan, 49241, Republic of Korea
| | - Kyoung-Ho Song
- Department of Internal Medicine, Seoul National University College of Medicine and Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Chang Kyung Kang
- Department of Internal Medicine, Seoul National University College of Medicine and Seoul National University Hospital, Seoul, Republic of Korea
| | - Yu Mi Wi
- Division of Infectious Diseases, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Republic of Korea
| | - Rafael San-Juan
- Unit of Infectious Diseases, University Hospital 12 de Octubre, Instituto de Investigación Hospital "12 de Octubre" (i+12), Universidad Complutense, Avenida de Córdoba, s/n, Madrid, Spain
| | - Luis E López-Cortés
- Unidad Clínica de Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospital Universitario Virgen Macarena/Departamento de Medicina, Universidad de Sevilla/Instituto de Biomedicina de Sevilla, Sevilla, Spain
| | - Alicia Lacoma
- Microbiology Department, Hospital Universitari Germans Trias i Pujol, Institut d' Investigació Germans Trias i Pujol, CIBER Enfermedades Respiratorias (CIBERES), Universitat Autònoma de Barcelona, Badalona, Spain
| | - Cristina Prat
- Microbiology Department, Hospital Universitari Germans Trias i Pujol, Institut d' Investigació Germans Trias i Pujol, CIBER Enfermedades Respiratorias (CIBERES), Universitat Autònoma de Barcelona, Badalona, Spain.,Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Hee-Chang Jang
- Department of Infectious Diseases, Chonnam National University Medical School, Gwang-ju, Republic of Korea
| | - Eu Suk Kim
- Department of Internal Medicine, Seoul National University College of Medicine and Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Hong Bin Kim
- Department of Internal Medicine, Seoul National University College of Medicine and Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Sun Hee Lee
- Department of Internal Medicine, Pusan National University School of Medicine and Medical Research Institute, Pusan National University Hospital, 179 Gudeok-ro, Seo-gu, Busan, 49241, Republic of Korea
| |
Collapse
|
22
|
Rubini D, Vedha Hari BN, Nithyanand P. Chitosan coated catheters alleviates mixed species biofilms of Staphylococcus epidermidis and Candida albicans. Carbohydr Polym 2020; 252:117192. [PMID: 33183634 DOI: 10.1016/j.carbpol.2020.117192] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 12/13/2022]
Abstract
Microorganisms which adhere to the surfaces of indwelling medical implants develop into a sessile microbial community to form monomicrobial or polymicrobial biofilms. Staphylococcus epidermidis and Candida albicans are the most common pathogens co-isolated from device mediated infections. Hence development of catheters coated with anti-fouling substances is of great interest. In this current study, chitosan, extracted from the shells of marine crab Portunus sanguinolentus was coated over the surface of the urinary catheters and checked for its efficacy to inhibit the adherence of both mono and mixed species biofilms. The Extracted Chitosan (EC) coated catheters showed profound activity in reducing the preformed biofilms and the other virulence factors of the pathogens like slime production in S. epidermidis and yeast to hyphal swtich in C. albicans. Furthermore, qPCR analysis showed that EC could downregulate the virulence genes in both the pathogens when grown as monospecies and mixed species biofilms.
Collapse
Affiliation(s)
- Durairajan Rubini
- Biofilm Biology Laboratory, Centre for Research on Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, 613 401 Tamil Nadu, India
| | - B Narayanan Vedha Hari
- Pharmaceutical Technology Laboratory, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613 401 Tamil Nadu, India.
| | - Paramasivam Nithyanand
- Biofilm Biology Laboratory, Centre for Research on Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, 613 401 Tamil Nadu, India.
| |
Collapse
|
23
|
Virulence factors and clonal diversity of Staphylococcus aureus in colonization and wound infection with emphasis on diabetic foot infection. Eur J Clin Microbiol Infect Dis 2020; 39:2235-2246. [PMID: 32683595 PMCID: PMC7669779 DOI: 10.1007/s10096-020-03984-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/03/2020] [Indexed: 12/12/2022]
Abstract
Foot ulcer is a common complication in diabetic subjects and infection of these wounds contributes to increased rates of morbidity and mortality. Diabetic foot infections are caused by a multitude of microbes and Staphylococcus aureus, a major nosocomial and community-associated pathogen, significantly contributes to wound infections as well. Staphylococcus aureus is also the primary pathogen commonly associated with diabetic foot osteomyelitis and can cause chronic and recurrent bone infections. The virulence capability of the pathogen and host immune factors can determine the occurrence and progression of S. aureus infection. Pathogen-related factors include complexity of bacterial structure and functional characteristics that provide metabolic and adhesive properties to overcome host immune response. Even though, virulence markers and toxins of S. aureus are broadly similar in different wound models, certain distinguishing features can be observed in diabetic foot infection. Specific clonal lineages and virulence factors such as TSST-1, leukocidins, enterotoxins, and exfoliatins play a significant role in determining wound outcomes. In this review, we describe the role of specific virulence determinants and clonal lineages of S. aureus that influence wound colonization and infection with special reference to diabetic foot infections.
Collapse
|
24
|
Ahamefule CS, Qin Q, Odiba AS, Li S, Moneke AN, Ogbonna JC, Jin C, Wang B, Fang W. Caenorhabditis elegans-Based Aspergillus fumigatus Infection Model for Evaluating Pathogenicity and Drug Efficacy. Front Cell Infect Microbiol 2020; 10:320. [PMID: 32670897 PMCID: PMC7332887 DOI: 10.3389/fcimb.2020.00320] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/26/2020] [Indexed: 11/13/2022] Open
Abstract
Aspergillus fumigatus is the most reported causative pathogen associated with the increasing global incidences of aspergilloses, with the health of immunocompromised individuals mostly at risk. Monitoring the pathogenicity of A. fumigatus strains to identify virulence factors and evaluating the efficacy of potent active agents against this fungus in animal models are indispensable in current research effort. Caenorhabditis elegans has been successfully utilized as an infection model for bacterial and dimorphic fungal pathogens because of the advantages of being time-efficient, and less costly. However, application of this model to the filamentous fungus A. fumigatus is less investigated. In this study, we developed and optimized a stable and reliable C. elegans model for A. fumigatus infection, and demonstrated the infection process with a fluorescent strain. Virulence results of several mutant strains in our nematode model demonstrated high consistency with the already reported pathogenicity pattern in other models. Furthermore, this C. elegans-A. fumigatus infection model was optimized for evaluating the efficacy of current antifungal drugs. Interestingly, the azole drugs in nematode model prevented conidial germination to a higher extent than amphotericin B. Overall, our established C. elegans infection model for A. fumigatus has potential applications in pathogenicity evaluation, antifungal agents screening, drug efficacy evaluation as well as host-pathogen interaction studies.
Collapse
Affiliation(s)
- Chukwuemeka Samson Ahamefule
- National Engineering Research Center for Non-food Biorefinery, Guangxi Academy of Sciences, Nanning, China
- College of Life Science and Technology, Guangxi University, Nanning, China
- Department of Microbiology, University of Nigeria, Nsukka, Nigeria
| | - Qijian Qin
- National Engineering Research Center for Non-food Biorefinery, Guangxi Academy of Sciences, Nanning, China
| | - Arome Solomon Odiba
- National Engineering Research Center for Non-food Biorefinery, Guangxi Academy of Sciences, Nanning, China
- College of Life Science and Technology, Guangxi University, Nanning, China
| | - Siqiao Li
- State Key Laboratory of Non-food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning, China
| | - Anene N. Moneke
- Department of Microbiology, University of Nigeria, Nsukka, Nigeria
| | - James C. Ogbonna
- Department of Microbiology, University of Nigeria, Nsukka, Nigeria
| | - Cheng Jin
- National Engineering Research Center for Non-food Biorefinery, Guangxi Academy of Sciences, Nanning, China
- College of Life Science and Technology, Guangxi University, Nanning, China
| | - Bin Wang
- National Engineering Research Center for Non-food Biorefinery, Guangxi Academy of Sciences, Nanning, China
- State Key Laboratory of Non-food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning, China
| | - Wenxia Fang
- National Engineering Research Center for Non-food Biorefinery, Guangxi Academy of Sciences, Nanning, China
- State Key Laboratory of Non-food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning, China
| |
Collapse
|
25
|
Cell-Free Culture Supernatants of Lactobacilli Modify the Expression of Virulence Factors Genes in Staphylococcus aureus. Jundishapur J Microbiol 2020. [DOI: 10.5812/jjm.96806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
26
|
Emergence of community-acquired methicillin-resistant Staphylococcus aureus EMRSA-15 clone as the predominant cause of diabetic foot ulcer infections in Portugal. Eur J Clin Microbiol Infect Dis 2019; 39:179-186. [PMID: 31599357 DOI: 10.1007/s10096-019-03709-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 09/11/2019] [Indexed: 12/30/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) are often found in infected diabetic foot ulcers, in which the prevalence may reach 40%. These complications are one of the main causes of morbidity in diabetic patients. The objectives of this study were to investigate the prevalence and antimicrobial resistance of MRSA strains in infected diabetic foot ulcers and to characterize their genetic lineages. Samples collected from 42 type 2 diabetic patients, presenting infected foot ulcers, were seeded onto ORSAB plates with 2 mg/L of oxacillin for MRSA isolation. Susceptibility to 14 antimicrobial agents was tested by the Kirby-Bauer disk diffusion method. The presence of resistance genes, virulence factors, and the immune evasion cluster system was studied by PCR. All isolates were characterized by MLST, accessory gene regulator (agr), spa, and staphylococcal chromosomal cassette mec (SCCmec) typing. Twenty-five MRSA strains were isolated. All isolates showed resistance to penicillin and cefoxitin. Sixteen isolates showed phenotypic resistance to erythromycin being 7 co-resistant to clindamycin. Resistance to trimethoprim-sulfamethoxazole was found in 2 isolates harboring the dfrA and dfrG genes. The IEC genes were detected in 80% of isolates, 16 of which were ascribed to IEC-type B. Isolates were assigned to 12 different spa types. The MLST analysis grouped the isolates into 7 sequence types being the majority (68%) ascribed to SCCmec type IV. In this study, there was a high prevalence of the EMRSA-15 clone presenting multiple resistances in diabetic foot ulcers making these infections complicated to treat leading to a higher morbidity and mortality in diabetic patients.
Collapse
|
27
|
Javdan S, Narimani T, Shahini Shams Abadi M, Gholipour A. Agr typing of Staphylococcus aureus species isolated from clinical samples in training hospitals of Isfahan and Shahrekord. BMC Res Notes 2019; 12:363. [PMID: 31248448 PMCID: PMC6598336 DOI: 10.1186/s13104-019-4396-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 06/18/2019] [Indexed: 12/20/2022] Open
Abstract
Objective As an opportunistic pathogen, Staphylococcus aureus is associated with serious nosocomial infections and growing antimicrobial resistance against beta-lactams among S. aureus strains has become a global challenge. The current study was designed to investigate the presence of agr genes among S. aureus strains recovered from clinical samples in university hospitals of Isfahan and Shahrekord. Results A total of 150 S. aureus isolates were screened by Disk diffusion method (DDM) and conventional PCR. The minimum (17.3%) and maximum (46%) antibiotic resistance rates were found in vancomycin and cefoxitin, respectively. The majority of our isolates were classified as agr type I followed by type II, type IV, and type III. The statistical analysis showed a significant correlation between agr type I and antibiotic resistance against cefoxitin and erythromycin (p = 0.04 and p = 0.03, respectively). Based on our findings, the agr typing could be considered an effective approach for molecular tracking of S. aureus infections.
Collapse
Affiliation(s)
- Saeid Javdan
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Tahmine Narimani
- Department of Microbiology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Milad Shahini Shams Abadi
- Department of Bacteriology & Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abolfazl Gholipour
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran. .,Department of Microbiology and Immunology, Cellular and Molecular Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
28
|
Castillo JA, Agathos SN. A genome-wide scan for genes under balancing selection in the plant pathogen Ralstonia solanacearum. BMC Evol Biol 2019; 19:123. [PMID: 31208326 PMCID: PMC6580516 DOI: 10.1186/s12862-019-1456-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 06/10/2019] [Indexed: 02/07/2023] Open
Abstract
Background Plant pathogens are under significant selective pressure by the plant host. Consequently, they are expected to have adapted to this condition or contribute to evading plant defenses. In order to acquire long-term fitness, plant bacterial pathogens are usually forced to maintain advantageous genetic diversity in populations. This strategy ensures that different alleles in the pathogen’s gene pool are maintained in a population at frequencies larger than expected under neutral evolution. This selective process, known as balancing selection, is the subject of this work in the context of a common bacterial phytopathogen. We performed a genome-wide scan of Ralstonia solanacearum species complex, an aggressive plant bacterial pathogen that shows broad host range and causes a devastating disease called ‘bacterial wilt’. Results Using a sliding window approach, we analyzed 57 genomes from three phylotypes of the R. solanacearum species complex to detect signatures of balancing selection. A total of 161 windows showed extreme values in three summary statistics of population genetics: Tajima’s D, θw and Fu & Li’s D*. We discarded any confounding effects due to demographic events by means of coalescent simulations of genetic data. The prospective windows correspond to 78 genes with known function that map in any of the two main replicons (1.7% of total number of genes). The candidate genes under balancing selection are related to primary metabolism and other basal activities (51.3%) or directly associated to virulence (48.7%), the latter being involved in key functions targeted to dismantle plant defenses or to participate in critical stages in the pathogenic process. Conclusions We identified various genes under balancing selection that play a significant role in basic metabolism as well as in virulence of the R. solanacearum species complex. These genes are useful to understand and monitor the evolution of bacterial pathogen populations and emerge as potential candidates for future treatments to induce specific plant immune responses. Electronic supplementary material The online version of this article (10.1186/s12862-019-1456-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- José A Castillo
- School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San Jose s/n and Proyecto Yachay, Urcuquí, Ecuador.
| | - Spiros N Agathos
- School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San Jose s/n and Proyecto Yachay, Urcuquí, Ecuador
| |
Collapse
|
29
|
Rossi BF, Bonsaglia ECR, Castilho IG, Dantas STA, Salina A, Langoni H, Pantoja JCF, Budri PE, Fitzgerald-Hughes D, Júnior AF, Rall VLM. Genotyping of long term persistent Staphylococcus aureus in bovine subclinical mastitis. Microb Pathog 2019; 132:45-50. [PMID: 31015015 DOI: 10.1016/j.micpath.2019.04.031] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 12/16/2022]
Abstract
Bovine mastitis affects dairy cattle worldwide and Staphylococcus aureus is one of the most common microorganisms involved in subclinical and chronic disease. Superantigens, such as enterotoxins contribute to S. aureus persistence and pathogenicity in this disease. Subclinical and chronic mastitis cases were diagnosed and S. aureus isolates from sub-clinical cases were investigated for carriage of virulence and antibiotic resistance genes that may contribute to long-term carriage and infection. Over a 12-month period, 116 S. aureus strains were recovered from 68 cows with subclinical mastitis. Classical enterotoxin genes (sea-see) were detected in 24.1% of isolates, and pvl and tsst-1 were identified in 3.4% and 46.6% the isolates, respectively. 18.1% that were persistent isolates were identified and characterized by pulsed field gel electrophoresis (PFGE), MLST, spa typing. Four isolates were methicillin-resistant S. aureus (MRSA) and belonged to SCCmec type I. Molecular typing showed that the agrI group was the most frequent, and a rare isolate was positive for both agrI and agrIII groups. Molecular characterization revealed the persistence of the spa type t10856 (ST133, clonal complex CC133, agr I), in a single animal for nine months and the persistence t605 (ST126, CC126) colonizing four animals for four months. These strains have been described recently in other herds in the same region, indicating their transmissibility and clonal expansion. We conclude that animals with subclinical mastitis are an important and somewhat overlooked reservoir for transmission within and between herds, and may carry virulence and antibiotic resistance genes contributing to persistent colonization, hinder the control of mastitis and may cause risks to the public health.
Collapse
Affiliation(s)
- B F Rossi
- Department of Microbiology and Immunology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - E C R Bonsaglia
- Department of Microbiology and Immunology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - I G Castilho
- Department of Microbiology and Immunology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - S T A Dantas
- Department of Microbiology and Immunology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - A Salina
- Department of Hygiene Veterinary and Public Health, Sao Paulo State University, Botucatu, SP, Brazil
| | - H Langoni
- Department of Hygiene Veterinary and Public Health, Sao Paulo State University, Botucatu, SP, Brazil
| | - J C F Pantoja
- Department of Hygiene Veterinary and Public Health, Sao Paulo State University, Botucatu, SP, Brazil
| | - P E Budri
- Department of Clinical Microbiology, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin, Ireland
| | - D Fitzgerald-Hughes
- Department of Clinical Microbiology, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin, Ireland
| | - A Fernandes Júnior
- Department of Microbiology and Immunology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - V L M Rall
- Department of Microbiology and Immunology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil.
| |
Collapse
|
30
|
Tahmasebi H, Dehbashi S, Arabestani MR. Association between the accessory gene regulator (agr) locus and the presence of superantigen genes in clinical isolates of methicillin-resistant Staphylococcus aureus. BMC Res Notes 2019; 12:130. [PMID: 30871616 PMCID: PMC6419358 DOI: 10.1186/s13104-019-4166-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 03/06/2019] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE Methicillin-resistant Staphylococcus aureus cause to a variety of hard to cure infections. MRSA isolates also, produce an arsenal of virulence factors contribute to severe infections. The aim of this study was to find out the relationship between agr locus and presence of S. aureus superantigens (SAgs). RESULTS Clinical isolates in two groups from two different states of Iran were collected. Antibiotic resistance patterns, agr typing, and virulence factor genes prevalence were identified and relationship between them was analyzed using SPSS software version16. Most of the samples were collected from wound 39 isolates in Group 1 and 61 isolates in Group 2. Frequency of MRSA strains was 38.1% in Group 1 and 52.1% in Group 2. Also, the most common resistance among both groups was to penicillin. agr positive isolates were detected in 132 isolates of Group 1 and 104 isolates of Group 2. In Conclusion, a significant relationship between the SAgs frequency and agr locus in both groups has been indicated. The production of superantigens in S. aureus plays an important role in the classification of agr locus, and this locus can affect differently in methicillin-resistant strains.
Collapse
Affiliation(s)
- Hamed Tahmasebi
- Microbiology Department, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Sanaz Dehbashi
- Microbiology Department, Faculty of Medicine, Hamadan University of Medical Sciences, Pajoohesh Junction, Hamadan, Iran
| | - Mohammad Reza Arabestani
- Department of Microbiology, School of Medicine, University of Hamadan, Hamadan, Iran. .,Brucellosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
31
|
Corynebacterium pseudodiphtheriticum Exploits Staphylococcus aureus Virulence Components in a Novel Polymicrobial Defense Strategy. mBio 2019; 10:mBio.02491-18. [PMID: 30622190 PMCID: PMC6325251 DOI: 10.1128/mbio.02491-18] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
While some individuals are nasally colonized with S. aureus, the underlying factors that determine colonization are not understood. There is increasing evidence that indicates that resident bacteria play a role; some commensal species can eradicate S. aureus from the nasal cavity. Among these, Corynebacterium pseudodiphtheriticum can eliminate S. aureus from the human nose. We sought to understand this phenomenon at a molecular level and found that C. pseudodiphtheriticum produces a factor(s) that specifically kills S. aureus. While resistant S. aureus isolates were recovered at a low frequency, resistance came at the cost of attenuated virulence in these strains. Molecular dissection of the specific strategies used by C. pseudodiphtheriticum to kill S. aureus could lead to the development of novel treatments or therapies. Furthermore, commensal competition that requires virulence components of the competitor may represent an exciting and unexplored possibility for development of novel antimicrobial compounds. Commensal bacteria in the human nasal cavity are known to suppress opportunistic pathogen colonization by competing for limited space and nutrients. It has become increasingly apparent that some commensal bacteria also produce toxic compounds that directly inhibit or kill incoming competitors. Numerous studies suggest that microbial species-specific interactions can affect human nasal colonization by the opportunistic pathogen Staphylococcus aureus. However, the complex and dynamic molecular interactions that mediate these effects on S. aureus nasal colonization are often difficult to study and remain poorly understood. Here, we show that Corynebacterium pseudodiphtheriticum, a common member of the normal nasal microbiota, mediates contact-independent bactericidal activity against S. aureus, including methicillin-resistant S. aureus (MRSA). Bacterial interaction assays revealed that S. aureus isolates that were spontaneously resistant to C. pseudodiphtheriticum killing could be recovered at a low frequency. To better understand the pathways associated with killing and resistance, a S. aureus transposon mutant library was utilized to select for resistant mutant strains. We found that insertional inactivation of agrC, which codes for the sensor kinase of the Agr quorum sensing (Agr QS) system that regulates expression of many virulence factors in S. aureus, conferred resistance to killing. Analysis of the spontaneously resistant S. aureus isolates revealed that each showed decreased expression of the Agr QS components. Targeted analysis of pathways regulated by Agr QS revealed that loss of the phenol-soluble modulins (PSMs), which are effectors of Agr QS, also conferred resistance to bactericidal activity. Transmission electron microscopy analysis revealed that C. pseudodiphtheriticum induced dramatic changes to S. aureus cell surface morphology that likely resulted in cell lysis. Taken together, these data suggest that C. pseudodiphtheriticum-mediated killing of S. aureus requires S. aureus virulence components. While S. aureus can overcome targeted killing, this occurs at the cost of attenuated virulence; loss of Agr QS activity would phenotypically resemble a S. aureus commensal state that would be unlikely to be associated with disease. Commensal competition resulting in dampened virulence of the competitor may represent an exciting and unexplored possibility for development of novel antimicrobial compounds.
Collapse
|
32
|
Puah SM, Tan JAMA, Chew CH, Chua KH. Diverse Profiles of Biofilm and Adhesion Genes in Staphylococcus Aureus Food Strains Isolated from Sushi and Sashimi. J Food Sci 2018; 83:2337-2342. [PMID: 30101982 DOI: 10.1111/1750-3841.14300] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 06/08/2018] [Accepted: 06/15/2018] [Indexed: 01/03/2023]
Abstract
Staphylococcus aureus is able to form multilayer biofilms embedded within a glycocalyx or slime layer. Biofilm formation poses food contamination risks and can subsequently increase the risk of food poisoning. Identification of food-related S. aureus strains will provide additional data on staphylococcal food poisoning involved in biofilm formation. A total of 52 S. aureus strains isolated from sushi and sashimi was investigated to study their ability for biofilm formation using crystal violet staining. The presence of accessory gene regulator (agr) groups and 15 adhesion genes was screened and their associations in biofilm formation were studied. All 52 S. aureus strains showed biofilm production on the tested hydrophobic surface with 44% (23/52) strains classified as strong, 33% (17/52) as moderate, and 23% (12/52) as weak biofilm producers. The frequency of agr-positive strains was 71% (agr group 1 = 21 strains; agr group 2 = 2 strains; agr group 3 = 12 strains; agr group 4 = 2 strains) whereas agr-negative strains were 29% (15/52). Twelve adhesion genes were detected and 98% of the S. aureus strains carried at least one adhesion gene. The ebps was significantly (p < .05) associated with strong biofilm producing strains. In addition, eno, clfA, icaAD, sasG, fnbB, cna, and sasC were significantly higher in the agr-positive group compared to the agr-negative group. The results of this study suggest that the presence of ebps, eno, clfA, icaAD, sasG, fnbB, cna, and sasC may play an important role in enhancing the stage of biofilm-related infections and warrants further investigation. PRACTICAL APPLICATION This work contributes to the knowledge on the biofilm formation and the distribution of agr groups in S. aureus strains as well as microbial surface components in recognizing adherence matrix molecules of organisms isolated from ready-to-eat sushi and sashimi. The findings provide valuable information to further study the roles of specific genes in causing biofilm-related infections.
Collapse
Affiliation(s)
- Suat Moi Puah
- Dept. of Biomedical Science, Faculty of Medicine, Univ. of Malaya, Malaya, Kuala Lumpur, Malaysia
| | | | - Ching Hoong Chew
- School of Biomedicine, Faculty of Health Sciences, Univ. Sultan Zainal Abidin, Kuala Nerus, Terengganu, Malaysia
| | - Kek Heng Chua
- Dept. of Biomedical Science, Faculty of Medicine, Univ. of Malaya, Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
33
|
In vivo screening platform for shiga toxin-producing Escherichia coli (STEC) using Caenorhabditis elegans as a model. PLoS One 2018; 13:e0193277. [PMID: 29489863 PMCID: PMC5831388 DOI: 10.1371/journal.pone.0193277] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 02/07/2018] [Indexed: 01/02/2023] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) strains are the main cause of bacillary dysentery, although STEC strains generally induce milder disease symptoms compared to Shigella species. This study aimed to determine the virulence of STEC using the nematode Caenorhabditis elegans as a model host. Worm killing, fertility and bacterial colonisation assays were performed to examine the potential difference in the virulence of STEC strains compared to that of the control E. coli OP50 strains on which worms were fed. A statistically significant difference in the survival rates of C. elegans was observed in that the STEC strains caused death in 8–10 days and the E. coli OP50 strains caused death in 15 days. STEC strains severely reduced the fertility of the worms. The intestinal load of bacteria in the adult stage nematodes harbouring the E. coli OP50 strains was found to be 3.5 log CFU mL-1. In contrast, the STEC strains E15, E18 and E22 harboured 4.1, 4.2 and 4.7 log CFU ml−1 per nematode, respectively. The heat-killed STEC strains significantly increased the longevity of the worms compared to the non-heated STEC strains. In addition, PCR-based genomic profiling of shiga toxin genes, viz., stx1 and stx2, identified in selected STEC strains revealed that these toxins may be associated with the virulence of the STEC strains. This study demonstrated that C. elegans is an effective model to examine and compare the pathogenicity and virulence variation of STEC strains to that of E. coli OP50 strains.
Collapse
|
34
|
Sousa M, Silva N, Manageiro V, Ramos S, Coelho A, Gonçalves D, Caniça M, Torres C, Igrejas G, Poeta P. First report on MRSA CC398 recovered from wild boars in the north of Portugal. Are we facing a problem? THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 596-597:26-31. [PMID: 28412568 DOI: 10.1016/j.scitotenv.2017.04.054] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/06/2017] [Accepted: 04/07/2017] [Indexed: 05/25/2023]
Abstract
The aim of the present study was to evaluate the resistance of Staphylococcus aureus recovered from wild boars, to analyze their genetic lineages, and to investigate the susceptibility to oxacillin. Samples from mouth and nose of 45 wild boars (Sus scrofa) were collected during hunt activity from November 2012 to January 2013 in the North of Portugal. S. aureus isolates were recovered from 30 of these samples (33%); one isolate/sample was further studied. The susceptibility of the isolates was tested by disk-diffusion test against 14 antimicrobial agents and minimal inhibitory concentration was used to test oxacillin according to EUCAST guidelines. The genetic lineages of S. aureus were characterized by agr-typing, spa-typing and MLST. From the 30 isolates, 18 S. aureus were susceptible to all antibiotics tested and 7 presented resistance to one or more of the following antibiotics: penicillin (n=3), oxacillin (n=4), cefoxitin (n=1), clindamycin (n=2), gentamicin (n=1), fusidic acid (n=1), ciprofloxacin (n=2), tetracycline (n=1) and linezolid (n=1). One MRSA CC398 (spa-type t899) isolate was detected (oxacillin MIC=32mg/L and mecA-positive), which presented resistance to penicillin, tetracycline, and ciprofloxacin and contained the genes of immune evasion cluster (IEC) system (type B). The 29 methicillin-susceptible isolates were typed as ST1 (t1533), ST133 (t3583), ST1643 (t10712), ST2328 (t3750) and the new STs (3220, 3222, 3223, 3224) associated to new spa-types t14311 and t14312. The agr-types I, II, III and IV were identified. It is a matter of concern when MRSA and some specific lineages of S. aureus are taken as commensal habitants of the skin and nose of wild animals and are characterized with resistance to various antimicrobial agents in clinical use.
Collapse
Affiliation(s)
- Margarida Sousa
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal; Veterinary and Animal Science Research Center (CECAV), University of Trás-os-Montes and Alto Douro, Vila Real, Portugal; Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal; National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections (NRL-AR/HAI), National Institute of Health Doutor Ricardo Jorge (NIH), Lisboa, Portugal; Faculty of Science and Technology, Department of Food and Agriculture, University of La Rioja (UR), Logroño, Spain
| | - Nuno Silva
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Scotland, UK
| | - Vera Manageiro
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections (NRL-AR/HAI), National Institute of Health Doutor Ricardo Jorge (NIH), Lisboa, Portugal; Centre for the Study of Animal Sciences (CECA/ICETA), University of Oporto, Oporto, Portugal
| | - Sónia Ramos
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal; Veterinary and Animal Science Research Center (CECAV), University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - António Coelho
- Forest Association of Trás-os-Montes and Alto Douro (AFTM), Vila Real, Portugal
| | - David Gonçalves
- Research Centre in Biodiversity and Genetic Resources of the University of Porto (CIBIO), Vairão, Portugal
| | - Manuela Caniça
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections (NRL-AR/HAI), National Institute of Health Doutor Ricardo Jorge (NIH), Lisboa, Portugal; Centre for the Study of Animal Sciences (CECA/ICETA), University of Oporto, Oporto, Portugal
| | - Carmen Torres
- Faculty of Science and Technology, Department of Food and Agriculture, University of La Rioja (UR), Logroño, Spain
| | - Gilberto Igrejas
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal; Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal; UCIBIO-REQUIMTE, Chemistry Department, Faculty of Science and Technology, University NOVA of Lisbon, Lisbon, Caparica, Portugal; Biology Department, Sciences Faculty, University of Porto (UP), Portugal
| | - Patrícia Poeta
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal; UCIBIO-REQUIMTE, Chemistry Department, Faculty of Science and Technology, University NOVA of Lisbon, Lisbon, Caparica, Portugal; Biology Department, Sciences Faculty, University of Porto (UP), Portugal.
| |
Collapse
|