1
|
Barozi V, Tastan Bishop Ö. Impact of African-Specific ACE2 Polymorphisms on Omicron BA.4/5 RBD Binding and Allosteric Communication Within the ACE2-RBD Protein Complex. Int J Mol Sci 2025; 26:1367. [PMID: 39941135 PMCID: PMC11818624 DOI: 10.3390/ijms26031367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/27/2025] [Accepted: 02/01/2025] [Indexed: 02/16/2025] Open
Abstract
Severe acute respiratory symptom coronavirus 2 (SARS-CoV-2) infection occurs via the attachment of the spike (S) protein's receptor binding domain (RBD) to human ACE2 (hACE2). Natural polymorphisms in hACE2, particularly at the interface, may alter RBD-hACE2 interactions, potentially affecting viral infectivity across populations. This study identified the effects of six naturally occurring hACE2 polymorphisms with high allele frequency in the African population (S19P, K26R, M82I, K341R, N546D and D597Q) on the interaction with the S protein RBD of the BA.4/5 Omicron sub-lineage through post-molecular dynamics (MD), inter-protein interaction and dynamic residue network (DRN) analyses. Inter-protein interaction analysis suggested that the K26R variation, with the highest interactions, aligns with reports of enhanced RBD binding and increased SARS-CoV-2 susceptibility. Conversely, S19P, showing the fewest interactions and largest inter-protein distances, agrees with studies indicating it hinders RBD binding. The hACE2 M82I substitution destabilized RBD-hACE2 interactions, reducing contact frequency from 92 (WT) to 27. The K341R hACE2 variant, located distally, had allosteric effects that increased RBD-hACE2 contacts compared to WThACE2. This polymorphism has been linked to enhanced affinity for Alpha, Beta and Delta lineages. DRN analyses revealed that hACE2 polymorphisms may alter the interaction networks, especially in key residues involved in enzyme activity and RBD binding. Notably, S19P may weaken hACE2-RBD interactions, while M82I showed reduced centrality of zinc and chloride-coordinating residues, hinting at impaired communication pathways. Overall, our findings show that hACE2 polymorphisms affect S BA.4/5 RBD stability and modulate spike RBD-hACE2 interactions, potentially influencing SARS-CoV-2 infectivity-key insights for vaccine and therapeutic development.
Collapse
Affiliation(s)
- Victor Barozi
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry, Microbiology and Bioinformatics, Rhodes University, Makhanda 6139, South Africa;
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry, Microbiology and Bioinformatics, Rhodes University, Makhanda 6139, South Africa;
- National Institute for Theoretical and Computational Sciences (NITheCS), Matieland 7602, South Africa
| |
Collapse
|
2
|
Masele JJ. Misinformation and COVID-19 vaccine uptake hesitancy among frontline workers in Tanzania: Do demographic variables matter? Hum Vaccin Immunother 2024; 20:2324527. [PMID: 38584120 PMCID: PMC11000596 DOI: 10.1080/21645515.2024.2324527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/26/2024] [Indexed: 04/09/2024] Open
Abstract
Although COVID-19 vaccination has been widely considered as an important remedy to confront COVID-19, people remain hesitant to take it. The objective of this study was to assess the moderation effects of demographic characteristics on the relationship between forms of misinformation and COVID-19 vaccine uptake hesitancy among frontline workers in Dar es Salaam and Dodoma, Tanzania. Using a sample of 200 respondents, it assessed the differences in ratings on misinformation regarding COVID-19 vaccine based on respondents' demographics. The study used a Five-point Likert scale questionnaire distributed through snowball sampling to frontline workers from Dar es Salaam and Dodoma regions. Data was analyzed using binary logistic regression. It was found that the forms of misinformation revealed were manipulated imposters, satire, fabricated contents and false contents with their connection, which they influenced COVID-19 hesitancy significantly. With exception of age, that significantly moderated hesitancy, this study uncovers that, sex and education level moderated insignificantly in predicting those who are misinformed; misinformed individuals are not any less educated or not based on one's sex, different than individuals who are informed. The study informs policy makers on devising appropriate strategies to promote COVID-19 vaccination uptake among the different contextual demographic variables. Promotion of information, media and health literacy to the general public should be considered to deter spreading of vaccine-related misinformation.
Collapse
Affiliation(s)
- Juma James Masele
- Department of General Management, University of Dar es Salaam Business School, Dar es Salaam, Tanzania
| |
Collapse
|
3
|
Jung J, Sung JS, Kwon S, Bae HE, Kang MJ, Jose J, Lee M, Pyun JC. Preventing SARS-CoV-2 infection using Fv-antibodies targeting the proprotein convertase (PPC) cleavage site. RSC Med Chem 2024:d4md00552j. [PMID: 39290379 PMCID: PMC11403901 DOI: 10.1039/d4md00552j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 08/23/2024] [Indexed: 09/19/2024] Open
Abstract
Fv-antibodies targeting the proprotein convertase (PPC) region of the SARS-CoV-2 spike protein (SP) were screened from an Fv-antibody library to inhibit SARS-CoV-2 infection. Two selected Fv-antibodies were expressed as soluble recombinant proteins, and their binding affinities were assessed using a surface plasmon resonance biosensor. The binding regions of these Fv-antibodies corresponded to the cleavage sites of furin (S1/S2) and transmembrane serine protease 2 (TMPRSS2, S2'). The neutralizing activities of the two Fv-antibodies were demonstrated using a cell-based infection assay with pseudo-viruses carrying the SP of four different SARS-CoV-2 variants: wild-type (D614), delta (B.1.617.2), omicron (BA.2), and omicron (BA.4/5).
Collapse
Affiliation(s)
- Jaeyong Jung
- Department of Materials Science and Engineering, Yonsei University 50 Yonsei-ro, Seodaemun-gu Seoul 03722 Korea
| | - Jeong Soo Sung
- Department of Materials Science and Engineering, Yonsei University 50 Yonsei-ro, Seodaemun-gu Seoul 03722 Korea
| | - Soonil Kwon
- Department of Materials Science and Engineering, Yonsei University 50 Yonsei-ro, Seodaemun-gu Seoul 03722 Korea
| | - Hyung Eun Bae
- Department of Materials Science and Engineering, Yonsei University 50 Yonsei-ro, Seodaemun-gu Seoul 03722 Korea
| | - Min-Jung Kang
- Korea Institute of Science and Technology (KIST) Seoul 02456 Korea
| | - Joachim Jose
- Institute of Pharmaceutical and Medical Chemistry, Westfälischen Wilhelms-Universität Münster Muenster Germany
| | - Misu Lee
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University Incheon 22012 Korea
- Institute for New Drug Development, College of Life Science and Bioengineering, Incheon National University Incheon 22012 Korea
| | - Jae-Chul Pyun
- Department of Materials Science and Engineering, Yonsei University 50 Yonsei-ro, Seodaemun-gu Seoul 03722 Korea
| |
Collapse
|
4
|
Dufloo J, Sanjuán R. Temperature impacts SARS-CoV-2 spike fusogenicity and evolution. mBio 2024; 15:e0336023. [PMID: 38411986 PMCID: PMC11005339 DOI: 10.1128/mbio.03360-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/29/2024] [Indexed: 02/28/2024] Open
Abstract
SARS-CoV-2 infects both the upper and lower respiratory tracts, which are characterized by different temperatures (33°C and 37°C, respectively). In addition, fever is a common COVID-19 symptom. SARS-CoV-2 has been shown to replicate more efficiently at low temperatures, but the effect of temperature on different viral proteins remains poorly understood. Here, we investigate how temperature affects the SARS-CoV-2 spike function and evolution. We first observed that increasing temperature from 33°C to 37°C or 39°C increased spike-mediated cell-cell fusion. We then experimentally evolved a recombinant vesicular stomatitis virus expressing the SARS-CoV-2 spike at these different temperatures. We found that spike-mediated cell-cell fusion was maintained during evolution at 39°C but was lost in a high proportion of viruses that evolved at 33°C or 37°C. Consistently, sequencing of the spikes evolved at 33°C or 37°C revealed the accumulation of mutations around the furin cleavage site, a region that determines cell-cell fusion, whereas this did not occur in spikes evolved at 39°C. Finally, using site-directed mutagenesis, we found that disruption of the furin cleavage site had a temperature-dependent effect on spike-induced cell-cell fusion and viral fitness. Our results suggest that variations in body temperature may affect the activity and diversification of the SARS-CoV-2 spike. IMPORTANCE When it infects humans, SARS-CoV-2 is exposed to different temperatures (e.g., replication site and fever). Temperature has been shown to strongly impact SARS-CoV-2 replication, but how it affects the activity and evolution of the spike protein remains poorly understood. Here, we first show that high temperatures increase the SARS-CoV-2 spike fusogenicity. Then, we demonstrate that the evolution of the spike activity and variants depends on temperature. Finally, we show that the functional effect of specific spike mutations is temperature-dependent. Overall, our results suggest that temperature may be a factor influencing the activity and adaptation of the SARS-CoV-2 spike in vivo, which will help understanding viral tropism, pathogenesis, and evolution.
Collapse
Affiliation(s)
- Jérémy Dufloo
- Institute for Integrative Systems Biology, Consejo Superior de Investigaciones Científicas-Universitat de València, Paterna, València, Spain
| | - Rafael Sanjuán
- Institute for Integrative Systems Biology, Consejo Superior de Investigaciones Científicas-Universitat de València, Paterna, València, Spain
| |
Collapse
|
5
|
Moltrasio C, Silva CA, Tricarico PM, Marzano AV, Sueleman M, Crovella S. Biosensing circulating MicroRNAs in autoinflammatory skin diseases: Focus on Hidradenitis suppurativa. Front Genet 2024; 15:1383452. [PMID: 38655054 PMCID: PMC11035790 DOI: 10.3389/fgene.2024.1383452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
MicroRNAs (miRNAs) play a crucial role in the early diagnosis of autoinflammatory diseases, with Hidradenitis Suppurativa (HS) being a notable example. HS, an autoinflammatory skin disease affecting the pilosebaceous unit, profoundly impacts patients' quality of life. Its hidden nature, with insidious initial symptoms and patient reluctance to seek medical consultation, often leads to a diagnostic delay of up to 7 years. Recognizing the urgency for early diagnostic tools, recent research identified significant differences in circulating miRNA expression, including miR-24-1-5p, miR-146a-5p, miR26a-5p, miR-206, miR338-3p, and miR-338-5p, between HS patients and healthy controls. These miRNAs serve as potential biomarkers for earlier disease detection. Traditional molecular biology techniques, like reverse transcription quantitative-polymerase chain reaction (RT-qPCR), are employed for their detection using specific primers and probes. Alternatively, short peptides offer a versatile and effective means for capturing miRNAs, providing specificity, ease of synthesis, stability, and multiplexing potential. In this context, we present a computational simulation pipeline designed for crafting peptide sequences that can capture circulating miRNAs in the blood of patients with autoinflammatory skin diseases, including HS. This innovative approach aims to expedite early diagnosis and enhance therapeutic follow-up, addressing the critical need for timely intervention in HS and similar conditions.
Collapse
Affiliation(s)
- Chiara Moltrasio
- Dermatology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Paola Maura Tricarico
- Department of Advanced Diagnostics, Institute for Maternal and Child Health-IRCCS Burlo Garofolo, Trieste, Italy
| | - Angelo Valerio Marzano
- Dermatology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | | | - Sergio Crovella
- Laboratory of Animal Research (LARC), Qatar University, Doha, Qatar
| |
Collapse
|
6
|
Suleman M, Ishaq I, Khan H, Ullah khan S, Masood R, Albekairi NA, Alshammari A, Crovella S. Elucidating the binding mechanism of SARS-CoV-2 NSP6-TBK1 and structure-based designing of phytocompounds inhibitors for instigating the host immune response. Front Chem 2024; 11:1346796. [PMID: 38293247 PMCID: PMC10824840 DOI: 10.3389/fchem.2023.1346796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 12/31/2023] [Indexed: 02/01/2024] Open
Abstract
SARS-CoV-2, also referred to as severe acute respiratory syndrome coronavirus 2, is the virus responsible for causing COVID-19, an infectious disease that emerged in Wuhan, China, in December 2019. Among its crucial functions, NSP6 plays a vital role in evading the human immune system by directly interacting with a receptor called TANK-binding kinase (TBK1), leading to the suppression of IFNβ production. Consequently, in the present study we used the structural and biophysical approaches to analyze the effect of newly emerged mutations on the binding of NSP6 and TBK1. Among the identified mutations, four (F35G, L37F, L125F, and I162T) were found to significantly destabilize the structure of NSP6. Furthermore, the molecular docking analysis highlighted that the mutant NSP6 displayed its highest binding affinity with TBK1, exhibiting docking scores of -1436.2 for the wildtype and -1723.2, -1788.6, -1510.2, and -1551.7 for the F35G, L37F, L125F, and I162T mutants, respectively. This suggests the potential for an enhanced immune system evasion capability of NSP6. Particularly, the F35G mutation exhibited the strongest binding affinity, supported by a calculated binding free energy of -172.19 kcal/mol. To disrupt the binding between NSP6 and TBK1, we conducted virtual drug screening to develop a novel inhibitor derived from natural products. From this screening, we identified the top 5 hit compounds as the most promising candidates with a docking score of -6.59 kcal/mol, -6.52 kcal/mol, -6.32 kcal/mol, -6.22 kcal/mol, and -6.21 kcal/mol. The molecular dynamic simulation of top 3 hits further verified the dynamic stability of drugs-NSP6 complexes. In conclusion, this study provides valuable insight into the higher infectivity of the SARS-CoV-2 new variants and a strong rationale for the development of novel drugs against NSP6.
Collapse
Affiliation(s)
- Muhammad Suleman
- Laboratory of Animal Research Center (LARC), Qatar University, Doha, Qatar
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | - Iqra Ishaq
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | - Haji Khan
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | - Safir Ullah khan
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Rehana Masood
- Department of Biochemistry, Shaheed Benazir Bhutto Women University, Peshawar, Pakistan
| | - Norah A. Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sergio Crovella
- Laboratory of Animal Research Center (LARC), Qatar University, Doha, Qatar
| |
Collapse
|
7
|
Tao Y, Ma J, Feng Y, Gao C, Wu T, Xia Y, Cheng Z, Zhang Y, Liu T, Hu Y, Tang LV. Tissue-type plasminogen activator (tPA) homozygous Tyr471His mutation associates with thromboembolic disease. MedComm (Beijing) 2023; 4:e392. [PMID: 37808270 PMCID: PMC10556205 DOI: 10.1002/mco2.392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/21/2023] [Accepted: 08/30/2023] [Indexed: 10/10/2023] Open
Abstract
Tissue-type plasminogen activator (tPA) encoded by PLAT is a major mediator that promotes fibrinolysis and prevents thrombosis. Pathogenetic mutations in PLAT associated with venous thromboembolism have rarely been reported. Here, we report the first case of a homozygous point mutation c.1411T>C (p.Y471H) in PLAT leading to thromboembolic events and conduct related functional studies. The corresponding tPA mutant protein (tPA-Y471H) and wild-type tPA (tPA-WT) were synthesized in vitro, and mutant mice (PLATH/H mice) were constructed. The molecular docking and surface plasmon resonance results indicated that the mutation impeded the hydrogen-bonding interactions between the protease domain of tPA and the kringle 4 domain of plasminogen, and the binding affinity of tPA and plasminogen was significantly reduced with a difference of one order of magnitude. mRNA half-life assay showed that the half-life of tPA-Y471H was shortened. The inferior vena cava thrombosis model showed that the rate of venous thrombosis in PLATH/H mice was 80% compared with 53% in wild-type mice. Our data suggested a novel role for the protease domain of tPA in efficient plasminogen activation, and demonstrated that this tPA mutation could reduce the fibrinolysis function of the body and lead to an increased propensity for thrombosis.
Collapse
Affiliation(s)
- Yanyi Tao
- Institute of HematologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jiewen Ma
- Institute of HematologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yuanzheng Feng
- Institute of HematologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Chenggang Gao
- Department of Critical Care MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Tingting Wu
- Institute of HematologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yunqing Xia
- Institute of HematologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Zhipeng Cheng
- Institute of HematologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yi Zhang
- Institute of HematologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Tingting Liu
- Institute of HematologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yu Hu
- Institute of HematologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Liang V. Tang
- Institute of HematologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
8
|
Mohammad A, Alshawaf E, Arefanian H, Marafie SK, Khan A, Wei DQ, Al-Mulla F, Abubaker J. Targeting SARS-CoV-2 Macrodomain-1 to Restore the Innate Immune Response Using In Silico Screening of Medicinal Compounds and Free Energy Calculation Approaches. Viruses 2023; 15:1907. [PMID: 37766313 PMCID: PMC10538035 DOI: 10.3390/v15091907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Among the different drug targets of SARS-CoV-2, a multi-domain protein known as NSP3 is a critical element of the translational and replication machinery. The macrodomain-I, in particular, has been reported to have an essential role in the viral attack on the innate immune response. In this study, we explore natural medicinal compounds and identify potential inhibitors to target the SARS-CoV-2-NSP3 macrodomain-I. Computational modeling and simulation tools were utilized to investigate the structural-dynamic properties using triplicates of 100 ns MD simulations. In addition, the MM/GBSA method was used to calculate the total binding free energy of each inhibitor bound to macrodomain-I. Two significant hits were identified: 3,5,7,4'-tetrahydroxyflavanone 3'-(4-hydroxybenzoic acid) and 2-hydroxy-3-O-beta-glucopyranosyl-benzoic acid. The structural-dynamic investigation of both compounds with macrodomain-I revealed stable dynamics and compact behavior. In addition, the total binding free energy for each complex demonstrated a robust binding affinity, of ΔG -61.98 ± 0.9 kcal/mol for Compound A, while for Compound B, the ΔG was -45.125 ± 2.8 kcal/mol, indicating the inhibitory potential of these compounds. In silico bioactivity and dissociation constant (KD) determination for both complexes further validated the inhibitory potency of each compound. In conclusion, the aforementioned natural products have the potential to inhibit NSP3, to directly rescue the host immune response. The current study provides the basis for novel drug development against SARS-CoV-2 and its variants.
Collapse
Affiliation(s)
- Anwar Mohammad
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman 15462, Kuwait; (E.A.); (S.K.M.); (J.A.)
| | - Eman Alshawaf
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman 15462, Kuwait; (E.A.); (S.K.M.); (J.A.)
| | - Hossein Arefanian
- Department of Immunology and Microbiology, Dasman Diabetes Institute, Dasman 15462, Kuwait;
| | - Sulaiman K. Marafie
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman 15462, Kuwait; (E.A.); (S.K.M.); (J.A.)
| | - Abbas Khan
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (A.K.); (D.-Q.W.)
| | - Dong-Qing Wei
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (A.K.); (D.-Q.W.)
| | - Fahd Al-Mulla
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait;
- Translational Research Department, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Jehad Abubaker
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman 15462, Kuwait; (E.A.); (S.K.M.); (J.A.)
| |
Collapse
|
9
|
Gonzaga A, Andreu E, Hernández-Blasco LM, Meseguer R, Al-Akioui-Sanz K, Soria-Juan B, Sanjuan-Gimenez JC, Ferreras C, Tejedo JR, Lopez-Lluch G, Goterris R, Maciá L, Sempere-Ortells JM, Hmadcha A, Borobia A, Vicario JL, Bonora A, Aguilar-Gallardo C, Poveda JL, Arbona C, Alenda C, Tarín F, Marco FM, Merino E, Jaime F, Ferreres J, Figueira JC, Cañada-Illana C, Querol S, Guerreiro M, Eguizabal C, Martín-Quirós A, Robles-Marhuenda Á, Pérez-Martínez A, Solano C, Soria B. Rationale for combined therapies in severe-to-critical COVID-19 patients. Front Immunol 2023; 14:1232472. [PMID: 37767093 PMCID: PMC10520558 DOI: 10.3389/fimmu.2023.1232472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
An unprecedented global social and economic impact as well as a significant number of fatalities have been brought on by the coronavirus disease 2019 (COVID-19), produced by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Acute SARS-CoV-2 infection can, in certain situations, cause immunological abnormalities, leading to an anomalous innate and adaptive immune response. While most patients only experience mild symptoms and recover without the need for mechanical ventilation, a substantial percentage of those who are affected develop severe respiratory illness, which can be fatal. The absence of effective therapies when disease progresses to a very severe condition coupled with the incomplete understanding of COVID-19's pathogenesis triggers the need to develop innovative therapeutic approaches for patients at high risk of mortality. As a result, we investigate the potential contribution of promising combinatorial cell therapy to prevent death in critical patients.
Collapse
Affiliation(s)
- Aitor Gonzaga
- Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
- Institute of Bioengineering, Miguel Hernández University, Elche, Spain
| | - Etelvina Andreu
- Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
- Applied Physics Department, Miguel Hernández University, Elche, Spain
| | | | - Rut Meseguer
- Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
- Clinic University Hospital, Fundación para la Investigación del Hospital Clínico de la Comunidad Valenciana (INCLIVA) Health Research Institute, Valencia, Spain
| | - Karima Al-Akioui-Sanz
- Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
- Hospital La Paz Institute for Health Research, IdiPAZ, University Hospital La Paz, Madrid, Spain
| | - Bárbara Soria-Juan
- Réseau Hospitalier Neuchâtelois, Hôpital Pourtalès, Neuchâtel, Switzerland
| | | | - Cristina Ferreras
- Hospital La Paz Institute for Health Research, IdiPAZ, University Hospital La Paz, Madrid, Spain
| | - Juan R. Tejedo
- Department of Molecular Biology and Biochemical Engineering, University Pablo de Olavide, Seville, Spain
- Biomedical Research Network for Diabetes and Related Metabolic Diseases-Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) of the Carlos III Health Institute (ISCIII), Madrid, Spain
| | - Guillermo Lopez-Lluch
- University Pablo de Olavide, Centro Andaluz de Biología del Desarrollo - Consejo Superior de Investigaciones Científicas (CABD-CSIC), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Sevilla, Spain
| | - Rosa Goterris
- Clinic University Hospital, Fundación para la Investigación del Hospital Clínico de la Comunidad Valenciana (INCLIVA) Health Research Institute, Valencia, Spain
| | - Loreto Maciá
- Nursing Department, University of Alicante, Alicante, Spain
| | - Jose M. Sempere-Ortells
- Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
- Biotechnology Department, University of Alicante, Alicante, Spain
| | - Abdelkrim Hmadcha
- Department of Molecular Biology and Biochemical Engineering, University Pablo de Olavide, Seville, Spain
- Biosanitary Research Institute (IIB-VIU), Valencian International University (VIU), Valencia, Spain
| | - Alberto Borobia
- Clinical Pharmacology Department, La Paz University Hospital, School of Medicine, Universidad Autónoma de Madrid, IdiPAz, Madrid, Spain
| | - Jose L. Vicario
- Transfusion Center of the Autonomous Community of Madrid, Madrid, Spain
| | - Ana Bonora
- Health Research Institute Hospital La Fe, Valencia, Spain
| | | | - Jose L. Poveda
- Health Research Institute Hospital La Fe, Valencia, Spain
| | - Cristina Arbona
- Valencian Community Blood Transfusion Center, Valencia, Spain
| | - Cristina Alenda
- Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
| | - Fabian Tarín
- Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
| | - Francisco M. Marco
- Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
- Immunology Department, Dr. Balmis General University Hospital, Alicante, Spain
| | - Esperanza Merino
- Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
- Department of Clinical Medicine, Miguel Hernández University, Elche, Spain
- Infectious Diseases Unit, Dr. Balmis General University Hospital, Alicante, Spain
| | - Francisco Jaime
- Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
| | - José Ferreres
- Intensive Care Service, Hospital Clinico Universitario, Fundación para la Investigación del Hospital Clínico de la Comunidad Valenciana (INCLIVA), Valencia, Spain
| | | | | | | | - Manuel Guerreiro
- Department of Hematology, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Cristina Eguizabal
- Research Unit, Basque Center for Blood Transfusion and Human Tissues, Galdakao, Spain
- Cell Therapy, Stem Cells and Tissues Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | | | | | - Antonio Pérez-Martínez
- Hospital La Paz Institute for Health Research, IdiPAZ, University Hospital La Paz, Madrid, Spain
- Department of Pediatrics, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Carlos Solano
- Hematology Service, Hospital Clínico Universitario, Fundación para la Investigación del Hospital Clínico de la Comunidad Valenciana (INCLIVA), Valencia, Spain
| | - Bernat Soria
- Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
- Institute of Bioengineering, Miguel Hernández University, Elche, Spain
- Biomedical Research Network for Diabetes and Related Metabolic Diseases-Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) of the Carlos III Health Institute (ISCIII), Madrid, Spain
| |
Collapse
|
10
|
Ks S, Nair AS. Insights on the interaction of SARS-CoV-2 variant B.1.617.2 with antibody CR3022 and analysis of antibody resistance. J Genet Eng Biotechnol 2023; 21:35. [PMID: 36940010 PMCID: PMC10026237 DOI: 10.1186/s43141-023-00492-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 03/12/2023] [Indexed: 03/21/2023]
Abstract
BACKGROUND The existence of mutated Delta (B.1.617.2) variants of SARS-CoV-2 causes rapid transmissibility, increase in virulence, and decrease in the effectiveness of public health. Majority of mutations are seen in the surface spike, and they are considered as antigenicity and immunogenicity of the virus. Hence, finding suitable cross antibody or natural antibody and understanding its biomolecular recognition for neutralizing surface spike are crucial for developing many clinically approved COVID-19 vaccines. Here, we aim to design SARS-CoV-2 variant and hence, to understand its mechanism, binding affinity and neutralization potential with several antibodies. RESULTS In this study, we modelled six feasible spike protein (S1) configurations for Delta SARS-CoV-2 (B.1.617.2) and identified the best structure to interact with human antibodies. Initially, the impact of mutations at the receptor-binding domain (RBD) of B.1.617.2 was tested, and it is found that all mutations increase the stability of proteins (ΔΔG) and decrease the entropies. An exceptional case is noted for the mutation of G614D variant for which the vibration entropy change is found to be within the range of 0.133-0.004 kcal/mol/K. Temperature-dependent free energy change values (ΔG) for wild type is found to be - 0.1 kcal/mol, whereas all other cases exhibit values within the range of - 5.1 to - 5.5 kcal/mol. Mutation on spike increases the interaction with the glycoprotein antibody CR3022 and the binding affinity (CLUSpro energy = - 99.7 kcal/mol). The docked Delta variant with the following antibodies, etesevimab, bebtelovimab, BD-368-2, imdevimab, bamlanivimab, and casirivimab, exhibit a substantially decreased docking score (- 61.7 to - 112.0 kcal/mol) and the disappearance of several hydrogen bond interactions. CONCLUSION Characterization of antibody resistance for Delta variant with respect to the wild type gives understanding regarding why Delta variant endures the resistance boosted through several trademark vaccines. Several interactions with CR3022 have appeared compared to Wild for Delta variant, and hence, it is suggested that modification on the CR3022 antibody could further improve for the prevention of viral spread. Antibody resistance decreased significantly due to numerous hydrogen bond interactions which clearly indicate that these marketed/launched vaccines (etesevimab) will be effective for Delta variants.
Collapse
Affiliation(s)
- Sandhya Ks
- Department of Computational Biology and Bioinformatics, University of Kerala, Kerala, Thiruvananthapuram, India.
- Malankara Catholic College, Mariagiri, Kaliakkavilai, Kanyakumari, 629153, Tamil Nadu, India.
| | - Achuthsankar S Nair
- Department of Computational Biology and Bioinformatics, University of Kerala, Kerala, Thiruvananthapuram, India
| |
Collapse
|
11
|
Suleman M, Luqman M, Khan J, Ali S, Ali SS, Khan A, Khan H, Ali Z, Khan W, Rizwan M, Ullah N. Structural insights into the effect of mutations in the spike protein of SARS-CoV-2 on the binding with human furin protein. Heliyon 2023; 9:e15083. [PMID: 37064465 PMCID: PMC10065812 DOI: 10.1016/j.heliyon.2023.e15083] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
The SARS COV-2 and its variants are spreading around the world at an alarming speed, due to its higher transmissibility and the conformational changes caused by mutations. The resulting COVID-19 pandemic has imposed severe health consequences on human health. Several countries of the world including Pakistan have studied its genome extensively and provided productive findings. In the current study, the mCSM, DynaMut2, and I-Mutant servers were used to analyze the effect of identified mutations on the structural stability of spike protein however, the molecular docking and simulations approaches were used to evaluate the dynamics of the bonding network between the wild-type and mutant spike proteins with furin. We addressed the mutational modifications that have occurred in the spike protein of SARS-COV-2 that were found in 215 Pakistani's isolates of COVID-19 patients to study the influence of mutations on the stability of the protein and its interaction with the host cell. We found 7 single amino acid substitute mutations in various domains that reside in spike protein. The H49Y, N74K, G181V, and G446V were found in the S1 domain while the D614A, V622F, and Q677H mutations were found in the central helices of the spike protein. Based on the observation, G181V, G446V, D614A, and V622F mutants were found highly destabilizing and responsible for structural perturbation. Protein-protein docking and molecular simulation analysis with that of furin have predicted that all the mutants enhanced the binding efficiency however, the V622F mutant has greatly altered the binding capacity which is further verified by the KD value (7.1 E-14) and therefore may enhance the spike protein cleavage by Furin and increase the rate of infectivity by SARS-CoV-2. On the other hand, the total binding energy for each complex was calculated which revealed -50.57 kcal/mol for the wild type, for G181V -52.69 kcal/mol, for G446V -56.44 kcal/mol, for D614A -59.78 kcal/mol while for V622F the TBE was calculated to be -85.84 kcal/mol. Overall, the current finding shows that these mutations have increased the binding of Furin for spike protein and shows that D614A and V622F have significant effects on the binding and infectivity.
Collapse
|
12
|
Gomari MM, Tarighi P, Choupani E, Abkhiz S, Mohamadzadeh M, Rostami N, Sadroddiny E, Baammi S, Uversky VN, Dokholyan NV. Structural evolution of Delta lineage of SARS-CoV-2. Int J Biol Macromol 2023; 226:1116-1140. [PMID: 36435470 PMCID: PMC9683856 DOI: 10.1016/j.ijbiomac.2022.11.227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
One of the main obstacles in prevention and treatment of COVID-19 is the rapid evolution of the SARS-CoV-2 Spike protein. Given that Spike is the main target of common treatments of COVID-19, mutations occurring at this virulent factor can affect the effectiveness of treatments. The B.1.617.2 lineage of SARS-CoV-2, being characterized by many Spike mutations inside and outside of its receptor-binding domain (RBD), shows high infectivity and relative resistance to existing cures. Here, utilizing a wide range of computational biology approaches, such as immunoinformatics, molecular dynamics (MD), analysis of intrinsically disordered regions (IDRs), protein-protein interaction analyses, residue scanning, and free energy calculations, we examine the structural and biological attributes of the B.1.617.2 Spike protein. Furthermore, the antibody design protocol of Rosetta was implemented for evaluation the stability and affinity improvement of the Bamlanivimab (LY-CoV55) antibody, which is not capable of interactions with the B.1.617.2 Spike. We observed that the detected mutations in the Spike of the B1.617.2 variant of concern can cause extensive structural changes compatible with the described variation in immunogenicity, secondary and tertiary structure, oligomerization potency, Furin cleavability, and drug targetability. Compared to the Spike of Wuhan lineage, the B.1.617.2 Spike is more stable and binds to the Angiotensin-converting enzyme 2 (ACE2) with higher affinity.
Collapse
Affiliation(s)
- Mohammad Mahmoudi Gomari
- Student Research Committee, Iran University of Medical Sciences, Tehran 1449614535, Iran; Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Parastoo Tarighi
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Edris Choupani
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Shadi Abkhiz
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Masoud Mohamadzadeh
- Department of Chemistry, Faculty of Sciences, University of Hormozgan, Bandar Abbas 7916193145, Iran
| | - Neda Rostami
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak 3848177584, Iran
| | - Esmaeil Sadroddiny
- Medical Biotechnology Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran
| | - Soukayna Baammi
- African Genome Centre (AGC), Mohammed VI Polytechnic University, Benguerir 43150, Morocco
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33620, USA; Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia.
| | - Nikolay V Dokholyan
- Department of Pharmacology, Department of Biochemistry & Molecular Biology, Pennsylvania State University College of Medicine, Hershey, PA 16802, USA.
| |
Collapse
|
13
|
Santos FRDS, de Azevedo MSP, Bielavsky M, da Costa HHM, Ribeiro DG, Nascimento GGD, Marcondes GMP, de Castro BP, de Lima Neto DF, Prudencio CR. Mutational profile confers increased stability of SARS-CoV-2 spike protein in Brazilian isolates. J Biomol Struct Dyn 2022; 40:13184-13189. [PMID: 34633892 DOI: 10.1080/07391102.2021.1982775] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Spike (S) protein has been recognized as a promising molecular target for diagnostic, vaccines and antiviral drugs development for COVID-19. In this study, we analyzed the most predominant mutations in the S protein of Brazilian isolates and predicted the effect of these amino acid alterations to protein conformation. A total of 25,924 sequences were obtained from GISAID for five regions of Brazilian territory (Midwest, North, Northeast, South, and Southeast), according to exclusion criteria. Most of the SARS-CoV-2 isolates belongs to the G clade and showed a large occurrence of D614G, N501Y and L18F substitutions. Prediction effects of these amino acid substitutions on the structure dynamics of the spike protein indicated a positive ΔΔG values and negative ΔΔSVib in most cases which is associated to structural stabilization and flexibility reduction of the S protein. Mutations E484K, N501Y and K417N belong to several SARS-CoV-2 variants of concern such as Alpha, Beta, Gamma and Delta, and showed high incidence among Brazilian isolates. These mutations have been described to increase RBD affinity to ACE-2 host and abolishment of RBD affinity to potent neutralizing ant-RBD. The increase in rates of infection and reinfection requires continuous genomic surveillance studies in order to characterize emerging mutations and monitor vaccine efficacy, and thus consideration structural data and dynamics in the observed phenotypes.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | | | - Monica Bielavsky
- Laboratory of Immunotechnology, Center of Immunology, Adolfo Lutz Institute, São Paulo, SP, Brazil
| | | | - Daniela Gomes Ribeiro
- Laboratory of Immunotechnology, Center of Immunology, Adolfo Lutz Institute, São Paulo, SP, Brazil
| | | | | | | | - Daniel Ferreira de Lima Neto
- Coordenação-Geral de Laboratórios de Saúde Pública, Secretaria de Vigilância em Saúde, Ministério da Saúde, Brasília, Distrito Federal, Brazil.,Laboratório de Termodinâmica de Proteínas, Departamento de Bioquímica, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Carlos Roberto Prudencio
- Laboratory of Immunotechnology, Center of Immunology, Adolfo Lutz Institute, São Paulo, SP, Brazil
| |
Collapse
|
14
|
de Souza A, de Freitas Amorim VM, Guardia GDA, dos Santos FRC, dos Santos FF, de Souza RF, de Araujo Juvenal G, Huang Y, Ge P, Jiang Y, Li C, Paudel P, Ulrich H, Galante PAF, Guzzo CR. Molecular Dynamics Analysis of Fast-Spreading Severe Acute Respiratory Syndrome Coronavirus 2 Variants and Their Effects on the Interaction with Human Angiotensin-Converting Enzyme 2. ACS OMEGA 2022; 7:30700-30709. [PMID: 36068861 PMCID: PMC9437663 DOI: 10.1021/acsomega.1c07240] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is evolving with mutations in the spike protein, especially in the receptor-binding domain (RBD). The failure of public health measures in some countries to contain the spread of the disease has given rise to novel viral variants with increased transmissibility. However, key questions about how quickly the variants can spread remain unclear. Herein, we performed a structural investigation using molecular dynamics simulations and determined dissociation constant (K D) values using surface plasmon resonance assays of three fast-spreading SARS-CoV-2 variants, alpha, beta, and gamma, as well as genetic factors in host cells that may be related to the viral infection. Our results suggest that the SARS-CoV-2 variants facilitate their entry into the host cell by moderately increased binding affinities to the human ACE2 receptor, different torsions in hACE2 mediated by RBD variants, and an increased spike exposure time to proteolytic enzymes. We also found that other host cell aspects, such as gene and isoform expression of key genes for the infection (ACE2, FURIN, and TMPRSS2), may have few contributions to the SARS-CoV-2 variant infectivity. In summary, we concluded that a combination of viral and host cell factors allows SARS-CoV-2 variants to increase their abilities to spread faster than the wild type.
Collapse
Affiliation(s)
- Anacleto
Silva de Souza
- Department
of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil
| | | | | | - Felipe R. C. dos Santos
- Molecular
Oncology Center, Hospital Sírio Libanes, São Paulo 01308-050, Brazil
- Programa
Interunidades Em Bioinformática, University of São Paulo, São Paulo 05508-900, Brazil
| | - Filipe F. dos Santos
- Molecular
Oncology Center, Hospital Sírio Libanes, São Paulo 01308-050, Brazil
- Department
of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-900, Brazil
| | - Robson Francisco de Souza
- Department
of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil
| | | | - Yihua Huang
- ACROBiosystems
Inc., 8 N. Hongda Rd.,
Beijing Economic-Technological Development Area, Beijing 100176, China
| | - Pingju Ge
- ACROBiosystems
Inc., 8 N. Hongda Rd.,
Beijing Economic-Technological Development Area, Beijing 100176, China
| | - Yinan Jiang
- ACROBiosystems
Inc., 8 N. Hongda Rd.,
Beijing Economic-Technological Development Area, Beijing 100176, China
| | - Coco Li
- ACROBiosystems
Inc., 8 N. Hongda Rd.,
Beijing Economic-Technological Development Area, Beijing 100176, China
| | - Prajwal Paudel
- ACROBiosystems
Inc., 8 N. Hongda Rd.,
Beijing Economic-Technological Development Area, Beijing 100176, China
| | - Henning Ulrich
- Department
of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-900, Brazil
| | - Pedro A. F. Galante
- Molecular
Oncology Center, Hospital Sírio Libanes, São Paulo 01308-050, Brazil
| | - Cristiane Rodrigues Guzzo
- Department
of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil
| |
Collapse
|
15
|
Khan ZS, Van Bussel F, Hussain F. Modeling the change in European and US COVID-19 death rates. PLoS One 2022; 17:e0268332. [PMID: 35976910 PMCID: PMC9385065 DOI: 10.1371/journal.pone.0268332] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 04/28/2022] [Indexed: 11/18/2022] Open
Abstract
Motivated by several possible differences in Covid-19 virus strains, age demographics, and face mask wearing between continents and countries, we focussed on changes in Covid death rates in 2020. We have extended our Covid-19 multicompartment model (Khan et al., 2020) to fit cumulative case and death data for 49 European countries and 52 US states and territories during the recent pandemic, and found that the case mortality rate had decreased by at least 80% in most of the US and at least 90% in most of Europe. We found that death rate decreases do not have strong correlations to other model parameters (such as contact rate) or other standard state/national metrics such as population density, GDP, and median age. Almost all the decreases occurred between mid-April and mid-June 2020, which corresponds to the time when many state and national lockdowns were relaxed resulting in surges of new cases. We examine here several plausible causes for this drop—improvements in treatment, face mask wearing, new virus strains, testing, potentially changing demographics of infected patients, and changes in data collection and reporting—but none of their effects are as significant as the death rate changes suggest. In conclusion, this work shows that a two death rate model is effective in quantifying the reported drop in death rates.
Collapse
Affiliation(s)
- Zeina S. Khan
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, United States of America
- * E-mail:
| | - Frank Van Bussel
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, United States of America
| | - Fazle Hussain
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, United States of America
| |
Collapse
|
16
|
Alshawaf E, Hammad MM, Marafie SK, Ali H, Al-Mulla F, Abubaker J, Mohammad A. Discovery of natural products to block SARS-CoV-2 S-protein interaction with Neuropilin-1 receptor: A molecular dynamics simulation approach. Microb Pathog 2022; 170:105701. [PMID: 35963279 PMCID: PMC9364730 DOI: 10.1016/j.micpath.2022.105701] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 10/26/2022]
Abstract
Neuropilin-1 (NRP1) is a widely expressed cell surface receptor protein characterized by its pleiotropic function. Recent reports highlighted NRP1 as an additional entry point of the SARS-CoV-2 virus, enhancing viral infectivity by interacting with the S-protein of SARS-CoV-2. The ubiquitous distribution and mechanism of action of NRP1 enable the SARS-CoV-2 virus to attack multiple organs in the body simultaneously. Therefore, blocking NRP1 is a potential therapeutic approach against SARS-CoV-2 infection. The current study screened the South African natural compounds database (SANCDB) for molecules that can disrupt the SARS-CoV-2 S protein-NRP1 interaction as a potential antiviral target for SARS-CoV-2 cellular entry. Following excessive screening and validation analysis 3-O-Methylquercetin and Esculetin were identified as potential compounds to disrupt the S-protein-NRP1 interaction. Furthermore, to understand the conformational stability and dynamic features between NRP1 interaction with the selected natural products, we performed 200 ns molecular dynamics (MD) simulations. In addition, molecular mechanics-generalized Born surface area (MM/GBSA) was utilized to calculate the free binding energies of the natural products interacting with NRP1. 3-O-methylquercetin showed an inhibitory effect with binding energies ΔG of -25.52 ± 0.04 kcal/mol to NRP1, indicating the possible disruption of the NRP1-S-protein interaction. Our analysis demonstrated that 3-O-methylquercetin presents a potential antiviral compound against SARS-CoV-2 infectivity. These results set the path for future functional in-vitro and in-vivo studies in SARS-CoV-2 research.
Collapse
Affiliation(s)
- Eman Alshawaf
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman, Kuwait, 15462
| | - Maha M Hammad
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman, Kuwait, 15462
| | - Sulaiman K Marafie
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman, Kuwait, 15462
| | - Hamad Ali
- Faculty of Department of Medical Laboratory Sciences 2, Faculty of Allied Health Sciences, Health Sciences Center (HSC), Kuwait University, Jabriya, Kuwait University, Kuwait; Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman, Kuwait, 15462
| | - Fahd Al-Mulla
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman, Kuwait, 15462
| | - Jehad Abubaker
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman, Kuwait, 15462
| | - Anwar Mohammad
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman, Kuwait, 15462.
| |
Collapse
|
17
|
Li H, Hong X, Ding L, Meng S, Liao R, Jiang Z, Liu D. Sequence similarity of SARS-CoV-2 and humans: Implications for SARS-CoV-2 detection. Front Genet 2022; 13:946359. [PMID: 35937998 PMCID: PMC9355506 DOI: 10.3389/fgene.2022.946359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
Detecting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) needs human samples, which inevitably contain trace human DNA and RNA. Sequence similarity may cause invalid detection results; however, there is still a lack of gene similarity analysis of SARS-CoV-2 and humans. All publicly reported complete genome assemblies in the Entrez genome database were collected for multiple sequence alignment, similarity and phylogenetic analysis. The complete genomes showed high similarity (>99.88% sequence identity). Phylogenetic analysis divided these viruses into three major clades with significant geographic group effects. Viruses from the United States showed considerable variability. Sequence similarity analysis revealed that SARS-CoV-2 has 612 similar sequences with the human genome and 100 similar sequences with the human transcriptome. The sequence characteristics and genome distribution of these similar sequences were confirmed. The sequence similarity and evolutionary mutations provide indispensable references for dynamic updates of SARS-CoV-2 detection primers and methods.
Collapse
Affiliation(s)
- Heng Li
- Department of Rheumatology and Immunology, Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, China
| | - Xiaoping Hong
- Department of Rheumatology and Immunology, Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Liping Ding
- Department of Rheumatology and Immunology, Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Shuhui Meng
- Department of Rheumatology and Immunology, Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Rui Liao
- Department of Rheumatology and Immunology, Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Zhenyou Jiang
- Department of Microbiology and Immunology, School of Medicine, Jinan University, Guangzhou, China
- *Correspondence: Zhenyou Jiang, ; Dongzhou Liu,
| | - Dongzhou Liu
- Department of Rheumatology and Immunology, Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, China
- *Correspondence: Zhenyou Jiang, ; Dongzhou Liu,
| |
Collapse
|
18
|
Yang H, Liu P, Zhang Y, Du T, Zhou Y, Lu S, Peng X. Characteristic analysis of Omicron-included SARS-CoV-2 variants of concern. MedComm (Beijing) 2022; 3:e129. [PMID: 35434714 PMCID: PMC8994548 DOI: 10.1002/mco2.129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 12/19/2022] Open
Abstract
In view of the rapid development of the COVID-19 pandemic and SARS-CoV-2 mutation, we characterized the emerging SARS-CoV-2 variants of concern (VOCs) by both bioinformatics methods and experiments. The representative genomic sequences of SARS-CoV-2 VOCs were first downloaded from NCBI, including the prototypic strain, Alpha (B.1.1.7) strain, Beta (B.1.351) strain, Delta (B.1.617.2), and Omicron (B1.1.529) strain. Bioinformatics analysis revealed that the D614G mutation led to formation of a protruding spike (S) in the tertiary structure of spike protein, which could be responsible for the enhanced binding to angiotensin-converting enzyme 2 (ACE2) receptor. The epitope analysis further showed that the S protein antigenicity of the Omicron variant changed dramatically, which was possibly associated with its enhanced ability of immune escape. To verify the bioinformatics results, we performed experiments of pseudovirus infection and protein affinity assay. Notably, we found that the spike protein of Omicron variant showed the weakest infectivity and binding ability among all tested strains. Finally, we also proved this through virus infection experiments, and found that the cytotoxicity of Omicron seems to be not strong enough. The results in this study provide guidelines for prevention and control of COVID-19.
Collapse
Affiliation(s)
- Hao Yang
- Institute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeKunmingYunnanChina
| | - Penghui Liu
- Institute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeKunmingYunnanChina
| | - Yong Zhang
- Institute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeKunmingYunnanChina
| | - Tingfu Du
- Institute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeKunmingYunnanChina
| | - Yanan Zhou
- Institute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeKunmingYunnanChina
| | - Shuaiyao Lu
- Institute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeKunmingYunnanChina
| | - Xiaozhong Peng
- Institute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeKunmingYunnanChina
- State Key Laboratory of Medical Molecular BiologyDepartment of Molecular Biology and BiochemistryInstitute of Basic Medical SciencesMedical Primate Research CenterNeuroscience CenterChinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijingChina
| |
Collapse
|
19
|
Rayati Damavandi A, Dowran R, Al Sharif S, Kashanchi F, Jafari R. Molecular variants of SARS-CoV-2: antigenic properties and current vaccine efficacy. Med Microbiol Immunol 2022; 211:79-103. [PMID: 35235048 PMCID: PMC8889515 DOI: 10.1007/s00430-022-00729-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/09/2022] [Indexed: 12/30/2022]
Abstract
An ongoing pandemic of newly emerged SARS-CoV-2 has puzzled many scientists and health care policymakers around the globe. The appearance of the virus was accompanied by several distinct antigenic changes, specifically spike protein which is a key element for host cell entry of virus and major target of currently developing vaccines. Some of these mutations enable the virus to attach to receptors more firmly and easily. Moreover, a growing number of trials are demonstrating higher transmissibility and, in some of them, potentially more serious forms of illness related to novel variants. Some of these lineages, especially the Beta variant of concern, were reported to diminish the neutralizing activity of monoclonal and polyclonal antibodies present in both convalescent and vaccine sera. This could imply that these independently emerged variants could make antiviral strategies prone to serious threats. The rapid changes in the mutational profile of new clades, especially escape mutations, suggest the convergent evolution of the virus due to immune pressure. Nevertheless, great international efforts have been dedicated to producing efficacious vaccines with cutting-edge technologies. Despite the partial decrease in vaccines efficacy against worrisome clades, most current vaccines are still effective at preventing mild to severe forms of disease and hospital admission or death due to coronavirus disease 2019 (COVID-19). Here, we summarize existing evidence about newly emerged variants of SARS-CoV-2 and, notably, how well vaccines work against targeting new variants and modifications of highly flexible mRNA vaccines that might be required in the future.
Collapse
Affiliation(s)
- Amirmasoud Rayati Damavandi
- Students’ Scientific Research Center, Exceptional Talents Development Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Razieh Dowran
- Students’ Scientific Research Center, Exceptional Talents Development Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sarah Al Sharif
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA USA
| | - Fatah Kashanchi
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA USA
| | - Reza Jafari
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
- Hematology, Immune Cell Therapy, and Stem Cell Transplantation Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
20
|
Shah A, Rehmat S, Aslam I, Suleman M, Batool F, Aziz A, Rashid F, Midrarullah, Nawaz MA, Ali SS, Junaid M, Khan A, Wei DQ. Comparative mutational analysis of SARS-CoV-2 isolates from Pakistan and structural-functional implications using computational modelling and simulation approaches. Comput Biol Med 2022; 141:105170. [PMID: 34968862 PMCID: PMC8709794 DOI: 10.1016/j.compbiomed.2021.105170] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 01/08/2023]
Abstract
SARS-CoV-2, an RNA virus, has been prone to high mutations since its first emergence in Wuhan, China, and throughout its spread. Its genome has been sequenced continuously by many countries, including Pakistan, but the results vary. Understanding its genomic patterns and connecting them with phenotypic features will help in devising therapeutic strategies. Thus, in this study, we explored the mutation landscape of 250 Pakistani isolates of SARS-CoV-2 genomes to check the genome diversity and examine the impact of these mutations on protein stability and viral pathogenesis in comparison with a reference sequence (Wuhan NC 045512.2). Our results revealed that structural proteins mainly exhibit more mutations than others in the Pakistani isolates; in particular, the nucleocapsid protein is highly mutated. In comparison, the spike protein is the most mutated protein globally. Furthermore, nsp12 was found to be the most mutated NSP in the Pakistani isolates and worldwide. Regarding accessory proteins, ORF3A is the most mutated in the Pakistani isolates, whereas ORF8 is highly mutated in world isolates. These mutations decrease the structural stability of their proteins and alter different biological pathways. Molecular docking, the dissociation constant (KD), and MM/GBSA analysis showed that mutations in the S protein alter its binding with ACE2. The spike protein mutations D614G-S943T-V622F (-75.17 kcal/mol), D614G-Q677H (-75.78 kcal/mol), and N74K-D614G (-73.84 kcal/mol) exhibit stronger binding energy than the wild type (-66.34 kcal/mol), thus increasing infectivity. Furthermore, the simulation results strongly corroborated the predicted protein servers. Our analysis findings also showed that E, M, ORF6, ORF7A, ORF7B, and ORF10 are the most stable coding genes; they may be suitable targets for vaccine and drug development.
Collapse
Affiliation(s)
- Abdullah Shah
- Department of Biotechnology, Shaheed Benazir Bhutto University Sheringal, Dir (U), Pakistan
| | - Saira Rehmat
- Sharif Medical and Dental College, Lahore, Pakistan.
| | - Iqra Aslam
- Nawaz Shareef Medical College, Gujrat, Pakistan.
| | - Muhmmad Suleman
- Centre for Biotechnology and Microbiology, University of Swat, Khyber Pakhtunkhwa, Pakistan
| | - Farah Batool
- Institute of Pharmacy and Allied Health Sciences, Lahore College for Women University, Jail Road, Lahore, Pakistan.
| | - Abdul Aziz
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha, China
| | - Farooq Rashid
- Dermatology Hospital, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Midrarullah
- Department of Biotechnology, Shaheed Benazir Bhutto University Sheringal, Dir (U), Pakistan
| | - Muhmmad Asif Nawaz
- Department of Biotechnology, Shaheed Benazir Bhutto University Sheringal, Dir (U), Pakistan
| | - Syed Shujait Ali
- Centre for Biotechnology and Microbiology, University of Swat, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Junaid
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Abbas Khan
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China.
| | - Dong-Qing Wei
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China; State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint Laboratory of International Laboratory of Metabolic and Developmental Sciences, Ministry of Education and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, PR China; Peng Cheng Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nashan District, Shenzhen, Guangdong, 518055, PR China.
| |
Collapse
|
21
|
Kim SH, Kearns FL, Rosenfeld MA, Casalino L, Papanikolas MJ, Simmerling C, Amaro RE, Freeman R. GlycoGrip: Cell Surface-Inspired Universal Sensor for Betacoronaviruses. ACS CENTRAL SCIENCE 2022; 8:22-42. [PMID: 35106370 PMCID: PMC8796303 DOI: 10.1021/acscentsci.1c01080] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Indexed: 05/02/2023]
Abstract
Inspired by the role of cell-surface glycoproteins as coreceptors for pathogens, we report the development of GlycoGrip: a glycopolymer-based lateral flow assay for detecting SARS-CoV-2 and its variants. GlycoGrip utilizes glycopolymers for primary capture and antispike antibodies labeled with gold nanoparticles for signal-generating detection. A lock-step integration between experiment and computation has enabled efficient optimization of GlycoGrip test strips which can selectively, sensitively, and rapidly detect SARS-CoV-2 and its variants in biofluids. Employing the power of the glycocalyx in a diagnostic assay has distinct advantages over conventional immunoassays as glycopolymers can bind to antigens in a multivalent capacity and are highly adaptable for mutated strains. As new variants of SARS-CoV-2 are identified, GlycoGrip will serve as a highly reconfigurable biosensor for their detection. Additionally, via extensive ensemble-based docking simulations which incorporate protein and glycan motion, we have elucidated important clues as to how heparan sulfate and other glycocalyx components may bind the spike glycoprotein during SARS-CoV-2 host-cell infection. GlycoGrip is a promising and generalizable alternative to costly, labor-intensive RT-PCR, and we envision it will be broadly useful, including for rural or low-income populations that are historically undertested and under-reported in infection statistics.
Collapse
Affiliation(s)
- Sang Hoon Kim
- University
of North Carolina−Chapel Hill, Department of Applied Physical Sciences, 1112 Murray Hall, CB#3050, Chapel Hill, North Carolina 27599-2100, United States
| | - Fiona L. Kearns
- University
of California−San Diego, Department of Chemistry and Biochemistry, 3234 Urey Hall, MC-0340, La Jolla, California 92093-0340, United States
| | - Mia A. Rosenfeld
- University
of California−San Diego, Department of Chemistry and Biochemistry, 3234 Urey Hall, MC-0340, La Jolla, California 92093-0340, United States
| | - Lorenzo Casalino
- University
of California−San Diego, Department of Chemistry and Biochemistry, 3234 Urey Hall, MC-0340, La Jolla, California 92093-0340, United States
| | - Micah J. Papanikolas
- University
of North Carolina−Chapel Hill, Department of Applied Physical Sciences, 1112 Murray Hall, CB#3050, Chapel Hill, North Carolina 27599-2100, United States
| | - Carlos Simmerling
- SUNY
Stony Brook, Department of Chemistry, 537 Chemistry/119 Laufer Center,
100 Nicolls Road, 104 Chemistry, Stony Brook, New York 11790-3400, United States
| | - Rommie E. Amaro
- University
of California−San Diego, Department of Chemistry and Biochemistry, 3234 Urey Hall, MC-0340, La Jolla, California 92093-0340, United States
| | - Ronit Freeman
- University
of North Carolina−Chapel Hill, Department of Applied Physical Sciences, 1112 Murray Hall, CB#3050, Chapel Hill, North Carolina 27599-2100, United States
| |
Collapse
|
22
|
Khan A, Khan T, Ali S, Aftab S, Wang Y, Qiankun W, Khan M, Suleman M, Ali S, Heng W, Ali SS, Wei DQ, Mohammad A. SARS-CoV-2 new variants: Characteristic features and impact on the efficacy of different vaccines. Biomed Pharmacother 2021; 143:112176. [PMID: 34562770 PMCID: PMC8433040 DOI: 10.1016/j.biopha.2021.112176] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 01/10/2023] Open
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its new variants reported in different countries have posed a serious threat to human health and social fabrics worldwide. In addition, these new variants hindered the efforts of vaccines and other therapeutic developments. In this review article, we explained the emergence of new variants of SARS-CoV-2, their transmission risk, mortality rate, and, more importantly, the impact of each new variant on the efficacy of the developed vaccines reported in different literature and findings. The literature reported that with the emergence of new variants, the efficacy of different vaccines is declined, hospitalization and the risk of reinfection is increased. The reports concluded that the emergence of a variant that entirely evades the immune response triggered by the vaccine is improbable. The emergence of new variants and reports of re-infections are creating a more distressing situation and therefore demands further investigation to formulate an effective therapeutic strategy.
Collapse
Affiliation(s)
- Abbas Khan
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Taimoor Khan
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Shughla Ali
- Department of Zoology, Swat College of Science and Technology (SCST), Swat, Khyber Pakhtunkhwa, Pakistan
| | - Summiya Aftab
- Department of Zoology, Government Girls Degree College, Thana, Khyber Pakhtunkhwa, Pakistan
| | - Yanjing Wang
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Wang Qiankun
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Mazhar Khan
- The CAS Key Laboratory of Innate Immunity and Chronic Diseases, Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China (USTC), Collaborative Innovation Center of Genetics and Development, Hefei 230027, Anhui, PR China
| | - Muhammad Suleman
- Center for Biotechnology and Microbiology, University of Swat, Kanju Campus, Swat, Pakistan
| | - Shahid Ali
- Center for Biotechnology and Microbiology, University of Swat, Kanju Campus, Swat, Pakistan
| | - Wang Heng
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| | - Syed Shujait Ali
- Center for Biotechnology and Microbiology, University of Swat, Kanju Campus, Swat, Pakistan
| | - Dong-Qing Wei
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China; Peng Cheng Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nashan District, Shenzhen, Guangdong 518055, PR China; State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, PR China.
| | - Anwar Mohammad
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Kuwait
| |
Collapse
|
23
|
Chen C, Boorla VS, Banerjee D, Chowdhury R, Cavener VS, Nissly RH, Gontu A, Boyle NR, Vandegrift K, Nair MS, Kuchipudi SV, Maranas CD. Computational prediction of the effect of amino acid changes on the binding affinity between SARS-CoV-2 spike RBD and human ACE2. Proc Natl Acad Sci U S A 2021; 118:e2106480118. [PMID: 34588290 PMCID: PMC8594574 DOI: 10.1073/pnas.2106480118] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2021] [Indexed: 01/22/2023] Open
Abstract
The association of the receptor binding domain (RBD) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein with human angiotensin-converting enzyme 2 (hACE2) represents the first required step for cellular entry. SARS-CoV-2 has continued to evolve with the emergence of several novel variants, and amino acid changes in the RBD have been implicated with increased fitness and potential for immune evasion. Reliably predicting the effect of amino acid changes on the ability of the RBD to interact more strongly with the hACE2 can help assess the implications for public health and the potential for spillover and adaptation into other animals. Here, we introduce a two-step framework that first relies on 48 independent 4-ns molecular dynamics (MD) trajectories of RBD-hACE2 variants to collect binding energy terms decomposed into Coulombic, covalent, van der Waals, lipophilic, generalized Born solvation, hydrogen bonding, π-π packing, and self-contact correction terms. The second step implements a neural network to classify and quantitatively predict binding affinity changes using the decomposed energy terms as descriptors. The computational base achieves a validation accuracy of 82.8% for classifying single-amino acid substitution variants of the RBD as worsening or improving binding affinity for hACE2 and a correlation coefficient of 0.73 between predicted and experimentally calculated changes in binding affinities. Both metrics are calculated using a fivefold cross-validation test. Our method thus sets up a framework for screening binding affinity changes caused by unknown single- and multiple-amino acid changes offering a valuable tool to predict host adaptation of SARS-CoV-2 variants toward tighter hACE2 binding.
Collapse
Affiliation(s)
- Chen Chen
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802
| | - Veda Sheersh Boorla
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802
| | - Deepro Banerjee
- The Bioinformatics and Genomics Program, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802
| | - Ratul Chowdhury
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802
| | - Victoria S Cavener
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802
| | - Ruth H Nissly
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802
| | - Abhinay Gontu
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802
| | - Nina R Boyle
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802
| | - Kurt Vandegrift
- Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA 16802
| | - Meera Surendran Nair
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802
| | - Suresh V Kuchipudi
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802;
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802
- Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA 16802
| | - Costas D Maranas
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802;
| |
Collapse
|
24
|
Zrieq R, Ahmad I, Snoussi M, Noumi E, Iriti M, Algahtani FD, Patel H, Saeed M, Tasleem M, Sulaiman S, Aouadi K, Kadri A. Tomatidine and Patchouli Alcohol as Inhibitors of SARS-CoV-2 Enzymes (3CLpro, PLpro and NSP15) by Molecular Docking and Molecular Dynamics Simulations. Int J Mol Sci 2021; 22:10693. [PMID: 34639036 PMCID: PMC8509278 DOI: 10.3390/ijms221910693] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 12/24/2022] Open
Abstract
Considering the current dramatic and fatal situation due to the high spreading of SARS-CoV-2 infection, there is an urgent unmet medical need to identify novel and effective approaches for prevention and treatment of Coronavirus disease (COVID 19) by re-evaluating and repurposing of known drugs. For this, tomatidine and patchouli alcohol have been selected as potential drugs for combating the virus. The hit compounds were subsequently docked into the active site and molecular docking analyses revealed that both drugs can bind the active site of SARS-CoV-2 3CLpro, PLpro, NSP15, COX-2 and PLA2 targets with a number of important binding interactions. To further validate the interactions of promising compound tomatidine, Molecular dynamics study of 100 ns was carried out towards 3CLpro, NSP15 and COX-2. This indicated that the protein-ligand complex was stable throughout the simulation period, and minimal backbone fluctuations have ensued in the system. Post dynamic MM-GBSA analysis of molecular dynamics data showed promising mean binding free energy 47.4633 ± 9.28, 51.8064 ± 8.91 and 54.8918 ± 7.55 kcal/mol, respectively. Likewise, in silico ADMET studies of the selected ligands showed excellent pharmacokinetic properties with good absorption, bioavailability and devoid of toxicity. Therefore, patchouli alcohol and especially, tomatidine may provide prospect treatment options against SARS-CoV-2 infection by potentially inhibiting virus duplication though more research is guaranteed and secured.
Collapse
Affiliation(s)
- Rafat Zrieq
- Department of Public Health, College of Public Health and Health Informatics, University of Ha’il, Ha’il 81451, Saudi Arabia; (R.Z.); (F.D.A.)
| | - Iqrar Ahmad
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra 425405, India; (I.A.); (H.P.)
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Ha’il City, P.O. 2440, Ha’il 2440, Saudi Arabia; (E.N.); (M.S.)
- Laboratory of Genetics, Biodiversity and Valorization of Bio-Resources (LR11ES41), University of Monastir, Higher Institute of Biotechnology of Monastir, Avenue Tahar Haddad, BP74, Monastir 5000, Tunisia
| | - Emira Noumi
- Department of Biology, College of Science, University of Ha’il City, P.O. 2440, Ha’il 2440, Saudi Arabia; (E.N.); (M.S.)
- Laboratory of Bioresources: Integrative Biology and Valorization, (LR14-ES06), University of Monastir, Higher Institute of Biotechnology of Monastir, Avenue Tahar Haddad, BP74, Monastir 5000, Tunisia
| | - Marcello Iriti
- Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, 20133 Milano, Italy
- Phytochem Lab., Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, 20133 Milano, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), 50121 Firenze, Italy
- BAT Center—Interuniversity Center for Studies on Bioispired Agro-Environmental Technology, University of Napoli “Federico II”, Portici, 80055 Napoli, Italy
| | - Fahad D. Algahtani
- Department of Public Health, College of Public Health and Health Informatics, University of Ha’il, Ha’il 81451, Saudi Arabia; (R.Z.); (F.D.A.)
- Molecular Diagnostic and Personalized Therapeutics Unit, University of Ha’il, Ha’il 81451, Saudi Arabia
| | - Harun Patel
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra 425405, India; (I.A.); (H.P.)
| | - Mohd Saeed
- Department of Biology, College of Science, University of Ha’il City, P.O. 2440, Ha’il 2440, Saudi Arabia; (E.N.); (M.S.)
| | - Munazzah Tasleem
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China;
| | - Shadi Sulaiman
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, University of Ha’il, Ha’il 81451, Saudi Arabia;
| | - Kaïss Aouadi
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia;
- Faculty of Science of Monastir, University of Monastir, Avenue of the Environment, Monastir 5019, Tunisia
| | - Adel Kadri
- Department of Chemistry, Faculty of Science and Arts of Baljurashi, Albaha University, Al Bahah 65731, Saudi Arabia;
- Faculty of Science of Sfax, Department of Chemistry, University of Sfax, B.P. 1171, Sfax 3000, Tunisia
| |
Collapse
|
25
|
Rego N, Salazar C, Paz M, Costábile A, Fajardo A, Ferrés I, Perbolianachis P, Fernández-Calero T, Noya V, Machado MR, Brandes M, Arce R, Arleo M, Possi T, Reyes N, Bentancor MN, Lizasoain A, Bortagaray V, Moller A, Chappos O, Nin N, Hurtado J, Duquía M, González MB, Griffero L, Méndez M, Techera MP, Zanetti J, Pereira E, Rivera B, Maidana M, Alonso M, Smircich P, Arantes I, Mir D, Alonso C, Medina J, Albornoz H, Colina R, Bello G, Moreno P, Moratorio G, Iraola G, Spangenberg L. Emergence and Spread of a B.1.1.28-Derived P.6 Lineage with Q675H and Q677H Spike Mutations in Uruguay. Viruses 2021; 13:1801. [PMID: 34578382 PMCID: PMC8473254 DOI: 10.3390/v13091801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/20/2021] [Accepted: 08/31/2021] [Indexed: 12/11/2022] Open
Abstract
Uruguay controlled the viral dissemination during the first nine months of the SARS-CoV-2 pandemic. Unfortunately, towards the end of 2020, the number of daily new cases exponentially increased. Herein, we analyzed the country-wide genetic diversity of SARS-CoV-2 between November 2020 and April 2021. We identified that the most prevalent viral variant during the first epidemic wave in Uruguay (December 2020-February 2021) was a B.1.1.28 sublineage carrying Spike mutations Q675H + Q677H, now designated as P.6, followed by lineages P.2 and P.7. P.6 probably arose around November 2020, in Montevideo, Uruguay's capital department, and rapidly spread to other departments, with evidence of further local transmission clusters; it also spread sporadically to the USA and Spain. The more efficient dissemination of lineage P.6 with respect to P.2 and P.7 and the presence of mutations (Q675H and Q677H) in the proximity of the key cleavage site at the S1/S2 boundary suggest that P.6 may be more transmissible than other lineages co-circulating in Uruguay. Although P.6 was replaced by the variant of concern (VOC) P.1 as the predominant lineage in Uruguay since April 2021, the monitoring of the concurrent emergence of Q675H + Q677H in VOCs should be of worldwide interest.
Collapse
Affiliation(s)
- Natalia Rego
- Bioinformatics Unit, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay; (N.R.); (T.F.-C.); (M.B.)
| | - Cecilia Salazar
- Laboratorio de Genómica Microbiana, Institut Pasteur Montevideo, Montevideo 11400, Uruguay; (C.S.); (I.F.)
- Centro de Innovación en Vigilancia Epidemiológica, Institut Pasteur Montevideo, Montevideo 11400, Uruguay; (M.P.); (A.C.)
| | - Mercedes Paz
- Centro de Innovación en Vigilancia Epidemiológica, Institut Pasteur Montevideo, Montevideo 11400, Uruguay; (M.P.); (A.C.)
| | - Alicia Costábile
- Centro de Innovación en Vigilancia Epidemiológica, Institut Pasteur Montevideo, Montevideo 11400, Uruguay; (M.P.); (A.C.)
- Laboratorio de Virología Molecular, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay; (A.F.); (P.P.); (R.A.)
- Laboratorio de Evolución Experimental de Virus, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
- Sección Bioquímica, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| | - Alvaro Fajardo
- Laboratorio de Virología Molecular, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay; (A.F.); (P.P.); (R.A.)
- Laboratorio de Evolución Experimental de Virus, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
| | - Ignacio Ferrés
- Laboratorio de Genómica Microbiana, Institut Pasteur Montevideo, Montevideo 11400, Uruguay; (C.S.); (I.F.)
- Centro de Innovación en Vigilancia Epidemiológica, Institut Pasteur Montevideo, Montevideo 11400, Uruguay; (M.P.); (A.C.)
| | - Paula Perbolianachis
- Laboratorio de Virología Molecular, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay; (A.F.); (P.P.); (R.A.)
- Laboratorio de Evolución Experimental de Virus, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
| | - Tamara Fernández-Calero
- Bioinformatics Unit, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay; (N.R.); (T.F.-C.); (M.B.)
- Department of Exact and Natural Sciences, Universidad Católica del Uruguay, Montevideo 11600, Uruguay
| | - Veronica Noya
- Laboratorio de Biología Molecular, Sanatorio Americano, Montevideo 11600, Uruguay; (V.N.); (M.A.); (T.P.); (N.R.); (M.N.B.)
| | - Matias R. Machado
- Protein Engineering, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay;
| | - Mariana Brandes
- Bioinformatics Unit, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay; (N.R.); (T.F.-C.); (M.B.)
| | - Rodrigo Arce
- Laboratorio de Virología Molecular, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay; (A.F.); (P.P.); (R.A.)
- Laboratorio de Evolución Experimental de Virus, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
- Laboratorio de Biología Molecular, Sanatorio Americano, Montevideo 11600, Uruguay; (V.N.); (M.A.); (T.P.); (N.R.); (M.N.B.)
| | - Mailen Arleo
- Laboratorio de Biología Molecular, Sanatorio Americano, Montevideo 11600, Uruguay; (V.N.); (M.A.); (T.P.); (N.R.); (M.N.B.)
| | - Tania Possi
- Laboratorio de Biología Molecular, Sanatorio Americano, Montevideo 11600, Uruguay; (V.N.); (M.A.); (T.P.); (N.R.); (M.N.B.)
| | - Natalia Reyes
- Laboratorio de Biología Molecular, Sanatorio Americano, Montevideo 11600, Uruguay; (V.N.); (M.A.); (T.P.); (N.R.); (M.N.B.)
| | - María Noel Bentancor
- Laboratorio de Biología Molecular, Sanatorio Americano, Montevideo 11600, Uruguay; (V.N.); (M.A.); (T.P.); (N.R.); (M.N.B.)
| | - Andrés Lizasoain
- Laboratorio de Virología Molecular, Departamento de Ciencias Biológicas, CENUR Litoral Norte, Universidad de la República, Salto 50000, Uruguay; (A.L.); (V.B.); (A.M.); (R.C.)
| | - Viviana Bortagaray
- Laboratorio de Virología Molecular, Departamento de Ciencias Biológicas, CENUR Litoral Norte, Universidad de la República, Salto 50000, Uruguay; (A.L.); (V.B.); (A.M.); (R.C.)
| | - Ana Moller
- Laboratorio de Virología Molecular, Departamento de Ciencias Biológicas, CENUR Litoral Norte, Universidad de la República, Salto 50000, Uruguay; (A.L.); (V.B.); (A.M.); (R.C.)
| | - Odhille Chappos
- Centro Universitario Regional Este, Universidad de la República, Rocha 27000, Uruguay; (O.C.); (M.D.); (M.B.G.); (L.G.); (M.M.); (M.P.T.); (J.Z.); (E.P.); (C.A.)
| | - Nicolas Nin
- Unidad de Cuidados Intensivos, Hospital Español “Juan J. Crottogini”, Montevideo 11800, Uruguay; (N.N.); (J.H.)
| | - Javier Hurtado
- Unidad de Cuidados Intensivos, Hospital Español “Juan J. Crottogini”, Montevideo 11800, Uruguay; (N.N.); (J.H.)
| | - Melissa Duquía
- Centro Universitario Regional Este, Universidad de la República, Rocha 27000, Uruguay; (O.C.); (M.D.); (M.B.G.); (L.G.); (M.M.); (M.P.T.); (J.Z.); (E.P.); (C.A.)
| | - Maria Belén González
- Centro Universitario Regional Este, Universidad de la República, Rocha 27000, Uruguay; (O.C.); (M.D.); (M.B.G.); (L.G.); (M.M.); (M.P.T.); (J.Z.); (E.P.); (C.A.)
| | - Luciana Griffero
- Centro Universitario Regional Este, Universidad de la República, Rocha 27000, Uruguay; (O.C.); (M.D.); (M.B.G.); (L.G.); (M.M.); (M.P.T.); (J.Z.); (E.P.); (C.A.)
| | - Mauricio Méndez
- Centro Universitario Regional Este, Universidad de la República, Rocha 27000, Uruguay; (O.C.); (M.D.); (M.B.G.); (L.G.); (M.M.); (M.P.T.); (J.Z.); (E.P.); (C.A.)
| | - Maria Pía Techera
- Centro Universitario Regional Este, Universidad de la República, Rocha 27000, Uruguay; (O.C.); (M.D.); (M.B.G.); (L.G.); (M.M.); (M.P.T.); (J.Z.); (E.P.); (C.A.)
| | - Juan Zanetti
- Centro Universitario Regional Este, Universidad de la República, Rocha 27000, Uruguay; (O.C.); (M.D.); (M.B.G.); (L.G.); (M.M.); (M.P.T.); (J.Z.); (E.P.); (C.A.)
| | - Emiliano Pereira
- Centro Universitario Regional Este, Universidad de la República, Rocha 27000, Uruguay; (O.C.); (M.D.); (M.B.G.); (L.G.); (M.M.); (M.P.T.); (J.Z.); (E.P.); (C.A.)
| | - Bernardina Rivera
- Laboratorio de Diagnóstico Molecular, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay; (B.R.); (M.M.); (M.A.)
| | - Matías Maidana
- Laboratorio de Diagnóstico Molecular, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay; (B.R.); (M.M.); (M.A.)
| | - Martina Alonso
- Laboratorio de Diagnóstico Molecular, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay; (B.R.); (M.M.); (M.A.)
| | - Pablo Smircich
- Bioinformatics Laboratory, Department of Genomics, Instituto de Investigaciones Biológicas Clemente Estable, MEC, Montevideo 11600, Uruguay;
- Laboratory of Molecular Interactions, Facultad de Ciencias, UdelaR, Montevideo 11400, Uruguay
| | - Ighor Arantes
- Laboratorio de AIDS e Imunologia Molecular, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-900, Brazil; (I.A.); (G.B.)
| | - Daiana Mir
- Unidad de Genómica y Bioinformática, Departamento de Ciencias Biológicas, Centro Universitario Regional Litoral Norte, Universidad de la República, Salto 50000, Uruguay;
| | - Cecilia Alonso
- Centro Universitario Regional Este, Universidad de la República, Rocha 27000, Uruguay; (O.C.); (M.D.); (M.B.G.); (L.G.); (M.M.); (M.P.T.); (J.Z.); (E.P.); (C.A.)
| | - Julio Medina
- Cátedra de Enfermedades Infecciosas, Facultad de Medicina, Universidad de la República, Montevideo 11300, Uruguay; (J.M.); (H.A.)
- Dirección General de Salud, Ministerio de Salud Pública, Montevideo 11200, Uruguay
| | - Henry Albornoz
- Cátedra de Enfermedades Infecciosas, Facultad de Medicina, Universidad de la República, Montevideo 11300, Uruguay; (J.M.); (H.A.)
- Dirección General de Salud, Ministerio de Salud Pública, Montevideo 11200, Uruguay
| | - Rodney Colina
- Laboratorio de Virología Molecular, Departamento de Ciencias Biológicas, CENUR Litoral Norte, Universidad de la República, Salto 50000, Uruguay; (A.L.); (V.B.); (A.M.); (R.C.)
| | - Gonzalo Bello
- Laboratorio de AIDS e Imunologia Molecular, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-900, Brazil; (I.A.); (G.B.)
| | - Pilar Moreno
- Centro de Innovación en Vigilancia Epidemiológica, Institut Pasteur Montevideo, Montevideo 11400, Uruguay; (M.P.); (A.C.)
- Laboratorio de Virología Molecular, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay; (A.F.); (P.P.); (R.A.)
- Laboratorio de Evolución Experimental de Virus, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
| | - Gonzalo Moratorio
- Centro de Innovación en Vigilancia Epidemiológica, Institut Pasteur Montevideo, Montevideo 11400, Uruguay; (M.P.); (A.C.)
- Laboratorio de Virología Molecular, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay; (A.F.); (P.P.); (R.A.)
- Laboratorio de Evolución Experimental de Virus, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
| | - Gregorio Iraola
- Laboratorio de Genómica Microbiana, Institut Pasteur Montevideo, Montevideo 11400, Uruguay; (C.S.); (I.F.)
- Centro de Innovación en Vigilancia Epidemiológica, Institut Pasteur Montevideo, Montevideo 11400, Uruguay; (M.P.); (A.C.)
- Center for Integrative Biology, Universidad Mayor, Santiago de Chile 8580745, Chile
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Lucía Spangenberg
- Bioinformatics Unit, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay; (N.R.); (T.F.-C.); (M.B.)
- Department of Informatics and Computer Science, Universidad Católica del Uruguay, Montevideo 11600, Uruguay
| |
Collapse
|
26
|
Rahmadi A, Fasyah I, Sudigyo D, Budiarto A, Mahesworo B, Hidayat AA, Pardamean B. Comparative study of predicted miRNA between Indonesia and China (Wuhan) SARS-CoV-2: a bioinformatics analysis. Genes Genomics 2021; 43:1079-1086. [PMID: 34152577 PMCID: PMC8215323 DOI: 10.1007/s13258-021-01119-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/05/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Several reports on the discovery of SARS-CoV-2 mutations and variations in Indonesia COVID-19 cases led to genomic dysregulation with the first pandemic cases in Wuhan, China. MicroRNA (miRNA) plays an important role in this genetic regulation and contributes to the enhancement of viral RNA binding through the host mRNA. OBJECTIVE This research is aimed to detect miRNA targets of SARS-CoV-2 and examines their role in Indonesia cases against Wuhan cases. METHODS SARS-CoV-2 sequences were obtained from GISAID ( https://www.gisaid.org/ ), NCBI ( https://ncbi.nlm.nih.gov ), and National Genomics Data Center ( https://bigd.big.ac.cn/gwh/ ) databases. MiRDB ( https://github.com/gbnegrini/mirdb-custom-target-search ) was used to annotate and predict target human mature miRNAs. For statistical analysis, we utilized a series chi-square test to obtain significant miRNA. DIANA-miRPath v3.0 ( http://www.microrna.gr/miRPathv3 ) analyzed the Gene Ontology of mature miRNAs. RESULT The statistical results detected five significant miRNAs. Two miRNAs: hsa-miR-4778-5p and hsa-miR-4531 were consistently found in the majority of Wuhan samples, while they were only found in less than half of the Indonesia samples. The other three miRNA, hsa-miR-6844, hsa-miR-627-5p, and hsa-miR-3674, were discovered in most samples in both groups but with a significant difference ratio. Among these five significant miRNA targets, hsa-miR-6844 is the only miRNA that has an association with the ORF1ab gene of SARS-CoV-2. CONCLUSION The Gene Ontology analysis of five significant miRNA targets indicates a significant role in inflammation and the immune system. The specific detection of host miRNAs in this study shows that there are differences in the characteristics of SARS-CoV-2 between Indonesia and Wuhan.
Collapse
Affiliation(s)
- Agus Rahmadi
- Faculty of Medicine, Universitas Muhammadiyah Prof. DR. Hamka, Jakarta, 12130, Indonesia
| | - Ismaily Fasyah
- Faculty of Medicine, Universitas Muhammadiyah Prof. DR. Hamka, Jakarta, 12130, Indonesia
| | - Digdo Sudigyo
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, 11480, Indonesia.
| | - Arif Budiarto
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, 11480, Indonesia
- School of Computer Science, Bina Nusantara University, Jakarta, 11480, Indonesia
| | - Bharuno Mahesworo
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, 11480, Indonesia
| | - Alam Ahmad Hidayat
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, 11480, Indonesia
| | - Bens Pardamean
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, 11480, Indonesia
- BINUS Graduate Program-Master of Computer Science Program, Bina Nusantara University, Jakarta, 11480, Indonesia
| |
Collapse
|
27
|
Li X, Zhang L, Chen S, Ji W, Li C, Ren L. Recent progress on the mutations of SARS-CoV-2 spike protein and suggestions for prevention and controlling of the pandemic. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2021; 93:104971. [PMID: 34146731 PMCID: PMC8213438 DOI: 10.1016/j.meegid.2021.104971] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/09/2021] [Accepted: 06/14/2021] [Indexed: 02/08/2023]
Abstract
Severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection has caused a global pandemic in the past year, which poses continuing threat to human beings. To date, more than 3561 mutations in the viral spike protein were identified, including 2434 mutations that cause amino acid changes with 343 amino acids located in the viral receptor-binding domain (RBD). Among these mutations, the most representative ones are substitution mutations such as D614G, N501Y, Y453F, N439K/R, P681H, K417N/T, and E484K, and deletion mutations of ΔH69/V70 and Δ242-244, which confer the virus with enhanced infectivity, transmissibility, and resistance to neutralization. In this review, we discussed the recent findings of SARS-CoV-2 for highlighting mutations and variants on virus transmissibility and pathogenicity. Moreover, several suggestions for prevention and controlling the pandemic are also proposed.
Collapse
Affiliation(s)
- Xue Li
- College of Animal Sciences, Key Lab for Zoonoses Research, Ministry of Education, Jilin University, 5333 Xi' An Road, Changchun 130062, China
| | - Liying Zhang
- College of Animal Sciences, Key Lab for Zoonoses Research, Ministry of Education, Jilin University, 5333 Xi' An Road, Changchun 130062, China
| | - Si Chen
- College of Animal Sciences, Key Lab for Zoonoses Research, Ministry of Education, Jilin University, 5333 Xi' An Road, Changchun 130062, China
| | - Weilong Ji
- College of Animal Sciences, Key Lab for Zoonoses Research, Ministry of Education, Jilin University, 5333 Xi' An Road, Changchun 130062, China
| | - Chang Li
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Military Veterinary Institute, Academy of Military Medical Sciences, Changchun 130112, China
| | - Linzhu Ren
- College of Animal Sciences, Key Lab for Zoonoses Research, Ministry of Education, Jilin University, 5333 Xi' An Road, Changchun 130062, China.
| |
Collapse
|
28
|
Padhi AK, Rath SL, Tripathi T. Accelerating COVID-19 Research Using Molecular Dynamics Simulation. J Phys Chem B 2021; 125:9078-9091. [PMID: 34319118 PMCID: PMC8340580 DOI: 10.1021/acs.jpcb.1c04556] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/12/2021] [Indexed: 12/14/2022]
Abstract
The COVID-19 pandemic has emerged as a global medico-socio-economic disaster. Given the lack of effective therapeutics against SARS-CoV-2, scientists are racing to disseminate suggestions for rapidly deployable therapeutic options, including drug repurposing and repositioning strategies. Molecular dynamics (MD) simulations have provided the opportunity to make rational scientific breakthroughs in a time of crisis. Advancements in these technologies in recent years have become an indispensable tool for scientists studying protein structure, function, dynamics, interactions, and drug discovery. Integrating the structural data obtained from high-resolution methods with MD simulations has helped in comprehending the process of infection and pathogenesis, as well as the SARS-CoV-2 maturation in host cells, in a short duration of time. It has also guided us to identify and prioritize drug targets and new chemical entities, and to repurpose drugs. Here, we discuss how MD simulation has been explored by the scientific community to accelerate and guide translational research on SARS-CoV-2 in the past year. We have also considered future research directions for researchers, where MD simulations can help fill the existing gaps in COVID-19 research.
Collapse
Affiliation(s)
- Aditya K. Padhi
- Laboratory for Structural Bioinformatics, Center for
Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi,
Yokohama, Kanagawa 230-0045, Japan
| | - Soumya Lipsa Rath
- Department of Biotechnology, National
Institute of Technology, Warangal, Telangana 506004,
India
| | - Timir Tripathi
- Molecular and Structural Biophysics Laboratory,
Department of Biochemistry, North-Eastern Hill University,
Shillong 793022, India
| |
Collapse
|
29
|
D614G Substitution of SARS-CoV-2 Spike Protein Increases Syncytium Formation and Virus Titer via Enhanced Furin-Mediated Spike Cleavage. mBio 2021; 12:e0058721. [PMID: 34311586 PMCID: PMC8406174 DOI: 10.1128/mbio.00587-21] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Since the D614G substitution in the spike (S) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged, the variant strain has undergone a rapid expansion to become the most abundant strain worldwide. Therefore, this substitution may provide an advantage for viral spreading. To explore the mechanism, we analyzed 18 viral isolates containing S proteins with either G614 or D614 (S-G614 and S-D614, respectively). The plaque assay showed a significantly higher virus titer in S-G614 than in S-D614 isolates. We further found increased cleavage of the S protein at the furin substrate site, a key event that promotes syncytium formation, in S-G614 isolates. The enhancement of the D614G substitution in the cleavage of the S protein and in syncytium formation has been validated in cells expressing S protein. The effect on the syncytium was abolished by furin inhibitor treatment and mutation of the furin cleavage site, suggesting its dependence on cleavage by furin. Our study pointed to the impact of the D614G substitution on syncytium formation through enhanced furin-mediated S cleavage, which might increase the transmissibility and infectivity of SARS-CoV-2 strains containing S-G614.
Collapse
|
30
|
Wang C, Zheng Y, Niu Z, Jiang X, Sun Q. The virological impacts of SARS-CoV-2 D614G mutation. J Mol Cell Biol 2021; 13:712-720. [PMID: 34289053 PMCID: PMC8344946 DOI: 10.1093/jmcb/mjab045] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/18/2021] [Accepted: 05/26/2021] [Indexed: 11/12/2022] Open
Abstract
The coronavirus diseases 2019 (COVID-19) caused by the infection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in December 2019 has caused more than 140 million infections worldwide by the end of April 2021. As an enveloped single-stranded positive-sense RNA virus, SARS-CoV-2 underwent constant evolution that produced novel variants carrying mutation conferring fitness advantages. The current prevalent D614G variant, with glycine substituted for aspartic acid at position 614 in the spike glycoprotein, is one of such variants that became the main circulating strain worldwide in a short period of time. Over the past year, intensive studies from all over the world had defined the epidemiological characteristics of this highly contagious variant and revealed the underlying mechanisms. This review aims at presenting an overall picture of the impacts of D614G mutation on virus transmission, elucidating the underlying mechanisms of D614G in virus pathogenicity, and providing insights into the development of effective therapeutics.
Collapse
Affiliation(s)
- Chenxi Wang
- Laboratory of Cell Engineering, Institute of Biotechnology, Research Unit of Cell Death Mechanism, Chinese Academy of Medical Science, 2020RU009, Beijing 100071, China
| | - You Zheng
- Laboratory of Cell Engineering, Institute of Biotechnology, Research Unit of Cell Death Mechanism, Chinese Academy of Medical Science, 2020RU009, Beijing 100071, China
| | - Zubiao Niu
- Laboratory of Cell Engineering, Institute of Biotechnology, Research Unit of Cell Death Mechanism, Chinese Academy of Medical Science, 2020RU009, Beijing 100071, China
| | - Xiaoyi Jiang
- Laboratory of Cell Engineering, Institute of Biotechnology, Research Unit of Cell Death Mechanism, Chinese Academy of Medical Science, 2020RU009, Beijing 100071, China
| | - Qiang Sun
- Laboratory of Cell Engineering, Institute of Biotechnology, Research Unit of Cell Death Mechanism, Chinese Academy of Medical Science, 2020RU009, Beijing 100071, China
| |
Collapse
|
31
|
Haddad D, John SE, Mohammad A, Hammad MM, Hebbar P, Channanath A, Nizam R, Al-Qabandi S, Al Madhoun A, Alshukry A, Ali H, Thanaraj TA, Al-Mulla F. SARS-CoV-2: Possible recombination and emergence of potentially more virulent strains. PLoS One 2021; 16:e0251368. [PMID: 34033650 PMCID: PMC8148317 DOI: 10.1371/journal.pone.0251368] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 04/26/2021] [Indexed: 12/20/2022] Open
Abstract
COVID-19 is challenging healthcare preparedness, world economies, and livelihoods. The infection and death rates associated with this pandemic are strikingly variable in different countries. To elucidate this discrepancy, we analyzed 2431 early spread SARS-CoV-2 sequences from GISAID. We estimated continental-wise admixture proportions, assessed haplotype block estimation, and tested for the presence or absence of strains' recombination. Herein, we identified 1010 unique missense mutations and seven different SARS-CoV-2 clusters. In samples from Asia, a small haplotype block was identified, whereas samples from Europe and North America harbored large and different haplotype blocks with nonsynonymous variants. Variant frequency and linkage disequilibrium varied among continents, especially in North America. Recombination between different strains was only observed in North American and European sequences. In addition, we structurally modelled the two most common mutations, Spike_D614G and Nsp12_P314L, which suggested that these linked mutations may enhance viral entry and replication, respectively. Overall, we propose that genomic recombination between different strains may contribute to SARS-CoV-2 virulence and COVID-19 severity and may present additional challenges for current treatment regimens and countermeasures. Furthermore, our study provides a possible explanation for the substantial second wave of COVID-19 presented with higher infection and death rates in many countries.
Collapse
Affiliation(s)
- Dania Haddad
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Kuwait, Kuwait
| | - Sumi Elsa John
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Kuwait, Kuwait
| | - Anwar Mohammad
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Kuwait, Kuwait
| | - Maha M. Hammad
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Kuwait, Kuwait
| | - Prashantha Hebbar
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Kuwait, Kuwait
| | - Arshad Channanath
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Kuwait, Kuwait
| | - Rasheeba Nizam
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Kuwait, Kuwait
| | | | - Ashraf Al Madhoun
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Kuwait, Kuwait
| | - Abdullah Alshukry
- Department of Otolaryngology & Head and Neck Surgery, Jaber Al-Ahmad Hospital, Ministry of Health, Kuwait, Kuwait
| | - Hamad Ali
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Kuwait, Kuwait
- Faculty of Allied Health Sciences, Department of Medical Laboratory Sciences, Health Sciences Center, Kuwait University, Kuwait, Kuwait
| | | | - Fahd Al-Mulla
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Kuwait, Kuwait
| |
Collapse
|
32
|
Hasan A, Al-Ozairi E, Al-Baqsumi Z, Ahmad R, Al-Mulla F. Cellular and Humoral Immune Responses in Covid-19 and Immunotherapeutic Approaches. Immunotargets Ther 2021; 10:63-85. [PMID: 33728277 PMCID: PMC7955763 DOI: 10.2147/itt.s280706] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 12/22/2020] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 2019 (Covid-19), caused by the novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), can range in severity from asymptomatic to severe/critical disease. SARS-CoV-2 uses angiotensin-converting enzyme 2 to infect cells leading to a strong inflammatory response, which is most profound in patients who progress to severe Covid-19. Recent studies have begun to unravel some of the differences in the innate and adaptive immune response to SARS-CoV-2 in patients with different degrees of disease severity. These studies have attributed the severe form of Covid-19 to a dysfunctional innate immune response, such as a delayed and/or deficient type I interferon response, coupled with an exaggerated and/or a dysfunctional adaptive immunity. Differences in T-cell (including CD4+ T-cells, CD8+ T-cells, T follicular helper cells, γδ-T-cells, and regulatory T-cells) and B-cell (transitional cells, double-negative 2 cells, antibody-secreting cells) responses have been identified in patients with severe disease compared to mild cases. Moreover, differences in the kinetic/titer of neutralizing antibody responses have been described in severe disease, which may be confounded by antibody-dependent enhancement. Importantly, the presence of preexisting autoantibodies against type I interferon has been described as a major cause of severe/critical disease. Additionally, priorVaccine and multiple vaccine exposure, trained innate immunity, cross-reactive immunity, and serological immune imprinting may all contribute towards disease severity and outcome. Several therapeutic and preventative approaches have been under intense investigations; these include vaccines (three of which have passed Phase 3 clinical trials), therapeutic antibodies, and immunosuppressants.
Collapse
Affiliation(s)
- Amal Hasan
- Department of Immunology and Microbiology, Research Division, Dasman Diabetes Institute, Dasman, Kuwait City, Kuwait
| | - Ebaa Al-Ozairi
- Clinical Research Unit, Medical Division, Dasman Diabetes Institute, Dasman, Kuwait City, Kuwait
- Department of Medicine, Faculty of Medicine, Jabriya, Kuwait City, Kuwait
| | - Zahraa Al-Baqsumi
- Department of Immunology and Microbiology, Research Division, Dasman Diabetes Institute, Dasman, Kuwait City, Kuwait
| | - Rasheed Ahmad
- Department of Immunology and Microbiology, Research Division, Dasman Diabetes Institute, Dasman, Kuwait City, Kuwait
| | - Fahd Al-Mulla
- Department of Genetics and Bioinformatics, Functional Genomics, Research Division, Dasman Diabetes Institute, Dasman, Kuwait City, Kuwait
| |
Collapse
|
33
|
Letarov AV, Babenko VV, Kulikov EE. Free SARS-CoV-2 Spike Protein S1 Particles May Play a Role in the Pathogenesis of COVID-19 Infection. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:257-261. [PMID: 33838638 PMCID: PMC7772528 DOI: 10.1134/s0006297921030032] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/04/2020] [Accepted: 12/04/2020] [Indexed: 01/06/2023]
Abstract
The imbalance of the renin-angiotensin system is currently considered as a potentially important factor of the pathogenesis of COVID-19 disease. It has been shown previously in the murine model, that the expression of angiotensin-converting enzyme 2 (ACE2) on the cell surface is downregulated in response to the infection by SARS-CoV virus or recombinant spike protein (S protein) alone. In the case of natural infection, circulation of the S protein in a soluble form is unlikely. However, in SARS-CoV-2, a large fraction of S protein trimers is pre-processed during virion morphogenesis due to the presence of furin protease cleavage site between the S1 and S2 subunits. Therefore, S protein transition into the fusion conformation may be accompanied by the separation of the S1 subunits carrying the receptor-binding domains from the membrane-bound S2 subunits. The fate of the S1 particles shed due to the spontaneous "firing" of some S protein trimers exposed on the virions and on the surface of infected cells has been never investigated. We hypothesize that the soluble S1 subunits of the SARS-CoV-2 S protein shed from the infected cells and from the virions in vivo may bind to the ACE2 and downregulate cell surface expression of this protein. The decrease in the ACE2 activity on the background of constant or increased ACE activity in the lungs may lead to the prevalence of angiotensin II effects over those of angiotensin (1-7), thus promoting thrombosis, inflammation, and pulmonary damage. This hypothesis also suggests the association between less pronounced shedding of the S1 particles reported for the S protein carrying the D614G mutation (vs. the wild type D614 protein), and lack of increased severity of the COVID-19 infection caused by the mutant (D614G) SARS-CoV-2 strain, despite its higher infectivity and higher in vivo viral load.
Collapse
Affiliation(s)
- Andrey V Letarov
- Winogradsky Institute of Microbiology, Biotechnology Research Center, Russian Academy of Sciences, Moscow, 117312, Russia.
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Vladislav V Babenko
- Federal Research and Clinical Centre of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Eugene E Kulikov
- Winogradsky Institute of Microbiology, Biotechnology Research Center, Russian Academy of Sciences, Moscow, 117312, Russia
| |
Collapse
|
34
|
Jackson CB, Zhang L, Farzan M, Choe H. Functional importance of the D614G mutation in the SARS-CoV-2 spike protein. Biochem Biophys Res Commun 2021; 538:108-115. [PMID: 33220921 PMCID: PMC7664360 DOI: 10.1016/j.bbrc.2020.11.026] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 11/09/2020] [Indexed: 12/15/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an enveloped virus which binds its cellular receptor angiotensin-converting enzyme 2 (ACE2) and enters hosts cells through the action of its spike (S) glycoprotein displayed on the surface of the virion. Compared to the reference strain of SARS-CoV-2, the majority of currently circulating isolates possess an S protein variant characterized by an aspartic acid-to-glycine substitution at amino acid position 614 (D614G). Residue 614 lies outside the receptor binding domain (RBD) and the mutation does not alter the affinity of monomeric S protein for ACE2. However, S(G614), compared to S(D614), mediates more efficient ACE2-mediated transduction of cells by S-pseudotyped vectors and more efficient infection of cells and animals by live SARS-CoV-2. This review summarizes and synthesizes the epidemiological and functional observations of the D614G spike mutation, with focus on the biochemical and cell-biological impact of this mutation and its consequences for S protein function. We further discuss the significance of these recent findings in the context of the current global pandemic.
Collapse
Affiliation(s)
- Cody B Jackson
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA.
| | - Lizhou Zhang
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA
| | - Michael Farzan
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA
| | - Hyeryun Choe
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA
| |
Collapse
|