1
|
Cookson AL, Burgess S, Midwinter AC, Marshall JC, Moinet M, Rogers L, Fayaz A, Biggs PJ, Brightwell G. New Campylobacter Lineages in New Zealand Freshwater: Pathogenesis and Public Health Implications. Environ Microbiol 2024; 26:e70016. [PMID: 39680962 DOI: 10.1111/1462-2920.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/11/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024]
Abstract
This study investigated the diversity of thermophilic Campylobacter species isolated from three New Zealand freshwater catchments affected by pastoral and urban activities. Utilising matrix-assisted laser desorption ionisation-time of flight and whole genome sequence analysis, the study identified Campylobacter jejuni (n = 46, 46.0%), C. coli (n = 39, 39%), C. lari (n = 4, 4.0%), and two novel Campylobacter species lineages (n = 11, 11%). Core genome sequence analysis provided evidence of prolonged persistence or continuous faecal shedding of closely related strains. The C. jejuni isolates displayed distinct sequence types (STs) associated with human, ruminant, and environmental sources, whereas the C. coli STs included waterborne ST3302 and ST7774. Recombination events affecting loci implicated in human pathogenesis and environmental persistence were observed, particularly in the cdtABC operon (encoding the cytolethal distending toxin) of non-human C. jejuni STs. A low diversity of antimicrobial resistance genes (aadE-Cc in C. coli), with genotype/phenotype concordance for tetracycline resistance (tetO) in three ST177 isolates, was noted. The data suggest the existence of two types of naturalised waterborne Campylobacter: environmentally persistent strains originating from waterbirds and new environmental species not linked to human campylobacteriosis. Identifying and understanding naturalised Campylobacter species is crucial for accurate waterborne public health risk assessments and the effective allocation of resources for water quality management.
Collapse
Affiliation(s)
- Adrian L Cookson
- AgResearch Limited, Hopkirk Research Institute, Palmerston North, New Zealand
- mEpiLab, School of Veterinary Sciences, Massey University, Palmerston North, New Zealand
| | - Sara Burgess
- mEpiLab, School of Veterinary Sciences, Massey University, Palmerston North, New Zealand
| | - Anne C Midwinter
- mEpiLab, School of Veterinary Sciences, Massey University, Palmerston North, New Zealand
| | - Jonathan C Marshall
- School of Mathematical and Computational Sciences, Massey University, Palmerston North, New Zealand
| | - Marie Moinet
- AgResearch Limited, Hopkirk Research Institute, Palmerston North, New Zealand
| | - Lynn Rogers
- AgResearch Limited, Hopkirk Research Institute, Palmerston North, New Zealand
| | - Ahmed Fayaz
- mEpiLab, School of Veterinary Sciences, Massey University, Palmerston North, New Zealand
| | - Patrick J Biggs
- mEpiLab, School of Veterinary Sciences, Massey University, Palmerston North, New Zealand
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Gale Brightwell
- AgResearch Limited, Hopkirk Research Institute, Palmerston North, New Zealand
| |
Collapse
|
2
|
Cribb DM, Biggs PJ, McLure AT, Wallace RL, French NP, Glass K, Kirk MD. Genomic diversity of Campylobacter jejuni and Campylobacter coli isolates recovered from human and poultry in Australia and New Zealand, 2017 to 2019. Microb Genom 2024; 10:001319. [PMID: 39499243 PMCID: PMC11893275 DOI: 10.1099/mgen.0.001319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/02/2024] [Indexed: 11/07/2024] Open
Abstract
We used genomic and epidemiological data to assess and compare the population structure and origins of Campylobacter, a major foodborne pathogen, in two neighbouring countries with strong trade and cultural links, similar poultry production systems and frequent movement of people and food products. The most common sequence types (STs) differed between Australia and New Zealand, with many unique to each country. Over half of all STs were represented by a single isolate. Multidrug-resistant (MDR) genotypes were detected in 0.8% of all samples, with no MDR isolates detected in poultry. Quinolone and tetracycline resistant ST6964 was prevalent in New Zealand (10.6% of C. jejuni). Closely related isolates suggested some similar food sources or contacts. We have shown that there is little genetic overlap in human and poultry STs of Campylobacter between the countries, which highlights that this common foodborne pathogen has domestic origins in Australia and New Zealand.
Collapse
Affiliation(s)
- Danielle M. Cribb
- Australian National University, National Centre for Epidemiology and Population Health, Canberra, Australia
| | - Patrick J. Biggs
- Massey University, Tāwharau Ora|School of Veterinary Science, Palmerston North, New Zealand
- Massey University, School of Natural Sciences, Palmerston North, New Zealand
- Massey University, New Zealand Food Safety Science and Research Centre, Palmerston North, New Zealand
| | - Angus T. McLure
- Australian National University, National Centre for Epidemiology and Population Health, Canberra, Australia
| | - Rhiannon L. Wallace
- Agriculture and Agri-Food Canada, Agassiz Research and Development Centre, Agassiz, British Columbia, Canada
| | - Nigel P. French
- Massey University, Tāwharau Ora|School of Veterinary Science, Palmerston North, New Zealand
| | - Kathryn Glass
- Australian National University, National Centre for Epidemiology and Population Health, Canberra, Australia
| | - Martyn D. Kirk
- Australian National University, National Centre for Epidemiology and Population Health, Canberra, Australia
| |
Collapse
|
3
|
Mather AE, Gilmour MW, Reid SWJ, French NP. Foodborne bacterial pathogens: genome-based approaches for enduring and emerging threats in a complex and changing world. Nat Rev Microbiol 2024; 22:543-555. [PMID: 38789668 DOI: 10.1038/s41579-024-01051-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2024] [Indexed: 05/26/2024]
Abstract
Foodborne illnesses pose a substantial health and economic burden, presenting challenges in prevention due to the diverse microbial hazards that can enter and spread within food systems. Various factors, including natural, political and commercial drivers, influence food production and distribution. The risks of foodborne illness will continue to evolve in step with these drivers and with changes to food systems. For example, climate impacts on water availability for agriculture, changes in food sustainability targets and evolving customer preferences can all have an impact on the ecology of foodborne pathogens and the agrifood niches that can carry microorganisms. Whole-genome and metagenome sequencing, combined with microbial surveillance schemes and insights from the food system, can provide authorities and businesses with transformative information to address risks and implement new food safety interventions across the food chain. In this Review, we describe how genome-based approaches have advanced our understanding of the evolution and spread of enduring bacterial foodborne hazards as well as their role in identifying emerging foodborne hazards. Furthermore, foodborne hazards exist in complex microbial communities across the entire food chain, and consideration of these co-existing organisms is essential to understanding the entire ecology supporting pathogen persistence and transmission in an evolving food system.
Collapse
Affiliation(s)
- Alison E Mather
- Quadram Institute Bioscience, Norwich, UK.
- University of East Anglia, Norwich, UK.
| | - Matthew W Gilmour
- Quadram Institute Bioscience, Norwich, UK
- University of East Anglia, Norwich, UK
| | | | - Nigel P French
- Tāuwharau Ora, School of Veterinary Science, Te Kunenga Ki Pūrehuroa, Massey University, Papaioea, Palmerston North, Aotearoa New Zealand
| |
Collapse
|
4
|
Wei HL, Liao YS, Chen BH, Teng RH, Wang YW, Chang JH, Chiou CS. Antimicrobial resistance and genetic relatedness among Campylobacter coli and Campylobacter jejuni from humans and retail chicken meat in Taiwan. J Glob Antimicrob Resist 2024; 38:27-34. [PMID: 38821444 DOI: 10.1016/j.jgar.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 04/19/2024] [Accepted: 05/17/2024] [Indexed: 06/02/2024] Open
Abstract
OBJECTIVES Campylobacter is a significant zoonotic pathogen primarily transmitted through poultry. Our study aimed to assess antimicrobial resistance and genetic relationships among Campylobacter isolates from retail chicken meat and humans in Taiwan. METHODS Campylobacter isolates were analysed using whole-genome sequencing to investigate their antimicrobial resistance, genetic determinants of resistance, and genotypes. RESULTS Campylobacter coli and Campylobacter jejuni accounted for 44.9% and 55.1% of chicken meat isolates, and 11.4% and 88.6% of human isolates, respectively. C. coli displayed significantly higher resistance levels. Furthermore, isolates from chicken meat exhibited higher levels of resistance to most tested antimicrobials compared to isolates from humans. Multidrug resistance was observed in 96.3% of C. coli and 43.3% of C. jejuni isolates from chicken meat and 80.6% of C. coli and 15.8% of C. jejuni isolates from humans. Macrolide resistance was observed in 85.5% of C. coli isolates, primarily attributed to the erm(B) rather than the A2075G mutation in 23S rRNA. Among the 511 genomes, we identified 133 conventional MLST sequence types, indicating significant diversity among Campylobacter strains. Notably, hierarchical Core-genome multilocus sequence typing clustering, including HC0, HC5, and HC10, revealed a significant proportion of closely related isolates from chicken meat and humans. CONCLUSIONS Our research highlights significant associations in antimicrobial resistance and genetic relatedness between Campylobacter isolates from chicken meat and humans in Taiwan. The genetic analysis data suggest that campylobacteriosis outbreaks may occur more frequently in Taiwan than previously assumed. Our study emphasizes the need for strategies to control multidrug-resistant strains and enhance outbreak prevention.
Collapse
Affiliation(s)
- Hsiao-Lun Wei
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Taipei, Taiwan
| | - Ying-Shu Liao
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Taipei, Taiwan
| | - Bo-Han Chen
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Taipei, Taiwan
| | - Ru-Hsiou Teng
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Taipei, Taiwan
| | - You-Wun Wang
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Taipei, Taiwan
| | - Jui-Hsien Chang
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Taipei, Taiwan
| | - Chien-Shun Chiou
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Taipei, Taiwan.
| |
Collapse
|
5
|
Cribb DM, Glass K, Lancsar EL, Stafford RJ, Wallace RL, Kirk MD, McLure AT. Burden and Cost of Campylobacter Risk Factors in Australia. Foodborne Pathog Dis 2024. [PMID: 39206520 DOI: 10.1089/fpd.2024.0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Campylobacter is a globally important pathogen with well-studied risk factors, but the burden of risk factors has not been quantified. We quantified the cost of illness attributable to specific domestic risk factors for C. jejuni and C. coli in Australia. We used data from a 2018-2019 case-control study to estimate odds ratios and attributable fractions for risk factors. We used data on national incidence, hospitalization, and premature mortality to quantify burden. We then applied costs related to healthcare utilization, pain and suffering, premature mortality, and lost productivity to each risk factor. In Australia, C. jejuni caused 83.0% of campylobacteriosis infections and chicken consumption resulted in the highest attributable fraction (30.0%), costing approximately US$110 million annually. The excess burden of campylobacteriosis associated with the use of proton-pump inhibitors (PPIs) was US$45 million, with almost half these costs due to disease in adults over 65 years of age. Contact with young dogs (US$30 million) and chicken feces (US$10 million) also contributed to costs and burden. Campylobacteriosis is a significant cost to Australia, particularly because of lost productivity. Effective cross-sectoral interventions to improve chicken meat safety and reduce inappropriate use of PPIs might have substantial economic and human benefits.
Collapse
Affiliation(s)
- Danielle M Cribb
- National Centre for Epidemiology and Population Health, The Australian National University, Canberra, Australia
| | - Kathryn Glass
- National Centre for Epidemiology and Population Health, The Australian National University, Canberra, Australia
| | - Emily L Lancsar
- National Centre for Epidemiology and Population Health, The Australian National University, Canberra, Australia
| | - Russell J Stafford
- OzFoodNet, Communicable Diseases Branch, Queensland Health, Brisbane, Australia
| | - Rhiannon L Wallace
- Agassiz Research and Development Centre, Agriculture and Agri-Food Canada, Agassiz, Canada
| | - Martyn D Kirk
- National Centre for Epidemiology and Population Health, The Australian National University, Canberra, Australia
| | - Angus T McLure
- National Centre for Epidemiology and Population Health, The Australian National University, Canberra, Australia
| |
Collapse
|
6
|
Chinivasagam HN, Estella W, Finn D, Mayer DG, Rodrigues H, Diallo I. Broiler farming practices using new or re-used bedding, inclusive of free-range, have no impact on Campylobacter levels, species diversity, Campylobacter community profiles and Campylobacter bacteriophages. AIMS Microbiol 2024; 10:12-40. [PMID: 38525040 PMCID: PMC10955168 DOI: 10.3934/microbiol.2024002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/27/2023] [Accepted: 12/25/2023] [Indexed: 03/26/2024] Open
Abstract
A multi-stage option to address food-safety can be produced by a clearer understanding of Campylobacter's persistence through the broiler production chain, its environmental niche and its interaction with bacteriophages. This study addressed Campylobacter levels, species, genotype, bacteriophage composition/ levels in caeca, litter, soil and carcasses across commercial broiler farming practices to inform on-farm management, including interventions. Broilers were sequentially collected as per company slaughter schedules over two-years from 17 farms, which represented four commercially adopted farming practices, prior to the final bird removal (days 39-53). The practices were conventional full clean-out, conventional litter re-use, free-range-full cleanout and free-range-litter re-use. Caeca, litter and soil collected on-farm, and representative carcases collected at the processing plant, were tested for Campylobacter levels, species dominance and Campylobacter bacteriophages. General community profiling via denaturing gradient gel electrophoresis of the flaA gene was used to establish the population relationships between various farming practices on representative Campylobacter isolates. The farming practice choices did not influence the high caeca Campylobacter levels (log 7.5 to log 8.5 CFU/g), the carcass levels (log 2.5 to log 3.2 CFU/carcass), the C. jejuni/C. coli dominance and the on-farm bacteriophage presence/levels. A principal coordinate analysis of the flaA distribution for farm and litter practices showed strong separation but no obvious farming practice related grouping of Campylobacter. Bacteriophages originated from select farms, were not practice-dependent, and were detected in the environment (litter) only if present in the birds (caeca). This multifaceted study showed no influence of farming practices on on-farm Campylobacter dynamics. The significance of this study means that a unified on-farm risk-management could be adopted irrespective of commercial practice choices to collectively address caeca Campylobacter levels, as well as the potential to include Campylobacter bacteriophage biocontrol. The impact of this study means that there are no constraints in re-using bedding or adopting free-range farming, thus contributing to environmentally sustainable (re-use) and emerging (free-range) broiler farming choices.
Collapse
Affiliation(s)
| | - Wiyada Estella
- Department of Agriculture and Fisheries, Eco Sciences Precinct, Dutton Park QLD 4102, Australia
| | - Damien Finn
- Department of Agriculture and Fisheries, Eco Sciences Precinct, Dutton Park QLD 4102, Australia
| | - David G. Mayer
- Department of Agriculture and Fisheries, Eco Sciences Precinct, Dutton Park QLD 4102, Australia
| | - Hugh Rodrigues
- Department of Agriculture and Fisheries, Eco Sciences Precinct, Dutton Park QLD 4102, Australia
| | - Ibrahim Diallo
- Department of Agriculture and Fisheries, Biosecurity Sciences Laboratory, Coopers Plains QLD 4108
| |
Collapse
|
7
|
Suominen K, Häkkänen T, Ranta J, Ollgren J, Kivistö R, Perko-Mäkelä P, Salmenlinna S, Rimhanen-Finne R. Campylobacteriosis in Finland: Passive Surveillance in 2004-2021 and a Pilot Case-Control Study with Whole-Genome Sequencing in Summer 2022. Microorganisms 2024; 12:132. [PMID: 38257959 PMCID: PMC11154465 DOI: 10.3390/microorganisms12010132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/03/2024] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
Campylobacteriosis causes a significant disease burden in humans worldwide and is the most common type of zoonotic gastroenteritis in Finland. To identify infection sources for domestic Campylobacter infections, we analyzed Campylobacter case data from the Finnish Infectious Disease Register (FIDR) in 2004-2021 and outbreak data from the National Food- and Waterborne Outbreak Register (FWO Register) in 2010-2021, and conducted a pilot case-control study (256 cases and 756 controls) with source attribution and patient sample analysis using whole-genome sequencing (WGS) in July-August 2022. In the FIDR, 41% of the cases lacked information on travel history. Based on the case-control study, we estimated that of all cases, 39% were of domestic origin. Using WGS, 22 clusters of two or more cases were observed among 185 domestic cases, none of which were reported to the FWO register. Based on this case-control study and source attribution, poultry is an important source of campylobacteriosis in Finland. More extensive sampling and comparison of patient, food, animal, and environmental isolates is needed to estimate the significance of other sources. In Finland, campylobacteriosis is more often of domestic origin than FIDR notifications indicate. To identify the domestic cases, travel information should be included in the FIDR notification, and to improve outbreak detection, all domestic patient isolates should be sequenced.
Collapse
Affiliation(s)
- Kristiina Suominen
- Department of Health Security, Finnish Institute for Health and Welfare, Mannerheimintie 166, 00271 Helsinki, Finland; (T.H.); (J.O.); (S.S.); (R.R.-F.)
| | - Tessa Häkkänen
- Department of Health Security, Finnish Institute for Health and Welfare, Mannerheimintie 166, 00271 Helsinki, Finland; (T.H.); (J.O.); (S.S.); (R.R.-F.)
| | - Jukka Ranta
- Risk Assessment Unit, Finnish Food Authority, Mustialankatu 3, 00790 Helsinki, Finland;
| | - Jukka Ollgren
- Department of Health Security, Finnish Institute for Health and Welfare, Mannerheimintie 166, 00271 Helsinki, Finland; (T.H.); (J.O.); (S.S.); (R.R.-F.)
| | - Rauni Kivistö
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Agnes Sjöbergin katu 2, 00790 Helsinki, Finland;
| | | | - Saara Salmenlinna
- Department of Health Security, Finnish Institute for Health and Welfare, Mannerheimintie 166, 00271 Helsinki, Finland; (T.H.); (J.O.); (S.S.); (R.R.-F.)
| | - Ruska Rimhanen-Finne
- Department of Health Security, Finnish Institute for Health and Welfare, Mannerheimintie 166, 00271 Helsinki, Finland; (T.H.); (J.O.); (S.S.); (R.R.-F.)
| |
Collapse
|
8
|
Muloi DM, Jauneikaite E, Anjum MF, Essack SY, Singleton DA, Kasudi MR, Wade MJ, Egyir B, Nunn JG, Midega JT, Peacock SJ, Feasey NA, Baker KS, Zadoks RN. Exploiting genomics for antimicrobial resistance surveillance at One Health interfaces. THE LANCET. MICROBE 2023; 4:e1056-e1062. [PMID: 37977165 DOI: 10.1016/s2666-5247(23)00284-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/16/2023] [Accepted: 08/22/2023] [Indexed: 11/19/2023]
Abstract
The intersection of human, animal, and ecosystem health at One Health interfaces is recognised as being of key importance in the evolution and spread of antimicrobial resistance (AMR) and represents an important, and yet rarely realised opportunity to undertake vital AMR surveillance. A working group of international experts in pathogen genomics, AMR, and One Health convened to take part in a workshop series and online consultation focused on the opportunities and challenges facing genomic AMR surveillance in a range of settings. Here we outline the working group's discussion of the potential utility, advantages of, and barriers to, the implementation of genomic AMR surveillance at One Health interfaces and propose a series of recommendations for addressing these challenges. Embedding AMR surveillance at One Health interfaces will require the development of clear beneficial use cases, especially in low-income and middle-income countries. Evidence of directionality, risks to human and animal health, and potential trade implications were also identified by the working group as key issues. Addressing these challenges will be vital to enable genomic surveillance technology to reach its full potential for assessing the risk of transmission of AMR between the environment, animals, and humans at One Health interfaces.
Collapse
Affiliation(s)
- Dishon M Muloi
- Animal and Human Health Department, International Livestock Research Institute, Nairobi, Kenya; Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Elita Jauneikaite
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, UK; NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Infectious Disease, Imperial College London, Hammersmith Hospital, London, UK
| | - Muna F Anjum
- Department of Bacteriology, Animal and Plant Health Agency, New Haw, UK
| | - Sabiha Y Essack
- Antimicrobial Research Unit, University of KwaZulu-Natal, Durban, South Africa
| | - David A Singleton
- Clinical Infection, Microbiology, and Immunology, University of Liverpool, Liverpool, UK
| | - Mitchelle R Kasudi
- Animal and Human Health Department, International Livestock Research Institute, Nairobi, Kenya
| | - Matthew J Wade
- Data Analytics and Surveillance Group, UK Health Security Agency, London, UK; School of Engineering, Newcastle University, Newcastle-upon-Tyne, UK
| | - Beverly Egyir
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon-Accra, Ghana
| | - Jamie G Nunn
- Infectious Disease Challenge Area, Wellcome Trust, London, UK
| | | | | | - Nicholas A Feasey
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK; Malawi Liverpool Wellcome Research Programme, Chichiri, Blantyre, Malawi
| | - Kate S Baker
- Clinical Infection, Microbiology, and Immunology, University of Liverpool, Liverpool, UK; Department of Genetics, University of Cambridge, Cambridge, UK.
| | - Ruth N Zadoks
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Camden, NSW, Australia; School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
| |
Collapse
|
9
|
McLure A, Smith JJ, Firestone SM, Kirk MD, French N, Fearnley E, Wallace R, Valcanis M, Bulach D, Moffatt CRM, Selvey LA, Jennison A, Cribb DM, Glass K. Source attribution of campylobacteriosis in Australia, 2017-2019. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2023; 43:2527-2548. [PMID: 37032319 PMCID: PMC10947381 DOI: 10.1111/risa.14138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 02/02/2023] [Accepted: 02/09/2023] [Indexed: 06/19/2023]
Abstract
Campylobacter jejuni and Campylobacter coli infections are the leading cause of foodborne gastroenteritis in high-income countries. Campylobacter colonizes a variety of warm-blooded hosts that are reservoirs for human campylobacteriosis. The proportions of Australian cases attributable to different animal reservoirs are unknown but can be estimated by comparing the frequency of different sequence types in cases and reservoirs. Campylobacter isolates were obtained from notified human cases and raw meat and offal from the major livestock in Australia between 2017 and 2019. Isolates were typed using multi-locus sequence genotyping. We used Bayesian source attribution models including the asymmetric island model, the modified Hald model, and their generalizations. Some models included an "unsampled" source to estimate the proportion of cases attributable to wild, feral, or domestic animal reservoirs not sampled in our study. Model fits were compared using the Watanabe-Akaike information criterion. We included 612 food and 710 human case isolates. The best fitting models attributed >80% of Campylobacter cases to chickens, with a greater proportion of C. coli (>84%) than C. jejuni (>77%). The best fitting model that included an unsampled source attributed 14% (95% credible interval [CrI]: 0.3%-32%) to the unsampled source and only 2% to ruminants (95% CrI: 0.3%-12%) and 2% to pigs (95% CrI: 0.2%-11%) The best fitting model that did not include an unsampled source attributed 12% to ruminants (95% CrI: 1.3%-33%) and 6% to pigs (95% CrI: 1.1%-19%). Chickens were the leading source of human Campylobacter infections in Australia in 2017-2019 and should remain the focus of interventions to reduce burden.
Collapse
Affiliation(s)
- Angus McLure
- National Centre for Epidemiology and Population HealthThe Australian National UniversityCanberraAustralia
| | - James J. Smith
- Food Safety Standards and Regulation, Health Protection BranchQueensland HealthBrisbaneAustralia
- School of Biology and Environmental Science, Faculty of ScienceQueensland University of TechnologyBrisbaneAustralia
| | - Simon Matthew Firestone
- Melbourne Veterinary School, Faculty of ScienceThe University of MelbourneMelbourneAustralia
| | - Martyn D. Kirk
- National Centre for Epidemiology and Population HealthThe Australian National UniversityCanberraAustralia
| | - Nigel French
- Infectious Disease Research Centre, Hopkirk Research InstituteMassey UniversityPalmerston NorthNew Zealand
- New Zealand Food Safety Science and Research Centre, Hopkirk Research InstituteMassey UniversityPalmerston NorthNew Zealand
| | - Emily Fearnley
- Department for Health and WellbeingGovernment of South AustraliaAdelaideAustralia
| | - Rhiannon Wallace
- Agassiz Research and Development Centre, Agriculture and Agri‐Food CanadaAgassizCanada
| | - Mary Valcanis
- The Doherty Institute for Infection and ImmunityMelbourneAustralia
- Microbiological Diagnostic Unit Public Health LaboratoryThe University of MelbourneMelbourneAustralia
| | - Dieter Bulach
- The Doherty Institute for Infection and ImmunityMelbourneAustralia
- Melbourne BioinformaticsThe University of MelbourneMelbourneAustralia
| | - Cameron R. M. Moffatt
- National Centre for Epidemiology and Population HealthThe Australian National UniversityCanberraAustralia
| | - Linda A. Selvey
- School of Public Health, Faculty of MedicineThe University of QueenslandBrisbaneAustralia
| | - Amy Jennison
- Public Health Microbiology, Forensic and Scientific Services, Queensland HealthBrisbaneAustralia
| | - Danielle M. Cribb
- National Centre for Epidemiology and Population HealthThe Australian National UniversityCanberraAustralia
| | - Kathryn Glass
- National Centre for Epidemiology and Population HealthThe Australian National UniversityCanberraAustralia
| |
Collapse
|
10
|
Nisa S, Vallee E, Marshall J, Collins-Emerson J, Yeung P, Prinsen G, Douwes J, Baker MG, Wright J, Quin T, Holdaway M, Wilkinson DA, Fayaz A, Littlejohn S, Benschop J. Leptospirosis in Aotearoa New Zealand: Protocol for a Nationwide Case-Control Study. JMIR Res Protoc 2023; 12:e47900. [PMID: 37289491 DOI: 10.2196/47900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/27/2023] [Accepted: 04/30/2023] [Indexed: 06/09/2023] Open
Abstract
BACKGROUND In Aotearoa New Zealand, 90% of patients with notified leptospirosis (a zoonotic bacterial disease) have been men working in agricultural industries. However, since 2008, the epidemiology of notified cases has been gradually changing, that is, more women are affected; there are more cases associated with occupations traditionally not considered high risk in New Zealand; infecting serovars have changed; and many patients experience symptoms long after infection. We hypothesized that there is a shift in leptospirosis transmission patterns with substantial burden on affected patients and their families. OBJECTIVE In this paper, we aimed to describe the protocols used to conduct a nationwide case-control study to update leptospirosis risk factors and follow-up studies to assess the burden and sources of leptospirosis in New Zealand. METHODS This study used a mixed methods approach, comprising a case-control study and 4 substudies that involved cases only. Cases were recruited nationwide, and controls were frequency matched by sex and rurality. All participants were administered a case-control questionnaire (study 1), with cases being interviewed again at least 6 months after the initial survey (study 2). A subset of cases from two high-risk populations, that is, farmers and abattoir workers, were further engaged in a semistructured interview (study 3). Some cases with regular animal exposure had their in-contact animals (livestock for blood and urine and wildlife for kidney) and environment (soil, mud, and water) sampled (study 4). Patients from selected health clinics suspected of leptospirosis also had blood and urine samples collected (study 5). In studies 4 and 5, blood samples were tested using the microscopic agglutination test to test for antibody titers against Leptospira serovars Hardjo type bovis, Ballum, Tarassovi, Pomona, and Copenhageni. Blood, urine, and environmental samples were also tested for pathogenic Leptospira DNA using polymerase chain reaction. RESULTS Participants were recruited between July 22, 2019, and January 31, 2022, and data collection for the study has concluded. In total, 95 cases (July 25, 2019, to April 13, 2022) and 300 controls (October 19, 2019, to January 26, 2022) were interviewed for the case-control study; 91 cases participated in the follow-up interviews (July 9, 2020, to October 25, 2022); 13 cases participated in the semistructured interviews (January 26, 2021, to January 19, 2022); and 4 cases had their in-contact animals and environments sampled (October 28, 2020, and July 29, 2021). Data analysis for study 3 has concluded and 2 manuscripts have been drafted for review. Results of the other studies are being analyzed and the specific results of each study will be published as individual manuscripts.. CONCLUSIONS The methods used in this study may provide a basis for future epidemiological studies of infectious diseases. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) DERR1-10.2196/47900.
Collapse
Affiliation(s)
- Shahista Nisa
- Molecular Epidemiology and Public Health Laboratory, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Emilie Vallee
- EpiCentre, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Jonathan Marshall
- School of Mathematical and Computational Sciences, Massey University, Palmerston North, New Zealand
| | - Julie Collins-Emerson
- Molecular Epidemiology and Public Health Laboratory, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Polly Yeung
- School of Social Work, Massey University, Palmerston North, New Zealand
| | - Gerard Prinsen
- School of People, Environment and Planning, Massey University, Palmerston North, New Zealand
| | - Jeroen Douwes
- Research Centre for Hauora and Health, Massey University, Wellington, New Zealand
| | - Michael G Baker
- Department of Public Health, University of Otago, Wellington, New Zealand
| | - Jackie Wright
- Enteric and Leptospira Reference Laboratory, Institute of Environmental Science and Research, Christchurch, New Zealand
| | - Tanya Quin
- Goodfellow Unit, University of Auckland, Auckland, New Zealand
| | - Maureen Holdaway
- College of Health, Massey University, Palmerston North, New Zealand
| | - David A Wilkinson
- Unité Mixte de Recherche, Animal, Santé, Territoires, Risques et Ecosystèmes, Centre de coopération internationale en recherche agronomique pour le développement, Institut national de la recherche agronomique, University of Montpellier, Plateforme Technologique Cyclotron Réunion Océan Indien, Sainte-Clotilde, La Réunion, France
| | - Ahmed Fayaz
- Molecular Epidemiology and Public Health Laboratory, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Stuart Littlejohn
- Molecular Epidemiology and Public Health Laboratory, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Jackie Benschop
- Molecular Epidemiology and Public Health Laboratory, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| |
Collapse
|
11
|
Kingsbury JM, Horn B, Armstrong B, Midwinter A, Biggs P, Callander M, Mulqueen K, Brooks M, van der Logt P, Biggs R. The impact of primary and secondary processing steps on Campylobacter concentrations on chicken carcasses and portions. Food Microbiol 2023; 110:104168. [DOI: 10.1016/j.fm.2022.104168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022]
|
12
|
Cribb DM, Varrone L, Wallace RL, McLure AT, Smith JJ, Stafford RJ, Bulach DM, Selvey LA, Firestone SM, French NP, Valcanis M, Fearnley EJ, Sloan-Gardner TS, Graham T, Glass K, Kirk MD. Risk factors for campylobacteriosis in Australia: outcomes of a 2018-2019 case-control study. BMC Infect Dis 2022; 22:586. [PMID: 35773664 PMCID: PMC9245254 DOI: 10.1186/s12879-022-07553-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We aimed to identify risk factors for sporadic campylobacteriosis in Australia, and to compare these for Campylobacter jejuni and Campylobacter coli infections. METHODS In a multi-jurisdictional case-control study, we recruited culture-confirmed cases of campylobacteriosis reported to state and territory health departments from February 2018 through October 2019. We recruited controls from notified influenza cases in the previous 12 months that were frequency matched to cases by age group, sex, and location. Campylobacter isolates were confirmed to species level by public health laboratories using molecular methods. We conducted backward stepwise multivariable logistic regression to identify significant risk factors. RESULTS We recruited 571 cases of campylobacteriosis (422 C. jejuni and 84 C. coli) and 586 controls. Important risk factors for campylobacteriosis included eating undercooked chicken (adjusted odds ratio [aOR] 70, 95% CI 13-1296) or cooked chicken (aOR 1.7, 95% CI 1.1-2.8), owning a pet dog aged < 6 months (aOR 6.4, 95% CI 3.4-12), and the regular use of proton-pump inhibitors in the 4 weeks prior to illness (aOR 2.8, 95% CI 1.9-4.3). Risk factors remained similar when analysed specifically for C. jejuni infection. Unique risks for C. coli infection included eating chicken pâté (aOR 6.1, 95% CI 1.5-25) and delicatessen meats (aOR 1.8, 95% CI 1.0-3.3). Eating any chicken carried a high population attributable fraction for campylobacteriosis of 42% (95% CI 13-68), while the attributable fraction for proton-pump inhibitors was 13% (95% CI 8.3-18) and owning a pet dog aged < 6 months was 9.6% (95% CI 6.5-13). The population attributable fractions for these variables were similar when analysed by campylobacter species. Eating delicatessen meats was attributed to 31% (95% CI 0.0-54) of cases for C. coli and eating chicken pâté was attributed to 6.0% (95% CI 0.0-11). CONCLUSIONS The main risk factor for campylobacteriosis in Australia is consumption of chicken meat. However, contact with young pet dogs may also be an important source of infection. Proton-pump inhibitors are likely to increase vulnerability to infection.
Collapse
Affiliation(s)
- Danielle M Cribb
- National Centre for Epidemiology and Population Health, The Australian National University, Canberra, ACT, Australia
| | - Liana Varrone
- Department of Health, Government of Western Australia, Perth, WA, Australia
| | - Rhiannon L Wallace
- Agriculture and Agri-Food Canada, Agassiz Research and Development Centre, Agassiz, BC, Canada
| | - Angus T McLure
- National Centre for Epidemiology and Population Health, The Australian National University, Canberra, ACT, Australia
| | - James J Smith
- Food Safety Standards and Regulation, Health Protection Branch, Queensland Health, Brisbane, Qld, Australia.,School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, Qld, Australia
| | - Russell J Stafford
- OzFoodNet, Communicable Diseases Branch, Queensland Health, Brisbane, Qld, Australia
| | - Dieter M Bulach
- Melbourne Bioinformatics, The University of Melbourne, Melbourne, Vic, Australia.,Microbiological Diagnostic Unit Public Health Laboratory, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Vic, Australia
| | - Linda A Selvey
- Faculty of Medicine, The University of Queensland, Brisbane, Qld, Australia
| | - Simon M Firestone
- Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Vic, Australia
| | - Nigel P French
- Infectious Disease Research Centre, Massey University, Palmerston North, New Zealand
| | - Mary Valcanis
- Microbiological Diagnostic Unit Public Health Laboratory, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Vic, Australia
| | - Emily J Fearnley
- OzFoodNet, Government of South Australia, Department for Health and Wellbeing, Adelaide, SK, Australia
| | | | - Trudy Graham
- Public Health Microbiology, Forensic and Scientific Services, Queensland Health, Brisbane, Qld, Australia
| | - Kathryn Glass
- National Centre for Epidemiology and Population Health, The Australian National University, Canberra, ACT, Australia
| | - Martyn D Kirk
- National Centre for Epidemiology and Population Health, The Australian National University, Canberra, ACT, Australia.
| |
Collapse
|
13
|
Grout L, Marshall J, Hales S, Baker MG, French N. Dairy Cattle Density and Temporal Patterns of Human Campylobacteriosis and Cryptosporidiosis in New Zealand. ECOHEALTH 2022; 19:273-289. [PMID: 35689151 PMCID: PMC9276729 DOI: 10.1007/s10393-022-01593-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 03/18/2022] [Indexed: 06/15/2023]
Abstract
Public health risks associated with the intensification of dairy farming are an emerging concern. Dairy cattle are a reservoir for a number of pathogens that can cause human illness. This study examined the spatial distribution of dairy cattle density and explored temporal patterns of human campylobacteriosis and cryptosporidiosis notifications in New Zealand from 1997 to 2015. Maps of dairy cattle density were produced, and temporal patterns of disease rates were assessed for urban versus rural areas and for areas with different dairy cattle densities using descriptive temporal analyses. Campylobacteriosis and cryptosporidiosis rates displayed strong seasonal patterns, with highest rates in spring in rural areas and, for campylobacteriosis, summer in urban areas. Increases in rural cases often preceded increases in urban cases. Furthermore, disease rates in areas with higher dairy cattle densities tended to peak before areas with low densities or no dairy cattle. Infected dairy calves may be a direct or indirect source of campylobacteriosis or cryptosporidiosis infection in humans through environmental or occupational exposure routes, including contact with animals or feces, recreational contact with contaminated waterways, and consumption of untreated drinking water. These results have public health implications for populations living, working, or recreating in proximity to dairy farms.
Collapse
Affiliation(s)
- Leah Grout
- Department of Public Health, University of Otago, Wellington, 6021, New Zealand.
| | - Jonathan Marshall
- School of Mathematical and Computational Sciences, Massey University, Palmerston North, 4474, New Zealand
| | - Simon Hales
- Department of Public Health, University of Otago, Wellington, 6021, New Zealand
| | - Michael G Baker
- Department of Public Health, University of Otago, Wellington, 6021, New Zealand
| | - Nigel French
- School of Veterinary Science, Hopkirk Research Institute, Massey University, Palmerston North, 4474, New Zealand
| |
Collapse
|
14
|
McLure A, Shadbolt C, Desmarchelier PM, Kirk MD, Glass K. Source attribution of salmonellosis by time and geography in New South Wales, Australia. BMC Infect Dis 2022; 22:14. [PMID: 34983395 PMCID: PMC8725445 DOI: 10.1186/s12879-021-06950-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 11/25/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Salmonella is a major cause of zoonotic illness around the world, arising from direct or indirect contact with a range of animal reservoirs. In the Australian state of New South Wales (NSW), salmonellosis is believed to be primarily foodborne, but the relative contribution of animal reservoirs is unknown. METHODS The analysis included 4543 serotyped isolates from animal reservoirs and 30,073 serotyped isolates from domestically acquired human cases in NSW between January 2008 and August 2019. We used a Bayesian source attribution methodology to estimate the proportion of foodborne Salmonella infections attributable to broiler chickens, layer chickens, ruminants, pigs, and an unknown or unsampled source. Additional analyses included covariates for four time periods and five levels of rurality. RESULTS A single serotype, S. Typhimurium, accounted for 65-75% of included cases during 2008-2014 but < 50% during 2017-2019. Attribution to layer chickens was highest during 2008-2010 (48.7%, 95% CrI 24.2-70.3%) but halved by 2017-2019 (23.1%, 95% CrI 5.7-38.9%) and was lower in the rural and remote populations than in the majority urban population. The proportion of cases attributed to the unsampled source was 11.3% (95% CrI 1.2%-22.1%) overall, but higher in rural and remote populations. The proportion of cases attributed to pork increased from approximately 20% in 2009-2016 to approximately 40% in 2017-2019, coinciding with a rise in cases due to Salmonella ser. 4,5,12:i:-. CONCLUSION Layer chickens were likely the primary reservoir of domestically acquired Salmonella infections in NSW circa 2010, but attribution to the source declined contemporaneously with increased vaccination of layer flocks and tighter food safety regulations for the handling of eggs.
Collapse
Affiliation(s)
- Angus McLure
- National Centre for Epidemiology and Population Health, Australian National University, Canberra, Australia.
| | - Craig Shadbolt
- New South Wales Department of Primary Industries, New South Wales, Australia
| | | | - Martyn D Kirk
- National Centre for Epidemiology and Population Health, Australian National University, Canberra, Australia
| | - Kathryn Glass
- National Centre for Epidemiology and Population Health, Australian National University, Canberra, Australia
| |
Collapse
|
15
|
Bloomfield SJ, Midwinter AC, Biggs PJ, French NP, Marshall JC, Hayman DTS, Carter PE, Mather AE, Fayaz A, Thornley C, Kelly DJ, Benschop J. Genomic adaptations of Campylobacter jejuni to long-term human colonization. Gut Pathog 2021; 13:72. [PMID: 34893079 PMCID: PMC8665580 DOI: 10.1186/s13099-021-00469-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 12/01/2021] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Campylobacter is a genus of bacteria that has been isolated from the gastrointestinal tract of humans and animals, and the environments they inhabit around the world. Campylobacter adapt to new environments by changes in their gene content and expression, but little is known about how they adapt to long-term human colonization. In this study, the genomes of 31 isolates from a New Zealand patient and 22 isolates from a United Kingdom patient belonging to Campylobacter jejuni sequence type 45 (ST45) were compared with 209 ST45 genomes from other sources to identify the mechanisms by which Campylobacter adapts to long-term human colonization. In addition, the New Zealand patient had their microbiota investigated using 16S rRNA metabarcoding, and their level of inflammation and immunosuppression analyzed using biochemical tests, to determine how Campylobacter adapts to a changing gastrointestinal tract. RESULTS There was some evidence that long-term colonization led to genome degradation, but more evidence that Campylobacter adapted through the accumulation of non-synonymous single nucleotide polymorphisms (SNPs) and frameshifts in genes involved in cell motility, signal transduction and the major outer membrane protein (MOMP). The New Zealand patient also displayed considerable variation in their microbiome, inflammation and immunosuppression over five months, and the Campylobacter collected from this patient could be divided into two subpopulations, the proportion of which correlated with the amount of gastrointestinal inflammation. CONCLUSIONS This study demonstrates how genomics, phylogenetics, 16S rRNA metabarcoding and biochemical markers can provide insight into how Campylobacter adapts to changing environments within human hosts. This study also demonstrates that long-term human colonization selects for changes in Campylobacter genes involved in cell motility, signal transduction and the MOMP; and that genetically distinct subpopulations of Campylobacter evolve to adapt to the changing gastrointestinal environment.
Collapse
Affiliation(s)
| | - Anne C Midwinter
- mEpiLab, Hopkirk Research Institute, Massey University, Palmerston North, 4410, New Zealand
- Infectious Disease Research Centre, Hopkirk Research Institute, Massey University, Palmerston North, 4410, New Zealand
| | - Patrick J Biggs
- mEpiLab, Hopkirk Research Institute, Massey University, Palmerston North, 4410, New Zealand
- Infectious Disease Research Centre, Hopkirk Research Institute, Massey University, Palmerston North, 4410, New Zealand
- School of Fundamental Science, Massey University, Palmerston North, 4410, New Zealand
| | - Nigel P French
- Infectious Disease Research Centre, Hopkirk Research Institute, Massey University, Palmerston North, 4410, New Zealand
- New Zealand Food Safety Science and Research Centre, Hopkirk Research Institute, Massey University, Palmerston North, 4410, New Zealand
| | - Jonathan C Marshall
- mEpiLab, Hopkirk Research Institute, Massey University, Palmerston North, 4410, New Zealand
- Infectious Disease Research Centre, Hopkirk Research Institute, Massey University, Palmerston North, 4410, New Zealand
- School of Fundamental Science, Massey University, Palmerston North, 4410, New Zealand
| | - David T S Hayman
- mEpiLab, Hopkirk Research Institute, Massey University, Palmerston North, 4410, New Zealand
- Infectious Disease Research Centre, Hopkirk Research Institute, Massey University, Palmerston North, 4410, New Zealand
- Centre of Research Excellence for Complex Systems, Te Pūnaha Matatini, Auckland, New Zealand
| | - Philip E Carter
- Institute of Environmental Science of Research, 34 Kenepuru Drive, Kenepuru, Porirua, 5022, New Zealand
| | - Alison E Mather
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk, UK
- University of East Anglia, Norwich, Norfolk, UK
| | - Ahmed Fayaz
- mEpiLab, Hopkirk Research Institute, Massey University, Palmerston North, 4410, New Zealand
- Infectious Disease Research Centre, Hopkirk Research Institute, Massey University, Palmerston North, 4410, New Zealand
| | - Craig Thornley
- Regional Public Health, Hutt Hospital, Lower Hutt, 5040, New Zealand
| | - David J Kelly
- School of Biosciences, The University of Sheffield, Sheffield, South Yorkshire, UK
| | - Jackie Benschop
- mEpiLab, Hopkirk Research Institute, Massey University, Palmerston North, 4410, New Zealand
- Infectious Disease Research Centre, Hopkirk Research Institute, Massey University, Palmerston North, 4410, New Zealand
| |
Collapse
|
16
|
Antimicrobial resistance in Campylobacter coli and Campylobacter jejuni from human campylobacteriosis in Taiwan, 2016-2019. Antimicrob Agents Chemother 2021; 66:e0173621. [PMID: 34748382 DOI: 10.1128/aac.01736-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Campylobacter coli and C. jejuni are highly resistant to most therapeutic antimicrobials in Taiwan, rapid diagnostics of resistance in bacterial isolates is crucial for the treatment of campylobacteriosis. We characterized 219 (40 C. coli and 179 C. jejuni) isolates recovered from humans between 2016 and 2019 using whole-genome sequencing to investigate the genetic diversity among isolates and the genetic resistance determinants associated with antimicrobial resistance. Susceptibility testing with 8 antimicrobials was conducted to assess the concordance between phenotypic resistance and genetic determinants. The conventional and core genome multilocus sequence typing analysis revealed diverse clonality among the isolates. Mutations in gyrA (T86I, D90N), rpsL (K43R, K88R), and 23S rRNA (A2075G) were found in 91.8%, 3.2%, and 6.4% of the isolates, respectively. Horizontally transferable resistance genes ant(6)-I, aad9, aph(3')-IIIa, aph(2"), blaOXA, catA/fexA, cfr(C), erm(B), lnu, sat4, and tet were identified in 24.2%, 21.5%, 33.3%, 11.9%, 96.3%, 10.0%, 0.9%, 6.8%, 3.2%, 13.2%, and 96.3%, respectively. High-level resistance to 8 antimicrobials in isolates was 100% predictable by the known resistance determinants, whereas low-level resistance to azithromycin, clindamycin, nalidixic acid, ciprofloxacin, and florfenicol in isolates was associated with sequence variations in CmeA and CmeB of the CmeABC efflux pump. Resistance-enhancing CmeB variants were identified in 62.1% (136/219) of isolates. In conclusion, an extremely high proportion of C. coli (100%) and C. jejuni (88.3%) were multidrug-resistant and a high proportion (62.5%) of C. coli isolates had been resistant to azithromycin, erythromycin, and clindamycin that would complicate the treatment of invasive campylobacteriosis in this country.
Collapse
|
17
|
Hudson LK, Andershock WE, Yan R, Golwalkar M, M’ikanatha NM, Nachamkin I, Thomas LS, Moore C, Qian X, Steece R, Garman KN, Dunn JR, Kovac J, Denes TG. Phylogenetic Analysis Reveals Source Attribution Patterns for Campylobacter spp. in Tennessee and Pennsylvania. Microorganisms 2021; 9:microorganisms9112300. [PMID: 34835426 PMCID: PMC8625337 DOI: 10.3390/microorganisms9112300] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 11/22/2022] Open
Abstract
Campylobacteriosis is the most common bacterial foodborne illness in the United States and is frequently associated with foods of animal origin. The goals of this study were to compare clinical and non-clinical Campylobacter populations from Tennessee (TN) and Pennsylvania (PA), use phylogenetic relatedness to assess source attribution patterns, and identify potential outbreak clusters. Campylobacter isolates studied (n = 3080) included TN clinical isolates collected and sequenced for routine surveillance, PA clinical isolates collected from patients at the University of Pennsylvania Health System facilities, and non-clinical isolates from both states for which sequencing reads were available on NCBI. Phylogenetic analyses were conducted to categorize isolates into species groups and determine the population structure of each species. Most isolates were C. jejuni (n = 2132, 69.2%) and C. coli (n = 921, 29.9%), while the remaining were C. lari (0.4%), C. upsaliensis (0.3%), and C. fetus (0.1%). The C. jejuni group consisted of three clades; most non-clinical isolates were of poultry (62.7%) or cattle (35.8%) origin, and 59.7 and 16.5% of clinical isolates were in subclades associated with poultry or cattle, respectively. The C. coli isolates grouped into two clades; most non-clinical isolates were from poultry (61.2%) or swine (29.0%) sources, and 74.5, 9.2, and 6.1% of clinical isolates were in subclades associated with poultry, cattle, or swine, respectively. Based on genomic similarity, we identified 42 C. jejuni and one C. coli potential outbreak clusters. The C. jejuni clusters contained 188 clinical isolates, 19.6% of the total C. jejuni clinical isolates, suggesting that a larger proportion of campylobacteriosis may be associated with outbreaks than previously determined.
Collapse
Affiliation(s)
- Lauren K. Hudson
- Department of Food Science, University of Tennessee, Knoxville, TN 37996, USA;
| | | | - Runan Yan
- Department of Food Science, The Pennsylvania State University, University Park, PA 16802, USA; (R.Y.); (J.K.)
| | - Mugdha Golwalkar
- Tennessee Department of Health, Nashville, TN 37243, USA; (M.G.); (K.N.G.); (J.R.D.)
| | | | - Irving Nachamkin
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Linda S. Thomas
- Division of Laboratory Services, Tennessee Department of Health, Nashville, TN 37216, USA; (L.S.T.); (C.M.); (X.Q.); (R.S.)
| | - Christina Moore
- Division of Laboratory Services, Tennessee Department of Health, Nashville, TN 37216, USA; (L.S.T.); (C.M.); (X.Q.); (R.S.)
| | - Xiaorong Qian
- Division of Laboratory Services, Tennessee Department of Health, Nashville, TN 37216, USA; (L.S.T.); (C.M.); (X.Q.); (R.S.)
| | - Richard Steece
- Division of Laboratory Services, Tennessee Department of Health, Nashville, TN 37216, USA; (L.S.T.); (C.M.); (X.Q.); (R.S.)
| | - Katie N. Garman
- Tennessee Department of Health, Nashville, TN 37243, USA; (M.G.); (K.N.G.); (J.R.D.)
| | - John R. Dunn
- Tennessee Department of Health, Nashville, TN 37243, USA; (M.G.); (K.N.G.); (J.R.D.)
| | - Jasna Kovac
- Department of Food Science, The Pennsylvania State University, University Park, PA 16802, USA; (R.Y.); (J.K.)
| | - Thomas G. Denes
- Department of Food Science, University of Tennessee, Knoxville, TN 37996, USA;
- Correspondence:
| |
Collapse
|
18
|
Update on the campylobacter epidemic from chicken meat in New Zealand: The urgent need for an upgraded regulatory response. Epidemiol Infect 2020; 149:e30. [PMID: 33319723 PMCID: PMC8057407 DOI: 10.1017/s095026882000299x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
New Zealand has a long-running campylobacter infection (campylobacteriosis) epidemic with contaminated fresh chicken meat as the major source. This is both the highest impact zoonosis and the largest food safety problem in the country. Adding to this burden is the recent rapid emergence of antibiotic resistance in these campylobacter infections acquired from locally-produced chicken. Campylobacteriosis rates halved in 2008, as compared with the previous 5 years, following the introduction of regulatory limits on allowable contamination levels in fresh chicken meat, with large health and economic benefits resulting. In the following decade, disease rates do not appear to have declined further. The cumulative impact would equate to an estimated 539 000 cases, 5480 hospitalisations, 284 deaths and economic costs of approximately US$380 million during the last 10 years (2009–2018). Additional regulatory interventions, that build on previously successful regulations in this country, are urgently needed to control the source of this epidemic.
Collapse
|