1
|
Li Y, Sun J, Yang W, Liu Y, Lian X, Wang L, Song L. DM9CP-8 upon binding microbes activates MASPL-1-C3 axis to regulate the mRNA expressions of IL17s in oysters. Int J Biol Macromol 2025; 302:140470. [PMID: 39884617 DOI: 10.1016/j.ijbiomac.2025.140470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/21/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
DM9 domain-containing protein (DM9CP) as pattern recognition molecule is involved in regulating the inflammation-related signaling pathway in invertebrates. In the present study, a DM9CP with two tandem DM9 repeats (designated as CgDM9CP-8) was identified from Crassostrea gigas. The mRNA transcript of CgDM9CP-8 was the highest in haemocytes. Recombinant CgDM9CP-8 was able to bind various PAMPs (MAN, PGN and LPS) and microbes (Vibrio splendidus, Staphylococcus aureus, Bacillus subtilis, Pichia pastoris, and Yarrowia lipolytica). CgDM9CP-8 protein was distributed in haemocytes and cell-free haemolymph. After lipopolysaccharide (LPS) or V. splendidus stimulation, the mRNA expressions of CgDM9CP-8 in haemocytes were significantly up-regulated at 3 and 6 h, respectively. rCgDM9CP-8 exhibited binding activity to V. splendidus and E. coli, inhibiting their growth in vitro. CgDM9CP-8 was able to bind CgMASPL-1 both in vivo and in vitro to lead to complement CgC3 cleavage. In addition, in CgDM9CP-8-RNAi oysters, the mRNA expressions of interleukin 17s (CgIL17s) in haemocytes decreased significantly after V. splendidus stimulation. These results suggested that CgDM9CP-8 functioned as a pattern recognition and antibacterial molecule to regulate the mRNA expressions of CgIL17s through the activation of CgC3 in C. gigas.
Collapse
Affiliation(s)
- Yinan Li
- College of Life Sciences, Liaoning Normal University, Dalian 116029, Liaoning, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Aquatic Disease Prevention and Control, Dalin Ocean University, Dalian 116023, China
| | - Jiejie Sun
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Aquatic Disease Prevention and Control, Dalin Ocean University, Dalian 116023, China.
| | - Wenwen Yang
- College of Life Sciences, Liaoning Normal University, Dalian 116029, Liaoning, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Aquatic Disease Prevention and Control, Dalin Ocean University, Dalian 116023, China
| | - Yu Liu
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Aquatic Disease Prevention and Control, Dalin Ocean University, Dalian 116023, China
| | - Xingye Lian
- College of Life Sciences, Liaoning Normal University, Dalian 116029, Liaoning, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Aquatic Disease Prevention and Control, Dalin Ocean University, Dalian 116023, China
| | - Lingling Wang
- College of Life Sciences, Liaoning Normal University, Dalian 116029, Liaoning, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Aquatic Disease Prevention and Control, Dalin Ocean University, Dalian 116023, China
| | - Linsheng Song
- College of Life Sciences, Liaoning Normal University, Dalian 116029, Liaoning, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Aquatic Disease Prevention and Control, Dalin Ocean University, Dalian 116023, China.
| |
Collapse
|
2
|
González-Lodeiro LG, Barrios Roque P, Gómez Hernández N, Medina-Carrasco D, García de Castro LE, Huerta Galindo V. Differential Serotype Specificity in the IgG Subclass Profile of the Anti-Domain III Response Elicited by Dengue Virus Infection. J Med Virol 2025; 97:e70255. [PMID: 39992018 DOI: 10.1002/jmv.70255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 01/31/2025] [Accepted: 02/10/2025] [Indexed: 02/25/2025]
Abstract
Dengue is a potentially fatal disease caused by any of the four serotypes of dengue virus complex (DENV1-4). Domain III (DIII) of the envelope protein mediates early virus:cell interactions and is target of potent neutralizing antibodies. Little data is available on the dynamic of IgG subclasses in anti-DIII response elicited during viral infection. Fifty-eight human sera were used to characterize the IgG subclass profile of the anti-DIII antibody response in terms of abundance and serotype-specificity. Immunodominant epitopes were also determined using 70 Ala-mutants of a recombinant DIII protein that spans residues with more than 15% of the exposed area in the virion. IgG1 and IgG3 were found as the subclasses that react to control primary infections while a significant response was detected for all IgG subclasses in response to secondary infections. Anti-DIII IgG1 exhibits a distinctive pattern of serotype-specificity with respect to the other IgG subclasses in the recognition of recombinant DIII proteins corresponding to the four DENV serotypes. The dominant epitope of IgG1 is located in the FG-loop, which is characterized by high variability in its amino acid sequence. In contrast, the dominant epitopes of IgG2, IgG3, and IgG4 were defined as regions enriched in complex- and subcomplex conserved residues such as the A-strand and the AB-loop of DIII. IgG1 plays a prominent role in neutralizing circulating DENV during infection. A balanced and timely response of the different IgG subclasses is critical in the evolution of dengue disease.
Collapse
Affiliation(s)
- Luis Gabriel González-Lodeiro
- Department of System Biology, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Patricia Barrios Roque
- Department of System Biology, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Nivaldo Gómez Hernández
- Department of System Biology, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Danya Medina-Carrasco
- Department of System Biology, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Lisandra E García de Castro
- Department of System Biology, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Vivian Huerta Galindo
- Department of System Biology, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| |
Collapse
|
3
|
Byrne AB, Bonnin FA, López EL, Polack FP, Talarico LB. C1q modulation of antibody-dependent enhancement of dengue virus infection in human myeloid cell lines is dependent on cell type and antibody specificity. Microbes Infect 2024; 26:105378. [PMID: 38880233 DOI: 10.1016/j.micinf.2024.105378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/28/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
Antibody-dependent enhancement (ADE) of dengue virus (DENV) infection is one of the mechanisms contributing to increased severity during heterotypic, secondary infection. The complement protein C1q has been shown to reduce the magnitude of ADE in vitro. Therefore, we investigated the mechanisms of C1q modulation of ADE, focusing on processes of viral entry. Using a model of ADE of DENV-1 infection in human myeloid cell lines in the presence of monoclonal antibodies, 4G2 and 2H2, we found that C1q produced nearly a 40-fold reduction of ADE of DENV-1 in K562 cells, but had no effect in U937 cells. In K562 cells, C1q reduced adsorption of DENV-1/4G2 and exerted a dual inhibitory effect on adsorption and internalization of DENV-1/2H2. Distinct endocytic pathways in the presence of antibody corresponded to conditions where C1q produced a differential action. Also, C1q did not affect the intrinsic cell response mediated by FcγR in human myeloid cells. The modulation of ADE of DENV-1 by C1q is dependent on the FcγR expressed on immune cells and the specificity of the antibody comprising the immune complex. Understanding protective and pathogenic mechanisms in the humoral response to DENV infections is crucial for the successful design of antivirals and vaccines.
Collapse
Affiliation(s)
- Alana B Byrne
- Laboratorio de Investigaciones Infectológicas y Biología Molecular, Infectología, Departamento de Medicina, Hospital de Niños Dr. Ricardo Gutiérrez, Gallo 1330, Buenos Aires 1425, Argentina; Fundación INFANT, Gavilán 94, Buenos Aires 1406, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Godoy Cruz 2290, Buenos Aires 1425, Argentina.
| | - Florencia A Bonnin
- Laboratorio de Investigaciones Infectológicas y Biología Molecular, Infectología, Departamento de Medicina, Hospital de Niños Dr. Ricardo Gutiérrez, Gallo 1330, Buenos Aires 1425, Argentina; Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Intendente Güiraldes 2160, Buenos Aires 1428, Argentina
| | - Eduardo L López
- Departamento de Medicina, Programa de Infectología Pediátrica, Hospital de Niños Dr. Ricardo Gutiérrez, Universidad de Buenos Aires, Gallo 1330, Buenos Aires 1425, Argentina
| | | | - Laura B Talarico
- Laboratorio de Investigaciones Infectológicas y Biología Molecular, Infectología, Departamento de Medicina, Hospital de Niños Dr. Ricardo Gutiérrez, Gallo 1330, Buenos Aires 1425, Argentina; Fundación INFANT, Gavilán 94, Buenos Aires 1406, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Godoy Cruz 2290, Buenos Aires 1425, Argentina.
| |
Collapse
|
4
|
Abstract
Neutralizing antibodies (nAbs) are being increasingly used as passive antiviral reagents in prophylactic and therapeutic modalities and to guide viral vaccine design. In vivo, nAbs can mediate antiviral functions through several mechanisms, including neutralization, which is defined by in vitro assays in which nAbs block viral entry to target cells, and antibody effector functions, which are defined by in vitro assays that evaluate nAbs against viruses and infected cells in the presence of effector systems. Interpreting in vivo results in terms of these in vitro assays is challenging but important in choosing optimal passive antibody and vaccine strategies. Here, I review findings from many different viruses and conclude that, although some generalizations are possible, deciphering the relative contributions of different antiviral mechanisms to the in vivo efficacy of antibodies currently requires consideration of individual antibody-virus interactions.
Collapse
Affiliation(s)
- Dennis R Burton
- Department of Immunology and Microbiology, Consortium for HIV/AIDS Vaccine Development, International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA.
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA.
| |
Collapse
|
5
|
van Bree JW, Visser I, Duyvestyn JM, Aguilar-Bretones M, Marshall EM, van Hemert MJ, Pijlman GP, van Nierop GP, Kikkert M, Rockx BH, Miesen P, Fros JJ. Novel approaches for the rapid development of rationally designed arbovirus vaccines. One Health 2023; 16:100565. [PMID: 37363258 PMCID: PMC10288159 DOI: 10.1016/j.onehlt.2023.100565] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 06/28/2023] Open
Abstract
Vector-borne diseases, including those transmitted by mosquitoes, account for more than 17% of infectious diseases worldwide. This number is expected to rise with an increased spread of vector mosquitoes and viruses due to climate change and man-made alterations to ecosystems. Among the most common, medically relevant mosquito-borne infections are those caused by arthropod-borne viruses (arboviruses), especially members of the genera Flavivirus and Alphavirus. Arbovirus infections can cause severe disease in humans, livestock and wildlife. Severe consequences from infections include congenital malformations as well as arthritogenic, haemorrhagic or neuroinvasive disease. Inactivated or live-attenuated vaccines (LAVs) are available for a small number of arboviruses; however there are no licensed vaccines for the majority of these infections. Here we discuss recent developments in pan-arbovirus LAV approaches, from site-directed attenuation strategies targeting conserved determinants of virulence to universal strategies that utilize genome-wide re-coding of viral genomes. In addition to these approaches, we discuss novel strategies targeting mosquito saliva proteins that play an important role in virus transmission and pathogenesis in vertebrate hosts. For rapid pre-clinical evaluations of novel arbovirus vaccine candidates, representative in vitro and in vivo experimental systems are required to assess the desired specific immune responses. Here we discuss promising models to study attenuation of neuroinvasion, neurovirulence and virus transmission, as well as antibody induction and potential for cross-reactivity. Investigating broadly applicable vaccination strategies to target the direct interface of the vertebrate host, the mosquito vector and the viral pathogen is a prime example of a One Health strategy to tackle human and animal diseases.
Collapse
Affiliation(s)
- Joyce W.M. van Bree
- Laboratory of Virology, Wageningen University & Research, Wageningen, the Netherlands
| | - Imke Visser
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Jo M. Duyvestyn
- Department of Medical Microbiology, Leiden University Medical Centre, Leiden, the Netherlands
| | | | - Eleanor M. Marshall
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Martijn J. van Hemert
- Department of Medical Microbiology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Gorben P. Pijlman
- Laboratory of Virology, Wageningen University & Research, Wageningen, the Netherlands
| | | | - Marjolein Kikkert
- Department of Medical Microbiology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Barry H.G. Rockx
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Pascal Miesen
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500, HB, Nijmegen, the Netherlands
| | - Jelke J. Fros
- Laboratory of Virology, Wageningen University & Research, Wageningen, the Netherlands
| |
Collapse
|
6
|
Sampei Z, Koo CX, Teo FJ, Toh YX, Fukuzawa T, Gan SW, Nambu T, Ho A, Honda K, Igawa T, Ahmed F, Wang CI, Fink K, Nezu J. Complement Activation by an Anti-Dengue/Zika Antibody with Impaired Fcγ Receptor Binding Provides Strong Efficacy and Abrogates Risk of Antibody-Dependent Enhancement. Antibodies (Basel) 2023; 12:antib12020036. [PMID: 37218902 DOI: 10.3390/antib12020036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/12/2023] [Accepted: 05/10/2023] [Indexed: 05/24/2023] Open
Abstract
To combat infectious diseases, vaccines are considered the best prophylactic strategy for a wide range of the population, but even when vaccines are effective, the administration of therapeutic antibodies against viruses could provide further treatment options, particularly for vulnerable groups whose immunity against the viruses is compromised. Therapeutic antibodies against dengue are ideally engineered to abrogate binding to Fcγ receptors (FcγRs), which can induce antibody-dependent enhancement (ADE). However, the Fc effector functions of neutralizing antibodies against SARS-CoV-2 have recently been reported to improve post-exposure therapy, while they are dispensable when administered as prophylaxis. Hence, in this report, we investigated the influence of Fc engineering on anti-virus efficacy using the anti-dengue/Zika human antibody SIgN-3C and found it affected the viremia clearance efficacy against dengue in a mouse model. Furthermore, we demonstrated that complement activation through antibody binding to C1q could play a role in anti-dengue efficacy. We also generated a novel Fc variant, which displayed the ability for complement activation but showed very low FcγR binding and an undetectable level of the risk of ADE in a cell-based assay. This Fc engineering approach could make effective and safe anti-virus antibodies against dengue, Zika and other viruses.
Collapse
Affiliation(s)
- Zenjiro Sampei
- Chugai Pharmaceutical Co., Ltd., Yokohama 244-8602, Japan
- Chugai Pharmabody Research Pte. Ltd., Singapore 138623, Singapore
| | | | - Frannie Jiuyi Teo
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Ying Xiu Toh
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Taku Fukuzawa
- Chugai Pharmaceutical Co., Ltd., Yokohama 244-8602, Japan
- Chugai Pharmabody Research Pte. Ltd., Singapore 138623, Singapore
| | - Siok Wan Gan
- Chugai Pharmabody Research Pte. Ltd., Singapore 138623, Singapore
| | - Takeru Nambu
- Chugai Pharmaceutical Co., Ltd., Yokohama 244-8602, Japan
- Chugai Pharmabody Research Pte. Ltd., Singapore 138623, Singapore
| | - Adrian Ho
- Chugai Pharmabody Research Pte. Ltd., Singapore 138623, Singapore
| | - Kiyofumi Honda
- Chugai Pharmaceutical Co., Ltd., Yokohama 244-8602, Japan
- Chugai Pharmabody Research Pte. Ltd., Singapore 138623, Singapore
| | - Tomoyuki Igawa
- Chugai Pharmaceutical Co., Ltd., Yokohama 244-8602, Japan
- Chugai Pharmabody Research Pte. Ltd., Singapore 138623, Singapore
| | - Fariyal Ahmed
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Cheng-I Wang
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Katja Fink
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Junichi Nezu
- Chugai Pharmaceutical Co., Ltd., Yokohama 244-8602, Japan
- Chugai Pharmabody Research Pte. Ltd., Singapore 138623, Singapore
| |
Collapse
|
7
|
Abstract
Since its discovery in 1937 in the West Nile district of Uganda, West Nile virus (WNV) has been one of the leading causes of mosquito-transmitted infectious diseases (Smithburn, Burke, Am J Trop Med 20:22, 1940). Subsequently, it spread to Europe, Asia, Australia, and finally North America in 1999 (Sejvar, Ochsner 5(3):6-10, 2003). Worldwide outbreaks have continued to increase since the 1990s (Chancey et al, Biomed Res Int 2015:376230, 2015). According to the Center for Disease Control and Prevention, more than 51,000 cases of WNV infection and nearly 2400 cases of WNV-related death were reported in the USA from 1999 to 2019. The estimated economic impact of WNV infections is close to 800 million dollars in the USA from 1999 to 2012 (Barrett, Am J Trop Med Hyg 90:389, 2014).
Collapse
Affiliation(s)
- Haiyan Sun
- The Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Josh Lesio
- The Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Qiang Chen
- The Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
8
|
Abstract
Hemolysis is a problem associated with a variety of red cell pathologies and physiologies not limited to the transfusion of cells. Various pathways lead to the observed outcomes when a hemolytic event occurs. Each event, and the pathway it follows, is based on characteristics of the red cell, the location in which the hemolysis occurs, and the interaction of the immune system. The severity of an event can be predicted with the knowledge of how these 3 factors interface. Although not all hemolytic events are alike, similarities may exist when the pathways overlap.
Collapse
|
9
|
Thomas S, Smatti MK, Ouhtit A, Cyprian FS, Almaslamani MA, Thani AA, Yassine HM. Antibody-Dependent Enhancement (ADE) and the role of complement system in disease pathogenesis. Mol Immunol 2022; 152:172-182. [PMID: 36371813 PMCID: PMC9647202 DOI: 10.1016/j.molimm.2022.11.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 11/01/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
Abstract
Antibody-dependent enhancement (ADE) has been associated with severe disease outcomes in several viral infections, including respiratory infections. In vitro and in vivo studies showed that antibody-response to SARS-CoV and MERS-CoV could exacerbate infection via ADE. Recently in SARS CoV-2, the in vitro studies and structural analysis shows a risk of disease severity via ADE. This phenomenon is partially attributed to non-neutralizing antibodies or antibodies at sub-neutralizing levels. These antibodies result in antigen-antibody complexes' deposition and propagation of a chronic inflammatory process that destroys affected tissues. Further, antigen-antibody complexes may enhance the internalization of the virus into cells through the Fc gamma receptor (FcγR) and lead to further virus replication. Thus, ADE occur via two mechanisms; 1. Antibody mediated replication and 2. Enhanced immune activation. Antibody-mediated effector functions are mainly driven by complement activation, and the first complement in the cascade is complement 1q (C1q) which binds to the virus-antibody complex. Reports say that deficiency in circulating plasma levels of C1q, an independent predictor of mortality in high-risk patients, including diabetes, is associated with severe viral infections. Complement mediated ADE is reported in several viral infections such as dengue, West Nile virus, measles, RSV, Human immunodeficiency virus (HIV), and Ebola virus. This review discusses ADE in viral infections and the in vitro evidence of ADE in coronaviruses. We outline the mechanisms of ADE, emphasizing the role of complements, especially C1q in the outcome of the enhanced disease.
Collapse
Affiliation(s)
- Swapna Thomas
- Biomedical Research Center, Qatar University, Qatar; Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Qatar.
| | | | - Allal Ouhtit
- Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Qatar.
| | - Farhan S Cyprian
- Basic Medical Science Department, College of Medicine-QU Health, Qatar University, Qatar.
| | | | - Asmaa Al Thani
- Biomedical Research Center, Qatar University, Qatar; Department of Biomedical Sciences, College of Health Science-QU Health, Qatar University, Qatar.
| | - Hadi M Yassine
- Biomedical Research Center, Qatar University, Qatar; Department of Biomedical Sciences, College of Health Science-QU Health, Qatar University, Qatar.
| |
Collapse
|
10
|
Zhang Y, Lyu L, Tao Y, Ju H, Chen J. Health risks of phthalates: A review of immunotoxicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120173. [PMID: 36113640 DOI: 10.1016/j.envpol.2022.120173] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/27/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
Phthalates (PAEs) are known environmental endocrine disruptors that have been widely detected in several environments, and many studies have reported the immunotoxic effects of these compounds. Here, we reviewed relevant published studies, summarized the occurrence and major metabolic pathways of six typical PAEs (DMP, DEP, DBP, BBP, DEHP, and DOP) in water, soil, and the atmosphere, degradation and metabolic pathways under aerobic and anaerobic conditions, and explored the molecular mechanisms of the toxic effects of eleven PAEs (DEHP, DPP, DPrP, DHP, DEP, DBP, MBP, MBzP, BBP, DiNP, and DMP) on the immune system of different organisms at the gene, protein, and cellular levels. A comprehensive understanding of the mechanisms by which PAEs affect immune system function through regulation of immune gene expression and enzymes, increased ROS, immune signaling pathways, specific and non-specific immunosuppression, and interference with the complement system. By summarizing the effects of these compounds on typical model organisms, this review provides insights into the mechanisms by which PAEs affect the immune system, thus supplementing human immune experiments. Finally, we discuss the future direction of PAEs immunotoxicity research, thus providing a framework for the analysis of other environmental pollutants, as well as a basis for PAEs management and safe use.
Collapse
Affiliation(s)
- Ying Zhang
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Liang Lyu
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Yue Tao
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Hanxun Ju
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Jie Chen
- Rural Energy Station of Heilongjiang Province, Harbin, 150030, PR China.
| |
Collapse
|
11
|
Yang C, Xie W, Zhang H, Xie W, Tian T, Qin Z. Recent two-year advances in anti-dengue small-molecule inhibitors. Eur J Med Chem 2022; 243:114753. [PMID: 36167010 DOI: 10.1016/j.ejmech.2022.114753] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/05/2022] [Accepted: 09/05/2022] [Indexed: 11/04/2022]
Abstract
Dengue is an acute tropical infectious disease transmitted by mosquitoes, which has posed a major challenge to global public health. Unfortunately, there is a lack of clinically proven dengue-specific drugs for its prevention and treatment. As the pathogenesis of dengue has not been fully elucidated, the development of specific drugs is seriously hindered. This article briefly describes the pathogenesis of dengue fever, the molecular characteristics, and epidemiology of dengue virus, and focuses on the potential small-molecule inhibitors of dengue virus, including on-target and multi-targeted inhibitors, which have been reported in the past two years.
Collapse
Affiliation(s)
- Chao Yang
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macao University of Science and Technology, Macao, 999078, China
| | - Wansheng Xie
- Hainan Center for Drug and Medical Device Evaluation and Service, Hainan Provincial Drug Administration, Haikou, Hainan, 570206, China
| | - Heqian Zhang
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, Guangdong, 519087, China
| | - Wenjian Xie
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, PR China
| | - Tiantian Tian
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, Guangdong, 519087, China.
| | - Zhiwei Qin
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, Guangdong, 519087, China.
| |
Collapse
|
12
|
Pathogenesis and Manifestations of Zika Virus-Associated Ocular Diseases. Trop Med Infect Dis 2022; 7:tropicalmed7060106. [PMID: 35736984 PMCID: PMC9229560 DOI: 10.3390/tropicalmed7060106] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 12/18/2022] Open
Abstract
Zika virus (ZIKV) is mosquito-borne flavivirus that caused a significant public health concern in French Polynesia and South America. The two major complications that gained the most media attention during the ZIKV outbreak were Guillain-Barré syndrome (GBS) and microcephaly in newborn infants. The two modes of ZIKV transmission are the vector-borne and non-vector borne modes of transmission. Aedes aegypti and Aedes albopictus are the most important vectors of ZIKV. ZIKV binds to surface receptors on permissive cells that support infection and replication, such as neural progenitor cells, dendritic cells, dermal fibroblasts, retinal pigment epithelial cells, endothelial cells, macrophages, epidermal keratinocytes, and trophoblasts to cause infection. The innate immune response to ZIKV infection is mediated by interferons and natural killer cells, whereas the adaptive immune response is mediated by CD8+T cells, Th1 cells, and neutralizing antibodies. The non-structural proteins of ZIKV, such as non-structural protein 5, are involved in the evasion of the host's immune defense mechanisms. Ocular manifestations of ZIKV arise from the virus' ability to cross both the blood-brain barrier and blood-retinal barrier, as well as the blood-aqueous barrier. Most notably, this results in the development of GBS, a rare neurological complication in acute ZIKV infection. This can yield ocular symptoms and signs. Additionally, infants to whom ZIKV is transmitted congenitally develop congenital Zika syndrome (CZS). The ocular manifestations are widely variable, and include nonpurulent conjunctivitis, anterior uveitis, keratitis, trabeculitis, congenital glaucoma, microphthalmia, hypoplastic optic disc, and optic nerve pallor. There are currently no FDA approved therapeutic agents for treating ZIKV infections and, as such, a meticulous ocular examination is an important aspect of the diagnosis. This review utilized several published articles regarding the ocular findings of ZIKV, antiviral immune responses to ZIKV infection, and the pathogenesis of ocular manifestations in individuals with ZIKV infection. This review summarizes the current knowledge on the viral immunology of ZIKV, interactions between ZIKV and the host's immune defense mechanism, pathological mechanisms, as well as anterior and posterior segment findings associated with ZIKV infection.
Collapse
|
13
|
Villalobos-Sánchez E, Burciaga-Flores M, Zapata-Cuellar L, Camacho-Villegas TA, Elizondo-Quiroga DE. Possible Routes for Zika Virus Vertical Transmission in Human Placenta: A Comprehensive Review. Viral Immunol 2022; 35:392-403. [PMID: 35506896 DOI: 10.1089/vim.2021.0199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Zika virus (ZIKV) infections have gained notoriety due to congenital abnormalities. Pregnant women have a greater risk of ZIKV infection and consequent transmission to their progeny due to the immunological changes associated with pregnancy. ZIKV has been detected in amniotic fluid, as well as in fetal and neonatal tissues of infected pregnant women. However, the mechanism by which ZIKV reaches the fetus is not well understood. The four dengue virus serotypes have been the most widely used flaviviruses to elucidate the host-cell entry pathways. Nevertheless, it is of increasing interest to understand the specific interaction between ZIKV and the host cell, especially in the gestation period. Herein, the authors describe the mechanisms of prenatal vertical infection of ZIKV based on results from in vitro, in vivo, and ex vivo studies, including murine models and nonhuman primates. It also includes up-to-date knowledge from ex vivo and natural infections in pregnant women explaining the vertical transmission along four tracks: transplacental, paracellular, transcytosis mediated by extracellular vesicles, and paraplacental route and the antibody-dependent enhancement process. A global understanding of the diverse pathways used by ZIKV to cross the placental barrier and access the fetus, along with a better comprehension of the pathogenesis of ZIKV in pregnant females, may constitute a fundamental role in the design of antiviral drugs to reduce congenital disabilities associated with ZIKV.
Collapse
Affiliation(s)
- Erendira Villalobos-Sánchez
- Medical and Pharmaceutical Biotechnology Unit, Center for Research and Assistance in Technology and Design of the State of Jalisco (CIATEJ), Guadalajara, México
| | - Mirna Burciaga-Flores
- Medical and Pharmaceutical Biotechnology Unit, Center for Research and Assistance in Technology and Design of the State of Jalisco (CIATEJ), Guadalajara, México
| | - Lorena Zapata-Cuellar
- Medical and Pharmaceutical Biotechnology Unit, Center for Research and Assistance in Technology and Design of the State of Jalisco (CIATEJ), Guadalajara, México
| | - Tanya A Camacho-Villegas
- CONACYT-Medical and Pharmaceutical Biotechnology Unit, Center for Research and Assistance in Technology and Design of the State of Jalisco (CIATEJ), Guadalajara, México
| | - Darwin E Elizondo-Quiroga
- Medical and Pharmaceutical Biotechnology Unit, Center for Research and Assistance in Technology and Design of the State of Jalisco (CIATEJ), Guadalajara, México
| |
Collapse
|
14
|
Wegman AD, Fang H, Rothman AL, Thomas SJ, Endy TP, McCracken MK, Currier JR, Friberg H, Gromowski GD, Waickman AT. Monomeric IgA Antagonizes IgG-Mediated Enhancement of DENV Infection. Front Immunol 2021; 12:777672. [PMID: 34899736 PMCID: PMC8654368 DOI: 10.3389/fimmu.2021.777672] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/08/2021] [Indexed: 01/05/2023] Open
Abstract
Dengue virus (DENV) is a prevalent human pathogen, infecting approximately 400 million individuals per year and causing symptomatic disease in approximately 100 million. A distinct feature of dengue is the increased risk for severe disease in some individuals with preexisting DENV-specific immunity. One proposed mechanism for this phenomenon is antibody-dependent enhancement (ADE), in which poorly-neutralizing IgG antibodies from a prior infection opsonize DENV to increase infection of Fc gamma receptor-bearing cells. While IgM and IgG are the most commonly studied DENV-reactive antibody isotypes, our group and others have described the induction of DENV-specific serum IgA responses during dengue. We hypothesized that monomeric IgA would be able to neutralize DENV without the possibility of ADE. To test this, we synthesized IgG and IgA versions of two different DENV-reactive monoclonal antibodies. We demonstrate that isotype-switching does not affect the antigen binding and neutralization properties of the two mAbs. We show that DENV-reactive IgG, but not IgA, mediates ADE in Fc gamma receptor-positive K562 cells. Furthermore, we show that IgA potently antagonizes the ADE activity of IgG. These results suggest that levels of DENV-reactive IgA induced by DENV infection might regulate the overall IgG mediated ADE activity of DENV-immune plasma in vivo, and may serve as a predictor of disease risk.
Collapse
Affiliation(s)
- Adam D Wegman
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Hengsheng Fang
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Alan L Rothman
- Department of Cell and Molecular Biology, Institute for Immunology and Informatics, University of Rhode Island, Providence, RI, United States
| | - Stephen J Thomas
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, NY, United States.,Institute for Global Health and Translational Sciences, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Timothy P Endy
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Michael K McCracken
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Jeffrey R Currier
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Heather Friberg
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Gregory D Gromowski
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Adam T Waickman
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, NY, United States.,Institute for Global Health and Translational Sciences, State University of New York Upstate Medical University, Syracuse, NY, United States
| |
Collapse
|
15
|
Kumari D, Singh K. Exploring the paradox of defense between host and Leishmania parasite. Int Immunopharmacol 2021; 102:108400. [PMID: 34890999 DOI: 10.1016/j.intimp.2021.108400] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/18/2021] [Accepted: 11/21/2021] [Indexed: 01/04/2023]
Abstract
Leishmaniasis, a neglected tropical disease, still remains a global concern for the healthcare sector. The primary causative agents of the disease comprise diverse leishmanial species, leading to recurring failures in disease diagnosis and delaying the initiation of appropriate chemotherapy. Various species of the Leishmania parasite cause diverse clinical manifestations ranging from skin ulcers to systemic infections. Therefore, host immunity in response to different forms of infecting species of Leishmania becomes pivotal in disease progression or regression. Thus, understanding the paradox of immune arsenals during host and parasite interface becomes crucial to eliminate this deadly disease. In the present review, we have elaborated on the immunological perspectives of the disease and discussed primary host immune cells that form a defense line to counteract parasite infection. Furthermore, we also have shed light on the immune cells and effector molecules responsible for parasite survival in host lethal milieu/ environment. Next, we have highlighted recent molecules/compounds showing potent leishmanicidal activities pertaining to their pro-oxidant and immuno-modulatory mechanisms. This review addresses an immuno-biological overview of the factors influencing the parasitic disease, as this knowledge can aid in the unraveling/ identification of potential biomarkers, novel therapeutics, and vaccine candidates against leishmaniasis.
Collapse
Affiliation(s)
- Diksha Kumari
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kuljit Singh
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
16
|
Sun J, Wang L, Yang W, Li Y, Jin Y, Wang L, Song L. A novel C-type lectin activates the complement cascade in the primitive oyster Crassostrea gigas. J Biol Chem 2021; 297:101352. [PMID: 34715129 PMCID: PMC8605247 DOI: 10.1016/j.jbc.2021.101352] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 10/17/2021] [Accepted: 10/22/2021] [Indexed: 12/20/2022] Open
Abstract
The ancient origin of the lectin pathway of the complement system can be traced back to protochordates (such as amphioxus and tunicates) by the presence of components such as ficolin, glucose-binding lectin, mannose-binding lectin-associated serine protease (MASP), and C3. Evidence for a more primitive origin is offered in the present study on the Pacific oyster Crassostrea gigas. C3 protein in C. gigas (CgC3) was found to be cleaved after stimulation with the bacteria Vibrio splendidus. In addition, we identified a novel C-type lectin (defined as CgCLec) with a complement control protein (CCP) domain, which recognized various pathogen-associated molecular patterns (PAMPs) and bacteria. This protein was involved in the activation of the complement system by binding CgMASPL-1 to promote cleavage of CgC3. The production of cytokines and antibacterial peptides, as well as the phagocytotic ratio of haemocytes in CgCLec-CCP-, CgMASPL-1-, or CgC3-knockdown oysters, decreased significantly after V. splendidus stimulation. Moreover, this activated CgC3 participated in perforation of bacterial envelopes and inhibiting survival of the infecting bacteria. These results collectively suggest that there existed an ancient lectin pathway in molluscs, which was activated by a complement cascade to regulate the production of immune effectors, phagocytosis, and bacterial lysis.
Collapse
Affiliation(s)
- Jiejie Sun
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, China
| | - Liyan Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, China
| | - Wenwen Yang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, China
| | - Yinan Li
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, China
| | - Yingnan Jin
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, China; Dalian Key Laboratory of Aquatic Animal Diseases Prevention and Control, Dalian Ocean University, Dalian, China.
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, China.
| |
Collapse
|
17
|
Xu L, Ma Z, Li Y, Pang Z, Xiao S. Antibody dependent enhancement: Unavoidable problems in vaccine development. Adv Immunol 2021; 151:99-133. [PMID: 34656289 PMCID: PMC8438590 DOI: 10.1016/bs.ai.2021.08.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In some cases, antibodies can enhance virus entry and replication in cells. This phenomenon is called antibody-dependent infection enhancement (ADE). ADE not only promotes the virus to be recognized by the target cell and enters the target cell, but also affects the signal transmission in the target cell. Early formalin-inactivated virus vaccines such as aluminum adjuvants (RSV and measles) have been shown to induce ADE. Although there is no direct evidence that there is ADE in COVID-19, this potential risk is a huge challenge for prevention and vaccine development. This article focuses on the virus-induced ADE phenomenon and its molecular mechanism. It also summarizes various attempts in vaccine research and development to eliminate the ADE phenomenon, and proposes to avoid ADE in vaccine development from the perspective of antigens and adjuvants.
Collapse
|