1
|
San JE, Baichoo S, Kanzi A, Moosa Y, Lessells R, Fonseca V, Mogaka J, Power R, de Oliveira T. Current Affairs of Microbial Genome-Wide Association Studies: Approaches, Bottlenecks and Analytical Pitfalls. Front Microbiol 2020; 10:3119. [PMID: 32082269 PMCID: PMC7002396 DOI: 10.3389/fmicb.2019.03119] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 12/24/2019] [Indexed: 12/12/2022] Open
Abstract
Microbial genome-wide association studies (mGWAS) are a new and exciting research field that is adapting human GWAS methods to understand how variations in microbial genomes affect host or pathogen phenotypes, such as drug resistance, virulence, host specificity and prognosis. Several computational tools and methods have been developed or adapted from human GWAS to facilitate the discovery of novel mutations and structural variations that are associated with the phenotypes of interest. However, no comprehensive, end-to-end, user-friendly tool is currently available. The development of a broadly applicable pipeline presents a real opportunity among computational biologists. Here, (i) we review the prominent and promising tools, (ii) discuss analytical pitfalls and bottlenecks in mGWAS, (iii) provide insights into the selection of appropriate tools, (iv) highlight the gaps that still need to be filled and how users and developers can work together to overcome these bottlenecks. Use of mGWAS research can inform drug repositioning decisions as well as accelerate the discovery and development of more effective vaccines and antimicrobials for pressing infectious diseases of global health significance, such as HIV, TB, influenza, and malaria.
Collapse
Affiliation(s)
- James Emmanuel San
- Kwazulu-Natal Research and Innovation Sequencing Platform (KRISP), College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Shakuntala Baichoo
- Department of Digital Technologies, FoICDT, University of Mauritius, Réduit, Mauritius
| | - Aquillah Kanzi
- Kwazulu-Natal Research and Innovation Sequencing Platform (KRISP), College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Yumna Moosa
- Kwazulu-Natal Research and Innovation Sequencing Platform (KRISP), College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Richard Lessells
- Kwazulu-Natal Research and Innovation Sequencing Platform (KRISP), College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Vagner Fonseca
- Kwazulu-Natal Research and Innovation Sequencing Platform (KRISP), College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
- Laboratório de Genética Celular e Molecular, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - John Mogaka
- Discipline of Public Health, University of Kwazulu-Natal, Durban, South Africa
| | - Robert Power
- St Edmund Hall, Oxford University, Oxford, United Kingdom
| | - Tulio de Oliveira
- Kwazulu-Natal Research and Innovation Sequencing Platform (KRISP), College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
- Department of Global Health, University of Washington, Seattle, WA, United States
| |
Collapse
|
2
|
Liao J, Orsi RH, Carroll LM, Kovac J, Ou H, Zhang H, Wiedmann M. Serotype-specific evolutionary patterns of antimicrobial-resistant Salmonella enterica. BMC Evol Biol 2019; 19:132. [PMID: 31226931 PMCID: PMC6588947 DOI: 10.1186/s12862-019-1457-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 06/11/2019] [Indexed: 12/28/2022] Open
Abstract
Background The emergence of antimicrobial-resistant (AMR) strains of the important human and animal pathogen Salmonella enterica poses a growing threat to public health. Here, we studied the genome-wide evolution of 90 S. enterica AMR isolates, representing one host adapted serotype (S. Dublin) and two broad host range serotypes (S. Newport and S. Typhimurium). Results AMR S. Typhimurium had a large effective population size, a large and diverse genome, AMR profiles with high diversity, and frequent positive selection and homologous recombination. AMR S. Newport showed a relatively low level of diversity and a relatively clonal population structure. AMR S. Dublin showed evidence for a recent population bottleneck, and the genomes were characterized by a larger number of genes and gene ontology terms specifically absent from this serotype and a significantly higher number of pseudogenes as compared to other two serotypes. Approximately 50% of accessory genes, including specific AMR and putative prophage genes, were significantly over- or under-represented in a given serotype. Approximately 65% of the core genes showed phylogenetic clustering by serotype, including the AMR gene aac (6′)-Iaa. While cell surface proteins were shown to be the main target of positive selection, some proteins with possible functions in AMR and virulence also showed evidence for positive selection. Homologous recombination mainly acted on prophage-associated proteins. Conclusions Our data indicates a strong association between genome content of S. enterica and serotype. Evolutionary patterns observed in S. Typhimurium are consistent with multiple emergence events of AMR strains and/or ecological success of this serotype in different hosts or habitats. Evolutionary patterns of S. Newport suggested that antimicrobial resistance emerged in one single lineage, Lineage IIC. A recent population bottleneck and genome decay observed in AMR S. Dublin are congruent with its narrow host range. Finally, our results suggest the potentially important role of positive selection in the evolution of antimicrobial resistance, host adaptation and serotype diversification in S. enterica. Electronic supplementary material The online version of this article (10.1186/s12862-019-1457-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jingqiu Liao
- Department of Food Science, 341 Stocking Hall, Cornell University, Ithaca, NY, 14853, USA.,Graduate Field of Microbiology, Cornell University, Ithaca, NY, 14853, USA
| | - Renato Hohl Orsi
- Department of Food Science, 341 Stocking Hall, Cornell University, Ithaca, NY, 14853, USA
| | - Laura M Carroll
- Department of Food Science, 341 Stocking Hall, Cornell University, Ithaca, NY, 14853, USA
| | - Jasna Kovac
- Department of Food Science, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Hongyu Ou
- School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hailong Zhang
- Department of Computer Science & Engineering, Ohio State University, Columbus, OH, 43210, USA
| | - Martin Wiedmann
- Department of Food Science, 341 Stocking Hall, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
3
|
Nakato GV, Fuentes Rojas JL, Verniere C, Blondin L, Coutinho T, Mahuku G, Wicker E. A new Multi Locus Variable Number of Tandem Repeat Analysis Scheme for epidemiological surveillance of Xanthomonas vasicola pv. musacearum, the plant pathogen causing bacterial wilt on banana and enset. PLoS One 2019; 14:e0215090. [PMID: 30973888 PMCID: PMC6459536 DOI: 10.1371/journal.pone.0215090] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 03/26/2019] [Indexed: 11/25/2022] Open
Abstract
Xanthomonas vasicola pv. musacearum (Xvm) which causes Xanthomonas wilt (XW) on banana (Musa accuminata x balbisiana) and enset (Ensete ventricosum), is closely related to the species Xanthomonas vasicola that contains the pathovars vasculorum (Xvv) and holcicola (Xvh), respectively pathogenic to sugarcane and sorghum. Xvm is considered a monomorphic bacterium whose intra-pathovar diversity remains poorly understood. With the sudden emergence of Xvm within east and central Africa coupled with the unknown origin of one of the two sublineages suggested for Xvm, attention has shifted to adapting technologies that focus on identifying the origin and distribution of the genetic diversity within this pathogen. Although microbiological and conventional molecular diagnostics have been useful in pathogen identification. Recent advances have ushered in an era of genomic epidemiology that aids in characterizing monomorphic pathogens. To unravel the origin and pathways of the recent emergence of XW in Eastern and Central Africa, there was a need for a genotyping tool adapted for molecular epidemiology. Multi-Locus Variable Number of Tandem Repeat Analysis (MLVA) is able to resolve the evolutionary patterns and invasion routes of a pathogen. In this study, we identified microsatellite loci from nine published Xvm genome sequences. Of the 36 detected microsatellite loci, 21 were selected for primer design and 19 determined to be highly typeable, specific, reproducible and polymorphic with two- to four- alleles per locus on a sub-collection. The 19 markers were multiplexed and applied to genotype 335 Xvm strains isolated from seven countries over several years. The microsatellite markers grouped the Xvm collection into three clusters; with two similar to the SNP-based sublineages 1 and 2 and a new cluster 3, revealing an unknown diversity in Ethiopia. Five of the 19 markers had alleles present in both Xvm and Xanthomonas vasicola pathovars holcicola and vasculorum, supporting the phylogenetic closeliness of these three pathovars. Thank to the public availability of the haplotypes on the MLVABank database, this highly reliable and polymorphic genotyping tool can be further used in a transnational surveillance network to monitor the spread and evolution of XW throughout Africa.. It will inform and guide management of Xvm both in banana-based and enset-based cropping systems. Due to the suitability of MLVA-19 markers for population genetic analyses, this genotyping tool will also be used in future microevolution studies.
Collapse
Affiliation(s)
- Gloria Valentine Nakato
- IITA, Kampala, Uganda
- Department of Biochemistry, Genetics and Microbiology, Centre for Microbial Ecology and Genomics/Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | | | | | | | - Teresa Coutinho
- Department of Biochemistry, Genetics and Microbiology, Centre for Microbial Ecology and Genomics/Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | | | - Emmanuel Wicker
- UMR IPME, Univ Montpellier, CIRAD, IRD, Montpellier, France
- CIRAD, UMR IPME, Montpellier, France
| |
Collapse
|
4
|
Tibayrenc M, Ayala FJ. Is Predominant Clonal Evolution a Common Evolutionary Adaptation to Parasitism in Pathogenic Parasitic Protozoa, Fungi, Bacteria, and Viruses? ADVANCES IN PARASITOLOGY 2016; 97:243-325. [PMID: 28325372 DOI: 10.1016/bs.apar.2016.08.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We propose that predominant clonal evolution (PCE) in microbial pathogens be defined as restrained recombination on an evolutionary scale, with genetic exchange scarce enough to not break the prevalent pattern of clonal population structure. The main features of PCE are (1) strong linkage disequilibrium, (2) the widespread occurrence of stable genetic clusters blurred by occasional bouts of genetic exchange ('near-clades'), (3) the existence of a "clonality threshold", beyond which recombination is efficiently countered by PCE, and near-clades irreversibly diverge. We hypothesize that the PCE features are not mainly due to natural selection but also chiefly originate from in-built genetic properties of pathogens. We show that the PCE model obtains even in microbes that have been considered as 'highly recombining', such as Neisseria meningitidis, and that some clonality features are observed even in Plasmodium, which has been long described as panmictic. Lastly, we provide evidence that PCE features are also observed in viruses, taking into account their extremely fast genetic turnover. The PCE model provides a convenient population genetic framework for any kind of micropathogen. It makes it possible to describe convenient units of analysis (clones and near-clades) for all applied studies. Due to PCE features, these units of analysis are stable in space and time, and clearly delimited. The PCE model opens up the possibility of revisiting the problem of species definition in these organisms. We hypothesize that PCE constitutes a major evolutionary strategy for protozoa, fungi, bacteria, and viruses to adapt to parasitism.
Collapse
Affiliation(s)
- M Tibayrenc
- Institut de Recherche pour le Développement, Montpellier, France
| | - F J Ayala
- University of California at Irvine, United States
| |
Collapse
|
5
|
The domestication of the probiotic bacterium Lactobacillus acidophilus. Sci Rep 2014; 4:7202. [PMID: 25425319 PMCID: PMC4244635 DOI: 10.1038/srep07202] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 11/06/2014] [Indexed: 12/18/2022] Open
Abstract
Lactobacillus acidophilus is a Gram-positive lactic acid bacterium that has had widespread historical use in the dairy industry and more recently as a probiotic. Although L. acidophilus has been designated as safe for human consumption, increasing commercial regulation and clinical demands for probiotic validation has resulted in a need to understand its genetic diversity. By drawing on large, well-characterised collections of lactic acid bacteria, we examined L. acidophilus isolates spanning 92 years and including multiple strains in current commercial use. Analysis of the whole genome sequence data set (34 isolate genomes) demonstrated L. acidophilus was a low diversity, monophyletic species with commercial isolates essentially identical at the sequence level. Our results indicate that commercial use has domesticated L. acidophilus with genetically stable, invariant strains being consumed globally by the human population.
Collapse
|
6
|
Cebula TA, Brown EW, Jackson SA, Mammel MK, Mukherjee A, LeClerc JE. Molecular applications for identifying microbial pathogens in the post-9/11 era. Expert Rev Mol Diagn 2014; 5:431-45. [PMID: 15934819 DOI: 10.1586/14737159.5.3.431] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Rapid advances in molecular and optical technologies over the past 10 years have dramatically impacted the way biologic research is conducted today. Examples include microarrays, capillary sequencing, optical mapping and real-time sequencing (Pyrosequencing). These technologies are capable of rapidly delivering massive amounts of genetic information and are becoming routine mainstays of many laboratories. Fortunately, advances in scientific computing have provided the enormous computing power necessary to analyze these enormous data sets. The application of molecular technologies should prove useful to the burgeoning field of microbial forensics. In the post-9/11 era, when securing America's food supply is a major endeavor, the need for rapid identification of microbes that accidentally or intentionally find their way into foods is apparent. The principle that distinguishes a microbial forensic investigation from a molecular epidemiology study is that a biocrime has been committed. If proper attribution is to be attained, a link must be made between a particular microbe in the food and the perpetrator who placed it there. Therefore, the techniques used must be able to discriminate individual isolates of a particular microbe. A battery of techniques in development for distinguishing individual isolates of particular foodborne pathogens is discussed.
Collapse
Affiliation(s)
- Thomas A Cebula
- Center for Food Safety & Applied Nutrition, Office of Applied Research & Safety Assessment (HFS-025), US Food and Drug Administration, 8301 Muirkirk Road, Laurel, MD 20708, USA.
| | | | | | | | | | | |
Collapse
|
7
|
Li Y, Cui Y, Cui B, Yan Y, Yang X, Wang H, Qi Z, Zhang Q, Xiao X, Guo Z, Ma C, Wang J, Song Y, Yang R. Features of Variable Number of Tandem Repeats in Yersinia pestis and the Development of a Hierarchical Genotyping Scheme. PLoS One 2013; 8:e66567. [PMID: 23805236 PMCID: PMC3689786 DOI: 10.1371/journal.pone.0066567] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 05/09/2013] [Indexed: 01/14/2023] Open
Abstract
Background Variable number of tandem repeats (VNTRs) that are widely distributed in the genome of Yersinia pestis proved to be useful markers for the genotyping and source-tracing of this notorious pathogen. In this study, we probed into the features of VNTRs in the Y. pestis genome and developed a simple hierarchical genotyping system based on optimized VNTR loci. Methodology/Principal Findings Capillary electrophoresis was used in this study for multi-locus VNTR analysis (MLVA) in 956 Y. pestis strains. The general features and genetic diversities of 88 VNTR loci in Y. pestis were analyzed with BioNumerics, and a “14+12” loci-based hierarchical genotyping system, which is compatible with single nucleotide polymorphism-based phylogenic analysis, was established. Conclusions/Significance Appropriate selection of target loci reduces the impact of homoplasies caused by the rapid mutation rates of VNTR loci. The optimized “14+12” loci are highly discriminative in genotyping and source-tracing Y. pestis for molecular epidemiological or microbial forensic investigations with less time and lower cost. An MLVA genotyping datasets of representative strains will improve future research on the source-tracing and microevolution of Y. pestis.
Collapse
Affiliation(s)
- Yanjun Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- Laboratory Department, Navy General Hospital, Beijing, China
| | - Yujun Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Baizhong Cui
- Qinghai Institute for Endemic Diseases Prevention and Control, Xining, China
| | - Yanfeng Yan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xianwei Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Haidong Wang
- Laboratory Department, Navy General Hospital, Beijing, China
| | - Zhizhen Qi
- Qinghai Institute for Endemic Diseases Prevention and Control, Xining, China
| | - Qingwen Zhang
- Qinghai Institute for Endemic Diseases Prevention and Control, Xining, China
| | - Xiao Xiao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zhaobiao Guo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Cong Ma
- Laboratory Department, Navy General Hospital, Beijing, China
| | - Jing Wang
- Institute of Health Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Yajun Song
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- * E-mail: (RY); (YS)
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- * E-mail: (RY); (YS)
| |
Collapse
|
8
|
Bi Y, Wang X, Han Y, Guo Z, Yang R. Yersinia pestis versus Yersinia pseudotuberculosis: effects on host macrophages. Scand J Immunol 2013; 76:541-51. [PMID: 22882408 DOI: 10.1111/j.1365-3083.2012.02767.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Yersinia pestis, the causative agent of plague, is proved to be a recently emerged clone from Y. pseudotuberculosis. However, the diseases they cause and their patterns of transmission are very different. People always focus on the genetic changes between Y. pestis and Y. pseudotuberculosis to reveal their pathogenic differences, and little is known about host defence differences to these two Yersinia. In this study, the effects of Y. pestis and Y. pseudotuberculosis on macrophages were analysed. Cell apoptosis showed significant difference after the macrophages were infected by these two strains, and caspase-3 activity also demonstrated a similar tendency. Further, macrophage function activities were evaluated. We found during the early infection of Y. pestis, several basic functions of macrophages, including phagocytosis, secretion of cytokine tumour necrosis factor-α and nitric oxide, macrophage polarity and antigen presenting, were significantly interrupted. In comparison, Y. pseudotuberculosis infection showed lower inhibition on macrophages. Especially, Y. pestis infection might cause macrophage to polarize to M2 macrophages in the early phase, compared with Y. pseudotuberculosis infection, which was different from the common acute infection. These results clearly indicated even in the early stage of infection, different host macrophage defence patterns could help us to understand the obvious virulence differences between Y. pestis and Y. pseudotuberculosis.
Collapse
Affiliation(s)
- Y Bi
- State Key Laboratory of Pathogen and Biosecurity, National Center for Biomedical Analysis, Army Center for Microbial Detection and Research, Institute of Microbiology and Epidemiology, Beijing, China
| | | | | | | | | |
Collapse
|
9
|
Castillo-Ramírez S, Corander J, Marttinen P, Aldeljawi M, Hanage WP, Westh H, Boye K, Gulay Z, Bentley SD, Parkhill J, Holden MT, Feil EJ. Phylogeographic variation in recombination rates within a global clone of methicillin-resistant Staphylococcus aureus. Genome Biol 2012; 13:R126. [PMID: 23270620 PMCID: PMC3803117 DOI: 10.1186/gb-2012-13-12-r126] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 11/15/2012] [Accepted: 12/27/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Next-generation sequencing (NGS) is a powerful tool for understanding both patterns of descent over time and space (phylogeography) and the molecular processes underpinning genome divergence in pathogenic bacteria. Here, we describe a synthesis between these perspectives by employing a recently developed Bayesian approach, BRATNextGen, for detecting recombination on an expanded NGS dataset of the globally disseminated methicillin-resistant Staphylococcus aureus (MRSA) clone ST239. RESULTS The data confirm strong geographical clustering at continental, national and city scales and demonstrate that the rate of recombination varies significantly between phylogeographic sub-groups representing independent introductions from Europe. These differences are most striking when mobile non-core genes are included, but remain apparent even when only considering the stable core genome. The monophyletic ST239 sub-group corresponding to isolates from South America shows heightened recombination, the sub-group predominantly from Asia shows an intermediate level, and a very low level of recombination is noted in a third sub-group representing a large collection from Turkey. CONCLUSIONS We show that the rapid global dissemination of a single pathogenic bacterial clone results in local variation in measured recombination rates. Possible explanatory variables include the size and time since emergence of each defined sub-population (as determined by the sampling frame), variation in transmission dynamics due to host movement, and changes in the bacterial genome affecting the propensity for recombination.
Collapse
Affiliation(s)
- Santiago Castillo-Ramírez
- Department of Biology and Biochemistry, University of Bath, Claverton Down Bath, Bath and North East Somerset BA2 7AY, UK
| | - Jukka Corander
- Department of Mathematics and Statistics, PO Box 68 (Gustaf Hällströmin katu 2b), University of Helsinki, FI-00014 Helsinki, Finland
| | - Pekka Marttinen
- Department of Information and Computer Science, Helsinki Institute for Information Technology HIIT, Aalto University, PO Box 15400 (Konemiehentie 2), FI-00076 Aalto, Finland
- Department of Biomedical Engineering and Computational Science, Aalto University, PO Box 12200 (Rakentajanaukio 2c), FI-00076 Aalto, Finland
| | - Mona Aldeljawi
- Department of Biology and Biochemistry, University of Bath, Claverton Down Bath, Bath and North East Somerset BA2 7AY, UK
| | - William P Hanage
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard School of Public Health, 677 Huntington Avenue, Boston, MA 02115, USA
| | - Henrik Westh
- Department of Clinical Microbiology 445, Hvidovre Hospital, DK-2650 Hvidovre, Denmark
- Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Kit Boye
- Department of Clinical Microbiology 445, Hvidovre Hospital, DK-2650 Hvidovre, Denmark
| | - Zeynep Gulay
- Dokuz Eylul University School of Medicine, Department of Clinical Microbiology, Mithatpaşa cad., Inciralti, Izmir 35340, Turkey
| | - Stephen D Bentley
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Julian Parkhill
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Matthew T Holden
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Edward J Feil
- Department of Biology and Biochemistry, University of Bath, Claverton Down Bath, Bath and North East Somerset BA2 7AY, UK
| |
Collapse
|
10
|
Dong QJ, Zhan SH, Wang LL, Xin YN, Jiang M, Xuan SY. Relatedness of Helicobacter pylori populations to gastric carcinogenesis. World J Gastroenterol 2012; 18:6571-6576. [PMID: 23236231 PMCID: PMC3516211 DOI: 10.3748/wjg.v18.i45.6571] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 08/17/2012] [Accepted: 08/25/2012] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori (H. pylori) is a Gram-negative bacterium that infects half of the human population. The infection is associated with chronic inflammation of the gastric mucosa and peptic ulcers. It is also a major risk factor for gastric cancer. Phylogenetic analysis of global strains reveals there are seven populations of H. pylori, including hpAfrica1, hpAfrica2, hpEastAsia, hpEurope, hpNEAfrica, hpAsia2 and hpSahul. These populations are consistent with their geographical origins, and possibly result from geographical separation of the bacterium leading to reduced bacterial recombination in some populations. For each population, H. pylori has evolved to possess genomic contents distinguishable from others. The hpEurope population is distinct in that it has the largest genome of 1.65 mbp on average, and the highest number of coding sequences. This confers its competitive advantage over other populations but at the cost of a lower infection rate. The large genomic size could be a cause of the frequent occurrence of the deletion of the cag pathogenicity island in H. pylori strains from hpEurope. The incidence of gastric cancer varies among different geographical regions. This can be attributed in part to different rates of infection of H. pylori. Recent studies found that different populations of H. pylori vary in their carcinogenic potential and contribute to the variation in incidence of gastric cancer among geographical regions. This could be related to the ancestral origin of H. pylori. Further studies are indicated to investigate the bacterial factors contributing to differential virulence and their influence on the clinical features in infected individuals.
Collapse
|
11
|
Huber CA, Pflüger V, Hamid AWM, Forgor AA, Hodgson A, Sié A, Junghanss T, Pluschke G. Lack of antigenic diversification of major outer membrane proteins during clonal waves of Neisseria meningitidis serogroup A colonization and disease. Pathog Dis 2012; 67:4-10. [PMID: 23620114 DOI: 10.1111/2049-632x.12000] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 08/17/2012] [Accepted: 08/21/2012] [Indexed: 12/22/2022] Open
Abstract
In particular in the 'meningitis belt' of sub-Saharan Africa, epidemic meningococcal meningitis is a severe public health problem. In the past decades, serogroup A lineages have been the dominant etiologic agents, but also other serogroups have caused outbreaks. A comprehensive vaccine based on subcapsular outer membrane proteins (OMPs) is not available. Here, we have investigated whether meningococcal populations overcome herd immunity by changing antigenic properties of their OMPs. Meningococcal isolates were collected in the context of longitudinal studies in Ghana between 2002 and 2008 and in Burkina Faso between 2006 and 2007. Serogroup A strains isolated during two clonal waves of colonization and disease showed no diversification in the genes encoding their PorA, PorB, and FetA proteins. However, we detected occasional allelic exchange of opa genes, as well as wide variation in the number of intragenic tandem repeats, showing that phase variation of Opa protein expression is a frequent event. Altogether we observed a remarkable antigenic stability of the PorA, PorB and FetA proteins over years. Our results indicate that while herd immunity may be responsible for the disappearance of meningococcal clones over time, it is not a strong driving force for antigenic diversification of the major OMPs analyzed here.
Collapse
|
12
|
Tibayrenc M, Ayala FJ. Reproductive clonality of pathogens: a perspective on pathogenic viruses, bacteria, fungi, and parasitic protozoa. Proc Natl Acad Sci U S A 2012; 109:E3305-13. [PMID: 22949662 PMCID: PMC3511763 DOI: 10.1073/pnas.1212452109] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
We propose that clonal evolution in micropathogens be defined as restrained recombination on an evolutionary scale, with genetic exchange scarce enough to not break the prevalent pattern of clonal population structure, a definition already widely used for all kinds of pathogens, although not clearly formulated by many scientists and rejected by others. The two main manifestations of clonal evolution are strong linkage disequilibrium (LD) and widespread genetic clustering ("near-clading"). We hypothesize that this pattern is not mainly due to natural selection, but originates chiefly from in-built genetic properties of pathogens, which could be ancestral and could function as alternative allelic systems to recombination genes ("clonality/sexuality machinery") to escape recombinational load. The clonal framework of species of pathogens should be ascertained before any analysis of biomedical phenotypes (phylogenetic character mapping). In our opinion, this model provides a conceptual framework for the population genetics of any micropathogen.
Collapse
Affiliation(s)
- Michel Tibayrenc
- Maladies Infectieuses et Vecteurs Ecologie, Génétique, Evolution et Contrôle, Institut de Rercherche pour le Développement 224, Centre National de la Recherche Scientifique 5290, Universités Montpellier 1 and 2, 34394 Montpellier Cedex 5, France; and
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697
| | - Francisco J. Ayala
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697
| |
Collapse
|
13
|
Martínez-Camblor P, Corral N, Vicente D. Statistical comparison of the genetic sequence type diversity of invasive Neisseria meningitidis isolates in northern Spain (1997–2008). ECOL INFORM 2011. [DOI: 10.1016/j.ecoinf.2011.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Margos G, Vollmer SA, Ogden NH, Fish D. Population genetics, taxonomy, phylogeny and evolution of Borrelia burgdorferi sensu lato. INFECTION GENETICS AND EVOLUTION 2011; 11:1545-63. [PMID: 21843658 DOI: 10.1016/j.meegid.2011.07.022] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 07/29/2011] [Accepted: 07/31/2011] [Indexed: 11/25/2022]
Abstract
In order to understand the population structure and dynamics of bacterial microorganisms, typing systems that accurately reflect the phylogenetic and evolutionary relationship of the agents are required. Over the past 15 years multilocus sequence typing schemes have replaced single locus approaches, giving novel insights into phylogenetic and evolutionary relationships of many bacterial species and facilitating taxonomy. Since 2004, several schemes using multiple loci have been developed to better understand the taxonomy, phylogeny and evolution of Lyme borreliosis spirochetes and in this paper we have reviewed and summarized the progress that has been made for this important group of vector-borne zoonotic bacteria.
Collapse
Affiliation(s)
- Gabriele Margos
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK.
| | | | | | | |
Collapse
|
15
|
Berglund EC, Ellegaard K, Granberg F, Xie Z, Maruyama S, Kosoy MY, Birtles RJ, Andersson SGE. Rapid diversification by recombination in Bartonella grahamii from wild rodents in Asia contrasts with low levels of genomic divergence in Northern Europe and America. Mol Ecol 2010; 19:2241-55. [PMID: 20465583 DOI: 10.1111/j.1365-294x.2010.04646.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bartonella is a genus of vector-borne bacteria that infect the red blood cells of mammals, and includes several human-specific and zoonotic pathogens. Bartonella grahamii has a wide host range and is one of the most prevalent Bartonella species in wild rodents. We studied the population structure, genome content and genome plasticity of a collection of 26 B. grahamii isolates from 11 species of wild rodents in seven countries. We found strong geographic patterns, high recombination frequencies and large variations in genome size in B. grahamii compared with previously analysed cat- and human-associated Bartonella species. The extent of sequence divergence in B. grahamii populations was markedly lower in Europe and North America than in Asia, and several recombination events were predicted between the Asian strains. We discuss environmental and demographic factors that may underlie the observed differences.
Collapse
Affiliation(s)
- Eva C Berglund
- Department of Molecular Evolution, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Tan Y, Wu M, Liu H, Dong X, Guo Z, Song Z, Li Y, Cui Y, Song Y, Du Z, Yang R. Cellular fatty acids as chemical markers for differentiation of Yersinia pestis and Yersinia pseudotuberculosis. Lett Appl Microbiol 2010; 50:104-11. [DOI: 10.1111/j.1472-765x.2009.02762.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Vicente D, Esnal O, López de Goicoechea MJ, Cisterna R, Pérez-Trallero E. Influence of two vaccination campaigns on genetic diversity of invasive Neisseria meningitidis isolates in northern Spain (1997-2008). PLoS One 2009; 4:e8501. [PMID: 20041148 PMCID: PMC2794534 DOI: 10.1371/journal.pone.0008501] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Accepted: 12/03/2009] [Indexed: 11/30/2022] Open
Abstract
Background Neisseria meningitidis diversifies rapidly, due to its high recombination rates. The aim of this study was to analyze the possible impact of two vaccination campaigns (a once-off A/C polysaccharide vaccination campaign in people aged 18 months to 20 years old in 1997, and a meningococcal C conjugate vaccination campaign in children aged ≤6 years old from 2000 to 2008) on diversification of the population of invasive isolates obtained between 1997 and 2008. All of the 461 available isolates were included (2, 319, 123, 11 and 6 belonging to serogroups A, B, C, Y and W-135, respectively). Methodology/Principal Findings The isolates were analyzed for diversity using multilocus sequence typing, eBURST and the S.T.A.R.T.2 program. One hundred and seven sequence types (ST) and 20 clonal complexes were obtained. Five different STs (ST11, ST8, ST33, ST1163 and ST3496) included 56.4% of the isolates. With the exception of ST11, all other STs were associated with a specific serogroup. Epidemic circulation of serogroup C ST8 isolates was detected in 1997–1998, as well as epidemic circulation of ST11 isolates (serogroups B and C) in 2002–2004. The epidemic behavior of serogroup B ST11 (ST11_B:2a:P1.5) was similar, although with lesser intensity, to that of ST11 of serogroup C. Although clonality increased during epidemic years, the overall diversity of the meningococcal population did not increase throughout the 12 years of the study. Conclusion The overall diversity of the meningococcal population, measured by the frequency of STs and clonal complexes, numbers of alleles, polymorphic sites, and index of association, remained relatively constant throughout the study period, contradicting previous findings by other researchers.
Collapse
Affiliation(s)
- Diego Vicente
- Microbiology Service and Reference Laboratory for Meningococcal Infections of the Basque Country, Hospital Donostia, San Sebastián, Spain
- Biomedical Research Centre Network for Respiratory Diseases (CIBERES), San Sebastián, Spain
| | - Olatz Esnal
- Biomedical Research Centre Network for Respiratory Diseases (CIBERES), San Sebastián, Spain
| | | | | | - Emilio Pérez-Trallero
- Microbiology Service and Reference Laboratory for Meningococcal Infections of the Basque Country, Hospital Donostia, San Sebastián, Spain
- Biomedical Research Centre Network for Respiratory Diseases (CIBERES), San Sebastián, Spain
- Department of Preventive Medicine and Public Health, Faculty of Medicine, University of the Basque Country, San Sebastián, Spain
- * E-mail:
| |
Collapse
|
18
|
Distribution and genetic variability of three vaccine components in a panel of strains representative of the diversity of serogroup B meningococcus. Vaccine 2009; 27:2794-803. [PMID: 19428890 DOI: 10.1016/j.vaccine.2009.02.098] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Revised: 02/21/2009] [Accepted: 02/26/2009] [Indexed: 11/20/2022]
Abstract
With the aim of studying the molecular diversity of the antigens of a new recombinant vaccine against meningococcus serogroup B, the three genes coding for the main vaccine components GNA (Genome-derived Neisseria Antigen) 1870 (fHbp, factor H Binding Protein), GNA1994 (NadA, Neisseria adhesin A) and GNA2132 were sequenced in a panel of 85 strains collected worldwide and selected as representative of the serogroup B meningococcal diversity. No correlations were found between vaccine antigen variability and serogroup, geographic area and year of isolation. Although a relevant clustering was found with MLST clonal complexes, each showing an almost specific antigen variant repertoire, the prediction of the antigen assortment was not possible on the basis of MLST alone. Therefore, classification of meningococcus on the basis of MLST only is not sufficient to predict vaccine antigens diversity. Sequencing each gene in the different strains will be important to evaluate antigen conservation and assortment and to allow a future prediction of potential vaccine coverage.
Collapse
|
19
|
Genomic research for important pathogenic bacteria in China. ACTA ACUST UNITED AC 2009; 52:50-63. [DOI: 10.1007/s11427-009-0009-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Accepted: 12/22/2008] [Indexed: 12/21/2022]
|
20
|
Zarantonelli M, Lancellotti M, Deghmane A, Giorgini D, Hong E, Ruckly C, Alonso JM, Taha MK. Hyperinvasive genotypes of Neisseria meningitidis in France. Clin Microbiol Infect 2008; 14:467-72. [DOI: 10.1111/j.1469-0691.2008.01955.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Yue D, Nordhoff M, Wieler LH, Genersch E. Fluorescence in situ hybridization (FISH) analysis of the interactions between honeybee larvae and Paenibacillus larvae, the causative agent of American foulbrood of honeybees (Apis mellifera). Environ Microbiol 2008; 10:1612-20. [PMID: 18331334 DOI: 10.1111/j.1462-2920.2008.01579.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dominique Yue
- Institute for Bee Research, Friedrich-Engels-Str. 32, 16540 Hohen Neuendorf, Germany
| | | | | | | |
Collapse
|
22
|
Pannekoek Y, Morelli G, Kusecek B, Morré SA, Ossewaarde JM, Langerak AA, van der Ende A. Multi locus sequence typing of Chlamydiales: clonal groupings within the obligate intracellular bacteria Chlamydia trachomatis. BMC Microbiol 2008; 8:42. [PMID: 18307777 PMCID: PMC2268939 DOI: 10.1186/1471-2180-8-42] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Accepted: 02/28/2008] [Indexed: 11/29/2022] Open
Abstract
Background The obligate intracellular growing bacterium Chlamydia trachomatis causes diseases like trachoma, urogenital infection and lymphogranuloma venereum with severe morbidity. Several serovars and genotypes have been identified, but these could not be linked to clinical disease or outcome. The related Chlamydophila pneumoniae, of which no subtypes are recognized, causes respiratory infections worldwide. We developed a multi locus sequence typing (MLST) scheme to understand the population genetic structure and diversity of these species and to evaluate the association between genotype and disease. Results A collection of 26 strains of C. trachomatis of different serovars and clinical presentation and 18 strains of C. pneumoniae were included in the study. For comparison, sequences of C. abortus, C. psittaci, C. caviae, C. felis, C. pecorum (Chlamydophila), C. muridarum (Chlamydia) and of Candidatus protochlamydia and Simkania negevensis were also included. Sequences of fragments (400 – 500 base pairs) from seven housekeeping genes (enoA, fumC, gatA, gidA, hemN, hlfX, oppA) were analysed. Analysis of allelic profiles by eBurst revealed three non-overlapping clonal complexes among the C. trachomatis strains, while the C. pneumoniae strains formed a single group. An UPGMA tree produced from the allelic profiles resulted in three groups of sequence types. The LGV strains grouped in a single cluster, while the urogenital strains were distributed over two separated groups, one consisted solely of strains with frequent occurring serovars (E, D and F). The distribution of the different serovars over the three groups was not consistent, suggesting exchange of serovar encoding ompA sequences. In one instance, exchange of fumC sequences between strains of different groups was observed. Cluster analyses of concatenated sequences of the Chlamydophila and Chlamydia species together with those of Candidatus Protochlamydia amoebophila and Simkania negevensis resulted in a tree identical to that obtained with 23S RNA gene sequences. Conclusion These data show that C. trachomatis and C. pneumoniae are highly uniform. The difference in genetic diversity between C. trachomatis and C. pneumoniae is in concordance with a later assimilation to the human host of the latter. Our data supports the taxonomy of the order of Chlamydiales.
Collapse
Affiliation(s)
- Yvonne Pannekoek
- Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
23
|
Leimkugel J, Forgor AA, Dangy JP, Pflüger V, Gagneux S, Hodgson A, Pluschke G. Genetic diversification of Neisseria meningitidis during waves of colonization and disease in the meningitis belt of sub-Saharan Africa. Vaccine 2007; 25 Suppl 1:A18-23. [PMID: 17531357 DOI: 10.1016/j.vaccine.2007.04.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Although Neisseria meningitidis is a highly variable organism, most invasive disease is caused by a minority of genotypes. Hypervirulent lineages have been identified and their pandemic spread has been traced. During a longitudinal meningococcal colonization study in a district of northern Ghana clonal waves of carriage and disease were observed. Genetic diversification of genoclouds was analysed by pulsed field gel electrophoretic (PFGE) analysis of isolates from healthy carriers and from meningitis patients. Even during the limited time of persistence in the district, microevolution of the dominating genoclouds took place. Population genomic analyses are required to understand the genetic basis for the emergence of new lineages with epidemic potential, which is of crucial importance for the development of long-term global vaccination strategies against meningococcal disease.
Collapse
MESH Headings
- DNA, Bacterial/analysis
- DNA, Bacterial/genetics
- Electrophoresis, Gel, Pulsed-Field
- Genetic Variation
- Geography
- Ghana/epidemiology
- Humans
- Meningitis, Meningococcal/epidemiology
- Meningitis, Meningococcal/immunology
- Neisseria meningitidis/classification
- Neisseria meningitidis/genetics
- Neisseria meningitidis/pathogenicity
- Neisseria meningitidis, Serogroup A/classification
- Neisseria meningitidis, Serogroup A/genetics
- Neisseria meningitidis, Serogroup A/pathogenicity
- Neisseria meningitidis, Serogroup W-135/classification
- Neisseria meningitidis, Serogroup W-135/genetics
- Neisseria meningitidis, Serogroup W-135/pathogenicity
- Serotyping
- Time Factors
- Virulence
Collapse
Affiliation(s)
- Julia Leimkugel
- Swiss Tropical Institute, Socinstr. 57, 4051 Basel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
24
|
Salerno A, Delétoile A, Lefevre M, Ciznar I, Krovacek K, Grimont P, Brisse S. Recombining population structure of Plesiomonas shigelloides (Enterobacteriaceae) revealed by multilocus sequence typing. J Bacteriol 2007; 189:7808-18. [PMID: 17693512 PMCID: PMC2168737 DOI: 10.1128/jb.00796-07] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plesiomonas shigelloides is an emerging pathogen that is widespread in the aquatic environment and is responsible for intestinal diseases and extraintestinal infections in humans and other animals. Virtually nothing is known about its genetic diversity, population structure, and evolution, which severely limits epidemiological control. We addressed these questions by developing a multilocus sequence typing (MLST) system based on five genes (fusA, leuS, pyrG, recG, and rpoB) and analyzing 77 epidemiologically unrelated strains from several countries and several ecological sources. The phylogenetic position of P. shigelloides within family Enterobacteriaceae was precisely defined by phylogenetic analysis of the same gene portions in other family members. Within P. shigelloides, high levels of nucleotide diversity (average percentage of nucleotide differences between strains, 1.49%) and genotypic diversity (64 distinct sequence types; Simpson's index, 99.7%) were found, with no salient internal phylogenetic structure. We estimated that homologous recombination in housekeeping genes affects P. shigelloides alleles and nucleotides 7 and 77 times more frequently than mutation, respectively. These ratios are similar to those observed in the naturally transformable species Streptococcus pneumoniae with a high rate of recombination. In contrast, recombination within Salmonella enterica, Escherichia coli, and Yersinia enterocolitica was much less frequent. P. shigelloides thus stands out among members of the Enterobacteriaceae. Its high rate of recombination results in a lack of association between genomic background and O and H antigenic factors, as observed for the 51 serotypes found in our sample. Given its robustness and discriminatory power, we recommend MLST as a reference method for population biology studies and epidemiological tracking of P. shigelloides strains.
Collapse
Affiliation(s)
- Anna Salerno
- Unité Biodiversité des Bactéries Pathogènes Emergentes, Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Though bacteria are predominantly asexual, the genetic information in their genomes can be expanded and modified through mechanisms that introduce DNA from outside sources. Bacterial sex differs from that of eukaryotes in that it is unidirectional and does not involve gamete fusion or reproduction. The input of DNA during bacterial sex generates diversity in two ways--through the alteration of existing genes by recombination and through the introduction of novel sequences--and each of these processes has been shown to aid in the survival and diversification of lineages.
Collapse
Affiliation(s)
- Hema Prasad Narra
- Department of Biochemistry & Molecular Biophysics, University of Arizona, Tucson, Arizona 85721, USA
| | | |
Collapse
|
26
|
Antwerpen MH, Schellhase M, Ehrentreich-Förster E, Bier F, Witte W, Nübel U. DNA microarray for detection of antibiotic resistance determinants in Bacillus anthracis and closely related Bacillus cereus. Mol Cell Probes 2006; 21:152-60. [PMID: 17118627 DOI: 10.1016/j.mcp.2006.10.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Revised: 09/22/2006] [Accepted: 10/11/2006] [Indexed: 10/24/2022]
Abstract
We developed a multiplex PCR for amplification of ten genes involved in resistance to ciprofloxacin, doxycycline, rifampin, and vancomycin in Bacillus anthracis and closely related Bacillus cereus. Enzymatic labelling of PCR products followed by hybridization to oligonucleotide probes on a DNA microarray enabled simultaneous detection of resistance genes tetK, tetL, tetM, tetO, vanA, and vanB and resistance-mediating point mutations in genes gyrA, gyrB, parC, and rpoB. The presented assay allows detection of clinically relevant antibiotic resistance determinants within 4h and can be used as a time-saving tool supporting conventional culture-based diagnostics.
Collapse
|
27
|
Nübel U, Reissbrodt R, Weller A, Grunow R, Porsch-Ozcürümez M, Tomaso H, Hofer E, Splettstoesser W, Finke EJ, Tschäpe H, Witte W. Population structure of Francisella tularensis. J Bacteriol 2006; 188:5319-24. [PMID: 16816208 PMCID: PMC1539956 DOI: 10.1128/jb.01662-05] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have sequenced fragments of five metabolic housekeeping genes and two genes encoding outer membrane proteins from 81 isolates of Francisella tularensis, representing all four subspecies. Phylogenetic clustering of gene sequences from F. tularensis subsp. tularensis and F. tularensis subsp. holarctica aligned well with subspecies affiliations. In contrast, F. tularensis subsp. novicida and F. tularensis subsp. mediasiatica were indicated to be phylogenetically incoherent taxa. Incongruent gene trees and mosaic structures of housekeeping genes provided evidence for genetic recombination in F. tularensis.
Collapse
Affiliation(s)
- Ulrich Nübel
- Robert Koch Institute, Burgstr. 37, 38855 Wernigerode, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Richter D, Postic D, Sertour N, Livey I, Matuschka FR, Baranton G. Delineation of Borrelia burgdorferi sensu lato species by multilocus sequence analysis and confirmation of the delineation of Borrelia spielmanii sp. nov. Int J Syst Evol Microbiol 2006; 56:873-881. [PMID: 16585709 DOI: 10.1099/ijs.0.64050-0] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To evaluate multilocus sequence analysis (MLSA) for taxonomic purposes in the delineation of species withinBorrelia burgdorferi sensu lato, seven relevant loci of various strains for which extensive DNA–DNA reassociation data were available were sequenced. MLSA delineation proved to be fully concordant with conventional methods. Our analysis confirmed the delineation of a novel species,Borrelia spielmaniisp. nov., previously known as ‘Borrelia spielmani’ Richteret al. 2004, with strain PC-Eq17N5T(=DSM 16813T=CIP 108855T) as the type strain.
Collapse
Affiliation(s)
- Dania Richter
- Charité Universitätsmedizin Berlin, 12249 Berlin, Germany
| | | | | | - Ian Livey
- Baxter Vaccine AG, A-2304 Orth/Donau, Austria
| | | | | |
Collapse
|
29
|
Heesemann J. Darwin's Principle of Divergence revisited: small steps and quantum leaps set the path of microbial evolution. Int J Med Microbiol 2004; 294:65-6. [PMID: 15493815 DOI: 10.1016/j.ijmm.2004.06.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|