1
|
Peters S, Mohort K, Claus H, Stigloher C, Schubert-Unkmeir A. Interaction of Neisseria meningitidis carrier and disease isolates of MenB cc32 and MenW cc22 with epithelial cells of the nasopharyngeal barrier. Front Cell Infect Microbiol 2024; 14:1389527. [PMID: 38756230 PMCID: PMC11096551 DOI: 10.3389/fcimb.2024.1389527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/12/2024] [Indexed: 05/18/2024] Open
Abstract
Neisseria meningitidis (Nm, the meningococcus) is considered an asymptomatic colonizer of the upper respiratory tract and a transient member of its microbiome. It is assumed that the spread of N. meningitidis into the bloodstream occurs via transcytosis of the nasopharyngeal epithelial barrier without destroying the barrier layer. Here, we used Calu-3 respiratory epithelial cells that were grown under air-liquid-interface conditions to induce formation of pseudostratified layers and mucus production. The number of bacterial localizations in the outer mucus, as well as cellular adhesion, invasion and transmigration of different carrier and disease N. meningitidis isolates belonging to MenB:cc32 and MenW:cc22 lineages was assessed. In addition, the effect on barrier integrity and cytokine release was determined. Our findings showed that all strains tested resided primarily in the outer mucus layer after 24 h of infection (>80%). Nonetheless, both MenB:cc32 and MenW:cc22 carrier and disease isolates reached the surface of the epithelial cells and overcame the barrier. Interestingly, we observed a significant difference in the number of bacteria transmigrating the epithelial cell barrier, with the representative disease isolates being more efficient to transmigrate compared to carrier isolates. This could be attributed to the capacity of the disease isolates to invade, however could not be assigned to expression of the outer membrane protein Opc. Moreover, we found that the representative meningococcal isolates tested in this study did not damage the epithelial barrier, as shown by TEER measurement, FITC-dextran permeability assays, and expression of cell-junction components.
Collapse
Affiliation(s)
- Simon Peters
- Institute for Hygiene and Microbiology, Julius-Maximilian University Wuerzburg, Wuerzburg, Germany
| | - Katherina Mohort
- Institute for Hygiene and Microbiology, Julius-Maximilian University Wuerzburg, Wuerzburg, Germany
| | - Heike Claus
- Institute for Hygiene and Microbiology, Julius-Maximilian University Wuerzburg, Wuerzburg, Germany
| | - Christian Stigloher
- Imaging Core Facility, Biocenter, Julius-Maximilian University Wuerzburg, Wuerzburg, Germany
| | | |
Collapse
|
2
|
Le Guennec L, Weiss N. Blood-brain barrier dysfunction in intensive care unit. JOURNAL OF INTENSIVE MEDICINE 2023; 3:303-312. [PMID: 38028637 PMCID: PMC10658046 DOI: 10.1016/j.jointm.2023.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 12/01/2023]
Abstract
The central nervous system is characterized by a peculiar vascularization termed blood-brain barrier (BBB), which regulates the exchange of cells and molecules between the cerebral tissue and the whole body. BBB dysfunction is a life-threatening condition since its presence corresponds to a marker of severity in most diseases encountered in the intensive care unit (ICU). During critical illness, inflammatory response, cytokine release, and other phenomena activating the brain endothelium contribute to alterations in the BBB and increase its permeability to solutes, cells, nutrients, and xenobiotics. Moreover, patients in the ICU are often old, with underlying acute or chronic diseases, and overly medicated due to their critical condition; these factors could also contribute to the development of BBB dysfunction. An accurate diagnostic approach is critical for the identification of the mechanisms underlying BBB alterations, which should be rapidly managed by intensivists. Several methods were developed to investigate the BBB and assess its permeability. Nevertheless, in humans, exploration of the BBB requires the use of indirect methods. Imaging and biochemical methods can be used to study the abnormal passage of molecules through the BBB. In this review, we describe the structural and functional characteristics of the BBB, present tools and methods for probing this interface, and provide examples of the main diseases managed in the ICU that are related to BBB dysfunction.
Collapse
Affiliation(s)
- Loic Le Guennec
- Département de neurologie, Sorbonne Université, AP-HP Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Unité de Médecine Intensive Réanimation àorientation neurologique, Paris 75013, France
- Groupe de Recherche Clinique en REanimation et Soins intensifs du Patient en Insuffisance Respiratoire aiguE (GRC-RESPIRE) Sorbonne Université, Paris 75013, France
| | - Nicolas Weiss
- Département de neurologie, Sorbonne Université, AP-HP Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Unité de Médecine Intensive Réanimation àorientation neurologique, Paris 75013, France
- Groupe de Recherche Clinique en REanimation et Soins intensifs du Patient en Insuffisance Respiratoire aiguE (GRC-RESPIRE) Sorbonne Université, Paris 75013, France
- Brain Liver Pitié-Salpêtrière (BLIPS) Study Group, INSERM UMR_S 938, Centre de recherche Saint-Antoine, Maladies métaboliques, Biliaires et fibro-inflammatoire du foie, Institute of Cardiometabolism and Nutrition (ICAN), Paris 75013, France
| |
Collapse
|
3
|
Endres LM, Jungblut M, Divyapicigil M, Sauer M, Stigloher C, Christodoulides M, Kim BJ, Schubert-Unkmeir A. Development of a multicellular in vitro model of the meningeal blood-CSF barrier to study Neisseria meningitidis infection. Fluids Barriers CNS 2022; 19:81. [PMID: 36289516 PMCID: PMC9597984 DOI: 10.1186/s12987-022-00379-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/06/2022] [Indexed: 12/01/2022] Open
Abstract
Background Bacterial meningitis is a life-threatening disease that occurs when pathogens such as Neisseria meningitidis cross the meningeal blood cerebrospinal fluid barrier (mBCSFB) and infect the meninges. Due to the human-specific nature of N. meningitidis, previous research investigating this complex host–pathogen interaction has mostly been done in vitro using immortalized brain endothelial cells (BECs) alone, which often do not retain relevant barrier properties in culture. Here, we developed physiologically relevant mBCSFB models using BECs in co-culture with leptomeningeal cells (LMCs) to examine N. meningitidis interaction. Methods We used BEC-like cells derived from induced pluripotent stem cells (iBECs) or hCMEC/D3 cells in co-culture with LMCs derived from tumor biopsies. We employed TEM and structured illumination microscopy to characterize the models as well as bacterial interaction. We measured TEER and sodium fluorescein (NaF) permeability to determine barrier tightness and integrity. We then analyzed bacterial adherence and penetration of the cell barrier and examined changes in host gene expression of tight junctions as well as chemokines and cytokines in response to infection. Results Both cell types remained distinct in co-culture and iBECs showed characteristic expression of BEC markers including tight junction proteins and endothelial markers. iBEC barrier function as determined by TEER and NaF permeability was improved by LMC co-culture and remained stable for seven days. BEC response to N. meningitidis infection was not affected by LMC co-culture. We detected considerable amounts of BEC-adherent meningococci and a relatively small number of intracellular bacteria. Interestingly, we discovered bacteria traversing the BEC-LMC barrier within the first 24 h post-infection, when barrier integrity was still high, suggesting a transcellular route for N. meningitidis into the CNS. Finally, we observed deterioration of barrier properties including loss of TEER and reduced expression of cell-junction components at late time points of infection. Conclusions Here, we report, for the first time, on co-culture of human iPSC derived BECs or hCMEC/D3 with meningioma derived LMCs and find that LMC co-culture improves barrier properties of iBECs. These novel models allow for a better understanding of N. meningitidis interaction at the mBCSFB in a physiologically relevant setting. Supplementary Information The online version contains supplementary material available at 10.1186/s12987-022-00379-z.
Collapse
Affiliation(s)
- Leo M. Endres
- grid.8379.50000 0001 1958 8658Institute for Hygiene and Microbiology, University of Würzburg, Josef-Schneider-Strasse 2, 97080 Würzburg, Germany
| | - Marvin Jungblut
- grid.8379.50000 0001 1958 8658Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Mustafa Divyapicigil
- grid.411015.00000 0001 0727 7545Department of Biological Sciences, University of Alabama, Tuscaloosa, AL USA ,grid.265892.20000000106344187Department of Microbiology Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL USA ,grid.411015.00000 0001 0727 7545Center for Convergent Biosciences & Medicine, University of Alabama, Tuscaloosa, AL USA ,grid.411015.00000 0001 0727 7545Alabama Life Research Institute, University of Alabama, Tuscaloosa, AL USA
| | - Markus Sauer
- grid.8379.50000 0001 1958 8658Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Christian Stigloher
- grid.8379.50000 0001 1958 8658Imaging Core Facility, Biocenter, University of Würzburg, Würzburg, Germany
| | - Myron Christodoulides
- grid.5491.90000 0004 1936 9297Molecular Microbiology, School of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, UK
| | - Brandon J. Kim
- grid.411015.00000 0001 0727 7545Department of Biological Sciences, University of Alabama, Tuscaloosa, AL USA ,grid.265892.20000000106344187Department of Microbiology Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL USA ,grid.411015.00000 0001 0727 7545Center for Convergent Biosciences & Medicine, University of Alabama, Tuscaloosa, AL USA ,grid.411015.00000 0001 0727 7545Alabama Life Research Institute, University of Alabama, Tuscaloosa, AL USA
| | - Alexandra Schubert-Unkmeir
- grid.8379.50000 0001 1958 8658Institute for Hygiene and Microbiology, University of Würzburg, Josef-Schneider-Strasse 2, 97080 Würzburg, Germany
| |
Collapse
|
4
|
Sora VM, Meroni G, Martino PA, Soggiu A, Bonizzi L, Zecconi A. Extraintestinal Pathogenic Escherichia coli: Virulence Factors and Antibiotic Resistance. Pathogens 2021; 10:pathogens10111355. [PMID: 34832511 PMCID: PMC8618662 DOI: 10.3390/pathogens10111355] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/05/2021] [Accepted: 10/18/2021] [Indexed: 12/29/2022] Open
Abstract
The One Health approach emphasizes the importance of antimicrobial resistance (AMR) as a major concern both in public health and in food animal production systems. As a general classification, E. coli can be distinguished based on the ability to cause infection of the gastrointestinal system (IPEC) or outside of it (ExPEC). Among the different pathogens, E. coli are becoming of great importance, and it has been suggested that ExPEC may harbor resistance genes that may be transferred to pathogenic or opportunistic bacteria. ExPEC strains are versatile bacteria that can cause urinary tract, bloodstream, prostate, and other infections at non-intestinal sites. In this context of rapidly increasing multidrug-resistance worldwide and a diminishingly effective antimicrobial arsenal to tackle resistant strains. ExPEC infections are now a serious public health threat worldwide. However, the clinical and economic impact of these infections and their optimal management are challenging, and consequently, there is an increasing awareness of the importance of ExPECs amongst healthcare professionals and the general public alike. This review aims to describe pathotype characteristics of ExPEC to increase our knowledge of these bacteria and, consequently, to increase our chances to control them and reduce the risk for AMR, following a One Health approach.
Collapse
|
5
|
Zhao Z, Shang X, Chen Y, Zheng Y, Huang W, Jiang H, Lv Q, Kong D, Jiang Y, Liu P. Bacteria elevate extracellular adenosine to exploit host signaling for blood-brain barrier disruption. Virulence 2021; 11:980-994. [PMID: 32772676 PMCID: PMC7549952 DOI: 10.1080/21505594.2020.1797352] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Bacterial meningitis remains a substantial cause of mortality worldwide and survivors may have severe lifelong disability. Although we know that meningeal bacterial pathogens must cross blood-central nervous system (CNS) barriers, the mechanisms which facilitate the virulence of these pathogens are poorly understood. Here, we show that adenosine from a surface enzyme (Ssads) of Streptococcus suis facilitates this pathogen’s entry into mouse brains. Monolayer translocation assays (from the human cerebrovascular endothelium) and experiments using diverse inhibitors and agonists together demonstrate that activation of the A1 adenosine receptor signaling cascade in hosts, as well as attendant cytoskeleton remodeling, promote S. suis penetration across blood-CNS barriers. Importantly, our additional findings showing that Ssads orthologs from other bacterial species also promote their translocation across barriers suggest that exploitation of A1 AR signaling may be a general mechanism of bacterial virulence.
Collapse
Affiliation(s)
- Zunquan Zhao
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology , Beijing, China
| | - Xueyi Shang
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology , Beijing, China.,Department of Critical Care Medicine, The Fifth Medical Center of Chinese PLA General Hospital , Beijing, China
| | - Ying Chen
- School of Food and Chemical Engineering, Beijing Technology and Business University , Beijing, China
| | - Yuling Zheng
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology , Beijing, China
| | - Wenhua Huang
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology , Beijing, China
| | - Hua Jiang
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology , Beijing, China
| | - Qingyu Lv
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology , Beijing, China
| | - Decong Kong
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology , Beijing, China
| | - Yongqiang Jiang
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology , Beijing, China
| | - Peng Liu
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology , Beijing, China
| |
Collapse
|
6
|
Jin T, Guan N, Du Y, Zhang X, Li J, Xia X. Cronobacter sakazakii ATCC 29544 Translocated Human Brain Microvascular Endothelial Cells via Endocytosis, Apoptosis Induction, and Disruption of Tight Junction. Front Microbiol 2021; 12:675020. [PMID: 34163451 PMCID: PMC8215149 DOI: 10.3389/fmicb.2021.675020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/23/2021] [Indexed: 01/19/2023] Open
Abstract
Cronobacter sakazakii (C. sakazakii) is an emerging opportunistic foodborne pathogen that can cause neonatal necrotizing enterocolitis, meningitis, sepsis in neonates and infants with a relatively high mortality rate. Bacterial transcytosis across the human brain microvascular endothelial cells (HBMEC) is vital for C. sakazakii to induce neonatal meningitis. However, few studies focus on the mechanisms by which C. sakazakii translocates HBMEC. In this study, the translocation processes of C. sakazakii on HBMEC were explored. C. sakazakii strains could effectively adhere to, invade and intracellularly survive in HBMEC. The strain ATCC 29544 exhibited the highest translocation efficiency across HBMEC monolayer among four tested strains. Bacteria-contained intracellular endosomes were detected in C. sakazakii-infected HBMEC by a transmission electron microscope. Endocytosis-related proteins CD44, Rab5, Rab7, and LAMP2 were increased after infection, while the level of Cathepsin L did not change. C. sakazakii induced TLR4/NF-κB inflammatory signal pathway activation in HBMEC, with increased NO production and elevated mRNA levels of IL-8, IL-6, TNF-α, IL-1β, iNOS, and COX-2. C. sakazakii infection also caused LDH release, caspase-3 activation, and HBMEC apoptosis. Meanwhile, increased Dextran-FITC permeability and decreased trans epithelial electric resistance indicated that C. sakazakii disrupted tight junction of HBMEC monolayers, which was confirmed by the decreased levels of tight junction-related proteins ZO-1 and Occludin. These findings suggest that C. sakazakii induced intracellular bacterial endocytosis, stimulated inflammation and apoptosis, disrupted monolayer tight junction in HBMEC, which all together contribute to bacterial translocation.
Collapse
Affiliation(s)
- Tong Jin
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Ning Guan
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Yuhang Du
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Xinpeng Zhang
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Jiahui Li
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Xiaodong Xia
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
7
|
A Structural Model for the Ligand Binding of Pneumococcal Serotype 3 Capsular Polysaccharide-Specific Protective Antibodies. mBio 2021; 12:e0080021. [PMID: 34061603 PMCID: PMC8262990 DOI: 10.1128/mbio.00800-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Capsular polysaccharides (CPSs) are major virulence factors that decorate the surfaces of many human bacterial pathogens. In their pure form or as glycoconjugate vaccines, CPSs are extensively used in vaccines deployed in clinical practice worldwide. However, our understanding of the structural requirements for interactions between CPSs and antibodies is limited. A longstanding model based on comprehensive observations of antibody repertoires binding to CPSs is that antibodies expressing heavy chain variable gene family 3 (VH3) predominate in these binding interactions in humans and VH3 homologs in mice. Toward understanding this highly conserved interaction, we generated a panel of mouse monoclonal antibodies (MAb) against Streptococcus pneumoniae serotype 3 CPS, determined an X-ray crystal structure of a protective MAb in complex with a hexasaccharide derived from enzymatic hydrolysis of the polysaccharide, and elucidated the structural requirements for this binding interaction. The crystal structure revealed a binding pocket containing aromatic side chains, suggesting the importance of hydrophobicity in the interaction. Through mutational analysis, we determined the amino acids that are critical in carbohydrate binding. Through elucidating the structural and functional properties of a panel of murine MAbs, we offer an explanation for the predominant use of the human VH3 gene family in antibodies against CPSs with implications in knowledge-based vaccine design.
Collapse
|
8
|
Dos Santos Souza I, Maïssa N, Ziveri J, Morand PC, Coureuil M, Nassif X, Bourdoulous S. Meningococcal disease: A paradigm of type-IV pilus dependent pathogenesis. Cell Microbiol 2021; 22:e13185. [PMID: 32185901 DOI: 10.1111/cmi.13185] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/31/2020] [Accepted: 02/03/2020] [Indexed: 01/11/2023]
Abstract
Neisseria meningitidis (meningococcus) is a Gram-negative bacterium responsible for two devastating forms of invasive diseases: purpura fulminans and meningitis. Interaction with both peripheral and cerebral microvascular endothelial cells is at the heart of meningococcal pathogenesis. During the last two decades, an essential role for meningococcal type IV pili in vascular colonisation and disease progression has been unravelled. This review summarises 20 years of research on meningococcal type IV pilus-dependent virulence mechanisms, up to the identification of promising anti-virulence compounds that target type IV pili.
Collapse
Affiliation(s)
- Isabel Dos Santos Souza
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Faculté de Santé, Université de Paris, Paris, France
| | - Nawal Maïssa
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Faculté de Santé, Université de Paris, Paris, France
| | - Jason Ziveri
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Faculté de Santé, Université de Paris, Paris, France
| | - Philippe C Morand
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Faculté de Santé, Université de Paris, Paris, France
| | - Mathieu Coureuil
- Faculté de Santé, Université de Paris, Paris, France.,Inserm, U1151, Institut-Necker-Enfants-Malades, Paris, France.,CNRS, UMR 8253, Paris, France
| | - Xavier Nassif
- Faculté de Santé, Université de Paris, Paris, France.,Inserm, U1151, Institut-Necker-Enfants-Malades, Paris, France.,CNRS, UMR 8253, Paris, France.,Assistance Publique - Hôpitaux de Paris, Hôpital Necker Enfants Malades, Paris, France
| | - Sandrine Bourdoulous
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Faculté de Santé, Université de Paris, Paris, France
| |
Collapse
|
9
|
Interactions and Signal Transduction Pathways Involved during Central Nervous System Entry by Neisseria meningitidis across the Blood-Brain Barriers. Int J Mol Sci 2020; 21:ijms21228788. [PMID: 33233688 PMCID: PMC7699760 DOI: 10.3390/ijms21228788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 11/18/2020] [Indexed: 11/20/2022] Open
Abstract
The Gram-negative diplococcus Neisseria meningitidis, also called meningococcus, exclusively infects humans and can cause meningitis, a severe disease that can lead to the death of the afflicted individuals. To cause meningitis, the bacteria have to enter the central nervous system (CNS) by crossing one of the barriers protecting the CNS from entry by pathogens. These barriers are represented by the blood–brain barrier separating the blood from the brain parenchyma and the blood–cerebrospinal fluid (CSF) barriers at the choroid plexus and the meninges. During the course of meningococcal disease resulting in meningitis, the bacteria undergo several interactions with host cells, including the pharyngeal epithelium and the cells constituting the barriers between the blood and the CSF. These interactions are required to initiate signal transduction pathways that are involved during the crossing of the meningococci into the blood stream and CNS entry, as well as in the host cell response to infection. In this review we summarize the interactions and pathways involved in these processes, whose understanding could help to better understand the pathogenesis of meningococcal meningitis.
Collapse
|
10
|
Baraniya D, Jain V, Lucarelli R, Tam V, Vanderveer L, Puri S, Yang M, Al-Hebshi NN. Screening of Health-Associated Oral Bacteria for Anticancer Properties in vitro. Front Cell Infect Microbiol 2020; 10:575656. [PMID: 33123499 PMCID: PMC7573156 DOI: 10.3389/fcimb.2020.575656] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/02/2020] [Indexed: 12/24/2022] Open
Abstract
While extensive literature exists about the role of oral bacterial pathogens like Porphyromonas gingivalis and Fusobacterium nucleatum in oral squamous cell carcinoma (OSCC), the role of health-associated species has been largely unexplored. In this study, we assessed the effect of Streptococcus mitis, Rothia mucilaginosa, Neisseria flavescens, Haemophilus parainfluenzae, Lautropia mirabilis, and Veillonella parvula on proliferation and expression of marker genes (IL-6, TNF-α, MMP3, CD36, CCD1, and NANOG) in OSCC cell lines CAL27, SCC25, and SCC4. Porphyromonas gingivalis was included as a pathogenic control. Both bacterial lysates (3 concentrations) and live cells (3 MOIs) were tested. S. mitis, H. parainfluenzae, and N. flavescens resulted in substantial, dose-dependent reduction of proliferation, which was found to be mediated by H2O2 for the former and intracellular infection in the latter two species. However, only H. parainfluenzae showed differential antiproliferative effect against the cancer cell lines vs. the normal control (TIGKs). In the gene expression assays, the health-associated species mostly downregulated CD36, a gene that plays an important role in tumor growth and metastasis, while P. gingivalis upregulated it. IL6 and TNF expression, on the other hand, was upregulated by almost all species, particularly the Gram-negatives including P. gingivalis. The effect on other genes was less evident and varied significantly by cell line. This exploratory study is the first insight into how health-associated bacteria may interact with OSCC. Further studies to explore whether the observed effects may have implications for the prevention or treatment of oral cancer are warranted.
Collapse
Affiliation(s)
- Divyashri Baraniya
- Oral Microbiome Research Laboratory, Department of Oral Health Sciences, Maurice H. Kornberg School of Dentistry, Temple University, Philadelphia, PA, United States
| | - Vinay Jain
- Oral Microbiome Research Laboratory, Department of Oral Health Sciences, Maurice H. Kornberg School of Dentistry, Temple University, Philadelphia, PA, United States
| | - Ronald Lucarelli
- Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Vincent Tam
- Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Lisa Vanderveer
- Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA, United States
| | - Sumant Puri
- Oral Microbiome Research Laboratory, Department of Oral Health Sciences, Maurice H. Kornberg School of Dentistry, Temple University, Philadelphia, PA, United States
| | - Maobin Yang
- Regenerative Research Laboratory, Department of Endodontology, Maurice H. Kornberg School of Dentistry, Temple University, Philadelphia, PA, United States
| | - Nezar Noor Al-Hebshi
- Oral Microbiome Research Laboratory, Department of Oral Health Sciences, Maurice H. Kornberg School of Dentistry, Temple University, Philadelphia, PA, United States.,Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA, United States
| |
Collapse
|
11
|
Delbaz A, Chen M, Jen FEC, Schulz BL, Gorse AD, Jennings MP, St John JA, Ekberg JAK. Neisseria meningitidis Induces Pathology-Associated Cellular and Molecular Changes in Trigeminal Schwann Cells. Infect Immun 2020; 88:e00955-19. [PMID: 31964742 PMCID: PMC7093114 DOI: 10.1128/iai.00955-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 02/06/2023] Open
Abstract
Neisseria meningitidis, a common cause of sepsis and bacterial meningitis, infects the meninges and central nervous system (CNS), primarily via paracellular traversal across the blood-brain barrier (BBB) or blood-cerebrospinal fluid barrier. N. meningitidis is often present asymptomatically in the nasopharynx, and the nerves extending between the nasal cavity and the brain constitute an alternative route by which the meningococci may reach the CNS. To date, the cellular mechanisms involved in nerve infection are not fully understood. Peripheral nerve glial cells are phagocytic and are capable of eliminating microorganisms, but some pathogens may be able to overcome this protection mechanism and instead infect the glia, causing cell death or pathology. Here, we show that N. meningitidis readily infects trigeminal Schwann cells (the glial cells of the trigeminal nerve) in vitro in both two-dimensional and three-dimensional cell cultures. Infection of trigeminal Schwann cells may be one mechanism by which N. meningitidis is able to invade the CNS. Infection of the cells led to multinucleation and the appearance of atypical nuclei, with the presence of horseshoe nuclei and the budding of nuclei increasing over time. Using sequential window acquisition of all theoretical mass spectra (SWATH-MS) proteomics followed by bioinformatics pathway analysis, we showed that N. meningitidis induced protein alterations in the glia that were associated with altered intercellular signaling, cell-cell interactions, and cellular movement. The analysis also suggested that the alterations in protein levels were consistent with changes occurring in cancer. Thus, infection of the trigeminal nerve by N. meningitidis may have ongoing adverse effects on the biology of Schwann cells, which may lead to pathology.
Collapse
Affiliation(s)
- Ali Delbaz
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, QLD, Australia
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, Australia
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| | - Mo Chen
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, QLD, Australia
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, Australia
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| | - Freda E-C Jen
- Institute for Glycomics, Griffith University, Southport, QLD, Australia
| | - Benjamin L Schulz
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, the University of Queensland, St. Lucia, Brisbane, Australia
| | - Alain-Dominique Gorse
- QFAB Bioinformatics, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Australia
| | | | - James A St John
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, QLD, Australia
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, Australia
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| | - Jenny A K Ekberg
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, QLD, Australia
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, Australia
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| |
Collapse
|
12
|
Casadevall A, Fang FC. The intracellular pathogen concept. Mol Microbiol 2019; 113:541-545. [PMID: 31762116 DOI: 10.1111/mmi.14421] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2019] [Indexed: 12/21/2022]
Abstract
The intracellular pathogen concept classifies pathogenic microbes on the basis of their site of replication and dependence on host cells. This concept played a fundamental role in establishing the field of cellular microbiology, founded in part by Dr. Pascale Cossart, whose seminal contributions are honored in this issue of Molecular Microbiology. The recognition that microbes can access and replicate in privileged compartments within host cells has led to many new and fruitful lines of investigation into the biology of the cell and mechanisms of cell-mediated immunity. However, like any scientific concept, the intracellular pathogen concept can become a dogma that constrains thinking and oversimplifies complex and dynamic host-pathogen interactions. Growing evidence has blurred the distinction between "intracellular" and "extracellular" pathogens and demonstrated that many pathogens can exist both within and outside of cells. Although the intracellular pathogen concept remains useful, it should not be viewed as a rigid classification of pathogenic microbes, which exhibit remarkable variation and complexity in their behavior in the host.
Collapse
Affiliation(s)
- Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, MD, USA
| | - Ferric C Fang
- Departments of Laboratory Medicine and Microbiology, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
13
|
Schlegel J, Peters S, Doose S, Schubert-Unkmeir A, Sauer M. Super-Resolution Microscopy Reveals Local Accumulation of Plasma Membrane Gangliosides at Neisseria meningitidis Invasion Sites. Front Cell Dev Biol 2019; 7:194. [PMID: 31572726 PMCID: PMC6753371 DOI: 10.3389/fcell.2019.00194] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 08/29/2019] [Indexed: 12/27/2022] Open
Abstract
Neisseria meningitidis (meningococcus) is a Gram-negative bacterium responsible for epidemic meningitis and sepsis worldwide. A critical step in the development of meningitis is the interaction of bacteria with cells forming the blood-cerebrospinal fluid barrier, which requires tight adhesion of the pathogen to highly specialized brain endothelial cells. Two endothelial receptors, CD147 and the β2-adrenergic receptor, have been found to be sequentially recruited by meningococci involving the interaction with type IV pilus. Despite the identification of cellular key players in bacterial adhesion the detailed mechanism of invasion is still poorly understood. Here, we investigated cellular dynamics and mobility of the type IV pilus receptor CD147 upon treatment with pili enriched fractions and specific antibodies directed against two extracellular Ig-like domains in living human brain microvascular endothelial cells. Modulation of CD147 mobility after ligand binding revealed by single-molecule tracking experiments demonstrates receptor activation and indicates plasma membrane rearrangements. Exploiting the binding of Shiga (STxB) and Cholera toxin B (CTxB) subunits to the two native plasma membrane sphingolipids globotriaosylceramide (Gb3) and raft-associated monosialotetrahexosylganglioside GM1, respectively, we investigated their involvement in bacterial invasion by super-resolution microscopy. Structured illumination microscopy (SIM) and direct stochastic optical reconstruction microscopy (dSTORM) unraveled accumulation and coating of meningococci with GM1 upon cellular uptake. Blocking of CTxB binding sites did not impair bacterial adhesion but dramatically reduced bacterial invasion efficiency. In addition, cell cycle arrest in G1 phase induced by serum starvation led to an overall increase of GM1 molecules in the plasma membrane and consequently also in bacterial invasion efficiency. Our results will help to understand downstream signaling events after initial type IV pilus-host cell interactions and thus have general impact on the development of new therapeutics targeting key molecules involved in infection.
Collapse
Affiliation(s)
- Jan Schlegel
- Department of Biotechnology and Biophysics, Biocenter, Julius Maximilian University Würzburg, Würzburg, Germany
| | - Simon Peters
- Institute of Hygiene and Microbiology, Julius Maximilian University Würzburg, Würzburg, Germany
| | - Sören Doose
- Department of Biotechnology and Biophysics, Biocenter, Julius Maximilian University Würzburg, Würzburg, Germany
| | | | - Markus Sauer
- Department of Biotechnology and Biophysics, Biocenter, Julius Maximilian University Würzburg, Würzburg, Germany
| |
Collapse
|
14
|
Lanzoni O, Plotnikov A, Khlopko Y, Munz G, Petroni G, Potekhin A. The core microbiome of sessile ciliate Stentor coeruleus is not shaped by the environment. Sci Rep 2019; 9:11356. [PMID: 31388025 PMCID: PMC6684585 DOI: 10.1038/s41598-019-47701-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 07/22/2019] [Indexed: 12/29/2022] Open
Abstract
Microbiomes of multicellular organisms are one of the hottest topics in microbiology and physiology, while only few studies addressed bacterial communities associated with protists. Protists are widespread in all environments and can be colonized by plethora of different bacteria, including also human pathogens. The aim of this study was to characterize the prokaryotic community associated with the sessile ciliate Stentor coeruleus. 16S rRNA gene metabarcoding was performed on single cells of S. coeruleus and on their environment, water from the sewage stream. Our results showed that the prokaryotic community composition differed significantly between Stentor cells and their environment. The core microbiome common for all ciliate specimens analyzed could be defined, and it was composed mainly by representatives of bacterial genera which include also potential human pathogens and commensals, such as Neisseria, Streptococcus, Capnocytophaga, Porphyromonas. Numerous 16S rRNA gene contigs belonged to endosymbiont “Candidatus Megaira polyxenophila”. Our data suggest that each ciliate cell can be considered as an ecological microniche harboring diverse prokaryotic organisms. Possible benefits for persistence and transmission in nature for bacteria associated with protists are discussed. Our results support the hypothesis that ciliates attract potentially pathogenic bacteria and play the role of natural reservoirs for them.
Collapse
Affiliation(s)
| | - Andrey Plotnikov
- Center of Shared Scientific Equipment, Institute for Cellular and Intracellular Symbiosis, Ural Division of RAS, Orenburg, Russia
| | - Yuri Khlopko
- Center of Shared Scientific Equipment, Institute for Cellular and Intracellular Symbiosis, Ural Division of RAS, Orenburg, Russia
| | - Giulio Munz
- Department of Civil and Environmental Engineering, University of Florence, Florence, Italy
| | | | - Alexey Potekhin
- Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia.
| |
Collapse
|
15
|
Martins Gomes SF, Westermann AJ, Sauerwein T, Hertlein T, Förstner KU, Ohlsen K, Metzger M, Shusta EV, Kim BJ, Appelt-Menzel A, Schubert-Unkmeir A. Induced Pluripotent Stem Cell-Derived Brain Endothelial Cells as a Cellular Model to Study Neisseria meningitidis Infection. Front Microbiol 2019; 10:1181. [PMID: 31191497 PMCID: PMC6548865 DOI: 10.3389/fmicb.2019.01181] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/09/2019] [Indexed: 11/13/2022] Open
Abstract
Meningococcal meningitis is a severe central nervous system infection that occurs when Neisseria meningitidis (Nm) penetrates brain endothelial cells (BECs) of the meningeal blood-cerebrospinal fluid barrier. As a human-specific pathogen, in vivo models are greatly limited and pose a significant challenge. In vitro cell models have been developed, however, most lack critical BEC phenotypes limiting their usefulness. Human BECs generated from induced pluripotent stem cells (iPSCs) retain BEC properties and offer the prospect of modeling the human-specific Nm interaction with BECs. Here, we exploit iPSC-BECs as a novel cellular model to study Nm host-pathogen interactions, and provide an overview of host responses to Nm infection. Using iPSC-BECs, we first confirmed that multiple Nm strains and mutants follow similar phenotypes to previously described models. The recruitment of the recently published pilus adhesin receptor CD147 underneath meningococcal microcolonies could be verified in iPSC-BECs. Nm was also observed to significantly increase the expression of pro-inflammatory and neutrophil-specific chemokines IL6, CXCL1, CXCL2, CXCL8, and CCL20, and the secretion of IFN-γ and RANTES. For the first time, we directly observe that Nm disrupts the three tight junction proteins ZO-1, Occludin, and Claudin-5, which become frayed and/or discontinuous in BECs upon Nm challenge. In accordance with tight junction loss, a sharp loss in trans-endothelial electrical resistance, and an increase in sodium fluorescein permeability and in bacterial transmigration, was observed. Finally, we established RNA-Seq of sorted, infected iPSC-BECs, providing expression data of Nm-responsive host genes. Altogether, this model provides novel insights into Nm pathogenesis, including an impact of Nm on barrier properties and tight junction complexes, and suggests that the paracellular route may contribute to Nm traversal of BECs.
Collapse
Affiliation(s)
- Sara F Martins Gomes
- Institute of Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Alexander J Westermann
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany.,Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Till Sauerwein
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany.,ZB MED, Information Centre for Life Sciences, Cologne, Germany.,TH Köln, University of Applied Sciences, Faculty of Information Science and Communication Studies, Cologne, Germany
| | - Tobias Hertlein
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
| | - Konrad U Förstner
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany.,ZB MED, Information Centre for Life Sciences, Cologne, Germany.,TH Köln, University of Applied Sciences, Faculty of Information Science and Communication Studies, Cologne, Germany
| | - Knut Ohlsen
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
| | - Marco Metzger
- Chair Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Würzburg, Germany.,Fraunhofer Institute for Silicate Research ISC, Translational Center Regenerative Therapies (TLC-RT), Würzburg, Germany
| | - Eric V Shusta
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Brandon J Kim
- Institute of Hygiene and Microbiology, University of Würzburg, Würzburg, Germany.,Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Antje Appelt-Menzel
- Chair Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Würzburg, Germany.,Fraunhofer Institute for Silicate Research ISC, Translational Center Regenerative Therapies (TLC-RT), Würzburg, Germany
| | | |
Collapse
|
16
|
Obino D, Duménil G. The Many Faces of Bacterium-Endothelium Interactions during Systemic Infections. Microbiol Spectr 2019; 7:10.1128/microbiolspec.bai-0010-2019. [PMID: 30848239 PMCID: PMC11588304 DOI: 10.1128/microbiolspec.bai-0010-2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Indexed: 12/16/2022] Open
Abstract
A wide variety of pathogens reach the circulatory system during viral, parasitic, fungal, and bacterial infections, causing clinically diverse pathologies. Such systemic infections are usually severe and frequently life-threatening despite intensive care, in particular during the age of antibiotic resistance. Because of its position at the interface between the blood and the rest of the organism, the endothelium plays a central role during these infections. Using several examples of systemic infections, we explore the diversity of interactions between pathogens and the endothelium. These examples reveal that bacterial pathogens target specific vascular beds and affect most aspects of endothelial cell biology, ranging from cellular junction stability to endothelial cell proliferation and inflammation.
Collapse
Affiliation(s)
- Dorian Obino
- Pathogenesis of Vascular Infections, Institut Pasteur, INSERM, Paris, France
| | - Guillaume Duménil
- Pathogenesis of Vascular Infections, Institut Pasteur, INSERM, Paris, France
| |
Collapse
|
17
|
Kim BJ, Schubert-Unkmeir A. In Vitro Models for Studying the Interaction of Neisseria meningitidis with Human Brain Endothelial Cells. Methods Mol Biol 2019; 1969:135-148. [PMID: 30877675 DOI: 10.1007/978-1-4939-9202-7_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Bacterial meningitis is a serious, life-threatening infection of the central nervous system (CNS). To cause meningitis, bacteria must interact with and penetrate the meningeal blood-cerebrospinal fluid barrier (mB/CSFB), which comprises highly specialized brain endothelial cells. Neisseria meningitidis (meningococcus) is a leading cause of bacterial meningitis, and examination meningococcus' interaction with the BBB is critical for understanding disease progression. To examine specific interactions, in vitro mB/CSFB models have been developed and employed and are of great importance because in vivo models have been difficult to produce considering Neisseria meningitidis is exclusively a human pathogen. Most in vitro blood-brain barrier and mB/CSF models use primary and immortalized brain endothelial cells, and these models have been used to examine bacterial-mB/CSFB interactions by a variety of pathogens. This chapter describes the use of past and current in vitro brain endothelial cells to model Neisseria meningitidis interaction with the mB/CSFB, and inform on the standard operating procedure for their use.
Collapse
Affiliation(s)
- Brandon J Kim
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | | |
Collapse
|
18
|
Janowski A, Newland J. Of the Phrensy: an update on the epidemiology and pathogenesis of bacterial meningitis in the pediatric population. F1000Res 2017; 6. [PMID: 28184287 PMCID: PMC5288681 DOI: 10.12688/f1000research.8533.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/23/2017] [Indexed: 01/23/2023] Open
Abstract
In the past century, advances in antibiotics and vaccination have dramatically altered the incidence and clinical outcomes of bacterial meningitis. We review the shifting epidemiology of meningitis in children, including after the implementation of vaccines that target common meningitic pathogens and the introduction of intrapartum antibiotic prophylaxis offered to mothers colonized with
Streptococcus agalactiae. We also discuss what is currently known about the pathogenesis of meningitis. Recent studies of the human microbiome have illustrated dynamic relationships of bacterial and viral populations with the host, which may potentiate the risk of bacterial meningitis.
Collapse
Affiliation(s)
- Andrew Janowski
- Division of Pediatric Infectious Diseases, Washington University in St Louis, St. Louis, MO, USA
| | - Jason Newland
- Division of Pediatric Infectious Diseases, Washington University in St Louis, St. Louis, MO, USA
| |
Collapse
|
19
|
A journey into the brain: insight into how bacterial pathogens cross blood-brain barriers. Nat Rev Microbiol 2017; 15:149-159. [PMID: 28090076 DOI: 10.1038/nrmicro.2016.178] [Citation(s) in RCA: 186] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The blood-brain barrier, which is one of the tightest barriers in the body, protects the brain from insults, such as infections. Indeed, only a few of the numerous blood-borne bacteria can cross the blood-brain barrier to cause meningitis. In this Review, we focus on invasive extracellular pathogens, such as Neisseria meningitidis, Streptococcus pneumoniae, group B Streptococcus and Escherichia coli, to review the obstacles that bacteria have to overcome in order to invade the meninges from the bloodstream, and the specific skills they have developed to bypass the blood-brain barrier. The medical importance of understanding how these barriers can be circumvented is underlined by the fact that we need to improve drug delivery into the brain.
Collapse
|
20
|
Tan K, Johnson PM, Stols L, Boubion B, Eschenfeldt W, Babnigg G, Hayes CS, Joachimiak A, Goulding CW. The structure of a contact-dependent growth-inhibition (CDI) immunity protein from Neisseria meningitidis MC58. Acta Crystallogr F Struct Biol Commun 2015; 71:702-9. [PMID: 26057799 PMCID: PMC4461334 DOI: 10.1107/s2053230x15006585] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 03/31/2015] [Indexed: 01/01/2023] Open
Abstract
Contact-dependent growth inhibition (CDI) is an important mechanism of intercellular competition between neighboring Gram-negative bacteria. CDI systems encode large surface-exposed CdiA effector proteins that carry a variety of C-terminal toxin domains (CdiA-CTs). All CDI(+) bacteria also produce CdiI immunity proteins that specifically bind to the cognate CdiA-CT and neutralize its toxin activity to prevent auto-inhibition. Here, the X-ray crystal structure of a CdiI immunity protein from Neisseria meningitidis MC58 is presented at 1.45 Å resolution. The CdiI protein has structural homology to the Whirly family of RNA-binding proteins, but appears to lack the characteristic nucleic acid-binding motif of this family. Sequence homology suggests that the cognate CdiA-CT is related to the eukaryotic EndoU family of RNA-processing enzymes. A homology model is presented of the CdiA-CT based on the structure of the XendoU nuclease from Xenopus laevis. Molecular-docking simulations predict that the CdiA-CT toxin active site is occluded upon binding to the CdiI immunity protein. Together, these observations suggest that the immunity protein neutralizes toxin activity by preventing access to RNA substrates.
Collapse
Affiliation(s)
- Kemin Tan
- Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne, IL 60439, USA
- Structural Biology Center, Biosciences, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Parker M. Johnson
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Lucy Stols
- Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Bryan Boubion
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA 92697, USA
| | - William Eschenfeldt
- Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Gyorgy Babnigg
- Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Christopher S. Hayes
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA
- Biomolecular Science and Engineering Program, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Andrezj Joachimiak
- Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne, IL 60439, USA
- Structural Biology Center, Biosciences, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Celia W. Goulding
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA 92697, USA
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, CA 92697, USA
| |
Collapse
|
21
|
Barrile R, Kasendra M, Rossi-Paccani S, Merola M, Pizza M, Baldari C, Soriani M, Aricò B. Neisseria meningitidis subverts the polarized organization and intracellular trafficking of host cells to cross the epithelial barrier. Cell Microbiol 2015; 17:1365-75. [PMID: 25801707 DOI: 10.1111/cmi.12439] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 03/13/2015] [Accepted: 03/14/2015] [Indexed: 12/19/2022]
Abstract
Translocation of the nasopharyngeal barrier by Neisseria meningitidis occurs via an intracellular microtubule-dependent pathway and represents a crucial step in its pathogenesis. Despite this fact, the interaction of invasive meningococci with host subcellular compartments and the resulting impact on their organization and function have not been investigated. The influence of serogroup B strain MC58 on host cell polarity and intracellular trafficking system was assessed by confocal microscopy visualization of different plasma membrane-associated components (such as E-cadherin, ZO-1 and transferrin receptor) and evaluation of the transferrin uptake and recycling in infected Calu-3 monolayers. Additionally, the association of N. meningitidis with different endosomal compartments was evaluated through the concomitant staining of bacteria and markers specific for Rab11, Rab22a, Rab25 and Rab3 followed by confocal microscopy imaging. Subversion of the host cell architecture and intracellular trafficking system, denoted by mis-targeting of cell plasma membrane components and perturbations of transferrin transport, was shown to occur in response to N. meningitidis infection. Notably, the appearance of all of these events seems to positively correlate with the efficiency of N. meningitidis to cross the epithelial barrier. Our data reveal for the first time that N. meningitidis is able to modulate the host cell architecture and function, which might serve as a strategy of this pathogen for overcoming the nasopharyngeal barrier without affecting the monolayer integrity.
Collapse
Affiliation(s)
- Riccardo Barrile
- Department of Microbial Molecular Biology, Novartis Vaccines and Diagnostics (a GSK company), Siena, Italy.,Biomimetic Microsystems platform, Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, 02115, USA
| | - Magdalena Kasendra
- Department of Microbial Molecular Biology, Novartis Vaccines and Diagnostics (a GSK company), Siena, Italy
| | - Silvia Rossi-Paccani
- Department of Microbial Molecular Biology, Novartis Vaccines and Diagnostics (a GSK company), Siena, Italy
| | - Marcello Merola
- Department of Microbial Molecular Biology, Novartis Vaccines and Diagnostics (a GSK company), Siena, Italy.,Department of Biology, University of Naples 'Federico II', Napoli, Italy
| | - Mariagrazia Pizza
- Department of Microbial Molecular Biology, Novartis Vaccines and Diagnostics (a GSK company), Siena, Italy
| | - Cosima Baldari
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Marco Soriani
- Department of Microbial Molecular Biology, Novartis Vaccines and Diagnostics (a GSK company), Siena, Italy
| | - Beatrice Aricò
- Department of Microbial Molecular Biology, Novartis Vaccines and Diagnostics (a GSK company), Siena, Italy
| |
Collapse
|
22
|
Asmat TM, Tenenbaum T, Jonsson AB, Schwerk C, Schroten H. Impact of calcium signaling during infection of Neisseria meningitidis to human brain microvascular endothelial cells. PLoS One 2014; 9:e114474. [PMID: 25464500 PMCID: PMC4252121 DOI: 10.1371/journal.pone.0114474] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 11/10/2014] [Indexed: 01/08/2023] Open
Abstract
The pili and outer membrane proteins of Neisseria meningitidis (meningococci) facilitate bacterial adhesion and invasion into host cells. In this context expression of meningococcal PilC1 protein has been reported to play a crucial role. Intracellular calcium mobilization has been implicated as an important signaling event during internalization of several bacterial pathogens. Here we employed time lapse calcium-imaging and demonstrated that PilC1 of meningococci triggered a significant increase in cytoplasmic calcium in human brain microvascular endothelial cells, whereas PilC1-deficient meningococci could not initiate this signaling process. The increase in cytosolic calcium in response to PilC1-expressing meningococci was due to efflux of calcium from host intracellular stores as demonstrated by using 2-APB, which inhibits the release of calcium from the endoplasmic reticulum. Moreover, pre-treatment of host cells with U73122 (phospholipase C inhibitor) abolished the cytosolic calcium increase caused by PilC1-expressing meningococci demonstrating that active phospholipase C (PLC) is required to induce calcium transients in host cells. Furthermore, the role of cytosolic calcium on meningococcal adherence and internalization was documented by gentamicin protection assay and double immunofluorescence (DIF) staining. Results indicated that chelation of intracellular calcium by using BAPTA-AM significantly impaired PilC1-mediated meningococcal adherence to and invasion into host endothelial cells. However, buffering of extracellular calcium by BAPTA or EGTA demonstrated no significant effect on meningococcal adherence to and invasion into host cells. Taken together, these results indicate that meningococci induce calcium release from intracellular stores of host endothelial cells via PilC1 and cytoplasmic calcium concentrations play a critical role during PilC1 mediated meningococcal adherence to and subsequent invasion into host endothelial cells.
Collapse
Affiliation(s)
- Tauseef M. Asmat
- Department of Pediatrics, Pediatric Infectious Diseases, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- * E-mail:
| | - Tobias Tenenbaum
- Department of Pediatrics, Pediatric Infectious Diseases, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Ann-Beth Jonsson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Christian Schwerk
- Department of Pediatrics, Pediatric Infectious Diseases, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Horst Schroten
- Department of Pediatrics, Pediatric Infectious Diseases, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
23
|
Colley KJ, Kitajima K, Sato C. Polysialic acid: biosynthesis, novel functions and applications. Crit Rev Biochem Mol Biol 2014; 49:498-532. [PMID: 25373518 DOI: 10.3109/10409238.2014.976606] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
As an anti-adhesive, a reservoir for key biological molecules, and a modulator of signaling, polysialic acid (polySia) is critical for nervous system development and maintenance, promotes cancer metastasis, tissue regeneration and repair, and is implicated in psychiatric diseases. In this review, we focus on the biosynthesis and functions of mammalian polySia, and the use of polySia in therapeutic applications. PolySia modifies a small subset of mammalian glycoproteins, with the neural cell adhesion molecule, NCAM, serving as its major carrier. Studies show that mammalian polysialyltransferases employ a unique recognition mechanism to limit the addition of polySia to a select group of proteins. PolySia has long been considered an anti-adhesive molecule, and its impact on cell adhesion and signaling attributed directly to this property. However, recent studies have shown that polySia specifically binds neurotrophins, growth factors, and neurotransmitters and that this binding depends on chain length. This work highlights the importance of considering polySia quality and quantity, and not simply its presence or absence, as its various roles are explored. The capsular polySia of neuroinvasive bacteria allows these organisms to evade the host immune response. While this "stealth" characteristic has made meningitis vaccine development difficult, it has also made polySia a worthy replacement for polyetheylene glycol in the generation of therapeutic proteins with low immunogenicity and improved circulating half-lives. Bacterial polysialyltransferases are more promiscuous than the protein-specific mammalian enzymes, and new studies suggest that these enzymes have tremendous therapeutic potential, especially for strategies aimed at neural regeneration and tissue repair.
Collapse
Affiliation(s)
- Karen J Colley
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago , Chicago, IL , USA and
| | | | | |
Collapse
|
24
|
Dando SJ, Mackay-Sim A, Norton R, Currie BJ, St John JA, Ekberg JAK, Batzloff M, Ulett GC, Beacham IR. Pathogens penetrating the central nervous system: infection pathways and the cellular and molecular mechanisms of invasion. Clin Microbiol Rev 2014; 27:691-726. [PMID: 25278572 PMCID: PMC4187632 DOI: 10.1128/cmr.00118-13] [Citation(s) in RCA: 300] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The brain is well protected against microbial invasion by cellular barriers, such as the blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCSFB). In addition, cells within the central nervous system (CNS) are capable of producing an immune response against invading pathogens. Nonetheless, a range of pathogenic microbes make their way to the CNS, and the resulting infections can cause significant morbidity and mortality. Bacteria, amoebae, fungi, and viruses are capable of CNS invasion, with the latter using axonal transport as a common route of infection. In this review, we compare the mechanisms by which bacterial pathogens reach the CNS and infect the brain. In particular, we focus on recent data regarding mechanisms of bacterial translocation from the nasal mucosa to the brain, which represents a little explored pathway of bacterial invasion but has been proposed as being particularly important in explaining how infection with Burkholderia pseudomallei can result in melioidosis encephalomyelitis.
Collapse
Affiliation(s)
- Samantha J Dando
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Alan Mackay-Sim
- Eskitis Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia
| | - Robert Norton
- Townsville Hospital, Townsville, Queensland, Australia
| | - Bart J Currie
- Menzies School of Health Research and Royal Darwin Hospital, Darwin, Northern Territory, Australia
| | - James A St John
- Eskitis Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia
| | - Jenny A K Ekberg
- Eskitis Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Michael Batzloff
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Glen C Ulett
- School of Medical Science and Griffith Health Institute, Griffith University, Gold Coast, Queensland, Australia
| | - Ifor R Beacham
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
25
|
Cross PJ, Pietersma AL, Allison TM, Wilson-Coutts SM, Cochrane FC, Parker EJ. Neisseria meningitidis expresses a single 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase that is inhibited primarily by phenylalanine. Protein Sci 2013; 22:1087-99. [PMID: 23754471 DOI: 10.1002/pro.2293] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 05/26/2013] [Accepted: 05/28/2013] [Indexed: 11/12/2022]
Abstract
Neisseria meningitidis is the causative agent of meningitis and meningococcal septicemia is a major cause of disease worldwide, resulting in brain damage and hearing loss, and can be fatal in a large proportion of cases. The enzyme 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase (DAH7PS) catalyzes the first reaction in the shikimate pathway leading to the biosynthesis of aromatic metabolites including the aromatic acids l-Trp, l-Phe, and l-Tyr. This pathway is absent in humans, meaning that enzymes of the pathway are considered as potential candidates for therapeutic intervention. As the entry point, feedback inhibition of DAH7PS by pathway end products is a key mechanism for the control of pathway flux. The structure of the single DAH7PS expressed by N. meningitidis was determined at 2.0 Å resolution. In contrast to the other DAH7PS enzymes, which are inhibited only by a single aromatic amino acid, the N. meningitidis DAH7PS was inhibited by all three aromatic amino acids, showing greatest sensitivity to l-Phe. An N. meningitidis enzyme variant, in which a single Ser residue at the bottom of the inhibitor-binding cavity was substituted to Gly, altered inhibitor specificity from l-Phe to l-Tyr. Comparison of the crystal structures of both unbound and Tyr-bound forms and the small angle X-ray scattering profiles reveal that N. meningtidis DAH7PS undergoes no significant conformational change on inhibitor binding. These observations are consistent with an allosteric response arising from changes in protein motion rather than conformation, and suggest ligands that modulate protein dynamics may be effective inhibitors of this enzyme.
Collapse
Affiliation(s)
- Penelope J Cross
- Biomolecular Interaction Centre and Department of Chemistry, University of Canterbury, Christchurch, New Zealand
| | | | | | | | | | | |
Collapse
|
26
|
Coureuil M, Join-Lambert O, Lécuyer H, Bourdoulous S, Marullo S, Nassif X. Pathogenesis of meningococcemia. Cold Spring Harb Perspect Med 2013; 3:3/6/a012393. [PMID: 23732856 DOI: 10.1101/cshperspect.a012393] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Neisseria meningitidis is responsible for two major diseases: cerebrospinal meningitis and/or septicemia. The latter can lead to a purpura fulminans, an often-fatal condition owing to the associated septic shock. These two clinical aspects of the meningococcal infection are consequences of a tight interaction of meningococci with host endothelial cells. This interaction, mediated by the type IV pili, is responsible for the formation of microcolonies on the apical surface of the cells. This interaction is followed by the activation of signaling pathways in the host cells leading to the formation of a microbiological synapse. A low level of bacteremia is likely to favor the colonization of brain vessels, leading to bacterial meningitis, whereas the colonization of a large number of vessels by a high number of bacteria is responsible for one of the most severe forms of septic shock observed.
Collapse
|
27
|
Willis LM, Whitfield C. Structure, biosynthesis, and function of bacterial capsular polysaccharides synthesized by ABC transporter-dependent pathways. Carbohydr Res 2013; 378:35-44. [PMID: 23746650 DOI: 10.1016/j.carres.2013.05.007] [Citation(s) in RCA: 157] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 05/06/2013] [Accepted: 05/11/2013] [Indexed: 12/11/2022]
Abstract
Bacterial capsules are formed primarily from long-chain polysaccharides with repeat-unit structures. A given bacterial species can produce a range of capsular polysaccharides (CPSs) with different structures and these help distinguish isolates by serotyping, as is the case with Escherichia coli K antigens. Capsules are important virulence factors for many pathogens and this review focuses on CPSs synthesized via ATP-binding cassette (ABC) transporter-dependent processes in Gram-negative bacteria. Bacteria utilizing this pathway are often associated with urinary tract infections, septicemia, and meningitis, and E. coli and Neisseria meningitidis provide well-studied examples. CPSs from ABC transporter-dependent pathways are synthesized at the cytoplasmic face of the inner membrane through the concerted action of glycosyltransferases before being exported across the inner membrane and translocated to the cell surface. A hallmark of these CPSs is a conserved reducing terminal glycolipid composed of phosphatidylglycerol and a poly-3-deoxy-d-manno-oct-2-ulosonic acid (Kdo) linker. Recent discovery of the structure of this conserved lipid terminus provides new insights into the early steps in CPS biosynthesis.
Collapse
Affiliation(s)
- Lisa M Willis
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | |
Collapse
|
28
|
van Sorge NM, Doran KS. Defense at the border: the blood-brain barrier versus bacterial foreigners. Future Microbiol 2012; 7:383-94. [PMID: 22393891 DOI: 10.2217/fmb.12.1] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Bacterial meningitis is among the top ten causes of infectious disease-related deaths worldwide, with up to half of the survivors left with permanent neurological sequelae. The blood-brain barrier (BBB), composed mainly of specialized brain microvascular endothelial cells, maintains biochemical homeostasis in the CNS by regulating the passage of nutrients, molecules and cells from the blood to the brain. Despite its highly restrictive nature, certain bacterial pathogens are able to gain entry into the CNS resulting in serious disease. In recent years, important advances have been made in understanding the molecular and cellular events that are involved in the development of bacterial meningitis. In this review, we summarize the progress made in elucidating the molecular mechanisms of bacterial BBB-crossing, highlighting common themes of host-pathogen interaction, and the potential role of the BBB in innate defense during infection.
Collapse
Affiliation(s)
- Nina M van Sorge
- University Medical Center Utrecht, Medical Microbiology, Heidelberglaan 100, G04.614, 3584 GX Utrecht, The Netherlands
| | | |
Collapse
|
29
|
Abstract
Infection with the protozoan parasite Toxoplasma gondii is characterized by asymptomatic latent infection in the central nervous system and skeletal muscle tissue in the majority of immunocompentent individuals. Life-threatening reactivation of the infection in immunocompromized patients originates from rupture of Toxoplasma cysts in the brain. While major progress has been made in our understanding of the immunopathogenesis of infection the mechanism(s) of neuroinvasion of the parasite remains poorly understood. The present review presents the current understanding of blood-brain barrier (patho)physiology and the interaction of Toxoplasma gondii with cells of the blood-brain barrier.
Collapse
Affiliation(s)
- Sabrina M Feustel
- Institute for Microbiology and Hygiene, Charité Medical School, Berlin, Germany
| | | | | |
Collapse
|
30
|
Coureuil M, Join-Lambert O, Lécuyer H, Bourdoulous S, Marullo S, Nassif X. Mechanism of meningeal invasion by Neisseria meningitidis. Virulence 2012; 3:164-72. [PMID: 22366962 PMCID: PMC3396695 DOI: 10.4161/viru.18639] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The blood-cerebrospinal fluid barrier physiologically protects the meningeal spaces from blood-borne bacterial pathogens, due to the existence of specialized junctional interendothelial complexes. Few bacterial pathogens are able to reach the subarachnoidal space and among those, Neisseria meningitidis is the one that achieves this task the most constantly when present in the bloodstream. Meningeal invasion is a consequence of a tight interaction of meningococci with brain endothelial cells. This interaction, mediated by the type IV pili, is responsible for the formation of microcolonies on the apical surface of the cells. This interaction is followed by the activation of signaling pathways in the host cells leading to the formation of endothelial docking structures resembling those elicited by the interaction of leukocytes with endothelial cells during extravasation. The consequence of these bacterial-induced signaling events is the recruitment of intercellular junction components in the docking structure and the subsequent opening of the intercellular junctions.
Collapse
|
31
|
Two strikingly different signaling pathways are induced by meningococcal type IV pili on endothelial and epithelial cells. Infect Immun 2011; 80:175-86. [PMID: 22064711 DOI: 10.1128/iai.05837-11] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Following adhesion on brain microvasculature, Neisseria meningitidis is able to cross the blood-brain barrier (BBB) by recruiting the polarity complex and the cell junction proteins, thus allowing the opening of the paracellular route. This feature is the consequence of the activation by the type IV pili of the β2-adrenergic receptor/β-arrestin signaling pathway. Here, we have extended this observation to primary peripheral endothelial cells, and we report that the interaction of N. meningitidis with the epithelium is strikingly different. The recruitment of the junctional components by N. meningitidis is indeed restricted to endothelial cell lines, and no alteration of the cell-cell junctions can be seen in epithelial monolayers following meningococcal type IV pilus-mediated colonization. Consistently, the β2-adrenergic receptor/β-arrestin pathway was not hijacked by bacteria adhering on epithelial cells. In addition, we showed that the consequences of the bacterial signaling on epithelial cells is different from that of endothelial cells, since N. meningitidis-induced signaling which protects the microcolonies from shear stress on endothelial cells is unable to do so on epithelial cells. Finally, we report that the minor pilin PilV, which has been shown to be essential for endothelial cell response, is not a required bacterial determinant to induce an epithelial cell response. These data demonstrate that even though pilus-mediated signaling induces an apparently similar cortical plaque, in epithelial and endothelial cell lineages, the signaling pathways are strikingly different in both models.
Collapse
|
32
|
Sanders MS, van Well GTJ, Ouburg S, Morré SA, van Furth AM. Genetic variation of innate immune response genes in invasive pneumococcal and meningococcal disease applied to the pathogenesis of meningitis. Genes Immun 2011; 12:321-34. [DOI: 10.1038/gene.2011.20] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
33
|
Olfactory nerve--a novel invasion route of Neisseria meningitidis to reach the meninges. PLoS One 2010; 5:e14034. [PMID: 21124975 PMCID: PMC2987801 DOI: 10.1371/journal.pone.0014034] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Accepted: 10/29/2010] [Indexed: 11/19/2022] Open
Abstract
Neisseria meningitidis is a human-specific pathogen with capacity to cause septic shock and meningitis. It has been hypothesized that invasion of the central nervous system (CNS) is a complication of a bacteremic condition. In this study, we aimed to characterize the invasion route of N. meningitidis to the CNS. Using an intranasally challenged mouse disease model, we found that twenty percent of the mice developed lethal meningitis even though no bacteria could be detected in blood. Upon bacterial infection, epithelial lesions and redistribution of intracellular junction protein N-cadherin were observed at the nasal epithelial mucosa, especially at the olfactory epithelium, which is functionally and anatomically connected to the CNS. Bacteria were detected in the submucosa of the olfactory epithelium, along olfactory nerves in the cribriform plate, at the olfactory bulb and subsequently at the meninges and subarachnoid space. Furthermore, our data suggest that a threshold level of bacteremia is required for the development of meningococcal sepsis. Taken together, N. meningitidis is able to pass directly from nasopharynx to meninges through the olfactory nerve system. This study enhances our understanding how N. meningitidis invades the meninges. The nasal olfactory nerve system may be a novel target for disease prevention that can improve outcome and survival.
Collapse
|
34
|
Transcellular passage of Neisseria meningitidis across a polarized respiratory epithelium. Infect Immun 2010; 78:3832-47. [PMID: 20584970 DOI: 10.1128/iai.01377-09] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Neisseria meningitidis is a major cause of sepsis and meningitis but is also a common commensal, present in the nasopharynx of between 8 and 20% of healthy individuals. During carriage, the bacterium is found on the surface of the nasopharyngeal epithelium and in deeper tissues, while to develop disease the meningococcus must spread across the respiratory epithelium and enter the systemic circulation. Therefore, investigating the pathways by which N. meningitidis crosses the epithelial barrier is relevant for understanding carriage and disease but has been hindered by the lack of appropriate models. Here, we have established a physiologically relevant model of the upper respiratory epithelial cell barrier to investigate the mechanisms responsible for traversal of N. meningitidis. Calu-3 human respiratory epithelial cells were grown on permeable cell culture membranes to form polarized monolayers of cells joined by tight junctions. We show that the meningococcus crosses the epithelial cell barrier by a transcellular route; traversal of the layer did not disrupt its integrity, and bacteria were detected within the cells of the monolayer. We demonstrate that successful traversal of the epithelial cell barrier by N. meningitidis requires expression of its type 4 pili (Tfp) and capsule and is dependent on the host cell microtubule network. The Calu-3 model should be suitable for dissecting the pathogenesis of infections caused by other respiratory pathogens, as well as the meningococcus.
Collapse
|
35
|
Schielke S, Frosch M, Kurzai O. Virulence determinants involved in differential host niche adaptation of Neisseria meningitidis and Neisseria gonorrhoeae. Med Microbiol Immunol 2010; 199:185-96. [PMID: 20379743 DOI: 10.1007/s00430-010-0150-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Indexed: 11/28/2022]
Abstract
Neisseria meningitidis and Neisseria gonorrhoeae are the only pathogenic species of the genus Neisseria. Although these two species are closely related, they specialized on survival in completely different environments within the human host-the nasopharynx in the case of N. meningitidis versus the urogenital tract in the case of N. gonorrhoeae. The genetic background of these differences has not yet been determined. Here, we present a comparison of all characterized transcriptional regulators in these species, delineating analogous functions and disclosing differential functional developments of these DNA-binding proteins with a special focus on the recently characterized regulator FarR and its contribution to divergent host niche adaptation in the two Neisseria spp. Furthermore, we summarize the present knowledge on two-partner secretion systems in meningococci, highlighting their overall expression among meningococcal strains in contrast to the complete absence in gonococci. Concluding, the decisive role of these two entirely different factors in host niche adaptation of the two human pathogenic Neisseria species is depicted, illuminating another piece of the puzzle to locate the molecular basis of their differences in preferred colonization sites and pathogenicity.
Collapse
Affiliation(s)
- Stephanie Schielke
- Institute of Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | | | | |
Collapse
|
36
|
van Putten J, Tønjum T. Neisseria. Infect Dis (Lond) 2010. [DOI: 10.1016/b978-0-323-04579-7.00168-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
37
|
Abstract
The endothelium lining blood and lymphatic vessels is a key barrier separating body fluids from host tissues and is a major target of pathogenic bacteria. Endothelial cells are actively involved in host responses to infectious agents, producing inflammatory cytokines, controlling coagulation cascades and regulating leukocyte trafficking. In this Review, a range of bacteria and bacterial toxins are used to illustrate how pathogens establish intimate interactions with endothelial cells, triggering inflammatory responses and coagulation processes and modifying endothelial cell plasma membranes and junctions to adhere to their surfaces and then invade, cross and even disrupt the endothelial barrier.
Collapse
|
38
|
Neil RB, Apicella MA. Clinical and laboratory evidence for Neisseria meningitidis biofilms. Future Microbiol 2009; 4:555-63. [PMID: 19492966 DOI: 10.2217/fmb.09.27] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Neisseria meningitidis is the etiologic agent of meningococcal meningitis. Carriage of the organism is approximately 10% while active disease occurs at a rate of 1:100,000. Recent publications demonstrate that N. meningitidis has the ability to form biofilms on glass, plastic or cultured human bronchial epithelial cells. Microcolony-like structures are also observed in histological sections from patients with active meningococcal disease. This review investigates the possible role of meningococcal biofilms in carriage and active disease, based on the laboratory and clinical aspects of the disease.
Collapse
Affiliation(s)
- R Brock Neil
- University of Iowa, Hygienic Laboratory, 102 Oakdale Campus, H101 OH, Iowa City, IA 52242-5002, USA
| | | |
Collapse
|
39
|
Chauhan VS, Sterka DG, Furr SR, Young AB, Marriott I. NOD2 plays an important role in the inflammatory responses of microglia and astrocytes to bacterial CNS pathogens. Glia 2009; 57:414-23. [PMID: 18803303 PMCID: PMC2628967 DOI: 10.1002/glia.20770] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
While glial cells are recognized for their roles in maintaining neuronal function, there is growing appreciation that resident central nervous system (CNS) cells initiate and/or augment inflammation following trauma or infection. We have recently demonstrated that microglia and astrocytes constitutively express nucleotide-binding oligomerization domain-2 (NOD2), a member of the novel nucleotide-binding domain leucine-rich repeat region containing a family of proteins (NLR) that functions as an intracellular receptor for a minimal motif present in all bacterial peptidoglycans. In this study, we have confirmed the functional nature of NOD2 expression in astrocytes and microglia and begun to determine the relative contribution that this NLR makes in inflammatory CNS responses to clinically relevant bacterial pathogens. We demonstrate the increased association of NOD2 with its downstream effector molecule, Rip2 kinase, in primary cultures of murine microglia and astrocytes following exposure to bacterial antigens. We show that this cytosolic receptor underlies the ability of muramyl dipeptide to augment the production of inflammatory cytokines by glia following exposure to specific ligands for disparate Toll-like receptor homologues. In addition, we demonstrate that NOD2 is an important component in the in vitro inflammatory responses of resident glia to N. meningitidis and B. burgdorferi antigens. Finally, we have established that NOD2 is required, at least in part, for the astrogliosis, demyelination, behavioral changes, and elevated inflammatory cytokine levels observed following in vivo infection with these pathogens. As such, we have identified NOD2 as an important component in the generation of damaging CNS inflammation following bacterial infection.
Collapse
Affiliation(s)
- Vinita S. Chauhan
- Department of Biology, University of North Carolina at Charlotte, Charlotte, NC 28223
| | - David G. Sterka
- Department of Biology, University of North Carolina at Charlotte, Charlotte, NC 28223
| | - Samantha R. Furr
- Department of Biology, University of North Carolina at Charlotte, Charlotte, NC 28223
| | - Amy B. Young
- Department of Biology, University of North Carolina at Charlotte, Charlotte, NC 28223
| | - Ian Marriott
- Department of Biology, University of North Carolina at Charlotte, Charlotte, NC 28223
| |
Collapse
|
40
|
Talà A, Progida C, De Stefano M, Cogli L, Spinosa MR, Bucci C, Alifano P. The HrpB-HrpA two-partner secretion system is essential for intracellular survival of Neisseria meningitidis. Cell Microbiol 2008; 10:2461-82. [PMID: 18680551 DOI: 10.1111/j.1462-5822.2008.01222.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In this study we used HeLa cells to investigate the role of the HrpB-HrpA two-partner secretion (TPS) system in the meningococcal infection cycle. Although there is evidence that several pathogenic microorganisms may use TPS systems to colonize epithelial surfaces, the meningococcal HrpB-HrpA TPS system was not primarily involved in adhesion to or invasion of HeLa cells. Instead, this system was essential for intracellular survival and escape from infected cells. Gentamicin protection assays, immunofluorescence and transmission electron microscopy analyses demonstrated that, in contrast to the wild-type strain, HrpB-HrpA-deficient mutants were primarily confined to late endocytic vacuoles and trapped in HeLa cells. Haemolytic tests using human erythrocytes suggested that the secreted HrpA proteins could act as manganese-dependent lysins directly involved in mediating vacuole escape. In addition, we demonstrated that escape of wild-type meningococci from infected cells required the use of an intact tubulin cytoskeleton and that the hrpB-hrpA genes, which are absent in other Neisseria spp., were upregulated during infection.
Collapse
Affiliation(s)
- Adelfia Talà
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (DiSTeBA), Università del Salento, Via Provinciale Monteroni, 73100 Lecce, Italy
| | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Central nervous system (CNS) infections continue to be an important cause of morbidity and mortality. Microbial invasion and traversal of the blood-brain barrier is a prerequisite for CNS infections. Pathogens can cross the blood-brain barrier transcellularly, paracellularly and/or in infected phagocytes (the so-called Trojan-horse mechanism). Consequently, pathogens can cause blood-brain barrier dysfunction, including increased permeability, pleocytosis and encephalopathy. A more complete understanding of the microbial-host interactions that are involved in microbial traversal of the blood-brain barrier and the associated barrier dysfunction should help to develop new strategies to prevent CNS infections.
Collapse
|
42
|
Behling-Kelly E, McClenahan D, Kim KS, Czuprynski CJ. Viable "Haemophilus somnus" induces myosin light-chain kinase-dependent decrease in brain endothelial cell monolayer resistance. Infect Immun 2007; 75:4572-81. [PMID: 17591789 PMCID: PMC1951199 DOI: 10.1128/iai.00028-07] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
"Haemophilus somnus" causes thrombotic meningoencephalitis in cattle. Our laboratory has previously reported that H. somnus has the ability to adhere to, but not invade, bovine brain endothelial cells (BBEC) in vitro. The goal of this study was to determine if H. somnus alters brain endothelial cell monolayer integrity in vitro, in a manner that would be expected to contribute to inflammation of the central nervous system (CNS). Monolayer integrity was monitored by measuring transendothelial electrical resistance (TEER) and albumin flux. BBEC incubated with H. somnus underwent rapid cytoskeletal rearrangement, significant increases in albumin flux, and reductions in TEER. Decreased monolayer TEER was preceded by phosphorylation of the myosin regulatory light chain and was partially dependent on tumor necrosis factor alpha and myosin light-chain kinase but not interleukin-1beta. Neither heat-killed H. somnus, formalin-fixed H. somnus, nor purified lipooligosaccharide altered monolayer integrity within a 2-h incubation period, whereas conditioned medium from H. somnus-treated BBEC caused a modest reduction in TEER. The data from this study support the hypothesis that viable H. somnus alters integrity of the blood-brain barrier by promoting contraction of BBEC and increasing paracellular permeability of the CNS vasculature.
Collapse
Affiliation(s)
- E Behling-Kelly
- Department of Pathobiological Sciences, School of Veterinary Medicine, 2015 Linden Drive, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
43
|
Spinosa MR, Progida C, Talà A, Cogli L, Alifano P, Bucci C. The Neisseria meningitidis capsule is important for intracellular survival in human cells. Infect Immun 2007; 75:3594-603. [PMID: 17470547 PMCID: PMC1932921 DOI: 10.1128/iai.01945-06] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
While much data exist in the literature about how Neisseria meningitidis adheres to and invades human cells, its behavior inside the host cell is largely unknown. One of the essential meningococcal attributes for pathogenesis is the polysaccharide capsule, which has been shown to be important for bacterial survival in extracellular fluids. To investigate the role of the meningococcal capsule in intracellular survival, we used B1940, a serogroup B strain, and its isogenic derivatives, which lack either the capsule or both the capsule and the lipooligosaccharide outer core, to infect human phagocytic and nonphagocytic cells and monitor invasion and intracellular growth. Our data indicate that the capsule, which negatively affects bacterial adhesion and, consequently, entry, is, in contrast, fundamental for the intracellular survival of this microorganism. The results of in vitro assays suggest that an increased resistance to cationic antimicrobial peptides (CAMPs), important components of the host innate defense system against microbial infections, is a possible mechanism by which the capsule protects the meningococci in the intracellular environment. Indeed, unencapsulated bacteria were more susceptible than encapsulated bacteria to defensins, cathelicidins, protegrins, and polymyxin B, which has long been used as a model compound to define the mechanism of action of CAMPs. We also demonstrate that both the capsular genes (siaD and lipA) and those encoding an efflux pump involved in resistance to CAMPs (mtrCDE) were up-regulated during the intracellular phase of the infectious cycle.
Collapse
Affiliation(s)
- Maria Rita Spinosa
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università degli Studi del Salento, Via Monteroni, 73100 Lecce, Italy
| | | | | | | | | | | |
Collapse
|