1
|
Oshika, Bari VK. Molecular mechanism of host-yeast interactions and prevention by nanoformulation approaches. Microb Pathog 2025; 205:107663. [PMID: 40339625 DOI: 10.1016/j.micpath.2025.107663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 04/17/2025] [Accepted: 05/02/2025] [Indexed: 05/10/2025]
Abstract
Fungal infections are a major source of morbidity and mortality in people with compromised immune systems, such as those with human immunodeficiency virus, cancer, organ transplant recipients, and patients undergoing chemotherapy in healthcare settings. According to a recent World Health Organization (WHO) fungal priority pathogens list, Cryptococcus spp., Candida spp., Aspergillus spp., and Candida auris cause severe invasive infections in human. These opportunistic pathogens cause a significant number of mycoses, which affect over a billion people annually. Around two million infections can be fatal, especially for those with compromised immune systems. To diagnose and treat mycoses, we need to understand the complex interactions between the fungus and the host during pathogenesis, the virulence-causing traits of the fungus, and how the host fights infection through the immune system. Although several antifungal drugs are available against fungal infections, their effectiveness is highly variable, with adverse effects. In addition, the increasing resistance to traditional antifungal treatments poses serious risks to the healthcare industry. Therefore, new therapeutic strategies are required to combat these potentially fatal fungal infections. Nanostructure-based formulations can improve the therapeutic efficacy of conventional medications by broadening their activities, decreasing toxicity, enhancing bioactivity, and improving biodistribution. The review highlights host and fungus interaction and how nanoformulations can be targeted against fungal infections.
Collapse
Affiliation(s)
- Oshika
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, VPO, Ghudda, Bathinda, India
| | - Vinay Kumar Bari
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, VPO, Ghudda, Bathinda, India.
| |
Collapse
|
2
|
Mir MA, Banik BK. Heterocyclic Phytochemicals as Anticancer Agents. Curr Top Med Chem 2025; 25:533-553. [PMID: 39350414 DOI: 10.2174/0115680266314693240914070250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/08/2024] [Accepted: 08/29/2024] [Indexed: 04/25/2025]
Abstract
Cancer continues to be a major global health challenge, driving the need for the discovery of novel therapeutic agents. Among these, heterocyclic phytochemicals have gained significant attention for their potential as anticancer agents. This review offers a detailed analysis of various classes of heterocyclic compounds with proven anticancer properties, shedding light on their mechanisms of action. The study draws from a diverse array of natural product sources, detailing the chemical structures and bioactivities of these compounds. Key heterocyclic classes such as alkaloids, flavonoids, coumarins, and terpenoids are emphasized due to their potent anticancer effects. Heterocyclic phytochemicals exhibit diverse anticancer mechanisms, including the modulation of cellular pathways like apoptosis, angiogenesis, and cell cycle progression. The combination of heterocyclic phytochemicals with conventional cancer therapies has shown promising synergistic effects, enhanced treatment efficacy and reducing side effects. The review systematically evaluates both preclinical and clinical studies, revealing the efficacy, safety profiles, and pharmacokinetics of selected heterocyclic compounds. The promising outcomes highlighted in this review underscore the critical need for ongoing research to fully realize the therapeutic potential of heterocyclic phytochemicals in cancer treatment.
Collapse
Affiliation(s)
- M Amin Mir
- Department of Chemistry, Prince Mohammad Bin Fahd University, AL Khobar, Saudi Arabia
| | - Bimal Krishna Banik
- Department of Chemistry, Prince Mohammad Bin Fahd University, AL Khobar, Saudi Arabia
| |
Collapse
|
3
|
Gomez-Lopez A, Fernandez-Fernandez C. Molecular characterization of gliotoxin synthesis in a biofilm model of Aspergillus fumigatus. Biofilm 2024; 8:100238. [PMID: 39583991 PMCID: PMC11585652 DOI: 10.1016/j.bioflm.2024.100238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/05/2024] [Accepted: 11/05/2024] [Indexed: 11/26/2024] Open
Abstract
Mycelial growth as biofilm structures and the activation of secondary metabolism leading to the release of low-molecular-weight molecules (known as secondary metabolites), are among the previously described strategies used by the filamentous fungi Aspergillus fumigatus to adapt and survive. Our study unveils that A. fumigatus strains can activate mechanisms linked to the production of gliotoxin, a crucial metabolite for Aspergillus, in the established in vitro biofilm model. Gliotoxin production exhibits strain- and time-dependent patterns and is associated -in a coordinated manner-with the expression levels of several genes involved in its regulation and synthesis. The transcriptional study of some of these genes by qPCR shows temporal inter-strain differences, which correlate with those obtained when evaluating the amounts of metabolites produced. Given that A. fumigatus forms biofilm structures within the site of infection, understanding the regulation of gliotoxin biosynthesis may have a role in the evolution of Aspergillus infection and guide diagnostic and treatment strategies.
Collapse
Affiliation(s)
- Alicia Gomez-Lopez
- Mycology Reference and Research Laboratory, National Center for Microbiology (CNM-ISCIII), Madrid, Spain
- Center for Biomedical Research in Network in Infectious Diseases (CIBERINFEC-CB21/13/00105), Carlos III Health Institute (ISCIII), Madrid, Spain
| | | |
Collapse
|
4
|
Jin Q, Chen M, Jin Z, Jiang Y, Hong H, Qian Y, Liu W, Gao X, Jiang L, Xu J, Liu Q, Wei Z. Quercetin alleviates gliotoxin-induced duckling tissue injury by inhibiting oxidative stress, inflammation and increasing heterophil extracellular traps release. Food Chem Toxicol 2023; 176:113748. [PMID: 36990423 DOI: 10.1016/j.fct.2023.113748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 03/19/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023]
Abstract
Aspergillus fumigatus causes aspergillosis with high morbidity and mortality in the duck industry. As a vital virulence factor produced by A. fumigatus, gliotoxin (GT) is widely present in food and feed, threatening duck industry and human health. Quercetin is a polyphenol flavonoid compound from natural plants with anti-inflammatory and antioxidant functions. However, the effects of quercetin on ducklings with GT poisoning are unknown. The model of ducklings with GT poisoning was established, and the protective effects and molecular mechanisms of quercetin on ducklings with GT poisoning were investigated. Ducklings were divided into control, GT, and quercetin groups. A model of GT (2.5 mg/kg) poisoning in ducklings was successfully established. Quercetin protected GT-induced liver and kidney functions and alleviated GT-induced alveolar wall thickening in lungs, cell fragmentation, and inflammatory cell infiltration in liver and kidney. Quercetin decreased malondialdehyde (MDA) and increased superoxide dismutase (SOD) and catalase (CAT) after GT treatment. Quercetin significantly reduced GT-induced mRNA expression levels of inflammatory factors. Furthermore, quercetin increased GT-reduced heterophil extracellular traps (HETs) in serum. These results indicated that quercetin protected ducklings against GT poisoning by inhibiting oxidative stress, inflammation and increasing HETs release, which confirms the potential applicability of quercetin in treating GT-induced duckling poisoning.
Collapse
|
5
|
Al Hallak M, Verdier T, Bertron A, Roques C, Bailly JD. Fungal Contamination of Building Materials and the Aerosolization of Particles and Toxins in Indoor Air and Their Associated Risks to Health: A Review. Toxins (Basel) 2023; 15:toxins15030175. [PMID: 36977066 PMCID: PMC10054896 DOI: 10.3390/toxins15030175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023] Open
Abstract
It is now well established that biological pollution is a major cause of the degradation of indoor air quality. It has been shown that microbial communities from the outdoors may significantly impact the communities detected indoors. One can reasonably assume that the fungal contamination of the surfaces of building materials and their release into indoor air may also significantly impact indoor air quality. Fungi are well known as common contaminants of the indoor environment with the ability to grow on many types of building materials and to subsequently release biological particles into the indoor air. The aerosolization of allergenic compounds or mycotoxins borne by fungal particles or vehiculated by dust may have a direct impact on the occupant’s health. However, to date, very few studies have investigated such an impact. The present paper reviewed the available data on indoor fungal contamination in different types of buildings with the aim of highlighting the direct connections between the growth on indoor building materials and the degradation of indoor air quality through the aerosolization of mycotoxins. Some studies showed that average airborne fungal spore concentrations were higher in buildings where mould was a contaminant than in normal buildings and that there was a strong association between fungal contamination and health problems for occupants. In addition, the most frequent fungal species on surfaces are also those most commonly identified in indoor air, regardless the geographical location in Europe or the USA. Some fungal species contaminating the indoors may be dangerous for human health as they produce mycotoxins. These contaminants, when aerosolized with fungal particles, can be inhaled and may endanger human health. However, it appears that more work is needed to characterize the direct impact of surface contamination on the airborne fungal particle concentration. In addition, fungal species growing in buildings and their known mycotoxins are different from those contaminating foods. This is why further in situ studies to identify fungal contaminants at the species level and to quantify their average concentration on both surfaces and in the air are needed to be better predict health risks due to mycotoxin aerosolization.
Collapse
Affiliation(s)
- Mohamad Al Hallak
- Laboratoire Matériaux et Durabilité des Constructions (LMDC), INSA Toulouse, 135 Avenue de Rangueil, 31400 Toulouse, France
| | - Thomas Verdier
- Laboratoire Matériaux et Durabilité des Constructions (LMDC), INSA Toulouse, 135 Avenue de Rangueil, 31400 Toulouse, France
| | - Alexandra Bertron
- Laboratoire Matériaux et Durabilité des Constructions (LMDC), INSA Toulouse, 135 Avenue de Rangueil, 31400 Toulouse, France
| | - Christine Roques
- Laboratoire Génie Chimique (LGC), Université de Toulouse, CNRS, 35 Chemin des Maraîchers, 31400 Toulouse, France
| | - Jean-Denis Bailly
- École Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, 31076 Toulouse, France
- Laboratoire de Chimie Agro-industrielle (LCA), Université de Toulouse, INRAE, INPT, 4 Allées Emile Monso, 31030 Toulouse, France
- Correspondence:
| |
Collapse
|
6
|
Huber EM. Epipolythiodioxopiperazine-Based Natural Products: Building Blocks, Biosynthesis and Biological Activities. Chembiochem 2022; 23:e202200341. [PMID: 35997236 PMCID: PMC10086836 DOI: 10.1002/cbic.202200341] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/19/2022] [Indexed: 01/25/2023]
Abstract
Epipolythiodioxopiperazines (ETPs) are fungal secondary metabolites that share a 2,5-diketopiperazine scaffold built from two amino acids and bridged by a sulfide moiety. Modifications of the core and the amino acid side chains, for example by methylations, acetylations, hydroxylations, prenylations, halogenations, cyclizations, and truncations create the structural diversity of ETPs and contribute to their biological activity. However, the key feature responsible for the bioactivities of ETPs is their sulfide moiety. Over the last years, combinations of genome mining, reverse genetics, metabolomics, biochemistry, and structural biology deciphered principles of ETP production. Sulfurization via glutathione and uncovering of the thiols followed by either oxidation or methylation crystallized as fundamental steps that impact expression of the biosynthesis cluster, toxicity and secretion of the metabolite as well as self-tolerance of the producer. This article showcases structure and activity of prototype ETPs such as gliotoxin and discusses the current knowledge on the biosynthesis routes of these exceptional natural products.
Collapse
Affiliation(s)
- Eva M Huber
- Chair of Biochemistry, Center for Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer-Str. 8, 85748, Garching, Germany
| |
Collapse
|
7
|
Khambati A, Wright RE, Das S, Pasula S, Sepulveda A, Hernandez F, Kanwar M, Chandrasekar P, Kumar A. Aspergillus Endophthalmitis: Epidemiology, Pathobiology, and Current Treatments. J Fungi (Basel) 2022; 8:656. [PMID: 35887412 PMCID: PMC9318612 DOI: 10.3390/jof8070656] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/21/2022] [Accepted: 06/16/2022] [Indexed: 02/04/2023] Open
Abstract
Fungal endophthalmitis is one of the leading causes of vision loss worldwide. Post-operative and traumatic injuries are major contributing factors resulting in ocular fungal infections in healthy and, more importantly, immunocompromised individuals. Among the fungal pathogens, the Aspergillus species, Aspergillus fumigatus, continues to be more prevalent in fungal endophthalmitis patients. However, due to overlapping clinical symptoms with other endophthalmitis etiology, fungal endophthalmitis pose a challenge in its diagnosis and treatment. Hence, it is critical to understand its pathobiology to develop and deploy proper therapeutic interventions for combating Aspergillus infections. This review highlights the different modes of Aspergillus transmission and the host immune response during endophthalmitis. Additionally, we discuss recent advancements in the diagnosis of fungal endophthalmitis. Finally, we comprehensively summarize various antifungal regimens and surgical options for the treatment of Aspergillus endophthalmitis.
Collapse
Affiliation(s)
- Alisha Khambati
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI 48201, USA; (A.K.); (R.E.W.III); (S.D.); (M.K.)
| | - Robert Emery Wright
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI 48201, USA; (A.K.); (R.E.W.III); (S.D.); (M.K.)
| | - Susmita Das
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI 48201, USA; (A.K.); (R.E.W.III); (S.D.); (M.K.)
| | - Shirisha Pasula
- Division of Infectious Diseases, Department of Internal Medicine, School of Medicine, Wayne State University, Detroit, MI 48201, USA; (S.P.); (P.C.)
| | | | | | - Mamta Kanwar
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI 48201, USA; (A.K.); (R.E.W.III); (S.D.); (M.K.)
| | - Pranatharthi Chandrasekar
- Division of Infectious Diseases, Department of Internal Medicine, School of Medicine, Wayne State University, Detroit, MI 48201, USA; (S.P.); (P.C.)
| | - Ashok Kumar
- Division of Infectious Diseases, Department of Internal Medicine, School of Medicine, Wayne State University, Detroit, MI 48201, USA; (S.P.); (P.C.)
| |
Collapse
|
8
|
Gomez-Lopez A, Rueda Hernandez C, Pando Pozo R, Sanchez Gonzalez LM. Dynamics of gliotoxin and bis(methylthio)gliotoxin production during the course of Aspergillus fumigatus infection. Med Mycol 2022; 60:6567851. [PMID: 35416255 DOI: 10.1093/mmy/myac025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/14/2022] [Accepted: 04/10/2022] [Indexed: 11/12/2022] Open
Abstract
As recently described, fungal secondary metabolism activates during infection in response to a hostile host environment. Gliotoxin and bis(methylthio)gliotoxin are two recognized secondary metabolites produced by Aspergillus fumigatus with differential cytotoxicity and involved in virulence. We sought to describe the temporal dynamics of gliotoxin and bis(methylthio)gliotoxin during A. fumigatus progression to further explore their role in the infection. First, we optimized the production of the mycotoxins under different in vitro growth conditions and then specifically measured them using an UHPLC/PDA method. The analytical conditions were selected after testing different parameters such as extraction procedures, column type, and mobile phase composition. We found that gliotoxin and bis(methylthio)gliotoxin are differentially excreted to the extracellular media during the course of A. fumigatus infection regardless of the growth format tested. Dynamic profiles show an early production of gliotoxin, which, after reaching a maximum, decreases coinciding with the increase in the production of the inactive derivative bis(methylthio)gliotoxin. Presence of gliotoxin may indicate an early phase of fungal development, whereas detection of bis(methylthio)gliotoxin may correspond to a more advanced stage of infection. Our chromatographic method successfully characterizes these secondary metabolites. Thus, it may potentially be used to further understand Aspergillus infection.
Collapse
Affiliation(s)
- Alicia Gomez-Lopez
- Mycology Reference and Research Laboratory, National Center for Microbiology (CNM - ISCIII), Majadahonda (Madrid), Spain
| | - Cristina Rueda Hernandez
- Mycology Reference and Research Laboratory, National Center for Microbiology (CNM - ISCIII), Majadahonda (Madrid), Spain
| | - Rebeca Pando Pozo
- Mycology Reference and Research Laboratory, National Center for Microbiology (CNM - ISCIII), Majadahonda (Madrid), Spain
| | - Luis Miguel Sanchez Gonzalez
- Mycology Reference and Research Laboratory, National Center for Microbiology (CNM - ISCIII), Majadahonda (Madrid), Spain
| |
Collapse
|
9
|
Redrado S, Esteban P, Domingo MP, Lopez C, Rezusta A, Ramirez-Labrada A, Arias M, Pardo J, Galvez EM. Integration of In Silico and In Vitro Analysis of Gliotoxin Production Reveals a Narrow Range of Producing Fungal Species. J Fungi (Basel) 2022; 8:jof8040361. [PMID: 35448592 PMCID: PMC9030297 DOI: 10.3390/jof8040361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 02/06/2023] Open
Abstract
Gliotoxin is a fungal secondary metabolite with impact on health and agriculture since it might act as virulence factor and contaminate human and animal food. Homologous gliotoxin (GT) gene clusters are spread across a number of fungal species although if they produce GT or other related epipolythiodioxopiperazines (ETPs) remains obscure. Using bioinformatic tools, we have identified homologous gli gene clusters similar to the A. fumigatus GT gene cluster in several fungal species. In silico study led to in vitro confirmation of GT and Bisdethiobis(methylthio)gliotoxin (bmGT) production in fungal strain cultures by HPLC detection. Despite we selected most similar homologous gli gene cluster in 20 different species, GT and bmGT were only detected in section Fumigati species and in a Trichoderma virens Q strain. Our results suggest that in silico gli homology analyses in different fungal strains to predict GT production might be only informative when accompanied by analysis about mycotoxin production in cell cultures.
Collapse
Affiliation(s)
- Sergio Redrado
- Instituto de Carboquımica ICB-CSIC, 50018 Zaragoza, Spain; (S.R.); (M.P.D.)
| | - Patricia Esteban
- Biomedical Research Centre of Aragon (CIBA), Fundacion Instituto de Investigacion Sanitaria Aragon (IIS Aragon), 50009 Zaragoza, Spain; (P.E.); (A.R.-L.); (M.A.); (J.P.)
| | | | - Concepción Lopez
- Department of Microbiology, Hospital Universitario Miguel Servet, IIS Aragón, 50009 Zaragoza, Spain; (C.L.); (A.R.)
| | - Antonio Rezusta
- Department of Microbiology, Hospital Universitario Miguel Servet, IIS Aragón, 50009 Zaragoza, Spain; (C.L.); (A.R.)
| | - Ariel Ramirez-Labrada
- Biomedical Research Centre of Aragon (CIBA), Fundacion Instituto de Investigacion Sanitaria Aragon (IIS Aragon), 50009 Zaragoza, Spain; (P.E.); (A.R.-L.); (M.A.); (J.P.)
| | - Maykel Arias
- Biomedical Research Centre of Aragon (CIBA), Fundacion Instituto de Investigacion Sanitaria Aragon (IIS Aragon), 50009 Zaragoza, Spain; (P.E.); (A.R.-L.); (M.A.); (J.P.)
| | - Julián Pardo
- Biomedical Research Centre of Aragon (CIBA), Fundacion Instituto de Investigacion Sanitaria Aragon (IIS Aragon), 50009 Zaragoza, Spain; (P.E.); (A.R.-L.); (M.A.); (J.P.)
- Department of Microbiology, Pediatrics, Radiology and Public Health, University of Zaragoza, 50009 Zaragoza, Spain
- Aragon I+D Foundation (ARAID), 50018 Zaragoza, Spain
| | - Eva M. Galvez
- Instituto de Carboquımica ICB-CSIC, 50018 Zaragoza, Spain; (S.R.); (M.P.D.)
- Correspondence:
| |
Collapse
|
10
|
Worku DA. SARS-CoV-2 Associated Immune Dysregulation and COVID-Associated Pulmonary Aspergilliosis (CAPA): A Cautionary Tale. Int J Mol Sci 2022; 23:3228. [PMID: 35328649 PMCID: PMC8953852 DOI: 10.3390/ijms23063228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 02/01/2023] Open
Abstract
As the global SARS-CoV-2 pandemic continues to plague healthcare systems, it has become clear that opportunistic pathogens cause a considerable proportion of SARS-CoV-2-associated mortality and morbidity cases. Of these, Covid-Associated Pulmonary Aspergilliosis (CAPA) is a major concern with evidence that it occurs in the absence of traditional risk factors such as neutropenia and is diagnostically challenging for the attending physician. In this review, we focus on the immunopathology of SARS-CoV-2 and how this potentiates CAPA through dysregulation of local and systemic immunity as well as the unintended consequences of approved COVID treatments including corticosteroids and IL-6 inhibitors. Finally, we will consider how knowledge of the above may aid in the diagnosis of CAPA using current diagnostics and what treatment should be instituted in probable and confirmed cases.
Collapse
Affiliation(s)
- Dominic Adam Worku
- Infectious Diseases and Microbiology Department, Morriston Hospital, Swansea University Health Board, Swansea SA6 6NL, UK;
- Public Health Wales, Cardiff CF10 4BZ, UK
| |
Collapse
|
11
|
Reidy L, Desoubeaux G, Cardenas J, Seither J, Kahl K, Chauvin D, Adkesson M, Govett P, Aitken-Palmer C, Stadler C, Tocidlowski M, Sirpenski G, Bronson E, Cray C. DETECTION OF GLIOTOXIN BUT NOT BIS(METHYL)GLIOTOXIN IN PLASMA FROM BIRDS WITH CONFIRMED AND PROBABLE ASPERGILLOSIS. J Zoo Wildl Med 2022; 53:60-69. [PMID: 35339150 DOI: 10.1638/2021-0070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2021] [Indexed: 11/21/2022] Open
Abstract
Aspergillosis remains a difficult disease to diagnose antemortem in many species, especially avian species. In the present study, banked plasma samples from various avian species were examined for gliotoxin (GT), which is a recognized key virulence factor produced during the replication of Aspergillus species hyphae and a secondary metabolite bis(methyl)gliotoxin (bmGT). Initially, liquid chromatography-tandem mass spectrometry methods for detecting GT and bmGT were validated in a controlled model using sera obtained from rats experimentally infected with Aspergillus fumigatus. The minimum detection level for both measurements was determined to be 3 ng/ml, and the assay was found to be accurate and reliable. As proof of concept, GT was detected in 85.7% (30/35) of the samples obtained from birds with confirmed aspergillosis and in 60.7% (17/28) of samples from birds with probable infection but only in one of those from clinically normal birds (1/119). None of the birds were positive for bmGT. Repeated measures from birds under treatment suggests results may have prognostic value. Further studies are needed to implement quantitative methods and to determine the utility of this test in surveillance screening in addition to its use as a diagnostic test in birds with suspected aspergillosis.
Collapse
Affiliation(s)
- Lisa Reidy
- Department of Pathology & Laboratory Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Guillaume Desoubeaux
- Department of Pathology & Laboratory Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Université de Tours, CEPR, INSERM U1100/Equipe 3, 37000 Tours, France
- CHU de Tours, Service de Parasitologie, Mycologie, Médicine tropicale, 37000 Tours, France
| | - Julia Cardenas
- Department of Pathology & Laboratory Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Joshua Seither
- Department of Pathology & Laboratory Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Kristin Kahl
- Department of Pathology & Laboratory Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - David Chauvin
- Université de Tours, CEPR, INSERM U1100/Equipe 3, 37000 Tours, France
| | - Michael Adkesson
- Chicago Zoological Society/Brookfield Zoo, Brookfield, IL 60513, USA
| | - Pamela Govett
- Chicago Zoological Society/Brookfield Zoo, Brookfield, IL 60513, USA
| | | | - Cynthia Stadler
- Los Angeles Zoo & Botanical Gardens, Los Angeles, CA 90027, USA
| | | | | | | | - Carolyn Cray
- Department of Pathology & Laboratory Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA,
| |
Collapse
|
12
|
The Toxic Mechanism of Gliotoxins and Biosynthetic Strategies for Toxicity Prevention. Int J Mol Sci 2021; 22:ijms222413510. [PMID: 34948306 PMCID: PMC8705807 DOI: 10.3390/ijms222413510] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 12/13/2022] Open
Abstract
Gliotoxin is a kind of epipolythiodioxopiperazine derived from different fungi that is characterized by a disulfide bridge. Gliotoxins can be biosynthesized by a gli gene cluster and regulated by a positive GliZ regulator. Gliotoxins show cytotoxic effects via the suppression the function of macrophage immune function, inflammation, antiangiogenesis, DNA damage by ROS production, peroxide damage by the inhibition of various enzymes, and apoptosis through different signal pathways. In the other hand, gliotoxins can also be beneficial with different doses. Low doses of gliotoxin can be used as an antioxidant, in the diagnosis and treatment of HIV, and as an anti-tumor agent in the future. Gliotoxins have also been used in the control of plant pathogens, including Pythium ultimum and Sclerotinia sclerotiorum. Thus, it is important to elucidate the toxic mechanism of gliotoxins. The toxic mechanism of gliotoxins and biosynthetic strategies to reduce the toxicity of gliotoxins and their producing strains are summarized in this review.
Collapse
|
13
|
Amewu RK, Sakyi PO, Osei-Safo D, Addae-Mensah I. Synthetic and Naturally Occurring Heterocyclic Anticancer Compounds with Multiple Biological Targets. Molecules 2021; 26:7134. [PMID: 34885716 PMCID: PMC8658833 DOI: 10.3390/molecules26237134] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 01/09/2023] Open
Abstract
Cancer is a complex group of diseases initiated by abnormal cell division with the potential of spreading to other parts of the body. The advancement in the discoveries of omics and bio- and cheminformatics has led to the identification of drugs inhibiting putative targets including vascular endothelial growth factor (VEGF) family receptors, fibroblast growth factors (FGF), platelet derived growth factors (PDGF), epidermal growth factor (EGF), thymidine phosphorylase (TP), and neuropeptide Y4 (NY4), amongst others. Drug resistance, systemic toxicity, and drug ineffectiveness for various cancer chemo-treatments are widespread. Due to this, efficient therapeutic agents targeting two or more of the putative targets in different cancer cells are proposed as cutting edge treatments. Heterocyclic compounds, both synthetic and natural products, have, however, contributed immensely to chemotherapeutics for treatments of various diseases, but little is known about such compounds and their multimodal anticancer properties. A compendium of heterocyclic synthetic and natural product multitarget anticancer compounds, their IC50, and biological targets of inhibition are therefore presented in this review.
Collapse
Affiliation(s)
- Richard Kwamla Amewu
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 56, Ghana; (R.K.A.); (P.O.S.); (D.O.-S.)
| | - Patrick Opare Sakyi
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 56, Ghana; (R.K.A.); (P.O.S.); (D.O.-S.)
- Department of Chemical Sciences, School of Sciences, University of Energy and Natural Resources, Sunyani P.O. Box 214, Ghana
| | - Dorcas Osei-Safo
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 56, Ghana; (R.K.A.); (P.O.S.); (D.O.-S.)
| | - Ivan Addae-Mensah
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 56, Ghana; (R.K.A.); (P.O.S.); (D.O.-S.)
| |
Collapse
|
14
|
Lim JY, Kim YJ, Woo SA, Jeong JW, Lee YR, Kim CH, Park HM. The LAMMER Kinase, LkhA, Affects Aspergillus fumigatus Pathogenicity by Modulating Reproduction and Biosynthesis of Cell Wall PAMPs. Front Cell Infect Microbiol 2021; 11:756206. [PMID: 34722342 PMCID: PMC8548842 DOI: 10.3389/fcimb.2021.756206] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/27/2021] [Indexed: 02/01/2023] Open
Abstract
The LAMMER kinase in eukaryotes is a well-conserved dual-specificity kinase. Aspergillus species cause a wide spectrum of diseases called aspergillosis in humans, depending on the underlying immune status of the host, such as allergy, aspergilloma, and invasive aspergillosis. Aspergillus fumigatus is the most common opportunistic fungal pathogen that causes invasive aspergillosis. Although LAMMER kinase has various functions in morphology, development, and cell cycle regulation in yeast and filamentous fungi, its function in A. fumigatus is not known. We performed molecular studies on the function of the A. fumigatus LAMMER kinase, AfLkhA, and reported its involvement in multiple cellular processes, including development and virulence. Deletion of AflkhA resulted in defects in colonial growth, production of conidia, and sexual development. Transcription and genetic analyses indicated that AfLkhA modulates the expression of key developmental regulatory genes. The AflkhA-deletion strain showed increased production of gliotoxins and protease activity. When conidia were challenged with alveolar macrophages, enodocytosis of conidia by macrophages was increased in the AflkhA-deletion strain, resulting from changes in expression of the cell wall genes and thus content of cell wall pathogen-associated molecular patterns, including β-1,3-glucan and GM. While T cell-deficient zebrafish larvae were significantly susceptible to wild-type A. fumigatus infection, AflkhA-deletion conidia infection reduced host mortality. A. fumigatus AfLkhA is required for the establishment of virulence factors, including conidial production, mycotoxin synthesis, protease activity, and interaction with macrophages, which ultimately affect pathogenicity at the organismal level.
Collapse
Affiliation(s)
- Joo-Yeon Lim
- Laboratory of Cellular Differentiation, Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, South Korea.,Institute of Biotechnology, Chungnam National University, Daejeon, South Korea
| | - Yeon Ju Kim
- Laboratory of Cellular Differentiation, Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, South Korea
| | - Seul Ah Woo
- Laboratory of Cellular Differentiation, Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, South Korea
| | - Jae Wan Jeong
- Laboratory of Cellular Differentiation, Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, South Korea
| | - Yu-Ri Lee
- Laboratory of Developmental Genetics, Department of Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, South Korea
| | - Cheol-Hee Kim
- Laboratory of Developmental Genetics, Department of Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, South Korea
| | - Hee-Moon Park
- Laboratory of Cellular Differentiation, Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, South Korea
| |
Collapse
|
15
|
Mills B, Radhakrishnan N, Karthikeyan Rajapandian SG, Rameshkumar G, Lalitha P, Prajna NV. The role of fungi in fungal keratitis. Exp Eye Res 2020; 202:108372. [PMID: 33249061 DOI: 10.1016/j.exer.2020.108372] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/07/2020] [Accepted: 11/22/2020] [Indexed: 12/20/2022]
Abstract
Fungal keratitis (FK) accounts for approximately half of the microbial keratitis encountered in low middle income countries (LMICs) and predominantly affect the working rural-poor. FK causes significant morbidity with the majority of patients left with moderate or worse visual impairment and approximately 25% requiring expensive and often unsuccessful surgical interventions. The severity of FK and the resultant corneal damage or resolution can be attributed to i) the virulence and bioburden of the fungal pathogen, ii) the host defense mechanism and immune response and iii) sub-optimal diagnostics and anti-fungal treatment strategies. This review provides a comprehensive overview of the multifaceted components that drive FK progression and resolution, highlighting where knowledge gaps exist and areas that warrant further research.
Collapse
Affiliation(s)
- Bethany Mills
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, UK
| | - Naveen Radhakrishnan
- Department of Cornea and Refractive Surgery, Aravind Eye Hospital, Madurai, India
| | | | | | - Prajna Lalitha
- Department of Ocular Microbiology, Aravind Eye Hospital, Madurai, India
| | - N Venkatesh Prajna
- Department of Cornea and Refractive Surgery, Aravind Eye Hospital, Madurai, India.
| |
Collapse
|
16
|
Gayathri L, Akbarsha MA, Ruckmani K. In vitro study on aspects of molecular mechanisms underlying invasive aspergillosis caused by gliotoxin and fumagillin, alone and in combination. Sci Rep 2020; 10:14473. [PMID: 32879392 PMCID: PMC7467938 DOI: 10.1038/s41598-020-71367-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 08/06/2020] [Indexed: 12/19/2022] Open
Abstract
Gliotoxin (GT) and fumagillin (FUM) are mycotoxins most abundantly produced by Aspergillus fumigatus during the early stages of infection to cause invasive aspergillosis (IA). Therefore, we hypothesized that GT and FUM could be the possible source of virulence factors, which we put to test adopting in vitro monoculture and the novel integrated multiple organ co-culture (IdMOC) of A549 and L132 cell. We found that (i) GT is more cytotoxic to lung epithelial cells than FUM, and (ii) GT and FUM act synergistically to inflict pathology to the lung epithelial cell. Reactive oxygen species (ROS) is the master regulator of the cytotoxicity of GT, FUM and GT + FUM. ROS may be produced as a sequel to mitochondrial damage and, thus, mitochondria are both the source of ROS and the target to ROS. GT-, FUM- and GT + FUM-induced DNA damage is mediated either by ROS-dependent mechanism or directly by the fungal toxins. In addition, GT, FUM and GT + FUM may induce protein accumulation. Further, it is speculated that GT and FUM inflict epithelial damage by neutrophil-mediated inflammation. With respect to multiple organ cytotoxicity, GT was found to be cytotoxic at IC50 concentration in the following order: renal epithelial cells < type II epithelial cells < hepatocytes < normal lung epithelial cells. Taken together, GT and FUM alone and in combination contribute to exacerbate the damage of lung epithelial cells and, thus, are involved in the progression of IA.
Collapse
Affiliation(s)
- Loganathan Gayathri
- Department of Pharmaceutical Technology, University College of Engineering, Anna University-BIT Campus, Tiruchchirappalli, Tamil Nadu, 620024, India
- Centre for Excellence in Nanobio Translational Research (Autonomous), University College of Engineering, Anna University-BIT Campus, Tiruchchirappalli, Tamil Nadu, 620024, India
- Department of Biotechnology and Bioinformatics, Holy Cross College (Autonomous), Tiruchchirappalli, Tamil Nadu, 620002, India
| | - Mohammad A Akbarsha
- National College (Autonomous), Tiruchchirappalli, Tamil Nadu, 620001, India
- Mahatma Gandhi-Doerenkamp Centre for Alternatives, Bharathidasan University, Tiruchchirappalli, Tamil Nadu, 620 024, India
| | - Kandasamy Ruckmani
- Department of Pharmaceutical Technology, University College of Engineering, Anna University-BIT Campus, Tiruchchirappalli, Tamil Nadu, 620024, India.
- Centre for Excellence in Nanobio Translational Research (Autonomous), University College of Engineering, Anna University-BIT Campus, Tiruchchirappalli, Tamil Nadu, 620024, India.
| |
Collapse
|
17
|
Efficacy of metabolites of a Streptomyces strain (AS1) to control growth and mycotoxin production by Penicillium verrucosum, Fusarium verticillioides and Aspergillus fumigatus in culture. Mycotoxin Res 2020; 36:225-234. [PMID: 31960351 PMCID: PMC7182623 DOI: 10.1007/s12550-020-00388-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/02/2020] [Accepted: 01/15/2020] [Indexed: 01/24/2023]
Abstract
The objectives of this study were to determine the efficacy of metabolites of a Streptomyces strain AS1 on (a) spore germination, (b) mycelial growth, (c) control of mycotoxins produced by Penicillium verrucosum (ochratoxin A, OTA), Fusarium verticillioides (fumonisins, FUMs) and Aspergillus fumigatus (gliotoxin) and (d) identify the predominant metabolites involved in control. Initial screening showed that the Streptomyces AS1 strain was able to inhibit the mycelial growth of the three species at a distance, due to the release of secondary metabolites. A macroscopic screening system showed that the overall Index of Dominance against all three toxigenic fungi was inhibition at a distance. Subsequent studies showed that the metabolite mixture from the Streptomyces AS1 strain was very effective at inhibiting conidial germination of P. verrucosum, but less so against conidia of A. fumigatus and F. verticillioides. The efficacy was confirmed in studies on a conducive semi-solid YES medium in BioScreen C assays. Using the BioScreen C and the criteria of Time to Detection (TTD) at an OD = 0.1 showed good efficacy against P. verrucosum when treated with the Streptomyces AS1 extract at 0.95 and 0.99 water activity (aw) when compared to the other two species tested, indicating good efficacy. The effective dose for 50% control of growth (ED50) at 0.95 and 0.99 aw were approx. 0.005 ng/ml and 0.15 μg/ml, respectively, with the minimum inhibitory concentration (MIC) at both aw levels requiring > 40 μg/ml. In addition, OTA production was completely inhibited by 2.5 μg/ml AS1 extract at both aw levels in the in vitro assays. Ten metabolites were identified with four of these being predominant in concentrations > 2 μg/g dry weight biomass. These were identified as valinomycin, cyclo(L-Pro-L-Tyr), cyclo(L-Pro-L-Val) and brevianamide F.
Collapse
|
18
|
Abo Nouh FA, Gezaf SA, Abdel-Azeem AM. Aspergillus Mycotoxins: Potential as Biocontrol Agents. Fungal Biol 2020. [DOI: 10.1007/978-3-030-48474-3_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
19
|
Perspectives of Microbial Metabolites as Pesticides in Agricultural Pest Management. REFERENCE SERIES IN PHYTOCHEMISTRY 2020. [DOI: 10.1007/978-3-319-96397-6_44] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
20
|
Frisvad J, Hubka V, Ezekiel C, Hong SB, Nováková A, Chen A, Arzanlou M, Larsen T, Sklenář F, Mahakarnchanakul W, Samson R, Houbraken J. Taxonomy of Aspergillus section Flavi and their production of aflatoxins, ochratoxins and other mycotoxins. Stud Mycol 2019; 93:1-63. [PMID: 30108412 PMCID: PMC6080641 DOI: 10.1016/j.simyco.2018.06.001] [Citation(s) in RCA: 309] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aflatoxins and ochratoxins are among the most important mycotoxins of all and producers of both types of mycotoxins are present in Aspergillus section Flavi, albeit never in the same species. Some of the most efficient producers of aflatoxins and ochratoxins have not been described yet. Using a polyphasic approach combining phenotype, physiology, sequence and extrolite data, we describe here eight new species in section Flavi. Phylogenetically, section Flavi is split in eight clades and the section currently contains 33 species. Two species only produce aflatoxin B1 and B2 (A. pseudotamarii and A. togoensis), and 14 species are able to produce aflatoxin B1, B2, G1 and G2: three newly described species A. aflatoxiformans, A. austwickii and A. cerealis in addition to A. arachidicola, A. minisclerotigenes, A. mottae, A. luteovirescens (formerly A. bombycis), A. nomius, A. novoparasiticus, A. parasiticus, A. pseudocaelatus, A. pseudonomius, A. sergii and A. transmontanensis. It is generally accepted that A. flavus is unable to produce type G aflatoxins, but here we report on Korean strains that also produce aflatoxin G1 and G2. One strain of A. bertholletius can produce the immediate aflatoxin precursor 3-O-methylsterigmatocystin, and one strain of Aspergillus sojae and two strains of Aspergillus alliaceus produced versicolorins. Strains of the domesticated forms of A. flavus and A. parasiticus, A. oryzae and A. sojae, respectively, lost their ability to produce aflatoxins, and from the remaining phylogenetically closely related species (belonging to the A. flavus-, A. tamarii-, A. bertholletius- and A. nomius-clades), only A. caelatus, A. subflavus and A. tamarii are unable to produce aflatoxins. With exception of A. togoensis in the A. coremiiformis-clade, all species in the phylogenetically more distant clades (A. alliaceus-, A. coremiiformis-, A. leporis- and A. avenaceus-clade) are unable to produce aflatoxins. Three out of the four species in the A. alliaceus-clade can produce the mycotoxin ochratoxin A: A. alliaceus s. str. and two new species described here as A. neoalliaceus and A. vandermerwei. Eight species produced the mycotoxin tenuazonic acid: A. bertholletius, A. caelatus, A. luteovirescens, A. nomius, A. pseudocaelatus, A. pseudonomius, A. pseudotamarii and A. tamarii while the related mycotoxin cyclopiazonic acid was produced by 13 species: A. aflatoxiformans, A. austwickii, A. bertholletius, A. cerealis, A. flavus, A. minisclerotigenes, A. mottae, A. oryzae, A. pipericola, A. pseudocaelatus, A. pseudotamarii, A. sergii and A. tamarii. Furthermore, A. hancockii produced speradine A, a compound related to cyclopiazonic acid. Selected A. aflatoxiformans, A. austwickii, A. cerealis, A. flavus, A. minisclerotigenes, A. pipericola and A. sergii strains produced small sclerotia containing the mycotoxin aflatrem. Kojic acid has been found in all species in section Flavi, except A. avenaceus and A. coremiiformis. Only six species in the section did not produce any known mycotoxins: A. aspearensis, A. coremiiformis, A. lanosus, A. leporis, A. sojae and A. subflavus. An overview of other small molecule extrolites produced in Aspergillus section Flavi is given.
Collapse
Affiliation(s)
- J.C. Frisvad
- Department of Biotechnology and Biomedicine, DTU-Bioengineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - V. Hubka
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, 128 01 Prague 2, Czech Republic
- Institute of Microbiology of the CAS, v.v.i., Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - C.N. Ezekiel
- Department of Microbiology, Babcock University, Ilishan Rémo, Nigeria
| | - S.-B. Hong
- Korean Agricultural Culture Collection, National Academy of Agricultural Science, RDA, Suwon, South Korea
| | - A. Nováková
- Institute of Microbiology of the CAS, v.v.i., Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - A.J. Chen
- Institute of Medical Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, PR China
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - M. Arzanlou
- Department of Plant Protection, University of Tabriz, Tabriz, Iran
| | - T.O. Larsen
- Department of Biotechnology and Biomedicine, DTU-Bioengineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - F. Sklenář
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, 128 01 Prague 2, Czech Republic
- Institute of Microbiology of the CAS, v.v.i., Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - W. Mahakarnchanakul
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand
| | - R.A. Samson
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - J. Houbraken
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| |
Collapse
|
21
|
Perspectives of Microbial Metabolites as Pesticides in Agricultural Pest Management. BIOACTIVE MOLECULES IN FOOD 2019. [DOI: 10.1007/978-3-319-76887-8_44-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
Frisvad JC, Møller LLH, Larsen TO, Kumar R, Arnau J. Safety of the fungal workhorses of industrial biotechnology: update on the mycotoxin and secondary metabolite potential of Aspergillus niger, Aspergillus oryzae, and Trichoderma reesei. Appl Microbiol Biotechnol 2018; 102:9481-9515. [PMID: 30293194 PMCID: PMC6208954 DOI: 10.1007/s00253-018-9354-1] [Citation(s) in RCA: 218] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/28/2018] [Accepted: 08/29/2018] [Indexed: 12/11/2022]
Abstract
This review presents an update on the current knowledge of the secondary metabolite potential of the major fungal species used in industrial biotechnology, i.e., Aspergillus niger, Aspergillus oryzae, and Trichoderma reesei. These species have a long history of safe use for enzyme production. Like most microorganisms that exist in a challenging environment in nature, these fungi can produce a large variety and number of secondary metabolites. Many of these compounds present several properties that make them attractive for different industrial and medical applications. A description of all known secondary metabolites produced by these species is presented here. Mycotoxins are a very limited group of secondary metabolites that can be produced by fungi and that pose health hazards in humans and other vertebrates when ingested in small amounts. Some mycotoxins are species-specific. Here, we present scientific basis for (1) the definition of mycotoxins including an update on their toxicity and (2) the clarity on misclassification of species and their mycotoxin potential reported in literature, e.g., A. oryzae has been wrongly reported as an aflatoxin producer, due to misclassification of Aspergillus flavus strains. It is therefore of paramount importance to accurately describe the mycotoxins that can potentially be produced by a fungal species that is to be used as a production organism and to ensure that production strains are not capable of producing mycotoxins during enzyme production. This review is intended as a reference paper for authorities, companies, and researchers dealing with secondary metabolite assessment, risk evaluation for food or feed enzyme production, or considerations on the use of these species as production hosts.
Collapse
Affiliation(s)
- Jens C Frisvad
- Department of Biotechnology and Biomedicine (DTU Bioengineering), Technical University of Denmark, Søltofts Plads, B. 221, 2800, Kongens Lyngby, Denmark.
| | - Lars L H Møller
- Department of Product Safety, Novozymes A/S, Krogshoejvej 36, 2880, Bagsvaerd, Denmark
| | - Thomas O Larsen
- Department of Biotechnology and Biomedicine (DTU Bioengineering), Technical University of Denmark, Søltofts Plads, B. 221, 2800, Kongens Lyngby, Denmark
| | - Ravi Kumar
- Department of Genomics and Bioinformatics, Novozymes Inc., 1445 Drew Ave., Davis, CA, 95618, USA
| | - José Arnau
- Department of Fungal Strain Technology and Strain Approval Support, Novozymes A/S, Krogshoejvej 36, 2880, Bagsvaerd, Denmark
| |
Collapse
|
23
|
Vidal-García M, Redrado S, Domingo MP, Marquina P, Colmenarejo C, Meis JF, Rezusta A, Pardo J, Galvez EM. Production of the Invasive Aspergillosis Biomarker Bis(methylthio)gliotoxin Within the Genus Aspergillus: In Vitro and in Vivo Metabolite Quantification and Genomic Analysis. Front Microbiol 2018; 9:1246. [PMID: 29946309 PMCID: PMC6006755 DOI: 10.3389/fmicb.2018.01246] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/23/2018] [Indexed: 01/12/2023] Open
Abstract
Gliotoxin (GT) is a fungal secondary metabolite that has attracted great interest due to its high biological activity since it was discovered by the 1930s. An inactive derivative of this molecule, bis(methylthio)gliotoxin (bmGT), has been proposed as an invasive aspergillosis (IA) biomarker. Nevertheless, studies regarding bmGT production among common opportunistic fungi, including the Aspergillus genus, are scarce and sometimes discordant. As previously reported, bmGT is produced from GT by a methyl-transferase, named as GtmA, as a negative feedback regulatory system of GT production. In order to analyze the potential of bmGT detection to enable identification of infections caused by different members of the Aspergillus genus we have assessed bmGT production within the genus Aspergillus, including A, fumigatus, A. niger, A. nidulans, and A. flavus, and its correlation with gtmA presence. In order to validate the relevance of our in vitro findings, we compared bmGT during in vitro culture with the presence of bmGT in sera of patients from whom the Aspergillus spp. were isolated. Our results indicate that most A. fumigatus isolates produce GT and bmGT both in vitro and in vivo. In contrast, A. niger and A. nidulans were not able to produce GT or bmGT, although A. niger produced bmGT from a exogenous GT source. The frequency and amount of bmGT production in A. terreus and A. flavus isolates in vitro was lower than in A. fumigatus. Our results suggest that this defect could be related to the in vitro culture conditions, since isolates that did not produce bmGT in vitro were able to synthetize it in vivo. In summary, our study indicates that bmGT could be very useful to specifically detect the presence of A. fumigatus, the most prevalent agent causing IA. Concerning A. terreus and A. flavus a higher number of analyses from sera from infected patients will be required to reach a useful conclusion.
Collapse
Affiliation(s)
- Matxalen Vidal-García
- Centro de Investigación Biomédica de Aragón, Instituto de Investigación Sanitaria Aragón, Zaragoza, Spain.,Hospital Universitario Miguel Servet, Zaragoza, Spain
| | | | | | | | | | - Jacques F Meis
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, Netherlands.,Department of Medical Microbiology and Infectious Diseases, Canisius Wilhelmina Hospital, Nijmegen, Netherlands
| | - Antonio Rezusta
- Hospital Universitario Miguel Servet, Zaragoza, Spain.,Departamento de Microbiología, Medicina Preventiva y Salud Pública, Universidad de Zaragoza, Zaragoza, Spain
| | - Julian Pardo
- Centro de Investigación Biomédica de Aragón, Instituto de Investigación Sanitaria Aragón, Zaragoza, Spain.,Fundacion Agencia Aragonesa para la Investigacion y el Desarrollo, Zaragoza, Spain.,Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain.,Instituto de Nanociencia de Aragón, Zaragoza, Spain
| | | |
Collapse
|
24
|
De Miccolis Angelini RM, Abate D, Rotolo C, Gerin D, Pollastro S, Faretra F. De novo assembly and comparative transcriptome analysis of Monilinia fructicola, Monilinia laxa and Monilinia fructigena, the causal agents of brown rot on stone fruits. BMC Genomics 2018; 19:436. [PMID: 29866047 PMCID: PMC5987419 DOI: 10.1186/s12864-018-4817-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 05/22/2018] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Brown rots are important fungal diseases of stone and pome fruits. They are caused by several Monilinia species but M. fructicola, M. laxa and M. fructigena are the most common all over the world. Although they have been intensively studied, the availability of genomic and transcriptomic data in public databases is still scant. We sequenced, assembled and annotated the transcriptomes of the three pathogens using mRNA from germinating conidia and actively growing mycelia of two isolates of opposite mating types per each species for comparative transcriptome analyses. RESULTS Illumina sequencing was used to generate about 70 million of paired-end reads per species, that were de novo assembled in 33,861 contigs for M. fructicola, 31,103 for M. laxa and 28,890 for M. fructigena. Approximately, 50% of the assembled contigs had significant hits when blasted against the NCBI non-redundant protein database and top-hits results were represented by Botrytis cinerea, Sclerotinia sclerotiorum and Sclerotinia borealis proteins. More than 90% of the obtained sequences were complete, the percentage of duplications was always less than 14% and fragmented and missing transcripts less than 5%. Orthologous transcripts were identified by tBLASTn analysis using the B. cinerea proteome as reference. Comparative transcriptome analyses revealed 65 transcripts over-expressed (FC ≥ 8 and FDR ≤ 0.05) or unique in M. fructicola, 30 in M. laxa and 31 in M. fructigena. Transcripts were involved in processes affecting fungal development, diversity and host-pathogen interactions, such as plant cell wall-degrading and detoxifying enzymes, zinc finger transcription factors, MFS transporters, cell surface proteins, key enzymes in biosynthesis and metabolism of antibiotics and toxins, and transposable elements. CONCLUSIONS This is the first large-scale reconstruction and annotation of the complete transcriptomes of M. fructicola, M. laxa and M. fructigena and the first comparative transcriptome analysis among the three pathogens revealing differentially expressed genes with potential important roles in metabolic and physiological processes related to fungal morphogenesis and development, diversity and pathogenesis which need further investigations. We believe that the data obtained represent a cornerstone for research aimed at improving knowledge on the population biology, physiology and plant-pathogen interactions of these important phytopathogenic fungi.
Collapse
Affiliation(s)
- Rita M. De Miccolis Angelini
- Department of Soil, Plant and Food Sciences - Plant Pathology Section, University of Bari Aldo Moro, via Amendola 165/A, 70126 Bari, Italy
| | - Domenico Abate
- Department of Soil, Plant and Food Sciences - Plant Pathology Section, University of Bari Aldo Moro, via Amendola 165/A, 70126 Bari, Italy
| | - Caterina Rotolo
- Department of Soil, Plant and Food Sciences - Plant Pathology Section, University of Bari Aldo Moro, via Amendola 165/A, 70126 Bari, Italy
| | - Donato Gerin
- Department of Soil, Plant and Food Sciences - Plant Pathology Section, University of Bari Aldo Moro, via Amendola 165/A, 70126 Bari, Italy
| | - Stefania Pollastro
- Department of Soil, Plant and Food Sciences - Plant Pathology Section, University of Bari Aldo Moro, via Amendola 165/A, 70126 Bari, Italy
| | - Francesco Faretra
- Department of Soil, Plant and Food Sciences - Plant Pathology Section, University of Bari Aldo Moro, via Amendola 165/A, 70126 Bari, Italy
| |
Collapse
|
25
|
Shankar J, Tiwari S, Shishodia SK, Gangwar M, Hoda S, Thakur R, Vijayaraghavan P. Molecular Insights Into Development and Virulence Determinants of Aspergilli: A Proteomic Perspective. Front Cell Infect Microbiol 2018; 8:180. [PMID: 29896454 PMCID: PMC5986918 DOI: 10.3389/fcimb.2018.00180] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/09/2018] [Indexed: 12/25/2022] Open
Abstract
Aspergillus species are the major cause of health concern worldwide in immunocompromised individuals. Opportunistic Aspergilli cause invasive to allergic aspergillosis, whereas non-infectious Aspergilli have contributed to understand the biology of eukaryotic organisms and serve as a model organism. Morphotypes of Aspergilli such as conidia or mycelia/hyphae helped them to survive in favorable or unfavorable environmental conditions. These morphotypes contribute to virulence, pathogenicity and invasion into hosts by excreting proteins, enzymes or toxins. Morphological transition of Aspergillus species has been a critical step to infect host or to colonize on food products. Thus, we reviewed proteins from Aspergilli to understand the biological processes, biochemical, and cellular pathways that are involved in transition and morphogenesis. We majorly analyzed proteomic studies on A. fumigatus, A. flavus, A. terreus, and A. niger to gain insight into mechanisms involved in the transition from conidia to mycelia along with the role of secondary metabolites. Proteome analysis of morphotypes of Aspergilli provided information on key biological pathways required to exit conidial dormancy, consortia of virulent factors and mycotoxins during the transition. The application of proteomic approaches has uncovered the biological processes during development as well as intermediates of secondary metabolite biosynthesis pathway. We listed key proteins/ enzymes or toxins at different morphological types of Aspergillus that could be applicable in discovery of novel therapeutic targets or metabolite based diagnostic markers.
Collapse
Affiliation(s)
- Jata Shankar
- Genomic Laboratory, Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, India
| | - Shraddha Tiwari
- Genomic Laboratory, Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, India
| | - Sonia K Shishodia
- Genomic Laboratory, Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, India
| | - Manali Gangwar
- Genomic Laboratory, Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, India
| | - Shanu Hoda
- Amity Institute of Biotechnology, Amity University, Noida, India
| | - Raman Thakur
- Genomic Laboratory, Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, India
| | | |
Collapse
|
26
|
Novohradská S, Ferling I, Hillmann F. Exploring Virulence Determinants of Filamentous Fungal Pathogens through Interactions with Soil Amoebae. Front Cell Infect Microbiol 2017; 7:497. [PMID: 29259922 PMCID: PMC5723301 DOI: 10.3389/fcimb.2017.00497] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 11/20/2017] [Indexed: 01/15/2023] Open
Abstract
Infections with filamentous fungi are common to all animals, but attention is rising especially due to the increasing incidence and high mortality rates observed in immunocompromised human individuals. Here, Aspergillus fumigatus and other members of its genus are the leading causative agents. Attributes like their saprophytic life-style in various ecological niches coupled with nutritional flexibility and a broad host range have fostered the hypothesis that environmental predators could have been the actual target for some of their virulence determinants. In this mini review, we have merged the recent findings focused on the potential dual-use of fungal defense strategies against innate immune cells and soil amoebae as natural phagocytes. Well-established virulence attributes like the melanized surface of fungal conidia or their capacity to produce toxic secondary metabolites have also been found to be protective against the model amoeba Dictyostelium discoideum. Some of the recent advances during interaction studies with human cells have further promoted the adaptation of other amoeba infection models, including the wide-spread generalist Acanthamoeba castellanii, or less prominent representatives like Vermamoeba vermiformis. We further highlight prospects and limits of these natural phagocyte models with regard to the infection biology of filamentous fungi and in comparison to the phagocytes of the innate immune system.
Collapse
Affiliation(s)
- Silvia Novohradská
- Evolution of Microbial Interactions, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
- Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Iuliia Ferling
- Evolution of Microbial Interactions, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
- Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Falk Hillmann
- Evolution of Microbial Interactions, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
| |
Collapse
|
27
|
Sugui JA, Rose SR, Nardone G, Swamydas M, Lee CCR, Kwon-Chung KJ, Lionakis MS. Host immune status-specific production of gliotoxin and bis-methyl-gliotoxin during invasive aspergillosis in mice. Sci Rep 2017; 7:10977. [PMID: 28887465 PMCID: PMC5591180 DOI: 10.1038/s41598-017-10888-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 08/14/2017] [Indexed: 01/29/2023] Open
Abstract
Delayed diagnosis in invasive aspergillosis (IA) contributes to its high mortality. Gliotoxin (GT) and bis-methyl-gliotoxin (bmGT) are secondary metabolites produced by Aspergillus during invasive, hyphal growth and may prove diagnostically useful. Because IA pathophysiology and GT's role in virulence vary depending on the underlying host immune status, we hypothesized that GT and bmGT production in vivo may differ in three mouse models of IA that mimic human disease. We defined temporal kinetics of GT and bmGT in serum, bronchoalveolar lavage fluid (BALF) and lungs of A. fumigatus-infected chronic granulomatous disease (CGD), hydrocortisone-treated, and neutropenic mice. We harvested lungs for assessment of fungal burden, histology and GT/bmGT biosynthetic genes' mRNA induction. GT levels were higher in neutropenic versus CGD or steroid-treated lungs. bmGT was persistently detected only in CGD lungs. GT, but not bmGT, was detected in 71% of sera and 50% of BALF of neutropenic mice; neither was detected in serum/BALF of CGD or steroid-treated mice. Enrichment of GT in Aspergillus-infected neutropenic lung correlated with fungal burden and hyphal length but not induction of GT biosynthetic genes. In summary, GT is detectable in mouse lungs, serum and BALF during neutropenic IA, suggesting that GT may be useful to diagnose IA in neutropenic patients.
Collapse
Affiliation(s)
- Janyce A Sugui
- Molecular Microbiology Section, Laboratory of Clinical Immunology & Microbiology (LCIM), National Institute of Allergy & Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Stacey R Rose
- Fungal Pathogenesis Unit, LCIM, NIAID, NIH, Bethesda, MD, USA.,Division of Infectious Diseases, Baylor College of Medicine, Houston, Texas, USA
| | | | | | - Chyi-Chia R Lee
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, MD, USA
| | - Kyung J Kwon-Chung
- Molecular Microbiology Section, Laboratory of Clinical Immunology & Microbiology (LCIM), National Institute of Allergy & Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA.
| | | |
Collapse
|
28
|
Health Risks Associated with Exposure to Filamentous Fungi. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14070719. [PMID: 28677641 PMCID: PMC5551157 DOI: 10.3390/ijerph14070719] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 06/19/2017] [Accepted: 06/23/2017] [Indexed: 01/06/2023]
Abstract
Filamentous fungi occur widely in the environment, contaminating soil, air, food and other substrates. Due to their wide distribution, they have medical and economic implications. Regardless of their use as a source of antibiotics, vitamins and raw materials for various industrially important chemicals, most fungi and filamentous fungi produce metabolites associated with a range of health risks, both in humans and in animals. The association of filamentous fungi and their metabolites to different negative health conditions in humans and animals, has contributed to the importance of investigating different health risks induced by this family of heterotrophs. This review aims to discuss health risks associated with commonly occurring filamentous fungal species which belong to genera Aspergillus, Penicillium and Fusarium, as well as evaluating their pathogenicity and mycotoxic properties.
Collapse
|
29
|
Alonso V, Cavaglieri L, Ramos AJ, Torres A, Marin S. Modelling the effect of pH and water activity in the growth of Aspergillus fumigatus isolated from corn silage. J Appl Microbiol 2017; 122:1048-1056. [PMID: 28052586 DOI: 10.1111/jam.13395] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 12/02/2016] [Accepted: 12/19/2016] [Indexed: 10/20/2022]
Abstract
AIMS The aim of this work was to use mathematical kinetic modelling to assess the combined effects of aW, pH, O2 availability and temperature on the growth rate and time to growth of Aspergillus fumigatus strains isolated from corn silage. METHODS AND RESULTS A full factorial design was used in which two factors were assayed: pH and aW . The aW levels assayed were 0·80, 0·85, 0·90, 0·92, 0·94, 0·96, 0·98 and 0·99. The levels of pH assayed were 3·5, 4, 4·5, 5, 6, 7, 7·5 and 8. The assay was performed at normal oxygen tension at 25 and 37°C, and at reduced oxygen tension at 25°C. Two strains of A. fumigatus isolated from corn silage were used. Kinetic models were built to predict growth of the strain under the assayed conditions. The cardinal models gave a good quality fit for radial growth rate data. The results indicate that the environmental conditions which take place during silage production, while limiting the growth of most micro-organisms, would not be able to control A. fumigatus. Moreover, pH levels in silage, far from limiting its growth, are also close to its optimum. Carbon dioxide at 5% in the environment did not significantly affect its growth. CONCLUSIONS A need for a further and controlled acidification of the silage exists, as no growth of A. fumigatus was observed at pH 3·5, as long as the organoleptic characteristics of the silage are not much compromised. SIGNIFICANCE AND IMPACT OF THE STUDY Aspergillus fumigatus is one of the major opportunistic pathogens able to cause illness such as allergic bronchopulmonary aspergillosis, aspergilloma and invasive aspergillosis to rural workers. Exposure of animals to A. fumigatus spores can result in infections, particularly in those organs exposed to external invasion, such as the airways, mammary gland and uterus at birth.
Collapse
Affiliation(s)
- V Alonso
- Departamento de Microbiología e Inmunología, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina.,Member of Research Career CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - L Cavaglieri
- Departamento de Microbiología e Inmunología, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina.,Member of Research Career CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - A J Ramos
- Food Technology Department, Lleida University, UTPV-XaRTA, Agrotecnic Center, Lleida, Spain
| | - A Torres
- Departamento de Microbiología e Inmunología, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina.,Member of Research Career CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - S Marin
- Food Technology Department, Lleida University, UTPV-XaRTA, Agrotecnic Center, Lleida, Spain
| |
Collapse
|
30
|
Alonso V, Aminahuel C, Díaz Vergara L, Pereyra C, Poloni V, Dalcero A, Cavaglieri L. Ecophysiology of environmental Aspergillus fumigatus and comparison with clinical strains on gliotoxin production and elastase activity. Lett Appl Microbiol 2016; 62:160-8. [PMID: 26551056 DOI: 10.1111/lam.12523] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 10/31/2015] [Accepted: 11/02/2015] [Indexed: 11/30/2022]
Abstract
UNLABELLED The aim of this manuscript was to study the influence of water activity (aW ) and pH in the ecophysiological behaviour of Aspergillus fumigatus strains at human body temperature. In addition, gliotoxin production and enzymatic ability among environmental (n = 2) and clinical (n = 5) strains were compared. Ecophysiological study of environmental strains was performed on agar silage incubated at 37°C, studying the interaction at eight aW levels (0·8, 0·85, 0·9, 0·92, 0·94, 0·96, 0·98 and 0·99) and eight pH levels (3·5, 4, 4·5, 5, 6, 7, 7·5 and 8). Considering the influence of the assumed lung conditions on growth of A. fumigatus (aW 0·98/0·99 and pH of 7/7·5), the optimal condition for the development of A. fumigatus RC031 was at aW 0·99 at pH 7. At aW 0·98/0·99 and pH of 7/7·5, the highest growth rate and the lowest lag phase was reported, whereas there were no significant differences at aW 0·98/0·99 and pH 7/7·5 interactions on growth of A. fumigatus RC032. Gliotoxin production of A. fumigatus strains was evaluated. The gliotoxin production was similar in clinical and environmental strains. Elastin activity was studied in solid medium, highest elastase activity index was found for clinical strain A. fumigatus RC0676, followed by the environmental strain A. fumigatus RC031. Opportunistic environmental strains can be considered as pathogenic in some cases when rural workers are exposed constantly to handling silage. SIGNIFICANCE AND IMPACT OF THE STUDY Aspergillus fumigatus is one of the main opportunist pathogen agents causing invasive aspergillosis. Rural workers present a constant exposition to A. fumigatus spores caused by feed-borne manipulation. In this study, environmental A. fumigatus strains were able to grow and produce gliotoxin onto the studied conditions including the lung ones. Environmental and clinical strains were physiologically similar and could be an important putative infection source in rural workers.
Collapse
Affiliation(s)
- V Alonso
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917 (C1033AAJ) CABA Républica, Argentina
| | - C Aminahuel
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917 (C1033AAJ) CABA Républica, Argentina
| | - L Díaz Vergara
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917 (C1033AAJ) CABA Républica, Argentina
| | - C Pereyra
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917 (C1033AAJ) CABA Républica, Argentina
| | - V Poloni
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917 (C1033AAJ) CABA Républica, Argentina
| | - A Dalcero
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917 (C1033AAJ) CABA Républica, Argentina
| | - L Cavaglieri
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917 (C1033AAJ) CABA Républica, Argentina
| |
Collapse
|
31
|
Frisvad JC, Larsen TO. Extrolites of Aspergillus fumigatus and Other Pathogenic Species in Aspergillus Section Fumigati. Front Microbiol 2016; 6:1485. [PMID: 26779142 PMCID: PMC4703822 DOI: 10.3389/fmicb.2015.01485] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 12/09/2015] [Indexed: 11/13/2022] Open
Abstract
Aspergillus fumigatus is an important opportunistic human pathogen known for its production of a large array of extrolites. Up to 63 species have been described in Aspergillus section Fumigati, some of which have also been reliably reported to be pathogenic, including A. felis, A. fischeri, A. fumigatiaffinis, A. fumisynnematus, A. hiratsukae, A. laciniosus, A. lentulus, A. novofumigatus, A. parafelis, A. pseudofelis, A. pseudoviridinutans, A. spinosus, A. thermomutatus, and A. udagawae. These species share the production of hydrophobins, melanins, and siderophores and ability to grow well at 37°C, but they only share some small molecule extrolites, that could be important factors in pathogenicity. According to the literature gliotoxin and other exometabolites can be contributing factors to pathogenicity, but these exometabolites are apparently not produced by all pathogenic species. It is our hypothesis that species unable to produce some of these metabolites can produce proxy-exometabolites that may serve the same function. We tabulate all exometabolites reported from species in Aspergillus section Fumigati and by comparing the profile of those extrolites, suggest that those producing many different kinds of exometabolites are potential opportunistic pathogens. The exometabolite data also suggest that the profile of exometabolites are highly specific and can be used for identification of these closely related species.
Collapse
Affiliation(s)
- Jens C. Frisvad
- Section of Eukaryotic Biotechnology, Department of Systems Biology, Technical University of DenmarkKongens Lyngby, Denmark
| | | |
Collapse
|
32
|
Scharf DH, Brakhage AA, Mukherjee PK. Gliotoxin--bane or boon? Environ Microbiol 2015; 18:1096-109. [PMID: 26443473 DOI: 10.1111/1462-2920.13080] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 09/30/2015] [Accepted: 10/04/2015] [Indexed: 12/31/2022]
Abstract
Gliotoxin (GT) is the most important epidithiodioxopiperazine (ETP)-type fungal toxin. GT was originally isolated from Trichoderma species as an antibiotic substance involved in biological control of plant pathogenic fungi. A few isolates of GT-producing Trichoderma virens are commercially marketed for biological control and widely used in agriculture. Furthermore, GT is long known as an immunosuppressive agent and also reported to have anti-tumour properties. However, recent publications suggest that GT is a virulence determinant of the human pathogen Aspergillus fumigatus. This compound is thus important on several counts - it has medicinal properties, is a pathogenicity determinant, is a potential diagnostic marker and is important in biological crop protection. The present article addresses this paradox and the ecological role of GT. We discuss the function of GT as defence molecule, the role in aspergillosis and suggest solutions for safe application of Trichoderma-based biofungicides.
Collapse
Affiliation(s)
- Daniel H Scharf
- Department of Molecular and Applied Microbiology, Leibniz-Institute for Natural Product Research and Infection Biology, Hans Knoell Institute (HKI) and Institute for Microbiology, Friedrich Schiller University Jena, Beutenbergstr. 11a, 07745, Jena, Germany
| | - Axel A Brakhage
- Department of Molecular and Applied Microbiology, Leibniz-Institute for Natural Product Research and Infection Biology, Hans Knoell Institute (HKI) and Institute for Microbiology, Friedrich Schiller University Jena, Beutenbergstr. 11a, 07745, Jena, Germany
| | - Prasun K Mukherjee
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| |
Collapse
|
33
|
Frisvad JC, Larsen TO. Chemodiversity in the genus Aspergillus. Appl Microbiol Biotechnol 2015; 99:7859-77. [DOI: 10.1007/s00253-015-6839-z] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 07/08/2015] [Accepted: 07/11/2015] [Indexed: 10/23/2022]
|
34
|
Hillmann F, Novohradská S, Mattern DJ, Forberger T, Heinekamp T, Westermann M, Winckler T, Brakhage AA. Virulence determinants of the human pathogenic fungus Aspergillus fumigatus protect against soil amoeba predation. Environ Microbiol 2015; 17:2858-69. [PMID: 25684622 DOI: 10.1111/1462-2920.12808] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 01/30/2015] [Accepted: 01/31/2015] [Indexed: 02/06/2023]
Abstract
Filamentous fungi represent classical examples for environmentally acquired human pathogens whose major virulence mechanisms are likely to have emerged long before the appearance of innate immune systems. In natural habitats, amoeba predation could impose a major selection pressure towards the acquisition of virulence attributes. To test this hypothesis, we exploited the amoeba Dictyostelium discoideum to study its interaction with Aspergillus fumigatus, two abundant soil inhabitants for which we found co-occurrence in various sites. Fungal conidia were efficiently taken up by D. discoideum, but ingestion was higher when conidia were devoid of the green fungal spore pigment dihydroxynaphtalene melanin, in line with earlier results obtained for immune cells. Conidia were able to survive phagocytic processing, and intracellular germination was initiated only after several hours of co-incubation which eventually led to a lethal disruption of the host cell. Besides phagocytic interactions, both amoeba and fungus secreted cross inhibitory factors which suppressed fungal growth or induced amoeba aggregation with subsequent cell lysis, respectively. On the fungal side, we identified gliotoxin as the major fungal factor killing Dictyostelium, supporting the idea that major virulence attributes, such as escape from phagocytosis and the secretion of mycotoxins are beneficial to escape from environmental predators.
Collapse
Affiliation(s)
- Falk Hillmann
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany.,Department of Microbiology and Molecular Biology, Institute of Microbiology
| | - Silvia Novohradská
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany.,Department of Microbiology and Molecular Biology, Institute of Microbiology
| | - Derek J Mattern
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany.,Department of Microbiology and Molecular Biology, Institute of Microbiology
| | - Tilmann Forberger
- Department of Pharmaceutical Biology, Institute of Pharmacy, Friedrich Schiller University, Jena, Germany
| | - Thorsten Heinekamp
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany.,Department of Microbiology and Molecular Biology, Institute of Microbiology
| | | | - Thomas Winckler
- Department of Pharmaceutical Biology, Institute of Pharmacy, Friedrich Schiller University, Jena, Germany
| | - Axel A Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany.,Department of Microbiology and Molecular Biology, Institute of Microbiology
| |
Collapse
|
35
|
Dogi C, Alonso V, Fochesato A, Poloni V, Cavaglieri L. Comparison of toxicogenic and immunosuppressive capacity of Aspergillus fumigatus
strains isolated from clinical and corn silage samples. J Appl Microbiol 2014; 118:175-81. [DOI: 10.1111/jam.12673] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 09/15/2014] [Accepted: 10/19/2014] [Indexed: 11/29/2022]
Affiliation(s)
- C. Dogi
- Departamento de Microbiología e Inmunología; Universidad Nacional de Río Cuarto; Río Cuarto Córdoba Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Buenos Aires Argentina
| | - V. Alonso
- Departamento de Microbiología e Inmunología; Universidad Nacional de Río Cuarto; Río Cuarto Córdoba Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Buenos Aires Argentina
| | - A. Fochesato
- Departamento de Microbiología e Inmunología; Universidad Nacional de Río Cuarto; Río Cuarto Córdoba Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET); Buenos Aires; Argentina
| | - V. Poloni
- Departamento de Microbiología e Inmunología; Universidad Nacional de Río Cuarto; Río Cuarto Córdoba Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET); Buenos Aires; Argentina
| | - L. Cavaglieri
- Departamento de Microbiología e Inmunología; Universidad Nacional de Río Cuarto; Río Cuarto Córdoba Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Buenos Aires Argentina
| |
Collapse
|
36
|
Immunoevasive Aspergillus virulence factors. Mycopathologia 2014; 178:363-70. [PMID: 24972669 DOI: 10.1007/s11046-014-9768-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Accepted: 06/02/2014] [Indexed: 01/20/2023]
Abstract
Individuals with structural lung disease or defective immunity are predisposed to Aspergillus-associated disease. Manifestations range from allergic to cavitary or angio-invasive syndromes. Despite daily spore inhalation, immunocompetence facilitates clearance through initiation of innate and adaptive host responses. These include mechanical barriers, phagocyte activation, antimicrobial peptide release and pattern recognition receptor activation. Adaptive responses include Th1 and Th2 approaches. Understanding Aspergillus virulence mechanisms remains critical to the development of effective research and treatment strategies to counteract the fungi. Major virulence factors relate to fungal structure, protease release and allergens; however, mechanisms utilized to evade immune recognition continue to be important in establishing infection. These include the fungal rodlet layer, dihydroxynaphthalene-melanin, detoxifying systems for reactive oxygen species and toxin release. One major immunoevasive toxin, gliotoxin, plays a key role in mediating Aspergillus-associated colonization in the context of cystic fibrosis. Here, it down-regulates vitamin D receptor expression which following itraconazole therapy is rescued concurrent with decreased Th2 cytokine (IL-5 and IL-13) concentrations in the CF airway. This review focuses on the interaction between Aspergillus pathogenic mechanisms, host immune responses and the immunoevasive strategies employed by the organism during disease states such as that observed in cystic fibrosis.
Collapse
|
37
|
Wang DN, Toyotome T, Muraosa Y, Watanabe A, Wuren T, Bunsupa S, Aoyagi K, Yamazaki M, Takino M, Kamei K. GliA in Aspergillus fumigatus is required for its tolerance to gliotoxin and affects the amount of extracellular and intracellular gliotoxin. Med Mycol 2014; 52:506-18. [DOI: 10.1093/mmy/myu007] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
38
|
Bugli F, Paroni Sterbini F, Cacaci M, Martini C, Lancellotti S, Stigliano E, Torelli R, Arena V, Caira M, Posteraro P, Sanguinetti M, Posteraro B. Increased production of gliotoxin is related to the formation of biofilm by Aspergillus fumigatus: an immunological approach. Pathog Dis 2014; 70:379-89. [PMID: 24623580 DOI: 10.1111/2049-632x.12152] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 01/05/2014] [Accepted: 02/03/2014] [Indexed: 11/28/2022] Open
Abstract
Gliotoxin (GT) belongs to the epipolythiodioxopiperazine class of toxins secreted from certain fungi including Aspergillus fumigatus, which is the most prolific producer of this secondary metabolite. Recently, enhanced amounts of GT were found in in vitro biofilm-grown A. fumigatus mycelium. To further correlate the A. fumigatus biofilm growth phenotype with the enhanced secretion of GT, a polyclonal antibody (pAb) was produced by immunizing mice against GT. By an indirect immunofluorescent assay, pAb was then able to recognize specifically GT onto A. fumigatus Af293 biofilm formed on human pulmonary epithelial cells. Then, treating Af293 biofilms with a compound which reduces the GT disulfide bonds provoked shutdown of the GT-specific immunofluorescence (IF) signals along the hyphae. To explore the potential of GT for diagnostic use, pAb was shown to react with GT on hyphae into Aspergillus culture-positive respiratory tract specimens from patients with probable invasive aspergillosis (IA) and into tissue specimens from the lungs of patients with proven IA. As the presence of fungal hyphae in clinical specimens strongly indicates the in vivo A. fumigatus growth as a biofilm, anti-GT antibodies could be a specific and sensitive diagnostic tool for detecting A. fumigatus biofilm-associated clinical infections.
Collapse
Affiliation(s)
- Francesca Bugli
- Institute of Microbiology, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Jia X, Chen F, Pan W, Yu R, Tian S, Han G, Fang H, Wang S, Zhao J, Li X, Zheng D, Tao S, Liao W, Han X, Han L. Gliotoxin promotes Aspergillus fumigatus internalization into type II human pneumocyte A549 cells by inducing host phospholipase D activation. Microbes Infect 2014; 16:491-501. [PMID: 24637030 DOI: 10.1016/j.micinf.2014.03.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 02/27/2014] [Accepted: 03/04/2014] [Indexed: 10/25/2022]
Abstract
The internalization of Aspergillus fumigatus into lung epithelial cells is critical for the infection process in the host. Gliotoxin is the most potent toxin produced by A. fumigatus. However, its role in A. fumigatus internalization into the lung epithelial cells is still largely unknown. In the present study, the deletion of the gliP gene regulating the production of gliotoxin in A. fumigatus suppressed the internalization of conidia into the A549 lung epithelial cells, and this suppression could be rescued by the exogenous addition of gliotoxin. At lower concentrations, gliotoxin enhanced the internalization of the conidia of A. fumigatus into A549 cells; in contrast, it inhibited the phagocytosis of J774 macrophages in a dose-dependent manner. Under a concentration of 100 ng/ml, gliotoxin had no effect on A549 cell viability but attenuated ROS production in a dose-dependent manner. Gliotoxin significantly stimulated the phospholipase D activity in the A549 cells at a concentration of 50 ng/ml. This stimulation was blocked by the pretreatment of host cells with PLD1- but not PLD2-specific inhibitor. Morphological cell changes induced by gliotoxin were observed in the A549 cells accompanying with obvious actin cytoskeleton rearrangement and a moderate alteration of phospholipase D distribution. Our data indicated that gliotoxin might be responsible for modulating the A. fumigatus internalization into epithelial cells through phospholipase D1 activation and actin cytoskeleton rearrangement.
Collapse
Affiliation(s)
- Xiaodong Jia
- Department for Hospital Infection Control & Research, Institute of Disease Control & Prevention of PLA, Academy of Military Medical Sciences, Beijing, China
| | - Fangyan Chen
- Department for Hospital Infection Control & Research, Institute of Disease Control & Prevention of PLA, Academy of Military Medical Sciences, Beijing, China
| | - Weihua Pan
- Shanghai Key Laboratory of Molecular Mycology, Department of Dermatology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Rentao Yu
- Department for Hospital Infection Control & Research, Institute of Disease Control & Prevention of PLA, Academy of Military Medical Sciences, Beijing, China; Patent Examination Cooperation Center of the Patent Office, Beijing, China
| | - Shuguang Tian
- Department for Hospital Infection Control & Research, Institute of Disease Control & Prevention of PLA, Academy of Military Medical Sciences, Beijing, China
| | - Gaige Han
- Department for Hospital Infection Control & Research, Institute of Disease Control & Prevention of PLA, Academy of Military Medical Sciences, Beijing, China
| | - Haiqin Fang
- Department for Hospital Infection Control & Research, Institute of Disease Control & Prevention of PLA, Academy of Military Medical Sciences, Beijing, China
| | - Shuo Wang
- Department for Hospital Infection Control & Research, Institute of Disease Control & Prevention of PLA, Academy of Military Medical Sciences, Beijing, China
| | - Jingya Zhao
- Department for Hospital Infection Control & Research, Institute of Disease Control & Prevention of PLA, Academy of Military Medical Sciences, Beijing, China
| | - Xianping Li
- Department for Hospital Infection Control & Research, Institute of Disease Control & Prevention of PLA, Academy of Military Medical Sciences, Beijing, China
| | - Dongyu Zheng
- Department for Hospital Infection Control & Research, Institute of Disease Control & Prevention of PLA, Academy of Military Medical Sciences, Beijing, China
| | - Sha Tao
- Department for Hospital Infection Control & Research, Institute of Disease Control & Prevention of PLA, Academy of Military Medical Sciences, Beijing, China
| | - Wanqing Liao
- Shanghai Key Laboratory of Molecular Mycology, Department of Dermatology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Xuelin Han
- Department for Hospital Infection Control & Research, Institute of Disease Control & Prevention of PLA, Academy of Military Medical Sciences, Beijing, China.
| | - Li Han
- Department for Hospital Infection Control & Research, Institute of Disease Control & Prevention of PLA, Academy of Military Medical Sciences, Beijing, China.
| |
Collapse
|
40
|
Viegas C, Almeida-Silva M, Gomes AQ, Wolterbeek HT, Almeida SM. Fungal contamination assessment in Portuguese elderly care centers. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2014; 77:14-23. [PMID: 24555643 DOI: 10.1080/15287394.2014.861336] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Individuals spend 80-90% of their day indoors and elderly subjects are likely to spend even a greater amount of time indoors. Thus, indoor air pollutants such as bioaerosols may exert a significant impact on this age group. The aim of this study was to characterize fungal contamination within Portuguese elderly care centers. Fungi were measured using conventional as well as molecular methods in bedrooms, living rooms, canteens, storage areas, and outdoors. Bioaerosols were evaluated before and after the microenvironments' occupancy in order to understand the role played by occupancy in fungal contamination. Fungal load results varied from 32 colony-forming units CFU m(-3) in bedrooms to 228 CFU m(-3) in storage areas. Penicillium sp. was the most frequently isolated (38.1%), followed by Aspergillus sp. (16.3%) and Chrysonilia sp. (4.2%). With respect to Aspergillus genus, three different fungal species in indoor air were detected, with A. candidus (62.5%) the most prevalent. On surfaces, 40 different fungal species were isolated and the most frequent was Penicillium sp. (22.2%), followed by Aspergillus sp. (17.3%). Real-time polymerase chain reaction did not detect the presence of A. fumigatus complex. Species from Penicillium and Aspergillus genera were the most abundant in air and surfaces. The species A. fumigatus was present in 12.5% of all indoor microenvironments assessed. The living room was the indoor microenvironment with lowest fungal concentration and the storage area was highest.
Collapse
Affiliation(s)
- C Viegas
- a Environmental Health RG , Lisbon School of Health Technology-IPL , Lisbon , Portugal
| | | | | | | | | |
Collapse
|
41
|
Soleiro C, Pena G, Cavaglieri L, Coelho I, Keller L, Dalcero A, Rosa C. Typing clinical and animal environment Aspergillus fumigatus
gliotoxin producer strains isolated from Brazil by PCR-RFLP markers. Lett Appl Microbiol 2013; 57:484-91. [DOI: 10.1111/lam.12136] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 07/12/2013] [Accepted: 07/18/2013] [Indexed: 11/25/2022]
Affiliation(s)
- C.A. Soleiro
- Departamento de Microbiologia e Imunología Veterinária; Universidade Federal Rural do Rio de Janeiro, Instituto de Veterinária; Seropédica Brazil
- Conselho Nacional de Pesquisas Científicas (CNPq); Belo Horizonte Brazil
| | - G.A. Pena
- Departamento de Microbiología e Inmunología; Facultad de Ciencias Exactas; Físico-Químicas y Naturales; Universidad Nacional de Río Cuarto; Río Cuarto Córdoba Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Buenos Aires Argentina
| | - L.R. Cavaglieri
- Departamento de Microbiología e Inmunología; Facultad de Ciencias Exactas; Físico-Químicas y Naturales; Universidad Nacional de Río Cuarto; Río Cuarto Córdoba Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Buenos Aires Argentina
| | - I. Coelho
- Departamento de Microbiologia e Imunología Veterinária; Universidade Federal Rural do Rio de Janeiro, Instituto de Veterinária; Seropédica Brazil
| | - L.M. Keller
- Departamento de Microbiologia e Imunología Veterinária; Universidade Federal Rural do Rio de Janeiro, Instituto de Veterinária; Seropédica Brazil
- Conselho Nacional de Pesquisas Científicas (CNPq); Belo Horizonte Brazil
| | - A.M. Dalcero
- Departamento de Microbiología e Inmunología; Facultad de Ciencias Exactas; Físico-Químicas y Naturales; Universidad Nacional de Río Cuarto; Río Cuarto Córdoba Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Buenos Aires Argentina
| | - C.A.R. Rosa
- Departamento de Microbiologia e Imunología Veterinária; Universidade Federal Rural do Rio de Janeiro, Instituto de Veterinária; Seropédica Brazil
- Conselho Nacional de Pesquisas Científicas (CNPq); Belo Horizonte Brazil
| |
Collapse
|
42
|
Aboul-Nasr MB, Zohri ANA, Amer EM. Enzymatic and toxigenic ability of opportunistic fungi contaminating intensive care units and operation rooms at Assiut University Hospitals, Egypt. SPRINGERPLUS 2013; 2:347. [PMID: 23961411 PMCID: PMC3733072 DOI: 10.1186/2193-1801-2-347] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 07/26/2013] [Indexed: 11/10/2022]
Abstract
Total of 110 isolates belonging to 8 fungal species collected from intensive care units (ICUs) and operation rooms (ORs) at Assiut University hospitals were examined for their ability to produce some extracellular enzymes and mycotoxins which are considered as important factors involved in for fungal pathogenicity. The results revealed that 73, 92 and 78 out of the 110 tested isolates produced protease, lipase and urease respectively; meanwhile, 77 of the tested isolates exhibited some hemolytic activities. Chromatographic analysis (TLC) of the crude extract of the fungal isolates tested revealed that 79 isolates of them had the ability to produce at least one of these mycotoxic compounds (aflatoxins B1, B2, G1, gliotoxin, fumigillin, T-2, zearalenone, roridin A & E, verrucarin A & J, trichoveroids, satratoxin H & E). These results demonstrate that the opportunistic fungal species isolated from (ICUs) and (ORs) and tested exhibited some enzymatic and mycotoxic ability which are the most effective virulence factors contributing to fungal pathogenicity indicating that the management of infection control unit at Assiut University hospitals must be aware of not only bacterial but also fungal contamination.
Collapse
|
43
|
Apoptosis induced by the fungal pathogen gliotoxin requires a triple phosphorylation of Bim by JNK. Cell Death Differ 2013; 20:1317-29. [PMID: 23832115 DOI: 10.1038/cdd.2013.78] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 04/30/2013] [Accepted: 05/27/2013] [Indexed: 01/03/2023] Open
Abstract
We previously reported that gliotoxin (GT), the major virulence factor of the mold Aspergillus fumigatus causing invasive aspergillosis (IA) in immunocompromised patients, induces apoptosis in a Bak-dependent manner. The signaling pathway leading to Bak activation and subsequent mitochondrial outer membrane permeabilization (MOMP) is elusive. Here, we show that GT and the supernatant of A. fumigatus (but not its GT-defective mutant) activate the JNK pathway and require a co-operative JNK-mediated BimEL phosphorylation at three sites (S100, T112 and S114) to induce apoptosis in mouse fibroblasts, human bronchial and mouse alveolar epithelial cells. Cells (i) treated with the JNK inhibitor SP600125, (ii) deleted or knocked down for JNK1/2 or Bim or (iii) carrying the BimEL triple phosphomutant S100A/T112A/S114A instead of wild-type BimEL are similarly resistant to GT-induced apoptosis. Triple-phosphorylated BimEL is more stable, redistributes from a cytoskeletal to a membrane fraction, better interacts with Bcl-2 and Bcl-xL and more effectively activates Bak than the unphosphorylated mutant. These data indicate that JNK-mediated BimEL phosphorylation at S100, T112 and S114 constitutes a novel regulatory mechanism to activate Bim in response to apoptotic stimuli.
Collapse
|
44
|
Comprehensive annotation of secondary metabolite biosynthetic genes and gene clusters of Aspergillus nidulans, A. fumigatus, A. niger and A. oryzae. BMC Microbiol 2013; 13:91. [PMID: 23617571 PMCID: PMC3689640 DOI: 10.1186/1471-2180-13-91] [Citation(s) in RCA: 213] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 04/15/2013] [Indexed: 11/24/2022] Open
Abstract
Background Secondary metabolite production, a hallmark of filamentous fungi, is an expanding area of research for the Aspergilli. These compounds are potent chemicals, ranging from deadly toxins to therapeutic antibiotics to potential anti-cancer drugs. The genome sequences for multiple Aspergilli have been determined, and provide a wealth of predictive information about secondary metabolite production. Sequence analysis and gene overexpression strategies have enabled the discovery of novel secondary metabolites and the genes involved in their biosynthesis. The Aspergillus Genome Database (AspGD) provides a central repository for gene annotation and protein information for Aspergillus species. These annotations include Gene Ontology (GO) terms, phenotype data, gene names and descriptions and they are crucial for interpreting both small- and large-scale data and for aiding in the design of new experiments that further Aspergillus research. Results We have manually curated Biological Process GO annotations for all genes in AspGD with recorded functions in secondary metabolite production, adding new GO terms that specifically describe each secondary metabolite. We then leveraged these new annotations to predict roles in secondary metabolism for genes lacking experimental characterization. As a starting point for manually annotating Aspergillus secondary metabolite gene clusters, we used antiSMASH (antibiotics and Secondary Metabolite Analysis SHell) and SMURF (Secondary Metabolite Unknown Regions Finder) algorithms to identify potential clusters in A. nidulans, A. fumigatus, A. niger and A. oryzae, which we subsequently refined through manual curation. Conclusions This set of 266 manually curated secondary metabolite gene clusters will facilitate the investigation of novel Aspergillus secondary metabolites.
Collapse
|
45
|
Ragab A, Samaka RM, Salem M. Impact of fungal load on diagnosis and outcome of allergic fungal rhinosinusitis. Eur Arch Otorhinolaryngol 2013; 271:93-101. [PMID: 23568040 DOI: 10.1007/s00405-013-2467-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 03/20/2013] [Indexed: 02/07/2023]
Abstract
Fungal load colonization may modify the classic eosinophilic inflammation in allergic fungal rhinosinusitis (AFRS). We aimed to evaluate the impact of fungal load on diagnosis and outcome of AFRS. In the present cohort study fungal load differences were determined prospectively according to Gomori methenamine silver (GMS) fungal stained (histopathological and cytological examination) with the tenacious mucus, cheesy clay-like materials and sinus mucosa/polyps in 12 AFRS patients. Two groups with different fungal loads, AFRS with (six patients) and without (six patients) high fungal loads (HFL) were evaluated for nasal endoscopic score, paranasal sinuses CT score, histopathological and immunohistochemical changes. Endoscopic outcome scoring differences were evaluated for 1 year after endoscopic sinus surgery and 1 month oral corticosteroids treatment. No differences were observed between both groups (AFRS with/without HFL) concerning the total CT score and opacification features (P > 0.05). Eosinophils and CD3 + CD8 + T cell were dominant in both groups. More edema and less fibrosis were observed in HFL group. Gliotoxin producers Aspergilli were present in all HFL in comparison to 5/6 (83.3%) in cases without HFL. Fewer patients 1/6 (16.6%) and less number of recurrences/year 0.1 ± 0.4 occurred in the AFRS with HFL compared to the AFRS without HFL [5/6 (83.3%) and 1.16 ± 0.7) (P = 0.021 and 0.023, respectively]. In addition to mucus and mucosal tissues, cheesy clay-like materials must be assessed in AFRS cases. Although patients of AFRS with HFL had negligible clinical differences from ordinary AFRS without HFL, they had better outcome after treatment.
Collapse
Affiliation(s)
- Ahmed Ragab
- Otorhinolaryngology Department, ORL H&N Surgery, Menoufia University Hospital, Shebin El-Kom, Egypt,
| | | | | |
Collapse
|
46
|
Gliotoxinogenic Aspergillus fumigatus in the dairy herd environment. Mycotoxin Res 2013; 29:71-8. [DOI: 10.1007/s12550-013-0162-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 02/05/2013] [Accepted: 02/07/2013] [Indexed: 10/27/2022]
|
47
|
Marfenina OE, Fomicheva GM, Gorlenko MV, Svirida NM. Ecophysiological differences between saprotrophic and clinical strains of the microscopic fungus Aspergillus sydowii (Bainier & Sartory) Thom & Church. Microbiology (Reading) 2013. [DOI: 10.1134/s0026261713010086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
48
|
Pandey S, Khan S, Singh A, Gauniyal HM, Kumar B, Chauhan PMS. Access to Indole- And Pyrrole-Fused Diketopiperazines via Tandem Ugi-4CR/Intramolecular Cyclization and Its Regioselective Ring-Opening by Intermolecular Transamidation. J Org Chem 2012; 77:10211-27. [DOI: 10.1021/jo3018704] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Shashi Pandey
- Medicinal
and Process Chemistry Division, ‡Sophisticated Analytical Instrument Facility, CSIR-Central Drug Research Institute, Lucknow, 226 001, India
| | - Shahnawaz Khan
- Medicinal
and Process Chemistry Division, ‡Sophisticated Analytical Instrument Facility, CSIR-Central Drug Research Institute, Lucknow, 226 001, India
| | - Awantika Singh
- Medicinal
and Process Chemistry Division, ‡Sophisticated Analytical Instrument Facility, CSIR-Central Drug Research Institute, Lucknow, 226 001, India
| | - Harsh M. Gauniyal
- Medicinal
and Process Chemistry Division, ‡Sophisticated Analytical Instrument Facility, CSIR-Central Drug Research Institute, Lucknow, 226 001, India
| | - Brijesh Kumar
- Medicinal
and Process Chemistry Division, ‡Sophisticated Analytical Instrument Facility, CSIR-Central Drug Research Institute, Lucknow, 226 001, India
| | - Prem M. S. Chauhan
- Medicinal
and Process Chemistry Division, ‡Sophisticated Analytical Instrument Facility, CSIR-Central Drug Research Institute, Lucknow, 226 001, India
| |
Collapse
|
49
|
Pamel E, Daeseleire E, Clercq N, Herman L, Verbeken A, Heyndrickx M, Vlaemynck G. Restriction analysis of an amplified rodA gene fragment to distinguish Aspergillus fumigatus var. ellipticus from Aspergillus fumigatus var. fumigatus. FEMS Microbiol Lett 2012; 333:153-9. [DOI: 10.1111/j.1574-6968.2012.02608.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2011] [Revised: 02/06/2012] [Accepted: 05/24/2012] [Indexed: 11/29/2022] Open
Affiliation(s)
- Els Pamel
- Technology and Food Science Unit; Institute for Agricultural and Fisheries Research (ILVO); Melle; Belgium
| | - Els Daeseleire
- Technology and Food Science Unit; Institute for Agricultural and Fisheries Research (ILVO); Melle; Belgium
| | - Nikki Clercq
- Technology and Food Science Unit; Institute for Agricultural and Fisheries Research (ILVO); Melle; Belgium
| | - Lieve Herman
- Technology and Food Science Unit; Institute for Agricultural and Fisheries Research (ILVO); Melle; Belgium
| | - Annemieke Verbeken
- Mycology Research Group, Department of Biology; Ghent University; Ghent; Belgium
| | - Marc Heyndrickx
- Technology and Food Science Unit; Institute for Agricultural and Fisheries Research (ILVO); Melle; Belgium
| | - Geertrui Vlaemynck
- Technology and Food Science Unit; Institute for Agricultural and Fisheries Research (ILVO); Melle; Belgium
| |
Collapse
|
50
|
Domingo MP, Colmenarejo C, Martínez-Lostao L, Müllbacher A, Jarne C, Revillo MJ, Delgado P, Roc L, Meis JF, Rezusta A, Pardo J, Gálvez EM. Bis(methyl)gliotoxin proves to be a more stable and reliable marker for invasive aspergillosis than gliotoxin and suitable for use in diagnosis. Diagn Microbiol Infect Dis 2012; 73:57-64. [PMID: 22480566 DOI: 10.1016/j.diagmicrobio.2012.01.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 01/24/2012] [Accepted: 01/24/2012] [Indexed: 10/28/2022]
Abstract
The virulence factor gliotoxin (GT) and its inactive derivative, bis(methylthio)gliotoxin (bmGT), are produced by pathogens of the genus Aspergillus. Here we report the detection of GT and bmGT in serum of humans at risk of invasive aspergillosis (IA) as well as in cultures of fungal isolates derived from patients with proven infection with A. fumigatus. Although both compounds are readily recoverable from spiked human serum or plasma, only bmGT is retained in whole blood, indicating that bmGT may be the better marker for in vivo detection. Accordingly, bmGT was found more frequently than GT in samples from patients at risk of IA and incultures of clinical isolates of A. fumigatus. In some cases, bmGT was detected before mycologic evidence ofinfection was gained. Importantly, neither GT nor bmGT was found in serum from healthy donors or from neutropenic patients without any sign of infection. Thus, bmGT presence might provide a more reliable indicator of A. fumigatus infections than GT. Due to its simplicity and sensitivity, a diagnostic technology based on this test could be easily adopted in clinical laboratories to help in the diagnosis of this often fatal fungal infection.
Collapse
|