1
|
Dong W, Fan X, Guo Y, Wang S, Jia S, Lv N, Yuan T, Pan Y, Xue Y, Chen X, Xiong Q, Yang R, Zhao W, Zhu B. An expanded database and analytical toolkit for identifying bacterial virulence factors and their associations with chronic diseases. Nat Commun 2024; 15:8084. [PMID: 39278950 PMCID: PMC11402979 DOI: 10.1038/s41467-024-51864-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 08/16/2024] [Indexed: 09/18/2024] Open
Abstract
Virulence factor genes (VFGs) play pivotal roles in bacterial infections and have been identified within the human gut microbiota. However, their involvement in chronic diseases remains poorly understood. Here, we establish an expanded VFG database (VFDB 2.0) consisting of 62,332 nonredundant orthologues and alleles of VFGs using species-specific average nucleotide identity ( https://github.com/Wanting-Dong/MetaVF_toolkit/tree/main/databases ). We further develop the MetaVF toolkit, facilitating the precise identification of pathobiont-carried VFGs at the species level. A thorough characterization of VFGs for 5452 commensal isolates from healthy individuals reveals that only 11 of 301 species harbour these factors. Further analyses of VFGs within the gut microbiomes of nine chronic diseases reveal both common and disease-specific VFG features. Notably, in type 2 diabetes patients, long HiFi sequencing confirms that shared VF features are carried by pathobiont strains of Escherichia coli and Klebsiella pneumoniae. These findings underscore the critical importance of identifying and understanding VFGs in microbiome-associated diseases.
Collapse
Affiliation(s)
- Wanting Dong
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinyue Fan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yaqiong Guo
- Institute of Biotechnology and Health, Beijing Academy of Science and Technology, Beijing, 100089, China
| | - Siyi Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shulei Jia
- School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Na Lv
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Tao Yuan
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Yuanlong Pan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yong Xue
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Xi Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qian Xiong
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ruifu Yang
- Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China.
| | - Weigang Zhao
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China.
| | - Baoli Zhu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Department of Pathogenic Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China.
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250117, China.
- Beijing Key Laboratory of Antimicrobial Resistance and Pathogen Genomics, Beijing, 100101, China.
| |
Collapse
|
2
|
Kanaan H, Chapalain A, Chokr A, Doublet P, Gilbert C. Legionella pneumophila cell surface RtxA release by LapD/LapG and its role in virulence. BMC Microbiol 2024; 24:266. [PMID: 39026145 PMCID: PMC11264772 DOI: 10.1186/s12866-024-03395-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 06/20/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Legionella pneumophila is a Gram-negative intracellular bacillus and is the causative agent of a severe form of pneumonia called Legionnaires' disease which accounts for 2-9% of cases of community acquired pneumonia. It produces an extremely large protein belonging to the RTX (Repeats in ToXin) family, called RtxA, and we previously reported that RtxA is transported by a dedicated type 1 secretion system (T1SS) to the cell surface. RTX proteins have been shown to participate in the virulence or biofilm formation of various bacteria, the most studied models being the pore forming hemolysin A (HlyA) of Escherichia coli and the biofilm associated protein LapA of P. fluorescens. LapA localization depends on the enzymatic release by LapD/LapG complex activity. This study aimed to elucidate the dual localization (cell surface associated or released state) of L. pneumophila RTX protein (RtxA) and whether this released versus sequestered state of RtxA plays a role in L. pneumophila virulence. RESULTS The hereby work reveals that, in vitro, LapG periplasmic protease cleaves RtxA N-terminus in the middle of a di-alanine motif (position 108-109). Consistently, a strain lacking LapG protease maintains RtxA on the cell surface, whereas a strain lacking the c-di-GMP receptor LapD does not exhibit cell surface RtxA because of its continuous cleavage and release, as in the LapA-D-G model of Pseudomonas fluorescens. Interestingly, our data point out a key role of RtxA in enhancing the infection process of amoeba cells, regardless of its location (embedded or released); therefore, this may be the result of a secondary role of this surface protein. CONCLUSIONS This is the first experimental identification of the cleavage site within the RTX protein family. The primary role of RtxA in Legionella is still questionable as in many other bacterial species, hence it sounds reasonable to propose a major function in biofilm formation, promoting cell aggregation when RtxA is embedded in the outer membrane and facilitating biofilm dispersion in case of RtxA release. The role of RtxA in enhancing the infection process may be a result of its action on host cells (i.e., PDI interaction or pore-formation), and independently of its status (embedded or released).
Collapse
Affiliation(s)
- Hussein Kanaan
- Centre International de Recherche en Infectiologie (CIRI), Université Lyon 1, INSERM U1111, CNRS UMR5308, ENS, Lyon Bât. Rosalind Franklin, 50 avenue Tony Garnier, Lyon, 69007, France
- Research Laboratory of Microbiology (RLM), Department of Life and Earth Sciences, Faculty of Sciences I, Lebanese University, Hadat Campus, Beirut, Lebanon
| | - Annelise Chapalain
- Centre International de Recherche en Infectiologie (CIRI), Université Lyon 1, INSERM U1111, CNRS UMR5308, ENS, Lyon Bât. Rosalind Franklin, 50 avenue Tony Garnier, Lyon, 69007, France
| | - Ali Chokr
- Research Laboratory of Microbiology (RLM), Department of Life and Earth Sciences, Faculty of Sciences I, Lebanese University, Hadat Campus, Beirut, Lebanon
| | - Patricia Doublet
- Centre International de Recherche en Infectiologie (CIRI), Université Lyon 1, INSERM U1111, CNRS UMR5308, ENS, Lyon Bât. Rosalind Franklin, 50 avenue Tony Garnier, Lyon, 69007, France
| | - Christophe Gilbert
- Centre International de Recherche en Infectiologie (CIRI), Université Lyon 1, INSERM U1111, CNRS UMR5308, ENS, Lyon Bât. Rosalind Franklin, 50 avenue Tony Garnier, Lyon, 69007, France.
| |
Collapse
|
3
|
Li FX, Zhao WH, Li ZH, Song JL, Gao HF. Moraxella haemolytica sp. nov., isolated from a goat with respiratory disease. Arch Microbiol 2023; 206:45. [PMID: 38153526 DOI: 10.1007/s00203-023-03782-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/29/2023]
Abstract
An aerobic, haemolytic, Gram-negative and rod-shaped bacterial strain ZY171148T was isolated from the lung of a dead goat with respiratory disease in Southwest China. The strain grew at 24-39 °C, at pH 6.0-9.0 and in the presence of 0.5-2.0% (w/v) NaCl. Phylogenetic analysis of 16S rRNA gene sequences showed that the strain belongs to the genus Moraxella. The nucleotide sequence similarity analysis of the 16S rRNA gene showed that the strain has the highest similarity of 98.1% to Moraxella (M.) caprae ATCC 700019 T. Phylogenomic analysis of 800 single-copy protein sequences indicated that the strain is a member of the genus Moraxella and forms a separated branch on the Moraxella phylogenetic tree. The strain exhibited the highest orthologous average nucleotide identity (OrthoANI) and average amino acid identity (AAI) values of 77.0 and 77.9% to M. nasibovis CCUG 75921T and M. ovis CCUG 354T, respectively. The strain shared the highest digital DNA-DNA hybridization (dDDH) value of 26.2% to M. osloensis CCUG 350T. The genome G + C content of strain ZY171148T was 42.6 mol%. The strain had C18:1 ω9c (41.7%), C18:0 (11.2%), C16:0 (14.1%) and C12:0 3OH (9.7%) as the predominant fatty acids and CoQ-8 as the major respiratory quinone. The strain contained phosphatidylglycerol, phosphatidylethanolamine, cardiolipin, dilysocardiolipin, monolysocardiolipin and phosphatidic acid as the major polar lipids. β-haemolysis was observed on Columbia blood agar. All results confirmed that strain ZY171148T represents a novel species of the genus Moraxella, for which the name Moraxella haemolytica sp. nov. is proposed, with strain ZY171148T = CCTCC AB 2021471T = CCUG 75920T as the type strain.
Collapse
Affiliation(s)
- Fu-Xiang Li
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, 650224, People's Republic of China.
| | - Wen-Hua Zhao
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, 650224, People's Republic of China
| | - Zhan-Hong Li
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, 650224, People's Republic of China
| | - Jian-Ling Song
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, 650224, People's Republic of China
| | - Hua-Feng Gao
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, 650224, People's Republic of China
| |
Collapse
|
4
|
Tang H, Wang R, Pang S, Han W, Zhang Q, Fang Q, Chen X, Huang Q, Qiu D, Zhou R, Li L. Native ApxIIA secreted by Actinobacillus pleuropneumoniae induces apoptosis in porcine alveolar macrophages dependent on concentration and acylation. Vet Microbiol 2023; 287:109908. [PMID: 37952264 DOI: 10.1016/j.vetmic.2023.109908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/14/2023]
Abstract
Actinobacillus pleuropneumoniae is an important swine respiratory pathogen causing substantial economic losses to the global pig industry. The Apx toxins of A. pleuropneumoniae belong to the RTX toxin family and are major virulence factors. In addition to hemolysis and/or cytotoxicity via pore-forming activity, RTX toxins, such as ApxIA of A. pleuropneumoniae, have been reported to cause other effects on target cells, e.g., apoptosis. A. pleuropneumoniae ApxIIA is expressed by most serotypes and has moderate hemolytic and cytotoxic activities. In this study, porcine alveolar macrophages (3D4/21) were stimulated with different concentrations of purified native ApxIIA from the serotype 7 strain AP76 which only secretes ApxIIA. By observation of nuclear condensation via fluorescent staining and detection of apoptosis and necrosis by flow cytometry, it was found that high and low concentrations of native ApxIIA mainly caused necrosis or apoptosis of 3D4/21 cells, respectively. ApxIIA purified from an AP76 mutant with a deleted acetyltransferase gene (apxIIC) did not induce necrosis nor apoptosis. Western blot analysis using specific antibodies showed that a cleaved caspase 3 and activated capase 9 was detected after treatment of cells with a low concentration of native ApxIIA, while general or specific inhibitors of caspase 3, 8, 9 blocked these effects. ApxIIA-induced apoptosis of macrophages may be a mechanism of A. pleuropneumoniae to escape host immune clearance.
Collapse
Affiliation(s)
- Hao Tang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Rong Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Siqi Pang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Weiyao Han
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Qiuhong Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Qiong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Xiabing Chen
- Institute of Animal Husbandry and Veterinary Science, Wuhan Academy of Agricultural Sciences, Wuhan, Hubei 430070, China
| | - Qi Huang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China; International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, Hubei 430070, China
| | - Dexin Qiu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China; International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, Hubei 430070, China
| | - Lu Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China; International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, Hubei 430070, China.
| |
Collapse
|
5
|
Oluwarinde BO, Ajose DJ, Abolarinwa TO, Montso PK, Du Preez I, Njom HA, Ateba CN. Safety Properties of Escherichia coli O157:H7 Specific Bacteriophages: Recent Advances for Food Safety. Foods 2023; 12:3989. [PMID: 37959107 PMCID: PMC10650914 DOI: 10.3390/foods12213989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Shiga-toxin-producing Escherichia coli (STEC) is typically detected on food products mainly due to cross-contamination with faecal matter. The serotype O157:H7 has been of major public health concern due to the severity of illness caused, prevalence, and management. In the food chain, the main methods of controlling contamination by foodborne pathogens often involve the application of antimicrobial agents, which are now becoming less efficient. There is a growing need for the development of new approaches to combat these pathogens, especially those that harbour antimicrobial resistant and virulent determinants. Strategies to also limit their presence on food contact surfaces and food matrices are needed to prevent their transmission. Recent studies have revealed that bacteriophages are useful non-antibiotic options for biocontrol of E. coli O157:H7 in both animals and humans. Phage biocontrol can significantly reduce E. coli O157:H7, thereby improving food safety. However, before being certified as potential biocontrol agents, the safety of the phage candidates must be resolved to satisfy regulatory standards, particularly regarding phage resistance, antigenic properties, and toxigenic properties. In this review, we provide a general description of the main virulence elements of E. coli O157:H7 and present detailed reports that support the proposals that phages infecting E. coli O157:H7 are potential biocontrol agents. This paper also outlines the mechanism of E. coli O157:H7 resistance to phages and the safety concerns associated with the use of phages as a biocontrol.
Collapse
Affiliation(s)
- Bukola Opeyemi Oluwarinde
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mahikeng 2375, South Africa; (B.O.O.); (D.J.A.); (T.O.A.); (P.K.M.)
- Antimicrobial Resistance and Phage Bio-Control Research Group (AREPHABREG), Department of Microbiology, North-West University, Mahikeng 2735, South Africa
| | - Daniel Jesuwenu Ajose
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mahikeng 2375, South Africa; (B.O.O.); (D.J.A.); (T.O.A.); (P.K.M.)
- Antimicrobial Resistance and Phage Bio-Control Research Group (AREPHABREG), Department of Microbiology, North-West University, Mahikeng 2735, South Africa
| | - Tesleem Olatunde Abolarinwa
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mahikeng 2375, South Africa; (B.O.O.); (D.J.A.); (T.O.A.); (P.K.M.)
- Antimicrobial Resistance and Phage Bio-Control Research Group (AREPHABREG), Department of Microbiology, North-West University, Mahikeng 2735, South Africa
| | - Peter Kotsoana Montso
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mahikeng 2375, South Africa; (B.O.O.); (D.J.A.); (T.O.A.); (P.K.M.)
- Antimicrobial Resistance and Phage Bio-Control Research Group (AREPHABREG), Department of Microbiology, North-West University, Mahikeng 2735, South Africa
| | - Ilse Du Preez
- Centre for Human Metabolomics, North-West University, Potchefstroom 2531, South Africa;
| | - Henry Akum Njom
- Agricultural Research Council, Private Bag X1251, Potchefstroom 2531, South Africa;
| | - Collins Njie Ateba
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mahikeng 2375, South Africa; (B.O.O.); (D.J.A.); (T.O.A.); (P.K.M.)
- Antimicrobial Resistance and Phage Bio-Control Research Group (AREPHABREG), Department of Microbiology, North-West University, Mahikeng 2735, South Africa
| |
Collapse
|
6
|
Al-Smadi DM, Shahwan MY, Madi MY. Breaking Down the Gut: A Case of Severe Toxin-Mediated Colitis. Cureus 2023; 15:e37092. [PMID: 37153292 PMCID: PMC10158091 DOI: 10.7759/cureus.37092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2023] [Indexed: 04/07/2023] Open
Abstract
Shiga-toxin-producing Escherichia coli (STEC) is a worldwide, foodborne pathogen that can lead to life-threatening complications. Transmission has been associated with undercooked meat products, contaminated food and water sources, person-to-person contact, and direct exposure to infected farm animals. As the name suggests, the major virulence factors contributing to its pathogenicity are Shiga toxins, which can cause a spectrum of clinical presentations ranging from mild watery diarrhea to severe hemorrhagic colitis due to its toxic effects on the gastrointestinal tract. We report a case of a 21-year-old man seeking medical attention due to severe crampy abdominal pain and bloody diarrhea who was ultimately diagnosed with a less commonly encountered severe form of colitis in the setting of STEC infection. Thorough investigations while maintaining a high level of clinical suspicion allowed prompt medical care with a complete resolution of symptoms. This case highlights the importance of having high clinical suspicion for STEC even with more severe forms of colitis and sheds light on the role of medical personnel in managing such cases.
Collapse
|
7
|
Enterohemorrhagic Escherichia coli and a Fresh View on Shiga Toxin-Binding Glycosphingolipids of Primary Human Kidney and Colon Epithelial Cells and Their Toxin Susceptibility. Int J Mol Sci 2022; 23:ijms23136884. [PMID: 35805890 PMCID: PMC9266556 DOI: 10.3390/ijms23136884] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/07/2022] [Accepted: 06/17/2022] [Indexed: 02/06/2023] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) are the human pathogenic subset of Shiga toxin (Stx)-producing E. coli (STEC). EHEC are responsible for severe colon infections associated with life-threatening extraintestinal complications such as the hemolytic-uremic syndrome (HUS) and neurological disturbances. Endothelial cells in various human organs are renowned targets of Stx, whereas the role of epithelial cells of colon and kidneys in the infection process has been and is still a matter of debate. This review shortly addresses the clinical impact of EHEC infections, novel aspects of vesicular package of Stx in the intestine and the blood stream as well as Stx-mediated extraintestinal complications and therapeutic options. Here follows a compilation of the Stx-binding glycosphingolipids (GSLs), globotriaosylceramide (Gb3Cer) and globotetraosylceramide (Gb4Cer) and their various lipoforms present in primary human kidney and colon epithelial cells and their distribution in lipid raft-analog membrane preparations. The last issues are the high and extremely low susceptibility of primary renal and colonic epithelial cells, respectively, suggesting a large resilience of the intestinal epithelium against the human-pathogenic Stx1a- and Stx2a-subtypes due to the low content of the high-affinity Stx-receptor Gb3Cer in colon epithelial cells. The review closes with a brief outlook on future challenges of Stx research.
Collapse
|
8
|
Huang W, Meng L, Chen Y, Dong Z, Peng Q. Bacterial outer membrane vesicles as potential biological nanomaterials for antibacterial therapy. Acta Biomater 2022; 140:102-115. [PMID: 34896632 DOI: 10.1016/j.actbio.2021.12.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/05/2021] [Accepted: 12/03/2021] [Indexed: 02/05/2023]
Abstract
Antibiotic therapy is one of the most important approaches against bacterial infections. However, the improper use of antibiotics and the emergence of drug resistance have compromised the efficacy of traditional antibiotic therapy. In this regard, it is of great importance and significance to develop more potent antimicrobial therapies, including the development of functionalized antibiotics delivery systems and antibiotics-independent antimicrobial agents. Outer membrane vesicles (OMVs), secreted by Gram-negative bacteria and with similar structure to cell-derived exosomes, are natural functional nanomaterials and known to play important roles in many bacterial life events, such as communication, biofilm formation and pathogenesis. Recently, more and more reports have demonstrated the use of OMVs as either active antibacterial agents or antibiotics delivery carriers, implying the great potentials of OMVs in antibacterial therapy. Herein, we aim to provide a comprehensive understanding of OMV and its antibacterial applications, including its biogenesis, biofunctions, isolation, purification and its potentials in killing bacteria, delivering antibiotics and developing vaccine or immunoadjuvants. In addition, the concerns in clinical use of OMVs and the possible solutions are discussed. STATEMENT OF SIGNIFICANCE: The emergence of antibiotic-resistant bacteria has led to the failure of traditional antibiotic therapy, and thus become a big threat to human beings. In this regard, developing more potent antibacterial approaches is of great importance and significance. Recently, bacterial outer membrane vesicles (OMVs), which are natural functional nanomaterials secreted by Gram-negative bacteria, have been used as active agents, drug carriers and vaccine adjuvant for antibacterial therapy. This review provides a comprehensive understanding of OMVs and summarizes the recent progress of OMVs in antibacterial applications. The concerns of OMVs in clinical use and the possible solutions are also discussed. As such, this review may guide the future works in antibacterial OMVs and appeal to both scientists and clinicians.
Collapse
Affiliation(s)
- Wenlong Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Lingxi Meng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yuan Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Zaiquan Dong
- Mental Health Center of West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Qiang Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
9
|
Hu B, Yang X, Liu Q, Zhang Y, Jiang D, Jiao H, Yang Y, Xiong Y, Bai X, Hou P. High prevalence and pathogenic potential of Shiga toxin-producing Escherichia coli strains in raw mutton and beef in Shandong, China. Curr Res Food Sci 2022; 5:1596-1602. [PMID: 36161222 PMCID: PMC9493282 DOI: 10.1016/j.crfs.2022.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/09/2022] [Accepted: 08/28/2022] [Indexed: 11/24/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) is a foodborne pathogen that can cause severe human diseases such as hemolytic uremic syndrome (HUS). Human STEC infections are frequently caused through consumption of contaminated foods, especially raw meats. This study aimed to investigate the prevalence of STEC in raw meats and to characterize the meat-derived STEC strains using whole genome sequencing. Our study showed that 26.6% of raw mutton, and 7.5% of raw beef samples were culture-positive for STEC. Thirteen serotypes were identified in 22 meat-derived isolates in this study, including the virulent serotypes O157:H7 and O26:H11. Seven Shiga toxin (Stx) subtypes were found in 22 isolates, of these, stx1c and stx1c + stx2b were predominant. The recently-reported stx2k subtype was found in three mutton-sourced isolates. A number of other virulence genes such as genes encoding intimin (eae), enterohemorrhagic E. coli (EHEC) hemolysin (ehxA), EHEC factor for adherence (efa1), heat-stable enterotoxin 1 (astA), type III secretion system effectors, were detected in meat-derived STEC strains. One mutton-sourced isolate was resistant to three antibiotics, i.e., tetracycline, chloramphenicol, and trimethoprim-sulfamethoxazole. Whole-genome phylogeny indicated the genomic diversity of meat-derived strains in this study. O157:H7 and O26:H11 isolates in this study were phylogenetically grouped together with strains from HUS patients, suggesting their pathogenic potential. To conclude, our study reported high STEC contaminations in retail raw meats, particularly raw mutton, genomic characterization indicated pathogenic potential of meat-derived STEC strains. These findings highlight the critical need for increased monitoring of STEC in retail raw meats in China. High prevalence of Shiga toxin-producing E. coli (STEC) was detected in raw mutton, compared to beef. Virulent serotypes O157:H7 and O26:H11 were found in meat-sourced STEC isolates. Meat-sourced STEC isolates in the same region exhibited genetic diversity.
Collapse
Affiliation(s)
- Bin Hu
- Shandong Center for Disease Control and Prevention, Jinan, 250014, Shandong, China
| | - Xi Yang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Qian Liu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Yuanqing Zhang
- Shandong Center for Disease Control and Prevention, Jinan, 250014, Shandong, China
| | - Deshui Jiang
- Lanling Center for Disease Control and Prevention, Lanling, 277700, Shandong, China
| | - Hongbo Jiao
- Lanling Center for Disease Control and Prevention, Lanling, 277700, Shandong, China
| | - Ying Yang
- Shandong Center for Disease Control and Prevention, Jinan, 250014, Shandong, China
| | - Yanwen Xiong
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Xiangning Bai
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, 141 52, Stockholm, Sweden
- Corresponding author. State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
| | - Peibin Hou
- Shandong Center for Disease Control and Prevention, Jinan, 250014, Shandong, China
- Corresponding author. Shandong Center for Disease Control and Prevention, Jinan, 250014, Shandong, China.
| |
Collapse
|
10
|
Kolenda R, Sidorczuk K, Noszka M, Aleksandrowicz A, Khan MM, Burdukiewicz M, Pickard D, Schierack P. Genome placement of alpha-haemolysin cluster is associated with alpha-haemolysin sequence variation, adhesin and iron acquisition factor profile of Escherichia coli. Microb Genom 2021; 7:000743. [PMID: 34939560 PMCID: PMC8767327 DOI: 10.1099/mgen.0.000743] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 11/10/2021] [Indexed: 11/23/2022] Open
Abstract
Since the discovery of haemolysis, many studies focused on a deeper understanding of this phenotype in Escherichia coli and its association with other virulence genes, diseases and pathogenic attributes/functions in the host. Our virulence-associated factor profiling and genome-wide association analysis of genomes of haemolytic and nonhaemolytic E. coli unveiled high prevalence of adhesins, iron acquisition genes and toxins in haemolytic bacteria. In the case of fimbriae with high prevalence, we analysed sequence variation of FimH, EcpD and CsgA, and showed that different adhesin variants were present in the analysed groups, indicating altered adhesive capabilities of haemolytic and nonhaemolytic E. coli. Analysis of over 1000 haemolytic E. coli genomes revealed that they are pathotypically, genetically and antigenically diverse, but their adhesin and iron acquisition repertoire is associated with genome placement of hlyCABD cluster. Haemolytic E. coli with chromosome-encoded alpha-haemolysin had high frequency of P, S, Auf fimbriae and multiple iron acquisition systems such as aerobactin, yersiniabactin, salmochelin, Fec, Sit, Bfd and hemin uptake systems. Haemolytic E. coli with plasmid-encoded alpha-haemolysin had similar adhesin profile to nonpathogenic E. coli, with high prevalence of Stg, Yra, Ygi, Ycb, Ybg, Ycf, Sfm, F9 fimbriae, Paa, Lda, intimin and type 3 secretion system encoding genes. Analysis of HlyCABD sequence variation revealed presence of variants associated with genome placement and pathotype.
Collapse
Affiliation(s)
- Rafał Kolenda
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Katarzyna Sidorczuk
- Department of Bioinformatics and Genomics, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Mateusz Noszka
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Adrianna Aleksandrowicz
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Muhammad Moman Khan
- Institute of Biotechnology, Faculty Environment and Natural Sciences, BTU Cottbus-Senftenberg, Senftenberg, Germany
| | - Michał Burdukiewicz
- Clinical Research Centre, Medical University of Białystok, Białystok, Poland
| | - Derek Pickard
- Cambridge Institute for Therapeutic Immunology & Infectious Disease, University of Cambridge Department of Medicine, Cambridge, UK
| | - Peter Schierack
- Institute of Biotechnology, Faculty Environment and Natural Sciences, BTU Cottbus-Senftenberg, Senftenberg, Germany
- Faculty of Health Sciences, Public Health Campus Brandenburg, Brandenburg, Germany
| |
Collapse
|
11
|
Li H, Wu G, Zhao L, Zhang M. Suppressed inflammation in obese children induced by a high-fiber diet is associated with the attenuation of gut microbial virulence factor genes. Virulence 2021; 12:1754-1770. [PMID: 34233588 PMCID: PMC8274444 DOI: 10.1080/21505594.2021.1948252] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 06/04/2021] [Accepted: 06/18/2021] [Indexed: 12/15/2022] Open
Abstract
In our previous study, a gut microbiota-targeted dietary intervention with a high-fiber diet improved the immune status of both genetically obese (Prader-Willi Syndrome, PWS) and simple obese (SO) children. However, PWS children had higher inflammation levels than SO children throughout the trial, the gut microbiota of the two cohorts was similar. As some virulence factors (VFs) produced by the gut microbiota play a role in triggering host inflammation, this study compared the characteristics and changes of gut microbial VF genes of the two cohorts before and after the intervention using a fecal metagenomic dataset. We found that in both cohorts, the high-fiber diet reduced the abundance of VF, and particularly pathogen-specific, genes. The composition of VF genes was also modulated, especially for offensive and defensive VF genes. Furthermore, genes belonging to invasion, T3SS (type III secretion system), and adherence classes were suppressed. Co-occurrence network analysis detected VF gene clusters closely related to host inflammation in each cohort. Though these cohort-specific clusters varied in VF gene combinations and cascade reactions affecting inflammation, they mainly contained VFs belonging to iron uptake, T3SS, and invasion classes. The PWS group had a lower abundance of VF genes before the trial, which suggested that other factors could also be responsible for the increased inflammation in this cohort. This study provides insight into the modulation of VF gene structure in the gut microbiota by a high-fiber diet, with respect to reduced inflammation in obese children, and differences in VF genes between these two cohorts.
Collapse
Affiliation(s)
- Hui Li
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Guojun Wu
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Liping Zhao
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P. R. China
- Ministry of Education Key Laboratory for Systems Biomedicine, Shanghai Centre for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Biochemistry and Microbiology and New Jersey Institute for Food, Nutrition and Health, School of Environmental and Biological Sciences, Rutgers University, NJ, USA
| | - Menghui Zhang
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P. R. China
| |
Collapse
|
12
|
Zhang H, Yamamoto E, Murphy J, Carrillo C, Locas A. Shiga Toxin-Producing Escherichia coli (STEC) and STEC-Associated Virulence Genes in Raw Ground Pork in Canada. J Food Prot 2021; 84:1956-1964. [PMID: 34197587 DOI: 10.4315/jfp-21-147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/01/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT Shiga toxin-producing Escherichia coli (STEC) O157:H7/nonmotile and some non-O157 STEC strains are foodborne pathogens. In response to pork-associated O157 STEC outbreaks in Canada, we investigated the occurrence of STEC in Canadian retail raw ground pork during the period of 1 November 2014 to 31 March 2016. Isolated STEC strains were characterized to determine the Shiga toxin gene (stx) subtype and the presence of virulence genes encoding intimin (eae) and enterohemorrhagic E. coli hemolysin (hlyA). O157 STEC and non-O157 STEC strains were isolated from 1 (0.11%) of 879 and 13 (2.24%) of 580 pork samples, respectively. STEC virulence gene profiles containing both eae and hlyA were found only in the O157 STEC (stx2a, eae, hlyA) isolate. The eae gene was absent from all non-O157 STEC isolates. Of the 13 non-O157 STEC isolates, two virulence genes of stx1a and hlyA were found in four (30.8%) O91:H14 STEC isolates, whereas one virulence gene of stx2e, stx1a, and stx2a was identified in five (38.5%), two (15.4%), and one (7.7%) STEC isolates, respectively, of various serotypes. The remaining non-O157 STEC isolate carried stx2, but the subtype is unknown because this isolate could not be recovered for sequencing. O91:H14 STEC (stx1a, hlyA) was previously reported in association with diarrheal illnesses, whereas the other non-O157 STEC isolates identified in this study are not known to be associated with severe human illnesses. Virulence gene profiles identified in this study indicate that the occurrence of non-O157 STEC capable of causing severe human illness is rare in Canadian retail pork. However, O157 STEC in ground pork can occasionally occur; therefore, education regarding the potential risks associated with STEC contamination of pork would be beneficial for the public and those in the food industry to help reduce foodborne illnesses. HIGHLIGHTS
Collapse
Affiliation(s)
- Helen Zhang
- Food Safety Science Directorate, Science Branch, Canadian Food Inspection Agency, 1400 Merivale Road, Ottawa, Ontario, Canada K1A 0Y9
| | - Etsuko Yamamoto
- Food Safety Science Directorate, Science Branch, Canadian Food Inspection Agency, 1400 Merivale Road, Ottawa, Ontario, Canada K1A 0Y9
| | - Johanna Murphy
- Food Safety Science Directorate, Science Branch, Canadian Food Inspection Agency, 1400 Merivale Road, Ottawa, Ontario, Canada K1A 0Y9
| | - Catherine Carrillo
- Research and Development, Ottawa Laboratory (Carling), Canadian Food Inspection Agency, Building 22, CEF 960 Carling Avenue, Ottawa, Ontario, Canada K1A 0Y9
| | - Annie Locas
- Food Safety Science Directorate, Science Branch, Canadian Food Inspection Agency, 1400 Merivale Road, Ottawa, Ontario, Canada K1A 0Y9
| |
Collapse
|
13
|
Zai X, Yin Y, Guo F, Yang Q, Li R, Li Y, Zhang J, Xu J, Chen W. Screening of potential vaccine candidates against pathogenic Brucella spp. using compositive reverse vaccinology. Vet Res 2021; 52:75. [PMID: 34078437 PMCID: PMC8170439 DOI: 10.1186/s13567-021-00939-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/04/2021] [Indexed: 11/25/2022] Open
Abstract
Brucella spp. are Gram-negative, facultative intracellular bacteria that cause brucellosis in humans and various animals. The threat of brucellosis has increased, yet currently available live attenuated vaccines still have drawbacks. Therefore, subunit vaccines, produced using protein antigens and having the advantage of being safe, cost-effective and efficacious, are urgently needed. In this study, we used core proteome analysis and a compositive RV methodology to screen potential broad-spectrum antigens against 213 pathogenic strains of Brucella spp. with worldwide geographic distribution. Candidate proteins were scored according to six biological features: subcellular localization, antigen similarity, antigenicity, mature epitope density, virulence, and adhesion probability. In the RV analysis, a total 32 candidate antigens were picked out. Of these, three proteins were selected for assessment of immunogenicity and preliminary protection in a mouse model: outer membrane protein Omp19 (used as a positive control), type IV secretion system (T4SS) protein VirB8, and type I secretion system (T1SS) protein HlyD. These three antigens with a high degree of conservation could induce specific humoral and cellular immune responses. Omp19, VirB8 and HlyD could substantially reduce the organ bacterial load of B. abortus S19 in mice and provide varying degrees of protection. In this study, we demonstrated the effectiveness of this unique strategy for the screening of potential broad-spectrum antigens against Brucella. Further evaluation is needed to identify the levels of protection conferred by the vaccine antigens against wild-type pathogenic Brucella species challenge.
Collapse
Affiliation(s)
- Xiaodong Zai
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Ying Yin
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Fengyu Guo
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Qiaoling Yang
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Ruihua Li
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Yaohui Li
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Jun Zhang
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Junjie Xu
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China.
| | - Wei Chen
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China.
| |
Collapse
|
14
|
Cytotoxic Escherichia coli strains encoding colibactin, cytotoxic necrotizing factor, and cytolethal distending toxin colonize laboratory common marmosets (Callithrix jacchus). Sci Rep 2021; 11:2309. [PMID: 33504843 PMCID: PMC7841143 DOI: 10.1038/s41598-020-80000-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/08/2020] [Indexed: 11/09/2022] Open
Abstract
Cyclomodulins are virulence factors that modulate cellular differentiation, apoptosis, and proliferation. These include colibactin (pks), cytotoxic necrotizing factor (cnf), and cytolethal distending toxin (cdt). Pathogenic pks+, cnf+, and cdt+ E. coli strains are associated with inflammatory bowel disease (IBD) and colorectal cancer in humans and animals. Captive marmosets are frequently afflicted with IBD-like disease, and its association with cyclomodulins is unknown. Cyclomodulin-encoding E. coli rectal isolates were characterized using PCR-based assays in healthy and clinically affected marmosets originating from three different captive sources. 139 E. coli isolates were cultured from 122 of 143 marmosets. The pks gene was detected in 56 isolates (40%), cnf in 47 isolates (34%), and cdt in 1 isolate (0.7%). The prevalences of pks+ and cnf+ E. coli isolates were significantly different between the three marmoset colonies. 98% of cyclomodulin-positive E. coli belonged to phylogenetic group B2. Representative isolates demonstrated cyclomodulin cytotoxicity, and serotyping and whole genome sequencing were consistent with pathogenic E. coli strains. However, the presence of pks+, cnf+, or cdt+ E. coli did not correlate with clinical gastrointestinal disease in marmosets. Cyclomodulin-encoding E. coli colonize laboratory common marmosets in a manner dependent on the source, potentially impacting reproducibility in marmoset models.
Collapse
|
15
|
Liu Y, Li H, Chen X, Tong P, Zhang Y, Zhu M, Su Z, Yao G, Li G, Cai W. Characterization of Shiga toxin-producing Escherichia coli isolated from Cattle and Sheep in Xinjiang province, China, using whole-genome sequencing. Transbound Emerg Dis 2021; 69:413-422. [PMID: 33480086 DOI: 10.1111/tbed.13999] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 01/08/2021] [Accepted: 01/17/2021] [Indexed: 11/29/2022]
Abstract
Shiga toxin-producing Escherichia coli (STEC) is an important food-borne pathogen capable of causing severe gastrointestinal diseases in humans. Cattle and sheep are the natural reservoir hosts of STEC strains. Previously, we isolated 56 STEC strains from anal and carcass swab samples of cattle and sheep in farms and slaughterhouses. In this study, we performed whole-genome sequencing of these isolates and determined their serotypes, virulence profiles, sequence types (STs) and genetic relationships. Our results showed that the 56 isolates belong to 20 different STs, 29 O:H serotypes and 8 stx subtype combinations. The highly prevalent serotypes for bovine and ovine isolates were O8:H25 and O87:H16, respectively. Five serotypes of cattle or sheep isolates are novel. The majority (63%) of cattle isolates contain stx1 + stx2, subtyped into stx1a, stx2a and stx2c. In contrast, most of the sheep isolates contain stx1 only, primarily subtyped into stx1a and stx1c. None of the isolates tested eae-positive, but virulence factors such as ehxA and espP were present with variable prevalence rates. The prevalence of saa (19.6%) and espP (12.5%) in cattle isolates is much higher than that in sheep isolates, whereas that of subA (34%), katP (14.3%) and ireA (28.6%) in sheep isolates is considerably higher than that in cattle isolates. Core-genome SNP analysis revealed that the majority of isolates could be clustered based on their serotypes or STs, whereas some clustering is associated with more than one ST or serotype. Five sheep isolates (4 belonging to ST675 and serotype O76:H19 and 1 belonging to ST25 and serotype O128:H2) share STs, serotypes and stx profiles with two hemolytic uremic syndrome-associated enterohemorrhagic E. coli (HUSEC) isolates; a cattle isolate belonging to the same ST as HUSEC isolate HUSEC001 contains all the nine virulence genes tested. These data suggest a potential of the six isolates for causing severe human infections. Collectively, we described the characteristics of cattle and sheep STEC isolates from Xinjiang, China, which may be utilized in comparative studies of other geographic regions and sources of isolation, and for surveillance as well.
Collapse
Affiliation(s)
- Yingyu Liu
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Huoming Li
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xuhua Chen
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.,Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Panpan Tong
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Yan Zhang
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Mingyue Zhu
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Zhanqiang Su
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Gang Yao
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Ganwu Li
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.,Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Wentong Cai
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
16
|
Pinto G, Almeida C, Azeredo J. Bacteriophages to control Shiga toxin-producing E. coli - safety and regulatory challenges. Crit Rev Biotechnol 2020; 40:1081-1097. [PMID: 32811194 DOI: 10.1080/07388551.2020.1805719] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Shiga toxin-producing Escherichia coli (STEC) are usually found on food products due to contamination from the fecal origin, as their main environmental reservoir is considered to be the gut of ruminants. While this pathogen is far from the incidence of other well-known foodborne bacteria, the severity of STEC infections in humans has triggered global concerns as far as its incidence and control are concerned. Major control strategies for foodborne pathogens in food-related settings usually involve traditional sterilization/disinfection techniques. However, there is an increasing need for the development of further strategies to enhance the antimicrobial outcome, either on food-contact surfaces or directly in food matrices. Phages are considered to be a good alternative to control foodborne pathogens, with some phage-based products already cleared by the Food and Drug Administration (FDA) to be used in the food industry. In European countries, phage-based food decontaminants have already been used. Nevertheless, its broad use in the European Union is not yet possible due to the lack of specific guidelines for the approval of these products. Furthermore, some safety concerns remain to be addressed so that the regulatory requirements can be met. In this review, we present an overview of the main virulence factors of STEC and introduce phages as promising biocontrol agents for STEC control. We further present the regulatory constraints on the approval of phages for food applications and discuss safety concerns that are still impairing their use.
Collapse
Affiliation(s)
- Graça Pinto
- CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Braga, Portugal
| | - Carina Almeida
- INIAV, IP-National Institute for Agrarian and Veterinary Research, Vairão, Portugal
| | - Joana Azeredo
- CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Braga, Portugal
| |
Collapse
|
17
|
Nouws S, Bogaerts B, Verhaegen B, Denayer S, Crombé F, De Rauw K, Piérard D, Marchal K, Vanneste K, Roosens NHC, De Keersmaecker SCJ. The Benefits of Whole Genome Sequencing for Foodborne Outbreak Investigation from the Perspective of a National Reference Laboratory in a Smaller Country. Foods 2020; 9:E1030. [PMID: 32752159 PMCID: PMC7466227 DOI: 10.3390/foods9081030] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 12/21/2022] Open
Abstract
Gradually, conventional methods for foodborne pathogen typing are replaced by whole genome sequencing (WGS). Despite studies describing the overall benefits, National Reference Laboratories of smaller countries often show slower uptake of WGS, mainly because of significant investments required to generate and analyze data of a limited amount of samples. To facilitate this process and incite policy makers to support its implementation, a Shiga toxin-producing Escherichia coli (STEC) O157:H7 (stx1+, stx2+, eae+) outbreak (2012) and a STEC O157:H7 (stx2+, eae+) outbreak (2013) were retrospectively analyzed using WGS and compared with their conventional investigations. The corresponding results were obtained, with WGS delivering even more information, e.g., on virulence and antimicrobial resistance genotypes. Besides a universal, all-in-one workflow with less hands-on-time (five versus seven actual working days for WGS versus conventional), WGS-based cgMLST-typing demonstrated increased resolution. This enabled an accurate cluster definition, which remained unsolved for the 2013 outbreak, partly due to scarce epidemiological linking with the suspect source. Moreover, it allowed detecting two and one earlier circulating STEC O157:H7 (stx1+, stx2+, eae+) and STEC O157:H7 (stx2+, eae+) strains as closely related to the 2012 and 2013 outbreaks, respectively, which might have further directed epidemiological investigation initially. Although some bottlenecks concerning centralized data-sharing, sampling strategies, and perceived costs should be considered, we delivered a proof-of-concept that even in smaller countries, WGS offers benefits for outbreak investigation, if a sufficient budget is available to ensure its implementation in surveillance. Indeed, applying a database with background isolates is critical in interpreting isolate relationships to outbreaks, and leveraging the true benefit of WGS in outbreak investigation and/or prevention.
Collapse
Affiliation(s)
- Stéphanie Nouws
- Department of Expertise and service provision, Transversal activities in Applied Genomics, Sciensano, 1050 Brussels, Belgium; (S.N.); (B.B.); (K.V.); (N.H.C.R.)
- Department of Information Technology, IDLab, imec, Ghent University, 9052 Ghent, Belgium;
| | - Bert Bogaerts
- Department of Expertise and service provision, Transversal activities in Applied Genomics, Sciensano, 1050 Brussels, Belgium; (S.N.); (B.B.); (K.V.); (N.H.C.R.)
- Department of Information Technology, IDLab, imec, Ghent University, 9052 Ghent, Belgium;
| | - Bavo Verhaegen
- National Reference Laboratory for Shiga Toxin-Producing Escherichia coli (NRL-STEC), National Reference Laboratory for Foodborne Outbreaks (NRL-FBO), Department of Infectious diseases in humans, Foodborne Pathogens, Sciensano, 1050 Brussels, Belgium; (B.V.); (S.D.)
| | - Sarah Denayer
- National Reference Laboratory for Shiga Toxin-Producing Escherichia coli (NRL-STEC), National Reference Laboratory for Foodborne Outbreaks (NRL-FBO), Department of Infectious diseases in humans, Foodborne Pathogens, Sciensano, 1050 Brussels, Belgium; (B.V.); (S.D.)
| | - Florence Crombé
- Department of Microbiology and Infection Control, National Reference Center for Shiga Toxin-Producing Escherichia coli (NRC-STEC), Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), 1090 Brussels, Belgium; (F.C.); (K.D.R.); (D.P.)
| | - Klara De Rauw
- Department of Microbiology and Infection Control, National Reference Center for Shiga Toxin-Producing Escherichia coli (NRC-STEC), Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), 1090 Brussels, Belgium; (F.C.); (K.D.R.); (D.P.)
| | - Denis Piérard
- Department of Microbiology and Infection Control, National Reference Center for Shiga Toxin-Producing Escherichia coli (NRC-STEC), Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), 1090 Brussels, Belgium; (F.C.); (K.D.R.); (D.P.)
| | - Kathleen Marchal
- Department of Information Technology, IDLab, imec, Ghent University, 9052 Ghent, Belgium;
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Department of Genetics, University of Pretoria, Pretoria 0083, South Africa
| | - Kevin Vanneste
- Department of Expertise and service provision, Transversal activities in Applied Genomics, Sciensano, 1050 Brussels, Belgium; (S.N.); (B.B.); (K.V.); (N.H.C.R.)
| | - Nancy H. C. Roosens
- Department of Expertise and service provision, Transversal activities in Applied Genomics, Sciensano, 1050 Brussels, Belgium; (S.N.); (B.B.); (K.V.); (N.H.C.R.)
| | - Sigrid C. J. De Keersmaecker
- Department of Expertise and service provision, Transversal activities in Applied Genomics, Sciensano, 1050 Brussels, Belgium; (S.N.); (B.B.); (K.V.); (N.H.C.R.)
| |
Collapse
|
18
|
Collis RM, Biggs PJ, Midwinter AC, Browne AS, Wilkinson DA, Irshad H, French NP, Brightwell G, Cookson AL. Genomic epidemiology and carbon metabolism of Escherichia coli serogroup O145 reflect contrasting phylogenies. PLoS One 2020; 15:e0235066. [PMID: 32584859 PMCID: PMC7316241 DOI: 10.1371/journal.pone.0235066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 06/08/2020] [Indexed: 11/18/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) are a leading cause of foodborne outbreaks of human disease, but they reside harmlessly as an asymptomatic commensal in the ruminant gut. STEC serogroup O145 are difficult to isolate as routine diagnostic methods are unable to distinguish non-O157 serogroups due to their heterogeneous metabolic characteristics, resulting in under-reporting which is likely to conceal their true prevalence. In light of these deficiencies, the purpose of this study was a twofold approach to investigate enhanced STEC O145 diagnostic culture-based methods: firstly, to use a genomic epidemiology approach to understand the genetic diversity and population structure of serogroup O145 at both a local (New Zealand) (n = 47) and global scale (n = 75) and, secondly, to identify metabolic characteristics that will help the development of a differential media for this serogroup. Analysis of a subset of E. coli serogroup O145 strains demonstrated considerable diversity in carbon utilisation, which varied in association with eae subtype and sequence type. Several carbon substrates, such as D-serine and D-malic acid, were utilised by the majority of serogroup O145 strains, which, when coupled with current molecular and culture-based methods, could aid in the identification of presumptive E. coli serogroup O145 isolates. These carbon substrates warrant subsequent testing with additional serogroup O145 strains and non-O145 strains. Serogroup O145 strains displayed extensive genetic heterogeneity that was correlated with sequence type and eae subtype, suggesting these genetic markers are good indicators for distinct E. coli phylogenetic lineages. Pangenome analysis identified a core of 3,036 genes and an open pangenome of >14,000 genes, which is consistent with the identification of distinct phylogenetic lineages. Overall, this study highlighted the phenotypic and genotypic heterogeneity within E. coli serogroup O145, suggesting that the development of a differential media targeting this serogroup will be challenging.
Collapse
Affiliation(s)
- Rose M. Collis
- AgResearch Ltd, Hopkirk Research Institute, Massey University, Palmerston North, New Zealand
- Molecular Epidemiology and Veterinary Public Health Laboratory (EpiLab), Infectious Disease Research Centre, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Patrick J. Biggs
- Molecular Epidemiology and Veterinary Public Health Laboratory (EpiLab), Infectious Disease Research Centre, School of Veterinary Science, Massey University, Palmerston North, New Zealand
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
- New Zealand Food Safety Science and Research Centre, Massey University, Palmerston North, New Zealand
| | - Anne C. Midwinter
- Molecular Epidemiology and Veterinary Public Health Laboratory (EpiLab), Infectious Disease Research Centre, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - A. Springer Browne
- Molecular Epidemiology and Veterinary Public Health Laboratory (EpiLab), Infectious Disease Research Centre, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - David A. Wilkinson
- Molecular Epidemiology and Veterinary Public Health Laboratory (EpiLab), Infectious Disease Research Centre, School of Veterinary Science, Massey University, Palmerston North, New Zealand
- New Zealand Food Safety Science and Research Centre, Massey University, Palmerston North, New Zealand
| | - Hamid Irshad
- Animal Health Programme, National Agricultural Research Centre, Islamabad, Pakistan
| | - Nigel P. French
- Molecular Epidemiology and Veterinary Public Health Laboratory (EpiLab), Infectious Disease Research Centre, School of Veterinary Science, Massey University, Palmerston North, New Zealand
- New Zealand Food Safety Science and Research Centre, Massey University, Palmerston North, New Zealand
| | - Gale Brightwell
- AgResearch Ltd, Hopkirk Research Institute, Massey University, Palmerston North, New Zealand
- New Zealand Food Safety Science and Research Centre, Massey University, Palmerston North, New Zealand
| | - Adrian L. Cookson
- AgResearch Ltd, Hopkirk Research Institute, Massey University, Palmerston North, New Zealand
- Molecular Epidemiology and Veterinary Public Health Laboratory (EpiLab), Infectious Disease Research Centre, School of Veterinary Science, Massey University, Palmerston North, New Zealand
- * E-mail:
| |
Collapse
|
19
|
Valid Presumption of Shiga Toxin-Mediated Damage of Developing Erythrocytes in EHEC-Associated Hemolytic Uremic Syndrome. Toxins (Basel) 2020; 12:toxins12060373. [PMID: 32512916 PMCID: PMC7354503 DOI: 10.3390/toxins12060373] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 02/06/2023] Open
Abstract
The global emergence of clinical diseases caused by enterohemorrhagic Escherichia coli (EHEC) is an issue of great concern. EHEC release Shiga toxins (Stxs) as their key virulence factors, and investigations on the cell-damaging mechanisms toward target cells are inevitable for the development of novel mitigation strategies. Stx-mediated hemolytic uremic syndrome (HUS), characterized by the triad of microangiopathic hemolytic anemia, thrombocytopenia, and acute renal injury, is the most severe outcome of an EHEC infection. Hemolytic anemia during HUS is defined as the loss of erythrocytes by mechanical disruption when passing through narrowed microvessels. The formation of thrombi in the microvasculature is considered an indirect effect of Stx-mediated injury mainly of the renal microvascular endothelial cells, resulting in obstructions of vessels. In this review, we summarize and discuss recent data providing evidence that HUS-associated hemolytic anemia may arise not only from intravascular rupture of erythrocytes, but also from the extravascular impairment of erythropoiesis, the development of red blood cells in the bone marrow, via direct Stx-mediated damage of maturing erythrocytes, leading to “non-hemolytic” anemia.
Collapse
|
20
|
Pérez-Etayo L, González D, Vitas AI. The Aquatic Ecosystem, a Good Environment for the Horizontal Transfer of Antimicrobial Resistance and Virulence-Associated Factors Among Extended Spectrum β-lactamases Producing E. coli. Microorganisms 2020; 8:microorganisms8040568. [PMID: 32326434 PMCID: PMC7232254 DOI: 10.3390/microorganisms8040568] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/09/2020] [Accepted: 04/12/2020] [Indexed: 12/31/2022] Open
Abstract
One of the main public health problems nowadays is the increase of antimicrobial resistance, both in the hospital environment and outside it (animal environment, food and aquatic ecosystems, among others). It is necessary to investigate the virulence-associated factors and the ability of horizontal gene transfer among bacteria for a better understanding of the pathogenicity and the mechanisms of dissemination of resistant bacteria. Therefore, the objective of this work was to detect several virulence factors genes (fimA, papC, papG III, cnf1, hlyA and aer) and to determine the conjugative capacity in a wide collection of extended-spectrum β-lactamases-producing E. coli isolated from different sources (human, food, farms, rivers, and wastewater treatment plants). Regarding virulence genes, fimA, papC, and aer were distributed throughout all the studied environments, papG III was mostly related to clinical strains and wastewater is a route of dissemination for cnf1 and hlyA. Strains isolated from aquatic environments showed an average conjugation frequencies of 1.15 × 10−1 ± 5 × 10−1, being significantly higher than those observed in strains isolated from farms and food (p < 0.05), with frequencies of 1.53 × 10−4 ± 2.85 × 10−4 and 9.61 × 10−4 ± 1.96 × 10−3, respectively. The reported data suggest the importance that the aquatic environment (especially WWTPs) acquires for the exchange of genes and the dispersion of resistance. Therefore, specific surveillance programs of AMR indicators in wastewaters from animal or human origin are needed, in order to apply sanitation measures to reduce the burden of resistant bacteria arriving to risky environments as WWTPs.
Collapse
Affiliation(s)
- Lara Pérez-Etayo
- Department of Microbiology and Parasitology, University of Navarra, 31008 Pamplona, Spain; (D.G.); (A.I.V.)
- Correspondence: ; Tel.: +34-948-425-600
| | - David González
- Department of Microbiology and Parasitology, University of Navarra, 31008 Pamplona, Spain; (D.G.); (A.I.V.)
- Instituto de Investigación Sanitaria de Navarra (IDISNA), 31008 Pamplona, Spain
| | - Ana Isabel Vitas
- Department of Microbiology and Parasitology, University of Navarra, 31008 Pamplona, Spain; (D.G.); (A.I.V.)
- Instituto de Investigación Sanitaria de Navarra (IDISNA), 31008 Pamplona, Spain
| |
Collapse
|
21
|
Wang Y, Zhai D, Fan Z, Qu D, Chen G, Su S, Meng J, Jia M, Luo X, Li M. PAMP protects intestine from Enterohemorrhagic Escherichia coli infection through destroying cell membrane and inhibiting inflammatory response. Biochem Biophys Res Commun 2020; 523:939-946. [PMID: 31964533 DOI: 10.1016/j.bbrc.2020.01.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 01/02/2020] [Indexed: 12/22/2022]
Abstract
Proadrenomedullin N-terminal 20 peptide (PAMP) is elevated in sepsis, but the function and possible mechanism of PAMP in bacterial infection is elusive. This study is aim to evaluate the role of PAMP in the interaction between the Enterohemorrhagic E. coli (EHEC) and the host barrier. Our results showed that PAMP alleviated the EHEC-induced disruption of goblet cells and mucosal damage in the intestine, increased the expression of occludin in the colon of EHEC-infected mice, and reduced the proinflammatory cytokines level in serum significantly compared with the control group. Meanwhile, lipopolysaccharide (LPS) stimulation could dose-dependently induce the expression of preproADM, the precursor of PAMP, in human intestinal epithelial cell (HIEC) and human umbilical vein endothelial cell (HUVEC). In addition, PAMP inhibited the growth of EHEC O157:H7 and destroyed the inner and outer membrane. At low concentration, PAMP attenuated the EHEC virulence genes including hlyA and eaeA, which was also confirmed from reduced hemolysis to red cells and adhesion to HIEC. These results indicated that EHEC infection would modulate the expression of PAMP in intestinal epithelium or vascular endothelium, and in turn exerted a protective effect in EHEC induced infection by rupturing the bacterial cell membrane and attenuating the bacterial virulence.
Collapse
Affiliation(s)
- Yikun Wang
- Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, China
| | - Dongsheng Zhai
- Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, China
| | - Zhaoyang Fan
- Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, China
| | - Di Qu
- Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, China
| | - Guanghui Chen
- Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, China
| | - Shan Su
- Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, China
| | - Jingru Meng
- Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, China
| | - Min Jia
- Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, China
| | - Xiaoxing Luo
- Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, China
| | - Mingkai Li
- Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, China.
| |
Collapse
|
22
|
Valguarnera E, Wardenburg JB. Good Gone Bad: One Toxin Away From Disease for Bacteroides fragilis. J Mol Biol 2019; 432:765-785. [PMID: 31857085 DOI: 10.1016/j.jmb.2019.12.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 11/27/2019] [Accepted: 12/05/2019] [Indexed: 02/06/2023]
Abstract
The human gut is colonized by hundreds of trillions of microorganisms whose acquisition begins during early infancy. Species from the Bacteroides genus are ubiquitous commensals, comprising about thirty percent of the human gut microbiota. Bacteroides fragilis is one of the least abundant Bacteroides species, yet is the most common anaerobe isolated from extraintestinal infections in humans. A subset of B. fragilis strains carry a genetic element that encodes a metalloprotease enterotoxin named Bacteroides fragilis toxin, or BFT. Toxin-bearing strains, or Enterotoxigenic B. fragilis (ETBF) cause acute and chronic intestinal disease in children and adults. Despite this association with disease, around twenty percent of the human population appear to be asymptomatic carriers of ETBF. BFT damages the colonic epithelial barrier by inducing cleavage of the zonula adherens protein E-cadherin and initiating a cell signaling response characterized by inflammation and c-Myc-dependent pro-oncogenic hyperproliferation. As a consequence, mice harboring genetic mutations that predispose to colonic inflammation or tumor formation are uniquely susceptible to toxin-mediated injury. The recent observation of ETBF-bearing biofilms in colon biopsies from humans with colon cancer susceptibility loci strongly suggests that ETBF is a driver of colorectal cancer. This article will address ETBF biology from a host-pathobiont perspective, including clinical data, analysis of molecular mechanisms of disease, and the complex ecological context of the human gut.
Collapse
Affiliation(s)
- Ezequiel Valguarnera
- Department of Pediatrics, Washington University School of Medicine, 660 S. Euclid Ave. Box 8208, St. Louis, MO 63110
| | - Juliane Bubeck Wardenburg
- Department of Pediatrics, Washington University School of Medicine, 660 S. Euclid Ave. Box 8208, St. Louis, MO 63110.
| |
Collapse
|
23
|
G M Gonzalez A, M F Cerqueira A. Shiga toxin-producing Escherichia coli in the animal reservoir and food in Brazil. J Appl Microbiol 2019; 128:1568-1582. [PMID: 31650661 DOI: 10.1111/jam.14500] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/18/2019] [Accepted: 10/22/2019] [Indexed: 12/11/2022]
Abstract
Shiga toxin-producing Escherichia coli (STEC) is a zoonotic pathotype associated with human gastrointestinal disease that may progress to severe complications. Ruminants, especially cattle, are the main reservoirs of STEC contaminating the environment and foods of animal or vegetable origin. Besides Shiga toxin, other virulence factors are involved in STEC virulence. O157:H7 remains the most frequent serotype associated with disease. In Brazil, the prevalence of STEC reaches values as high as 90% in cattle and 20% in meat products which may impact the Brazilian food export trade. However, only few reports are related to human disease. The stx1 gene prevails in cattle, whereas the stx2 gene is more frequent in food. Several STEC serotypes have been isolated from cattle and food in Brazil, including the O157:H7, O111:NT, NT:H19 as well as O26 and O103 serogroups. O113: H21 STEC strains are frequent in ruminants and foods but with no report in human disease. The virulence profile of Brazilian STEC strains from cattle and food suggests a pathogenic potential to humans, although some differences with clinical strains have been detected. Further studies, employing recent and more discriminative techniques are in need to better clarify their virulence potential.
Collapse
Affiliation(s)
- Alice G M Gonzalez
- Departamento de Bromatologia, Universidade Federal Fluminense, Niterói, Brazil
| | - Aloysio M F Cerqueira
- Departamento de Microbiologia e Parasitologia, Universidade Federal Fluminense, Niterói, Brazil
| |
Collapse
|
24
|
Rapid culture-based identification of Shiga toxin-producing Escherichia coli and Shigella spp./Enteroinvasive E. coli using the eazyplex® EHEC complete assay. Eur J Clin Microbiol Infect Dis 2019; 39:151-158. [PMID: 31529306 DOI: 10.1007/s10096-019-03704-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/04/2019] [Indexed: 12/14/2022]
Abstract
Shiga toxin-producing Escherichia coli (STEC) and Shigella spp./enteroinvasive E. coli (EIEC) are common diarrheagenic bacteria that cause sporadic diseases and outbreaks. Clinical manifestations vary from mild symptoms to severe complications. For microbiological diagnosis, culture confirmation of a positive stool screening PCR test is challenging because of time-consuming methods for isolation of strains, wide variety of STEC pathotypes, and increased emergence of non-classical strains with unusual serotypes. Therefore, molecular assays for the rapid identification of suspect colonies growing on selective media are very useful. In this study, the performance of the newly introduced eazyplex® EHEC assay based on loop-mediated isothermal amplification (LAMP) was evaluated using 18 representative STEC and Shigella strains and 31 isolates or positive-enrichment broths that were collected from clinical stool samples following screening by BD MAX™ EBP PCR. Results were compared to real-time PCR as a reference standard. Overall, sensitivities and specificities of the eazyplex® EHEC were as follows: 94.7% and 100% for Shiga toxin 1 (stx1), 100% and 100% for stx2, 93.3% and 97.1% for intimin (eae), 100% and 100% for enterohemolysin A (ehlyA), and 100% and 100% for invasion-associated plasmid antigen H (ipaH) as Shigella spp./EIEC target, respectively. Sample preparation for LAMP took only some minutes, and the time to result of the assay ranged from 8.5 to 13 min. This study shows that eazyplex® EHEC is a very fast and easy to perform molecular assay that provides reliable results as a culture confirmation assay for the diagnosis of STEC and Shigella spp./EIEC infections.
Collapse
|
25
|
Genetics, Toxicity, and Distribution of Enterohemorrhagic Escherichia coli Hemolysin. Toxins (Basel) 2019; 11:toxins11090502. [PMID: 31470552 PMCID: PMC6784236 DOI: 10.3390/toxins11090502] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 11/26/2022] Open
Abstract
The ability to produce enterohemolysin is regarded as a potential virulence factor for enterohemorrhagic Escherichia coli (EHEC) and is frequently associated with severe human diseases such as hemorrhagic colitis (HC) and the hemolytic uremic syndrome (HUS). The responsible toxin, which has also been termed EHEC-hemolysin (EHEC-Hly, syn. Ehx), belongs to the Repeats in Toxin (RTX)-family of pore-forming cytolysins and is characterized by the formation of incomplete turbid lysis zones on blood agar plates containing defibrinated sheep erythrocytes. Besides the expression of Shiga toxins (Stx) and the locus of enterocyte effacement (LEE), EHEC-Hly is a commonly used marker for the detection of potential pathogenic E. coli strains, although its exact role in pathogenesis is not completely understood. Based on the current knowledge of EHEC-Hly, this review describes the influence of various regulator proteins, explains the different mechanisms leading to damage of target cells, discusses the diagnostic role, and gives an insight of the prevalence and genetic evolution of the toxin.
Collapse
|
26
|
Response to Questions Posed by the Food and Drug Administration Regarding Virulence Factors and Attributes that Define Foodborne Shiga Toxin-Producing Escherichia coli (STEC) as Severe Human Pathogens †. J Food Prot 2019; 82:724-767. [PMID: 30969806 DOI: 10.4315/0362-028x.jfp-18-479] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
-
- NACMCF Executive Secretariat, * U.S. Department of Agriculture, Food Safety and Inspection Service, Office of Public Health Science, PP3, 9-178, 1400 Independence Avenue S.W., Washington, D.C. 20250-3700, USA
| |
Collapse
|
27
|
Skariyachan S, Taskeen N, Ganta M, Venkata Krishna B. Recent perspectives on the virulent factors and treatment options for multidrug-resistant Acinetobacter baumannii. Crit Rev Microbiol 2019; 45:315-333. [PMID: 31012772 DOI: 10.1080/1040841x.2019.1600472] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Acinetobacter baumannii (AB) is one of the most notorious and opportunistic pathogens, which caused high morbidity and mortality rate and World Health Organization (WHO) declared this bacterium as priority-1 pathogen in 2017. The current antibacterial agents, such as colistins, carbapenems, and tigecyclines have limited applications, which necessitate novel and alternative therapeutic remedies. Thus, the understanding of recent perspectives on the virulent factors and antibiotic resistance mechanism exhibited by the bacteria are extremely important. In addition to many combinatorial therapies of antibacterial, there is several natural compounds demonstrated significant antibacterial potential towards these bacteria. The computational systems biology and high throughput screening approaches provide crucial insights in identifying novel drug targets and lead molecules with therapeutics potential. Hence, this review provides profound insight on the recent aspects of the virulent factors associated with AB, role of biofilm formation in drug resistance and the mechanisms of multidrug resistance. This review further illustrates the status of current therapeutic agents, scope, and applications of natural therapeutics, such as herbal medicines and role of computational biology, immunoinformatics and virtual screening in novel lead developments. Thus, this review provides novel insight on latest developments in drug-resistance mechanism of multidrug-resistant A. baumannii (MDRAB) and discovery of probable therapeutic interventions.
Collapse
Affiliation(s)
- Sinosh Skariyachan
- a Department of Biotechnology, Dayananda Sagar College of Engineering , Bangalore , India
| | - Neha Taskeen
- a Department of Biotechnology, Dayananda Sagar College of Engineering , Bangalore , India
| | - Meghana Ganta
- a Department of Biotechnology, Dayananda Sagar College of Engineering , Bangalore , India
| | - Bhavya Venkata Krishna
- a Department of Biotechnology, Dayananda Sagar College of Engineering , Bangalore , India
| |
Collapse
|
28
|
Wen Y, Chen S, Jiang Z, Wang Z, Tan J, Hu T, Wang Q, Zhou X, Zhang Y, Liu Q, Yang D. Dysregulated haemolysin promotes bacterial outer membrane vesicles-induced pyroptotic-like cell death in zebrafish. Cell Microbiol 2019; 21:e13010. [DOI: 10.1111/cmi.13010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 11/29/2018] [Accepted: 01/04/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Ying Wen
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai China
| | - Shouwen Chen
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai China
| | - Zhiwei Jiang
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai China
| | - Zhuang Wang
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai China
| | - Jinchao Tan
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai China
| | - Tianjian Hu
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai China
| | - Qiyao Wang
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai China
- Laboratory for Marine Biology and Biotechnology; Qingdao National Laboratory for Marine Science and Technology; Qingdao China
- Shanghai Collaborative Innovation Center for Biomanufacturing; Shanghai China
- Shanghai Engineering Research Center of Marine Cultured Animal Vaccines; Shanghai China
| | - Xiangshan Zhou
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai China
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai China
- Shanghai Collaborative Innovation Center for Biomanufacturing; Shanghai China
- Shanghai Engineering Research Center of Marine Cultured Animal Vaccines; Shanghai China
| | - Qin Liu
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai China
- Laboratory for Marine Biology and Biotechnology; Qingdao National Laboratory for Marine Science and Technology; Qingdao China
- Shanghai Collaborative Innovation Center for Biomanufacturing; Shanghai China
- Shanghai Engineering Research Center of Marine Cultured Animal Vaccines; Shanghai China
| | - Dahai Yang
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai China
- Shanghai Engineering Research Center of Marine Cultured Animal Vaccines; Shanghai China
| |
Collapse
|
29
|
First Description of Colistin and Tigecycline-Resistant Acinetobacter baumannii Producing KPC-3 Carbapenemase in Portugal. Antibiotics (Basel) 2018; 7:antibiotics7040096. [PMID: 30404152 PMCID: PMC6315367 DOI: 10.3390/antibiotics7040096] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/29/2018] [Accepted: 11/02/2018] [Indexed: 02/07/2023] Open
Abstract
Herein, we describe a case report of carbapenem-resistant Acinetobacter baumannii and Klebsiella pneumoniae isolates that were identified from the same patient at a Tertiary University Hospital Centre in Portugal. Antimicrobial susceptibility and the molecular characterization of resistance and virulence determinants were performed. PCR screening identified the presence of the resistance genes blaKPC-3, blaTEM-1 and blaSHV-1 in both isolates. The KPC-3 K. pneumoniae isolate belonged to the ST-14 high risk clone and accumulated an uncommon resistance and virulence profile additional to a horizontal dissemination capacity. In conclusion, the molecular screening led to the first identification of the A. baumannii KPC-3 producer in Portugal with a full antimicrobial resistance profile including tigecycline and colistin.
Collapse
|
30
|
Legros N, Pohlentz G, Steil D, Müthing J. Shiga toxin-glycosphingolipid interaction: Status quo of research with focus on primary human brain and kidney endothelial cells. Int J Med Microbiol 2018; 308:1073-1084. [PMID: 30224239 DOI: 10.1016/j.ijmm.2018.09.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/28/2018] [Accepted: 09/06/2018] [Indexed: 12/21/2022] Open
Abstract
Shiga toxin (Stx)-mediated injury of the kidneys and the brain represent the major extraintestinal complications in humans upon infection by enterohemorrhagic Escherichia coli (EHEC). Damage of renal and cerebral endothelial cells is the key event in the pathogenesis of the life-threatening hemolytic uremic syndrome (HUS). Stxs are AB5 toxins and the B-pentamers of the two clinically important Stx subtypes Stx1a and Stx2a preferentially bind to the glycosphingolipid globotriaosylceramide (Gb3Cer, Galα4Galβ4Glcβ1Cer) and to less extent to globotetraosylceramide (Gb4Cer, GalNAcβ3Galα4Galβ4Glcβ1), which are expected to reside in lipid rafts in the plasma membrane of the human endothelium. This review summarizes the current knowledge on the Stx glycosphingolipid receptors and their lipid membrane ensemble in primary human brain microvascular endothelial cells (pHBMECs) and primary human renal glomerular endothelial cells (pHRGECs). Increasing knowledge on the precise initial molecular mechanisms by which Stxs interact with cellular targets will help to develop specific therapeutics and/or preventive measures to combat EHEC-caused diseases.
Collapse
Affiliation(s)
- Nadine Legros
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany
| | | | - Daniel Steil
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany
| | - Johannes Müthing
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany; Interdisciplinary Center for Clinical Research (IZKF), University of Münster, D-48149 Münster, Germany.
| |
Collapse
|
31
|
Chen S, Yang D, Wen Y, Jiang Z, Zhang L, Jiang J, Chen Y, Hu T, Wang Q, Zhang Y, Liu Q. Dysregulated hemolysin liberates bacterial outer membrane vesicles for cytosolic lipopolysaccharide sensing. PLoS Pathog 2018; 14:e1007240. [PMID: 30138458 PMCID: PMC6124777 DOI: 10.1371/journal.ppat.1007240] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 09/05/2018] [Accepted: 07/25/2018] [Indexed: 01/22/2023] Open
Abstract
Inflammatory caspase-11/4/5 recognize cytosolic LPS from invading Gram-negative bacteria and induce pyroptosis and cytokine release, forming rapid innate antibacterial defenses. Since extracellular or vacuole-constrained bacteria are thought to rarely access the cytoplasm, how their LPS are exposed to the cytosolic sensors is a critical event for pathogen recognition. Hemolysin is a pore-forming bacterial toxin, which was generally accepted to rupture cell membrane, leading to cell lysis. Whether and how hemolysin participates in non-canonical inflammasome signaling remains undiscovered. Here, we show that hemolysin-overexpressed enterobacteria triggered significantly increased caspase-4 activation in human intestinal epithelial cell lines. Hemolysin promoted LPS cytosolic delivery from extracellular bacteria through dynamin-dependent endocytosis. Further, we revealed that hemolysin was largely associated with bacterial outer membrane vesicles (OMVs) and induced rupture of OMV-containing vacuoles, subsequently increasing LPS exposure to the cytosolic sensor. Accordingly, overexpression of hemolysin promoted caspase-11 dependent IL-18 secretion and gut inflammation in mice, which was associated with restricting bacterial colonization in vivo. Together, our work reveals a concept that hemolysin promotes noncanonical inflammasome activation via liberating OMVs for cytosolic LPS sensing, which offers insights into innate immune surveillance of dysregulated hemolysin via caspase-11/4 in intestinal antibacterial defenses. Sensing of lipopolysaccharide (LPS) in the cytosol triggers non-canonical inflammasome-mediated innate responses. Recent work revealed that bacterial outer membrane vesicles (OMVs) enables LPS to access the cytosol for extracellular bacteria. However, since intracellular OMVs are generally constrained in endosomes, how OMV-derived LPS gain access to the cytosol remains unknown. Here, we reported that hemolysin largely bound with OMVs and entered cells through dynamin-dependent endocytosis. Intracellular hemolysin significantly impaired OMVs-constrained vacuole integrity and increased OMV-derived LPS exposure to the cytosolic sensor, which promoted non-canonical inflammasome activation and restricted bacterial gut infections. This work reveals that dysregulated hemolysin promotes non-canonical inflammasome activation and alerts host immune recognition, providing insights into the more sophisticated biological functions of hemolysin upon infection.
Collapse
Affiliation(s)
- Shouwen Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Dahai Yang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, China
| | - Ying Wen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Zhiwei Jiang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Lingzhi Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Department of Pathology and Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Jiatiao Jiang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yaozhen Chen
- Department of Transfusion Medicine, Xijing hospital, Xi’an, China
| | - Tianjian Hu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Qiyao Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, China
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, China
| | - Qin Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- * E-mail:
| |
Collapse
|
32
|
Fingermann M, Avila L, De Marco MB, Vázquez L, Di Biase DN, Müller AV, Lescano M, Dokmetjian JC, Fernández Castillo S, Pérez Quiñoy JL. OMV-based vaccine formulations against Shiga toxin producing Escherichia coli strains are both protective in mice and immunogenic in calves. Hum Vaccin Immunother 2018; 14:2208-2213. [PMID: 29923791 PMCID: PMC6183318 DOI: 10.1080/21645515.2018.1490381] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Strains of Shiga toxin-producing Escherichia coli (STEC) can cause the severe Hemolytic Uremic Syndrome (HUS). Shiga toxins are protein toxins that bind and kill microvascular cells, damaging vital organs. No specific therapeutics or vaccines have been licensed for use in humans yet. The most common route of infection is by consumption of dairy or farm products contaminated with STEC. Domestic cattle colonized by STEC strains represent the main reservoir, and thus a source of contamination. Outer Membrane Vesicles (OMV) obtained after detergent treatment of gram-negative bacteria have been used over the past decades for producing many licensed vaccines. These nanoparticles are not only multi-antigenic in nature but also potent immunopotentiators and immunomodulators. Formulations based on chemical-inactivated OMV (OMVi) obtained from a virulent STEC strain (O157:H7 serotype) were found to protect against pathogenicity in a murine model and to be immunogenic in calves. These initial studies suggest that STEC-derived OMV has a potential for the formulation of both human and veterinary vaccines.
Collapse
Affiliation(s)
| | - Lucía Avila
- a INPB, ANLIS "Dr. Carlos G. Malbrán" , Buenos Aires , Argentina
| | | | - Luciana Vázquez
- b UOCCB, ANLIS "Dr. Carlos G. Malbrán" , Buenos Aires , Argentina
| | | | | | - Mirta Lescano
- a INPB, ANLIS "Dr. Carlos G. Malbrán" , Buenos Aires , Argentina
| | | | | | | |
Collapse
|
33
|
Krause M, Barth H, Schmidt H. Toxins of Locus of Enterocyte Effacement-Negative Shiga Toxin-Producing Escherichia coli. Toxins (Basel) 2018; 10:toxins10060241. [PMID: 29903982 PMCID: PMC6024878 DOI: 10.3390/toxins10060241] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/07/2018] [Accepted: 06/12/2018] [Indexed: 12/16/2022] Open
Abstract
Studies on Shiga toxin-producing Escherichia coli (STEC) typically examine and classify the virulence gene profiles based on genomic analyses. Among the screened strains, a subgroup of STEC which lacks the locus of enterocyte effacement (LEE) has frequently been identified. This raises the question about the level of pathogenicity of such strains. This review focuses on the advantages and disadvantages of the standard screening procedures in virulence profiling and summarizes the current knowledge concerning the function and regulation of toxins encoded by LEE-negative STEC. Although LEE-negative STEC usually come across as food isolates, which rarely cause infections in humans, some serotypes have been implicated in human diseases. In particular, the LEE-negative E. coli O104:H7 German outbreak strain from 2011 and the Australian O113:H21 strain isolated from a HUS patient attracted attention. Moreover, the LEE-negative STEC O113:H21 strain TS18/08 that was isolated from minced meat is remarkable in that it not only encodes multiple toxins, but in fact expresses three different toxins simultaneously. Their characterization contributes to understanding the virulence of the LEE-negative STEC.
Collapse
Affiliation(s)
- Maike Krause
- Department of Food Microbiology and Hygiene, Institute of Food Science and Biotechnology, Garbenstrasse 28, University of Hohenheim, 70599 Stuttgart, Germany.
| | - Holger Barth
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| | - Herbert Schmidt
- Department of Food Microbiology and Hygiene, Institute of Food Science and Biotechnology, Garbenstrasse 28, University of Hohenheim, 70599 Stuttgart, Germany.
| |
Collapse
|
34
|
Carroll CS, Moore MM. Ironing out siderophore biosynthesis: a review of non-ribosomal peptide synthetase (NRPS)-independent siderophore synthetases. Crit Rev Biochem Mol Biol 2018; 53:356-381. [DOI: 10.1080/10409238.2018.1476449] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
| | - Margo M. Moore
- Department of Biological Sciences, Simon Fraser University, Burnaby, Canada
| |
Collapse
|
35
|
Jeong SE, Chun BH, Kim KH, Park D, Roh SW, Lee SH, Jeon CO. Genomic and metatranscriptomic analyses of Weissella koreensis reveal its metabolic and fermentative features during kimchi fermentation. Food Microbiol 2018; 76:1-10. [PMID: 30166128 DOI: 10.1016/j.fm.2018.04.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 03/02/2018] [Accepted: 04/09/2018] [Indexed: 11/17/2022]
Abstract
The genomic and metabolic features of Weissella koreensis, one of the major lactic acid bacteria in kimchi, were investigated through genomic, metabolic, and transcriptomic analyses for the genomes of strains KCTC 3621T, KACC 15510, and WiKim0080. W. koreensis strains were intrinsically vancomycin-resistant and harbored potential hemolysin genes that were actively transcribed although no hemolysin activity was detected. KEGG and reconstructed fermentative metabolic pathways displayed that W. koreensis strains commonly employ the heterolactic pathway to produce d-lactate, ethanol, acetate, CO2, d-sorbitol, thiamine, and folate from various carbohydrates including d-glucose, d-mannose, d-lactose, l-malate, d-xylose, l-arabinose, d-ribose, N-acetyl-glucosamine, and gluconate, and strains KCTC 3621T and WiKim0080 additionally have metabolic pathways of d-galacturonate and d-glucoronate. Phenotypic analyses showed that all strains did not ferment d-galactose, probably due to the lack of d-galactose transporting system, and strains KCTC 3621T and WiKim0080 fermented d-fructose, indicating the presence of d-fructose transporting system. Fermentative features of W. koreensis were investigated through kimchi transcriptional analysis, suggesting that W. koreensis is mainly responsible for kimchi fermentation with the production of various fermentative metabolites during late fermentation period. This was the first study to investigate the genomic and metabolic features of W. koreensis, which may provide better understandings on kimchi fermentation.
Collapse
Affiliation(s)
- Sang Eun Jeong
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Byung Hee Chun
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Kyung Hyun Kim
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Dongbin Park
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Seong Woon Roh
- Microbiology and Functionality Research Group, World Institute of Kimchi, Gwangju, 61755, Republic of Korea
| | - Se Hee Lee
- Microbiology and Functionality Research Group, World Institute of Kimchi, Gwangju, 61755, Republic of Korea.
| | - Che Ok Jeon
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
36
|
Elhosseiny NM, Attia AS. Acinetobacter: an emerging pathogen with a versatile secretome. Emerg Microbes Infect 2018; 7:33. [PMID: 29559620 PMCID: PMC5861075 DOI: 10.1038/s41426-018-0030-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/08/2017] [Accepted: 01/09/2018] [Indexed: 02/06/2023]
Abstract
Acinetobacter baumannii is a notorious pathogen that has emerged as a healthcare nightmare in recent years because it causes serious infections that are associated with high morbidity and mortality rates. Due to its exceptional ability to acquire resistance to almost all available antibiotics, A. baumannii is currently ranked as the first pathogen on the World Health Organization’s priority list for the development of new antibiotics. The versatile range of effectors secreted by A. baumannii represents a large proportion of the virulence arsenal identified in this bacterium to date. Thus, these factors, together with the secretory machinery responsible for their extrusion into the extracellular milieu, are key targets for novel therapeutics that are greatly needed to combat this deadly pathogen. In this review, we provide a comprehensive, up-to-date overview of the organization and regulatory aspects of the Acinetobacter secretion systems, with a special emphasis on their versatile substrates that could be targeted to fight the deadly infections caused by this elusive pathogen.
Collapse
Affiliation(s)
- Noha M Elhosseiny
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Ahmed S Attia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| |
Collapse
|
37
|
Fu S, Bai X, Fan R, Sun H, Xu Y, Xiong Y. Genetic diversity of the enterohaemolysin gene (ehxA) in non-O157 Shiga toxin-producing Escherichia coli strains in China. Sci Rep 2018. [PMID: 29523817 PMCID: PMC5844952 DOI: 10.1038/s41598-018-22699-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Non-O157 Shiga toxin-producing Escherichia coli (STEC) is increasingly recognized as an important enteric foodborne pathogen. The hallmark of the disease is the production of Shiga toxins; however, there are other virulence factors that contribute to the pathogenesis of STEC. This study aimed to investigate the prevalence and genetic diversity of the enterohaemolysin gene, ehxA, among non-O157 STEC strains from human, animal, and food sources. The ehxA gene was amplified from 138 (31.8%) of 434 non-O157 STEC strains, among which 36 unique ehxA sequences were identified. Based on ehxA sequence analysis, three phylogenetic ehxA groups (I II, and III) were determined. Correlations between ehxA groups and sources, serotypes, and virulent gene profiles were observed. The ehxA group II strains were mostly diarrhoeal patient-derived and may demonstrate higher pathogenic potential compared with the ehxA group I and group III strains. Five types of replicons (I1-Ig, FIB, K, F, and B/O) were identified in the 138 ehxA-positive strains, and 3.6%, 5.8%, and 52.2% of the strains harboured toxB, katP and espP genes, respectively, implying marked genetic diversity of ehxA containing plasmids in non-O157 STEC strains. Sequence-based ehxA genotyping might be important in modern strain typing and in epidemiological surveillance of non-O157 STEC infections.
Collapse
Affiliation(s)
- Shanshan Fu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Xiangning Bai
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Ruyue Fan
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Hui Sun
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Yanmei Xu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Yanwen Xiong
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China. .,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
38
|
Murata D, Okano H, Angkawidjaja C, Akutsu M, Tanaka SI, Kitahara K, Yoshizawa T, Matsumura H, Kado Y, Mizohata E, Inoue T, Sano S, Koga Y, Kanaya S, Takano K. Structural Basis for the Serratia marcescens Lipase Secretion System: Crystal Structures of the Membrane Fusion Protein and Nucleotide-Binding Domain. Biochemistry 2017; 56:6281-6291. [PMID: 29094929 DOI: 10.1021/acs.biochem.7b00985] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Serratia marcescens secretes a lipase, LipA, through a type I secretion system (T1SS). The T1SS for LipA, the Lip system, is composed of an inner membrane ABC transporter with its nucleotide-binding domains (NBD), LipB, a membrane fusion protein, LipC, and an outer membrane channel protein, LipD. Passenger protein secreted by this system has been functionally and structurally characterized well, but relatively little information about the transporter complex is available. Here, we report the crystallographic studies of LipC without the membrane anchor region, LipC-, and the NBD of LipB (LipB-NBD). LipC- crystallographic analysis has led to the determination of the structure of the long α-helical and lipoyl domains, but not the area where it interacts with LipB, suggesting that the region is flexible without LipB. The long α-helical domain has three α-helices, which interacts with LipD in the periplasm. LipB-NBD has the common overall architecture and ATP hydrolysis activity of ABC transporter NBDs. Using the predicted models of full-length LipB and LipD, the overall structural insight into the Lip system is discussed.
Collapse
Affiliation(s)
- Daichi Murata
- Department of Biomolecular Chemistry, Kyoto Prefectural University , Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan
| | - Hiroyuki Okano
- Graduate School of Engineering, Osaka University , Yamadaoka, Suita 565-0871, Japan
| | - Clement Angkawidjaja
- Graduate School of Engineering, Osaka University , Yamadaoka, Suita 565-0871, Japan
| | - Masato Akutsu
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt , Max-von-Laue-Straße, 60438 Frankfurt am Main, Germany
| | - Shun-Ichi Tanaka
- College of Life Sciences, Ritsumeikan University , Noji-Higashi, Kusatsu 525-8577, Japan
| | - Kenyu Kitahara
- Department of Biomolecular Chemistry, Kyoto Prefectural University , Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan
| | - Takuya Yoshizawa
- College of Life Sciences, Ritsumeikan University , Noji-Higashi, Kusatsu 525-8577, Japan
| | - Hiroyoshi Matsumura
- College of Life Sciences, Ritsumeikan University , Noji-Higashi, Kusatsu 525-8577, Japan
| | - Yuji Kado
- Graduate School of Engineering, Osaka University , Yamadaoka, Suita 565-0871, Japan
| | - Eiichi Mizohata
- Graduate School of Engineering, Osaka University , Yamadaoka, Suita 565-0871, Japan
| | - Tsuyoshi Inoue
- Graduate School of Engineering, Osaka University , Yamadaoka, Suita 565-0871, Japan
| | - Satoshi Sano
- Department of Biomolecular Chemistry, Kyoto Prefectural University , Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan
| | - Yuichi Koga
- Graduate School of Engineering, Osaka University , Yamadaoka, Suita 565-0871, Japan
| | - Shigenori Kanaya
- Graduate School of Engineering, Osaka University , Yamadaoka, Suita 565-0871, Japan
| | - Kazufumi Takano
- Department of Biomolecular Chemistry, Kyoto Prefectural University , Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan
| |
Collapse
|
39
|
Ye Y, Zhang X, Zhang M, Ling N, Zeng H, Gao J, Jiao R, Wu Q, Zhang J. Potential factors involved in virulence of Cronobacter sakazakii isolates by comparative transcriptome analysis. J Dairy Sci 2017; 100:8826-8837. [PMID: 28888603 DOI: 10.3168/jds.2017-12801] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 07/11/2017] [Indexed: 01/15/2023]
Abstract
Cronobacter species are important foodborne pathogens causing severe infections in neonates through consumption of contaminated powdered infant formula. However, the virulence-associated factors in Cronobacter are largely unknown. In this study, the transcriptome analysis between highly virulent Cronobacter sakazakii G362 and attenuated L3101 strains was used to reveal the potential factors involved in virulence. The total transcripts were grouped into 20 clusters of orthologous group categories and summarized in 3 gene ontology categories (biological process, cellular component, and molecular function). In addition, the differentially expressed genes (DEG) between these isolates were analyzed using Volcano plots and gene ontology enrichment. The predominant DEG were flagella-associated genes such as flhD, motA, flgM, flgB, and fliC. Furthermore, the expression abundance of outer membrane protein or lipoprotein genes (ompW, slyB, blc, tolC, and lolA), potential virulence-related factors (hlyIII and hha), and regulation factors (sdiA, cheY, Bss, fliZ) was also significantly different between G362 and L3101. Interestingly, 3 hypothetical protein genes (ESA_01022, ESA_01609, and ESA_00609) were found to be expressed only in G362. Our findings provide valuable transcriptomic information about potential virulence factor genes, which will be needed in future molecular biology studies designed to understand the pathogenic mechanism of Cronobacter.
Collapse
Affiliation(s)
- Yingwang Ye
- School of Food Science and Technology, Hefei University of Technology, Hefei, 230009, China; State Key Laboratory of Applied Microbiology, South China (the Ministry-Province Joint Development), Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, 510070, China.
| | - Xiyan Zhang
- School of Food Science and Technology, Hefei University of Technology, Hefei, 230009, China
| | - Maofeng Zhang
- School of Food Science and Technology, Hefei University of Technology, Hefei, 230009, China
| | - Na Ling
- State Key Laboratory of Applied Microbiology, South China (the Ministry-Province Joint Development), Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, 510070, China
| | - Haiyan Zeng
- State Key Laboratory of Applied Microbiology, South China (the Ministry-Province Joint Development), Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, 510070, China
| | - Jina Gao
- School of Food Science and Technology, Hefei University of Technology, Hefei, 230009, China
| | - Rui Jiao
- School of Food Science and Technology, Hefei University of Technology, Hefei, 230009, China
| | - Qingping Wu
- State Key Laboratory of Applied Microbiology, South China (the Ministry-Province Joint Development), Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, 510070, China
| | - Jumei Zhang
- State Key Laboratory of Applied Microbiology, South China (the Ministry-Province Joint Development), Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, 510070, China
| |
Collapse
|
40
|
Choe Y, Park J, Yu JE, Oh JI, Kim S, Kang HY. Edwardsiella piscicida lacking the cyclic AMP receptor protein (Crp) is avirulent and immunogenic in fish. FISH & SHELLFISH IMMUNOLOGY 2017; 68:243-250. [PMID: 28668485 DOI: 10.1016/j.fsi.2017.06.060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 06/20/2017] [Accepted: 06/26/2017] [Indexed: 06/07/2023]
Abstract
Edwardsiella piscicida is a Gram-negative pathogen that generally causes lethal septicemia in marine and freshwater fish. We generated a E. piscicida CK216 Δcrp mutant to investigate various biological roles related to this organism, including pathogenesis. Lack of Crp in CK216 was demonstrated by immunoblotting using a Crp-specific antibody. Compared to the parental strain, the mutant exhibited changes in three biochemical phenotypes, including ornithine decarboxylation, citrate utilization, and H2S production. Complementation of crp deletion in trans rescued the phenotype of the parental strain. This study proved that hemolytic activity in E. piscicida is controlled by Crp. In addition, significantly reduced motility of E. piscicida CK216 was observed, which resulted from a lack of flagella synthesis. To examine the virulence in fish, E. piscicida cells were injected into the goldfish (Carassius auratus) via intraperitoneal route. The LD50 of CK216 was 9.25 × 108 CFU, while that of the CK108 parental strain was 9.24 × 105 CFU, attenuated 1000 fold in goldfish. Fish immunized with CK216 elicited IgM responses. Moreover, 80% of goldfish immunized with 1 × 106 CFU survived after administration of a lethal dose (1 × 107 CFU) of virulent E. piscicida CK41, suggesting the potential for E. piscicida CK216 to serve as a live attenuated vaccine in aquaculture.
Collapse
Affiliation(s)
- Yunjeong Choe
- Department of Microbiology, College of Natural Sciences, Pusan National University, Busan 46241, South Korea
| | - Junmo Park
- Department of Microbiology, College of Natural Sciences, Pusan National University, Busan 46241, South Korea
| | - Jong Earn Yu
- Department of Microbiology, College of Natural Sciences, Pusan National University, Busan 46241, South Korea
| | - Jeong-Il Oh
- Department of Microbiology, College of Natural Sciences, Pusan National University, Busan 46241, South Korea
| | - Suhkmann Kim
- Department of Chemistry, College of Natural Sciences, Pusan National University, Busan 46241, South Korea
| | - Ho Young Kang
- Department of Microbiology, College of Natural Sciences, Pusan National University, Busan 46241, South Korea.
| |
Collapse
|
41
|
Abstract
BACKGROUND The impact of the intestinal microbiome is increasing steadily with regard to the immune function und the defense against pathogens. The medicinal yeast Saccharomyces boulardii CNCM I-745 (S. boulardii) has been used as probiotic for the prevention and treatment of infectious diarrhea since more than 50 years. Meta-analyses confirm the clinical efficacy of S. boulardii to treat diarrhea of various origins in children and adults. METHOD This review article summarizes experimental studies on molecular and immunological mechanisms which explain the proven clinical efficacy of S. boulardii. Thereby the focus is on the gut-associated immune system. RESULTS S. boulardii stimulates the release of immunoglobulins and cytokines and also induces the maturation of immune cells. This suggests that S. boulardii is capable of activating the unspecific immune system. In case of an infection, S. boulardii is able to bind pathogenic bacteria and to neutralize their toxins. Moreover, the medicinal yeast can attenuate the overreacting inflammatory immune response, by interfering with the signaling cascade, which is induced by the infection, and that way influences the innate and adaptive immune system. Thanks to these mechanisms the pathogens' potential of adhesion is lessened. Thus the intestinal epithelial layer is protected and diarrhea-induced fluid loss is reduced. CONCLUSION The different molecular and immunological mechanisms investigated in the experimental studies prove the already confirmed very good clinical efficacy of S. boulardii in infectious diarrhea caused by pathogens such as bacteria, viruses, and fungi.
Collapse
Affiliation(s)
- Heike Stier
- analyze & realize GmbH, Waldseeweg 6, 13467, Berlin, Deutschland.
| | - Stephan C Bischoff
- Institut für Ernährungsmedizin, Universität Hohenheim, Stuttgart, Deutschland
| |
Collapse
|
42
|
Rubin D, Zhang W, Karch H, Kuczius T. Distinct Expression of Immunoglobulin-Binding Proteins in Shiga Toxin-Producing Escherichia coli Implicates High Protein Stability and a Characteristic Phenotype. Toxins (Basel) 2017; 9:toxins9050153. [PMID: 28468281 PMCID: PMC5450701 DOI: 10.3390/toxins9050153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/27/2017] [Accepted: 04/27/2017] [Indexed: 11/16/2022] Open
Abstract
Several immunoglobulin-binding proteins of Escherichia coli (Eib) have been isolated from both non-pathogenic and pathogenic E. coli strains. Shiga toxin (Stx)-producing E. coli (STEC) contain eibG either as a single gene or in combination with eibC, while other E. coli strains harbour single or multiple eib genes. The Eib proteins bind human immunoglobulins in a non-immune manner and contribute to bacterial chain-like adherence to human epithelial cells. In this study, the EibG expression in several STEC strains was analysed under different environmental conditions. STEC produced high levels of EibG in complex media and lower levels in low-grade and minimal media under static growth conditions. This characteristic was independent on the Eib subtypes. Microscopically, EibG-expressing STEC exhibited chain formation and aggregation in all employed media, while aggregates were only visible after growth in complex medium. Once expressed, EibG proteins demonstrate high stability during prolonged incubation. Our findings indicate that the regulation of the expression of Eib proteins is highly complex, although the protein levels vary among STEC strains. However, positive upregulation conditions generally result in distinct phenotypes of the isolates.
Collapse
Affiliation(s)
- Dennis Rubin
- Institute for Hygiene, Westfälische Wilhelms-University and University Hospital Münster, Robert Koch-Straße 41, 48149 Münster, Germany.
| | - Wenlan Zhang
- Institute for Hygiene, Westfälische Wilhelms-University and University Hospital Münster, Robert Koch-Straße 41, 48149 Münster, Germany.
| | - Helge Karch
- Institute for Hygiene, Westfälische Wilhelms-University and University Hospital Münster, Robert Koch-Straße 41, 48149 Münster, Germany.
| | - Thorsten Kuczius
- Institute for Hygiene, Westfälische Wilhelms-University and University Hospital Münster, Robert Koch-Straße 41, 48149 Münster, Germany.
| |
Collapse
|
43
|
Holland IB, Peherstorfer S, Kanonenberg K, Lenders M, Reimann S, Schmitt L. Type I Protein Secretion-Deceptively Simple yet with a Wide Range of Mechanistic Variability across the Family. EcoSal Plus 2016; 7. [PMID: 28084193 PMCID: PMC11575716 DOI: 10.1128/ecosalplus.esp-0019-2015] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Indexed: 01/08/2023]
Abstract
A very large type I polypeptide begins to reel out from a ribosome; minutes later, the still unidentifiable polypeptide, largely lacking secondary structure, is now in some cases a thousand or more residues longer. Synthesis of the final hundred C-terminal residues commences. This includes the identity code, the secretion signal within the last 50 amino acids, designed to dock with a waiting ATP binding cassette (ABC) transporter. What happens next is the subject of this review, with the main, but not the only focus on hemolysin HlyA, an RTX protein toxin secreted by the type I system. Transport substrates range from small peptides to giant proteins produced by many pathogens. These molecules, without detectable cellular chaperones, overcome enormous barriers, crossing two membranes before final folding on the cell surface, involving a unique autocatalytic process.Unfolded HlyA is extruded posttranslationally, C-terminal first. The transenvelope "tunnel" is formed by HlyB (ABC transporter), HlyD (membrane fusion protein) straddling the inner membrane and periplasm and TolC (outer membrane). We present a new evaluation of the C-terminal secretion code, and the structure function of HlyD and HlyB at the heart of this nanomachine. Surprisingly, key details of the secretion mechanism are remarkably variable in the many type I secretion system subtypes. These include alternative folding processes, an apparently distinctive secretion code for each type I subfamily, and alternative forms of the ABC transporter; most remarkably, the ABC protein probably transports peptides or polypeptides by quite different mechanisms. Finally, we suggest a putative structure for the Hly-translocon, HlyB, the multijointed HlyD, and the TolC exit.
Collapse
Affiliation(s)
- I Barry Holland
- Institute for Integrative Biology (I2BC) and Institute of Genetics and Microbiology, University Paris-Sud, Orsay 91450, France
| | - Sandra Peherstorfer
- Institute of Biochemistry, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Kerstin Kanonenberg
- Institute of Biochemistry, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Michael Lenders
- Institute of Biochemistry, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Sven Reimann
- Institute of Biochemistry, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University, 40225 Düsseldorf, Germany
| |
Collapse
|
44
|
Amigo N, Zhang Q, Amadio A, Zhang Q, Silva WM, Cui B, Chen Z, Larzabal M, Bei J, Cataldi A. Overexpressed Proteins in Hypervirulent Clade 8 and Clade 6 Strains of Escherichia coli O157:H7 Compared to E. coli O157:H7 EDL933 Clade 3 Strain. PLoS One 2016; 11:e0166883. [PMID: 27880834 PMCID: PMC5120812 DOI: 10.1371/journal.pone.0166883] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 11/04/2016] [Indexed: 11/19/2022] Open
Abstract
Escherichia coli O157:H7 is responsible for severe diarrhea and hemolytic uremic syndrome (HUS), and predominantly affects children under 5 years. The major virulence traits are Shiga toxins, necessary to develop HUS and the Type III Secretion System (T3SS) through which bacteria translocate effector proteins directly into the host cell. By SNPs typing, E. coli O157:H7 was separated into nine different clades. Clade 8 and clade 6 strains were more frequently associated with severe disease and HUS. In this study, we aimed to identify differentially expressed proteins in two strains of E. coli O157:H7 (clade 8 and clade 6), obtained from cattle and compared them with the well characterized reference EDL933 strain (clade 3). Clade 8 and clade 6 strains show enhanced pathogenicity in a mouse model and virulence-related properties. Proteins were extracted and analyzed using the TMT-6plex labeling strategy associated with two dimensional liquid chromatography and mass spectrometry in tandem. We detected 2241 proteins in the cell extract and 1787 proteins in the culture supernatants. Attention was focused on the proteins related to virulence, overexpressed in clade 6 and 8 strains compared to EDL933 strain. The proteins relevant overexpressed in clade 8 strain were the curli protein CsgC, a transcriptional activator (PchE), phage proteins, Stx2, FlgM and FlgD, a dienelactone hydrolase, CheW and CheY, and the SPATE protease EspP. For clade 6 strain, a high overexpression of phage proteins was detected, mostly from Stx2 encoding phage, including Stx2, flagellin and the protease TagA, EDL933_p0016, dienelactone hydrolase, and Haemolysin A, amongst others with unknown function. Some of these proteins were analyzed by RT-qPCR to corroborate the proteomic data. Clade 6 and clade 8 strains showed enhanced transcription of 10 out of 12 genes compared to EDL933. These results may provide new insights in E. coli O157:H7 mechanisms of pathogenesis.
Collapse
Affiliation(s)
- Natalia Amigo
- Institute of Biotechnology, CICVyA, National Institute of Agricultural Technology. Hurlingham, Buenos Aires, Argentina
| | - Qi Zhang
- AGRO-Biological Gene Research Center, Guangdong `Academy of Agricultural Sciences (GDAAS), Guangzhou, China
| | - Ariel Amadio
- Rafaela Experimental Station, National Institute of Agricultural Technology. Rafaela, Santa Fe, Argentina
| | - Qunjie Zhang
- AGRO-Biological Gene Research Center, Guangdong `Academy of Agricultural Sciences (GDAAS), Guangzhou, China
| | - Wanderson M. Silva
- Institute of Biotechnology, CICVyA, National Institute of Agricultural Technology. Hurlingham, Buenos Aires, Argentina
| | - Baiyuan Cui
- AGRO-Biological Gene Research Center, Guangdong `Academy of Agricultural Sciences (GDAAS), Guangzhou, China
| | - Zhongjian Chen
- AGRO-Biological Gene Research Center, Guangdong `Academy of Agricultural Sciences (GDAAS), Guangzhou, China
| | - Mariano Larzabal
- Institute of Biotechnology, CICVyA, National Institute of Agricultural Technology. Hurlingham, Buenos Aires, Argentina
| | - Jinlong Bei
- AGRO-Biological Gene Research Center, Guangdong `Academy of Agricultural Sciences (GDAAS), Guangzhou, China
- * E-mail:
| | - Angel Cataldi
- Institute of Biotechnology, CICVyA, National Institute of Agricultural Technology. Hurlingham, Buenos Aires, Argentina
| |
Collapse
|
45
|
Stier H, Bischoff SC. Influence of Saccharomyces boulardii CNCM I-745on the gut-associated immune system. Clin Exp Gastroenterol 2016; 9:269-279. [PMID: 27695355 PMCID: PMC5027949 DOI: 10.2147/ceg.s111003] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background The probiotic Saccharomyces boulardii CNCM I-745 (also known as Saccharomyces cerevisiae HANSEN CBS 5926; in the following S. boulardii) has proven its effectiveness in preventive and therapeutic treatment of many gastrointestinal diseases, especially diseases associated with acute diarrhea. In particular, antibiotic-associated diarrhea, Clostridium difficile-associated diarrhea, traveller’s diarrhea, as well as acute diarrhea due to common viral and bacterial infections in children and adults. Aim The aim of this review is to summarize the experimental studies elucidating the molecular and immunological mechanisms by which these clinically proven effects are archived, with an emphasis on the gut-associated immune system. The main focus is laid on anti-inflammatory and immune-modulatory action of S. boulardii involved in bacterial or enterotoxin-mediated diarrhea and inflammation. An attempt is made to differentiate between the effects associated with cellular versus soluble factors and between prophylactic and therapeutic effects. Methods A literature search was performed in PubMed/PubMed Central for the effects of S. boulardii on the gut-associated immune system (focus acute diarrhea). Results and conclusion S. boulardii exhibits its positive effect by the direct effects on pathogens or their toxins as well as by influencing the host’s infection-induced signaling cascades and its innate and adaptive immune system. The combination of these mechanisms results in a reduction of the pathogens’ ability for adhesion or colonization and an attenuation of the overreacting inflammatory immune response. Thereby, the integrity of the intestinal epithelial cell layer is preserved or restored, and the diarrheic leakage of fluids into the intestinal lumen is attenuated.
Collapse
Affiliation(s)
| | - Stephan C Bischoff
- Department of Clinical Nutrition, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
46
|
Velásquez JC, Hidalgo AA, Villagra N, Santiviago CA, Mora GC, Fuentes JA. SPI-9 of Salmonella enterica serovar Typhi is constituted by an operon positively regulated by RpoS and contributes to adherence to epithelial cells in culture. Microbiology (Reading) 2016; 162:1367-1378. [DOI: 10.1099/mic.0.000319] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Juan C. Velásquez
- Laboratorio de Genética y Patogénesis Bacteriana, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, República 217, Santiago, Chile
| | - Alejandro A. Hidalgo
- Laboratorio de Patogénesis Molecular y Antimicrobianos, Facultad de Medicina, Universidad Andres Bello, Echaurren 183, Santiago, Chile
| | - Nicolás Villagra
- Laboratorio de Patogénesis Molecular y Antimicrobianos, Facultad de Medicina, Universidad Andres Bello, Echaurren 183, Santiago, Chile
| | - Carlos A. Santiviago
- Laboratorio de Genética y Patogénesis Bacteriana, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Independencia, Santiago, Chile
| | - Guido C. Mora
- Laboratorio de Patogénesis Molecular y Antimicrobianos, Facultad de Medicina, Universidad Andres Bello, Echaurren 183, Santiago, Chile
| | - Juan A. Fuentes
- Laboratorio de Genética y Patogénesis Bacteriana, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, República 217, Santiago, Chile
| |
Collapse
|
47
|
Abstract
Post-infectious hemolytic uremic syndrome (HUS) is caused by specific pathogens in patients with no identifiable HUS-associated genetic mutation or autoantibody. The majority of episodes is due to infections by Shiga toxin (Stx) producing Escherichia coli (STEC). This chapter reviews the epidemiology and pathogenesis of STEC-HUS, including bacterial-derived factors and host responses. STEC disease is characterized by hematological (microangiopathic hemolytic anemia), renal (acute kidney injury) and extrarenal organ involvement. Clinicians should always strive for an etiological diagnosis through the microbiological or molecular identification of Stx-producing bacteria and Stx or, if negative, serological assays. Treatment of STEC-HUS is supportive; more investigations are needed to evaluate the efficacy of putative preventive and therapeutic measures, such as non-phage-inducing antibiotics, volume expansion and anti-complement agents. The outcome of STEC-HUS is generally favorable, but chronic kidney disease, permanent extrarenal, mainly cerebral complication and death (in less than 5 %) occur and long-term follow-up is recommended. The remainder of this chapter highlights rarer forms of (post-infectious) HUS due to S. dysenteriae, S. pneumoniae, influenza A and HIV and discusses potential interactions between these pathogens and the complement system.
Collapse
Affiliation(s)
- Denis F. Geary
- Division of Nephrology, The Hospital for Sick Children, Toronto, Ontario Canada
| | - Franz Schaefer
- Division of Pediatric Nephrology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
48
|
Askari Badouei M, Morabito S, Najafifar A, Mazandarani E. Molecular characterization of enterohemorrhagic Escherichia coli hemolysin gene (EHEC-hlyA)-harboring isolates from cattle reveals a diverse origin and hybrid diarrheagenic strains. INFECTION GENETICS AND EVOLUTION 2016; 39:342-348. [PMID: 26855346 DOI: 10.1016/j.meegid.2016.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 01/20/2016] [Accepted: 02/03/2016] [Indexed: 10/22/2022]
Abstract
In the present study we investigated the occurrence of Escherichia coli strains harboring the gene encoding enterohemorrhagic E. coli hemolysin (EHEC-HlyA) in cattle and the association of this gene with various diarrheagenic E. coli (DEC) pathotypes. First, the bovine E. coli isolates were screened for EHEC-hlyA gene by PCR, and then they were characterized for the phylogenetic groups and the presence of the major virulence genes of different DEC pathotypes. In total, 25 virulence gene profiles were observed in 54 EHEC-hlyA+ isolates that reflect a considerable heterogeneity. The EHEC-hlyA+ strains were mostly associated with EHEC (72%), while only 7.4% were enteropathogenic E. coli (EPEC). We also showed the presence of estA gene of enterotoxigenic E. coli (ETEC) in 6 isolates (11.1%). Interestingly, two of the estA+ strains showed hybrid pathotypes with one carrying eae/estA (EPEC/ETEC), and the other one stx2/astA/estA (EHEC/ETEC). None of the isolates were related to enteroaggregative E. coli (EAggEC), enteroinvasive E. coli (EIEC), and necrotoxigenic E. coli (NTEC). The EHEC-plasmid encoded genes occurred in seven different combinations with EHEC-hlyA/saa/subA/espP being the most prevalent (46.3%). All stx-/eae+ strains carried O island 57 (OI-57) molecular marker(s) that may indicate these to be the progenitors of EHEC or strains losing stx. The most prevalent phylogroup was B1 (61.1%), but the most heterogeneous strains including the hybrid strains belonged to A phylogroup. Overall, our results indicate that cattle EHEC-hlyA encoding E. coli isolates consist of diverse diarrheagenic strains with the possible existence of hybrid pathotypes. Future studies are required to clarify the evolutionary aspects and clinical significance of these strains in humans and domestic animals.
Collapse
Affiliation(s)
- Mahdi Askari Badouei
- Department of Pathobiology, Faculty of Veterinary Medicine, Garmsar Branch, Islamic Azad University, Garmsar, Iran.
| | - Stefano Morabito
- European Union Reference Laboratory for Escherichia coli, Istituto Superiore di Sanita, Dipartimento di Sanita Pubblica Veterinaria e Sicurezza Alimentare, Rome, Italy
| | - Arash Najafifar
- Department of Pathobiology, Faculty of Veterinary Medicine, Garmsar Branch, Islamic Azad University, Garmsar, Iran
| | - Emad Mazandarani
- Department of Pathobiology, Faculty of Veterinary Medicine, Garmsar Branch, Islamic Azad University, Garmsar, Iran
| |
Collapse
|
49
|
Whitworth DE, Morgan BH. Synergism Between Bacterial GAPDH and OMVs: Disparate Mechanisms but Co-Operative Action. Front Microbiol 2015; 6:1231. [PMID: 26617577 PMCID: PMC4637417 DOI: 10.3389/fmicb.2015.01231] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 10/20/2015] [Indexed: 01/06/2023] Open
Affiliation(s)
- David E Whitworth
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University Aberystwyth, UK
| | - Bethan H Morgan
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University Aberystwyth, UK
| |
Collapse
|
50
|
Melton-Celsa AR, O'Brien AD, Feng PCH. Virulence Potential of Activatable Shiga Toxin 2d-Producing Escherichia coli Isolates from Fresh Produce. J Food Prot 2015; 78:2085-8. [PMID: 26555533 PMCID: PMC4835030 DOI: 10.4315/0362-028x.jfp-15-180] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Shiga toxin (Stx)-producing Escherichia coli (STEC) strains are food- and waterborne pathogens that are often transmitted via beef products or fresh produce. STEC strains cause both sporadic infections and outbreaks, which may result in hemorrhagic colitis and hemolytic uremic syndrome. STEC strains may elaborate Stx1, Stx2, and/or subtypes of those toxins. Epidemiological evidence indicates that STEC that produce subtypes Stx2a, Stx2c, and/or Stx2d are more often associated with serious illness. The Stx2d subtype becomes more toxic to Vero cells after incubation with intestinal mucus or elastase, a process named "activation." Stx2d is not generally found in the E. coli serotypes most commonly connected to STEC outbreaks. However, STEC strains that are stx2d positive can be isolated from foods, an occurrence that gives rise to the question of whether those food isolates are potential human pathogens. In this study, we examined 14 STEC strains from fresh produce that were stx2d positive and found that they all produced the mucus-activatable Stx2d and that a subset of the strains tested were virulent in streptomycin-treated mice.
Collapse
Affiliation(s)
- Angela R Melton-Celsa
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA.
| | - Alison D O'Brien
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA
| | - Peter C H Feng
- Division of Microbiology, U.S. Food and Drug Administration, College Park, Maryland 20740, USA
| |
Collapse
|