1
|
Loivamaa I, Sillanpää A, Deptula P, Chamlagain B, Edelmann M, Auvinen P, Nyman TA, Savijoki K, Piironen V, Varmanen P. Aerobic adaptation and metabolic dynamics of Propionibacterium freudenreichii DSM 20271: insights from comparative transcriptomics and surfaceome analysis. mSystems 2024; 9:e0061524. [PMID: 39345151 PMCID: PMC11494915 DOI: 10.1128/msystems.00615-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/08/2024] [Indexed: 10/01/2024] Open
Abstract
Propionibacterium freudenreichii (PFR) DSM 20271T is a bacterium known for its ability to thrive in diverse environments and to produce vitamin B12. Despite its anaerobic preference, recent studies have elucidated its ability to prosper in the presence of oxygen, prompting a deeper exploration of its physiology under aerobic conditions. Here, we investigated the response of DSM 20271T to aerobic growth by employing comparative transcriptomic and surfaceome analyses alongside metabolite profiling. Cultivation under controlled partial pressure of oxygen (pO2) conditions revealed significant increases in biomass formation and altered metabolite production, notably of vitamin B12, pseudovitamin-B12, propionate, and acetate, under aerobic conditions. Transcriptomic analysis identified differential expression of genes involved in lactate metabolism, tricarboxylic acid cycle, and electron transport chain, suggesting metabolic adjustments to aerobic environments. Moreover, surfaceome analysis unveiled growth environment-dependent changes in surface protein abundance, with implications for adaptation to atmospheric conditions. Supplementation experiments with key compounds highlighted the potential for enhancing aerobic growth, emphasizing the importance of iron and α-ketoglutarate availability. Furthermore, in liquid culture, FeSO4 supplementation led to increased heme production and reduced vitamin B12 production, highlighting the impact of oxygen and iron availability on the metabolic pathways. These findings deepen our understanding of PFR's physiological responses to oxygen availability and offer insights for optimizing its growth in industrial applications. IMPORTANCE The study of the response of Propionibacterium freudenreichii to aerobic growth is crucial for understanding how this bacterium adapts to different environments and produces essential compounds like vitamin B12. By investigating its physiological changes under aerobic conditions, we can gain insights into its metabolic adjustments and potential for enhanced growth. These findings not only deepen our understanding of P. freudenreichii's responses to oxygen availability but also offer valuable information for optimizing its growth in industrial applications. This research sheds light on the adaptive mechanisms of this bacterium, providing a foundation for further exploration and potential applications in various fields.
Collapse
Affiliation(s)
- Iida Loivamaa
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Annika Sillanpää
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Paulina Deptula
- Department of Food Sciences, University of Copenhagen, Frederiksberg, Denmark
- Institute of Biotechnology, DNA Sequencing and Genomics Laboratory, University of Helsinki, Helsinki, Finland
| | - Bhawani Chamlagain
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Minnamari Edelmann
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Petri Auvinen
- Institute of Biotechnology, DNA Sequencing and Genomics Laboratory, University of Helsinki, Helsinki, Finland
| | - Tuula A. Nyman
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Kirsi Savijoki
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
- Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki, Finland
| | - Vieno Piironen
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Pekka Varmanen
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| |
Collapse
|
2
|
Madsen JJ, Yu W. Dynamic Nature of Staphylococcus aureus Type I Signal Peptidases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576923. [PMID: 38328037 PMCID: PMC10849702 DOI: 10.1101/2024.01.23.576923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Molecular dynamics simulations are used to interrogate the dynamic nature of Staphylococcus aureus Type I signal peptidases, SpsA and SpsB, including the impact of the P29S mutation of SpsB. Fluctuations and plasticity- rigidity characteristics vary among the proteins, particularly in the extracellular domain. Intriguingly, the P29S mutation, which influences susceptibility to arylomycin antibiotics, affect the mechanically coupled motions in SpsB. The integrity of the active site is crucial for catalytic competency, and variations in sampled structural conformations among the proteins are consistent with diverse peptidase capabilities. We also explored the intricate interactions between the proteins and the model S. aureus membrane. It was observed that certain membrane-inserted residues in the loop around residue 50 (50s) and C-terminal loops, beyond the transmembrane domain, give rise to direct interactions with lipids in the bilayer membrane. Our findings are discussed in the context of functional knowledge about these signal peptidases, offering additional understanding of dynamic aspects relevant to some cellular processes with potential implications for drug targeting strategies.
Collapse
Affiliation(s)
- Jesper J. Madsen
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States of America
- Center for Global Health and Infectious Diseases Research, Global and Planetary Health, College of Public Health, University of South Florida, Tampa, Florida 33612, United States of America
| | - Wenqi Yu
- Department of Molecular Biosciences, College of Arts and Sciences, University of South Florida, Tampa, Florida 33612, United States of America
| |
Collapse
|
3
|
Hickman SJ, Miller HL, Bukys A, Kapanidis AN, Berks BC. Aberrant Topologies of Bacterial Membrane Proteins Revealed by High Sensitivity Fluorescence Labelling. J Mol Biol 2024; 436:168368. [PMID: 37977298 PMCID: PMC11867995 DOI: 10.1016/j.jmb.2023.168368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/31/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023]
Abstract
The cytoplasmic membrane compartmentalises the bacterial cell into cytoplasm and periplasm. Proteins located in this membrane have a defined topology that is established during their biogenesis. However, the accuracy of this fundamental biosynthetic process is unknown. We developed compartment-specific fluorescence labelling methods with up to single-molecule sensitivity. Application of these methods to the single and multi-spanning membrane proteins of the Tat protein transport system revealed rare topogenesis errors. This methodology also detected low level soluble protein mislocalization from the cytoplasm to the periplasm. This study shows that it is possible to uncover rare errors in protein localization by leveraging the high sensitivity of fluorescence methods.
Collapse
Affiliation(s)
- Samuel J Hickman
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom.
| | - Helen L Miller
- Biological Physics Research Group, Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom.
| | - Alfredas Bukys
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom.
| | - Achillefs N Kapanidis
- Biological Physics Research Group, Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom; Kavli Institute for Nanoscience Discovery, University of Oxford, Sherrington Road, Oxford OX1 3QU, United Kingdom.
| | - Ben C Berks
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom.
| |
Collapse
|
4
|
Thomas KE, Gagniuc PA, Gagniuc E. Moonlighting genes harbor antisense ORFs that encode potential membrane proteins. Sci Rep 2023; 13:12591. [PMID: 37537268 PMCID: PMC10400600 DOI: 10.1038/s41598-023-39869-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 08/01/2023] [Indexed: 08/05/2023] Open
Abstract
Moonlighting genes encode for single polypeptide molecules that perform multiple and often unrelated functions. These genes occur across all domains of life. Their ubiquity and functional diversity raise many questions as to their origins, evolution, and role in the cell cycle. In this study, we present a simple bioinformatics probe that allows us to rank genes by antisense translation potential, and we show that this probe enriches, reliably, for moonlighting genes across a variety of organisms. We find that moonlighting genes harbor putative antisense open reading frames (ORFs) rich in codons for non-polar amino acids. We also find that moonlighting genes tend to co-locate with genes involved in cell wall, cell membrane, or cell envelope production. On the basis of this and other findings, we offer a model in which we propose that moonlighting gene products are likely to escape the cell through gaps in the cell wall and membrane, at wall/membrane construction sites; and we propose that antisense ORFs produce "membrane-sticky" protein products, effectively binding moonlighting-gene DNA to the cell membrane in porous areas where intensive cell-wall/cell-membrane construction is underway. This leads to high potential for escape of moonlighting proteins to the cell surface. Evolutionary and other implications of these findings are discussed.
Collapse
Affiliation(s)
| | - Paul A Gagniuc
- Faculty of Engineering in Foreign Languages, University Politehnica of Bucharest, Bucharest, Romania.
| | - Elvira Gagniuc
- Synevovet Laboratory, Bucharest, Romania
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine, Bucharest, Romania
| |
Collapse
|
5
|
Hammarén MM, Luukinen H, Sillanpää A, Remans K, Lapouge K, Custódio T, Löw C, Myllymäki H, Montonen T, Seeger M, Robertson J, Nyman TA, Savijoki K, Parikka M. In vitro and ex vivo proteomics of Mycobacterium marinum biofilms and the development of biofilm-binding synthetic nanobodies. mSystems 2023:e0107322. [PMID: 37184670 DOI: 10.1128/msystems.01073-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
The antibiotic-tolerant biofilms present in tuberculous granulomas add an additional layer of complexity when treating mycobacterial infections, including tuberculosis (TB). For a more efficient treatment of TB, the biofilm forms of mycobacteria warrant specific attention. Here, we used Mycobacterium marinum (Mmr) as a biofilm-forming model to identify the abundant proteins covering the biofilm surface. We used biotinylation/streptavidin-based proteomics on the proteins exposed at the Mmr biofilm matrices in vitro to identify 448 proteins and ex vivo proteomics to detect 91 Mmr proteins from the mycobacterial granulomas isolated from adult zebrafish. In vitro and ex vivo proteomics data are available via ProteomeXchange with identifier PXD033425 and PXD039416, respectively. Data comparisons pinpointed the molecular chaperone GroEL2 as the most abundant Mmr protein within the in vitro and ex vivo proteomes, while its paralog, GroEL1, with a known role in biofilm formation, was detected with slightly lower intensity values. To validate the surface exposure of these targets, we created in-house synthetic nanobodies (sybodies) against the two chaperones and identified sybodies that bind the mycobacterial biofilms in vitro and those present in ex vivo granulomas. Taken together, the present study reports a proof-of-concept showing that surface proteomics in vitro and ex vivo proteomics combined are a valuable strategy to identify surface-exposed proteins on the mycobacterial biofilm. Biofilm-surface-binding nanobodies could be eventually used as homing agents to deliver biofilm-targeting treatments to the sites of persistent biofilm infection.
Collapse
Affiliation(s)
- Milka Marjut Hammarén
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Hanna Luukinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Alina Sillanpää
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Kim Remans
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Karine Lapouge
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Tânia Custódio
- Centre for Structural Systems Biology, Hamburg, Germany
- Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
- European Molecular Biology Laboratory, Hamburg, Germany
| | - Christian Löw
- Centre for Structural Systems Biology, Hamburg, Germany
- Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
- European Molecular Biology Laboratory, Hamburg, Germany
| | - Henna Myllymäki
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Toni Montonen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Markus Seeger
- Institute for Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Joseph Robertson
- Department of Immunology, University of Oslo, Oslo, Norway
- Oslo University Hospital, Oslo, Norway
| | - Tuula A Nyman
- Department of Immunology, University of Oslo, Oslo, Norway
- Oslo University Hospital, Oslo, Norway
| | - Kirsi Savijoki
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Mataleena Parikka
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
6
|
Kumari K, Sharma PK, Singh RP. Unraveling the Virulence Factors and Secreted Proteins of an Environmental Isolate Enterobacter sp. S-16. Curr Microbiol 2023; 80:88. [PMID: 36719538 DOI: 10.1007/s00284-023-03197-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 01/19/2023] [Indexed: 02/01/2023]
Abstract
Members of the Enterobacter genus include many pathogenic microbes of humans and plants, secrete proteins that contribute to the interactions of bacteria and their environment. Therefore, understanding of secreted proteins is vital to understand bacterial physiology and behavior. Here, we explored the secretome of an environmental isolate Enterobacter sp. S-16 by nanoLC-MS/MS and identified 572 proteins in the culture supernatant. Gene ontology (GO) analysis indicated that proteins were related to biological processes, molecular as well as cellular functions. The majority of the identified proteins are involved in microbial metabolism, chemotaxis & motility, flagellar hook-associated proteins, biosynthesis of antibiotics, and molecular chaperones to assist the protein folding. Bioinformatics analysis of the secretome revealed the presence of type I and type VI secretion system proteins. Presence of these diverse secretion system proteins in Enterobacter sp. S-16 are likely to be involved in the transport of various proteins including nutrient acquisition, adhesion, colonization, and homeostasis maintenance. Among the secreted bacterial proteins with industrial importance, lignocellulolytic enzymes play a major role, therefore, we analyzed our secretome results for any presence of glycoside hydrolases (GHs) and other hydrolytic enzymes (CAZymes). Overall, the secreted proteins may be considered an attractive reservoir of potential antigens for drug development, diagnostic markers, and other biomedical applications.
Collapse
Affiliation(s)
- Kiran Kumari
- Department of Bioengineering and Biotechnology, BIT Mesra, Ranchi, Jharkhand, 835215, India
| | - Parva Kumar Sharma
- Department of Plant Sciences and Landscape Architecture, University of Maryland, College Park, MD, 20742, USA
| | - Rajnish Prakash Singh
- Department of Bioengineering and Biotechnology, BIT Mesra, Ranchi, Jharkhand, 835215, India.
| |
Collapse
|
7
|
Lorite MJ, Casas-Román A, Girard L, Encarnación S, Díaz-Garrido N, Badía J, Baldomá L, Pérez-Mendoza D, Sanjuán J. Impact of c-di-GMP on the Extracellular Proteome of Rhizobium etli. BIOLOGY 2022; 12:44. [PMID: 36671740 PMCID: PMC9855851 DOI: 10.3390/biology12010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022]
Abstract
Extracellular matrix components of bacterial biofilms include biopolymers such as polysaccharides, nucleic acids and proteins. Similar to polysaccharides, the secretion of adhesins and other matrix proteins can be regulated by the second messenger cyclic diguanylate (cdG). We have performed quantitative proteomics to determine the extracellular protein contents of a Rhizobium etli strain expressing high cdG intracellular levels. cdG promoted the exportation of proteins that likely participate in adhesion and biofilm formation: the rhizobial adhesion protein RapA and two previously undescribed likely adhesins, along with flagellins. Unexpectedly, cdG also promoted the selective exportation of cytoplasmic proteins. Nearly 50% of these cytoplasmic proteins have been previously described as moonlighting or candidate moonlighting proteins in other organisms, often found extracellularly. Western blot assays confirmed cdG-promoted export of two of these cytoplasmic proteins, the translation elongation factor (EF-Tu) and glyceraldehyde 3-phosphate dehydrogenase (Gap). Transmission Electron Microscopy immunolabeling located the Gap protein in the cytoplasm but was also associated with cell membranes and extracellularly, indicative of an active process of exportation that would be enhanced by cdG. We also obtained evidence that cdG increases the number of extracellular Gap proteoforms, suggesting a link between cdG, the post-translational modification and the export of cytoplasmic proteins.
Collapse
Affiliation(s)
- María J. Lorite
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
| | - Ariana Casas-Román
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
| | - Lourdes Girard
- Centro de Ciencias Genómicas (CCG), Universidad Nacional Autónoma de México (UNAM), Cuernavaca 62210, Morelos, Mexico
| | - Sergio Encarnación
- Centro de Ciencias Genómicas (CCG), Universidad Nacional Autónoma de México (UNAM), Cuernavaca 62210, Morelos, Mexico
| | - Natalia Díaz-Garrido
- Secció de Bioquímica i Biología Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Josefa Badía
- Secció de Bioquímica i Biología Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Institut de Recerca Sant Joan de Déu (IRSJD), 08028 Barcelona, Spain
| | - Laura Baldomá
- Secció de Bioquímica i Biología Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Daniel Pérez-Mendoza
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
| | - Juan Sanjuán
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
| |
Collapse
|
8
|
Raineri EJM, Maaß S, Wang M, Brushett S, Palma Medina LM, Sampol Escandell N, Altulea D, Raangs E, de Jong A, Vera Murguia E, Feil EJ, Friedrich AW, Buist G, Becher D, García-Cobos S, Couto N, van Dijl JM. Staphylococcus aureus populations from the gut and the blood are not distinguished by virulence traits-a critical role of host barrier integrity. MICROBIOME 2022; 10:239. [PMID: 36567349 PMCID: PMC9791742 DOI: 10.1186/s40168-022-01419-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/09/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND The opportunistic pathogen Staphylococcus aureus is an asymptomatically carried member of the microbiome of about one third of the human population at any given point in time. Body sites known to harbor S. aureus are the skin, nasopharynx, and gut. In particular, the mechanisms allowing S. aureus to pass the gut epithelial barrier and to invade the bloodstream were so far poorly understood. Therefore, the objective of our present study was to investigate the extent to which genetic differences between enteric S. aureus isolates and isolates that caused serious bloodstream infections contribute to the likelihood of invasive disease. RESULTS Here, we present genome-wide association studies (GWAS) that compare the genome sequences of 69 S. aureus isolates from enteric carriage by healthy volunteers and 95 isolates from bloodstream infections. We complement our GWAS results with a detailed characterization of the cellular and extracellular proteomes of the representative gut and bloodstream isolates, and by assaying the virulence of these isolates with infection models based on human gut epithelial cells, human blood cells, and a small animal infection model. Intriguingly, our results show that enteric and bloodstream isolates with the same sequence type (ST1 or ST5) are very similar to each other at the genomic and proteomic levels. Nonetheless, bloodstream isolates are not necessarily associated with an invasive profile. Furthermore, we show that the main decisive factor preventing infection of gut epithelial cells in vitro is the presence of a tight barrier. CONCLUSIONS Our data show that virulence is a highly variable trait, even within a single clone. Importantly, however, there is no evidence that blood stream isolates possess a higher virulence potential than those from the enteric carriage. In fact, some gut isolates from healthy carriers were more virulent than bloodstream isolates. Based on our present observations, we propose that the integrity of the gut epithelial layer, rather than the pathogenic potential of the investigated enteric S. aureus isolates, determines whether staphylococci from the gut microbiome will become invasive pathogens. Video Abstract.
Collapse
Affiliation(s)
- Elisa J. M. Raineri
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Sandra Maaß
- Department of Microbial Proteomics, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Min Wang
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Siobhan Brushett
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Laura M. Palma Medina
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Present address: Department of Medicine Huddinge, Present Address: Center for Infectious Medicine, Karolinska Institute, Huddinge, Sweden
| | - Neus Sampol Escandell
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Dania Altulea
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Present address: Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Erwin Raangs
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Anne de Jong
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Elias Vera Murguia
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Edward J. Feil
- Department of Biology and Biochemistry, The Milner Centre for Evolution, University of Bath, Bath, UK
| | - Alex W. Friedrich
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Girbe Buist
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Dörte Becher
- Department of Microbial Proteomics, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Silvia García-Cobos
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Present address: Reference and Research Laboratory On Antimicrobial Resistance and Healthcare Associated Infections, Centro Nacional de Microbiología, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Natacha Couto
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Biology and Biochemistry, The Milner Centre for Evolution, University of Bath, Bath, UK
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
9
|
Chlebicka K, Bonar E, Suder P, Ostyn E, Felden B, Wladyka B, Pinel-Marie ML. Impacts of the Type I Toxin-Antitoxin System, SprG1/SprF1, on Staphylococcus aureus Gene Expression. Genes (Basel) 2021; 12:genes12050770. [PMID: 34070083 PMCID: PMC8158120 DOI: 10.3390/genes12050770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/14/2021] [Accepted: 05/16/2021] [Indexed: 11/16/2022] Open
Abstract
Type I toxin-antitoxin (TA) systems are widespread genetic modules in bacterial genomes. They express toxic peptides whose overexpression leads to growth arrest or cell death, whereas antitoxins regulate the expression of toxins, acting as labile antisense RNAs. The Staphylococcus aureus (S. aureus) genome contains and expresses several functional type I TA systems, but their biological functions remain unclear. Here, we addressed and challenged experimentally, by proteomics, if the type I TA system, the SprG1/SprF1 pair, influences the overall gene expression in S. aureus. Deleted and complemented S. aureus strains were analyzed for their proteomes, both intracellular and extracellular, during growth. Comparison of intracellular proteomes among the strains points to the SprF1 antitoxin as moderately downregulating protein expression. In the strain naturally expressing the SprG1 toxin, cytoplasmic proteins are excreted into the medium, but this is not due to unspecific cell leakages. Such a toxin-driven release of the cytoplasmic proteins may modulate the host inflammatory response that, in turn, could amplify the S. aureus infection spread.
Collapse
Affiliation(s)
- Kinga Chlebicka
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (K.C.); (E.B.)
| | - Emilia Bonar
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (K.C.); (E.B.)
| | - Piotr Suder
- Department of Analytical Chemistry and Biochemistry, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 31-007 Krakow, Poland;
| | - Emeline Ostyn
- Inserm, BRM [Bacterial Regulatory RNAs and Medicine]—UMR_S 1230, 35000 Rennes, France;
| | - Brice Felden
- Inserm, BRM [Bacterial Regulatory RNAs and Medicine]—UMR_S 1230, 35000 Rennes, France;
| | - Benedykt Wladyka
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (K.C.); (E.B.)
- Correspondence: (B.W.); (M.-L.P.-M.); Tel.: +48-126646511 (B.W.); +33-223234850 (M.-L.P.-M.)
| | - Marie-Laure Pinel-Marie
- Inserm, BRM [Bacterial Regulatory RNAs and Medicine]—UMR_S 1230, 35000 Rennes, France;
- Correspondence: (B.W.); (M.-L.P.-M.); Tel.: +48-126646511 (B.W.); +33-223234850 (M.-L.P.-M.)
| |
Collapse
|
10
|
Dreisbach A, Wang M, van der Kooi-Pol MM, Reilman E, Koedijk DGAM, Mars RAT, Duipmans J, Jonkman M, Benschop JJ, Bonarius HPJ, Groen H, Hecker M, Otto A, Bäsell K, Bernhardt J, Back JW, Becher D, Buist G, van Dijl JM. Tryptic Shaving of Staphylococcus aureus Unveils Immunodominant Epitopes on the Bacterial Cell Surface. J Proteome Res 2020; 19:2997-3010. [DOI: 10.1021/acs.jproteome.0c00043] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Annette Dreisbach
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P. O. Box 30001, 9700 RB Groningen, the Netherlands
| | - Min Wang
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P. O. Box 30001, 9700 RB Groningen, the Netherlands
| | - Magdalena M. van der Kooi-Pol
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P. O. Box 30001, 9700 RB Groningen, the Netherlands
| | - Ewoud Reilman
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P. O. Box 30001, 9700 RB Groningen, the Netherlands
| | - Dennis G. A. M. Koedijk
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P. O. Box 30001, 9700 RB Groningen, the Netherlands
| | - Ruben A. T. Mars
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P. O. Box 30001, 9700 RB Groningen, the Netherlands
| | - José Duipmans
- Department of Dermatology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB Groningen, the Netherlands
| | - Marcel Jonkman
- Department of Dermatology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB Groningen, the Netherlands
| | - Joris J. Benschop
- Pepscan Therapeutics BV, P. O. Box 2098, 8203 AB Lelystad, the Netherlands
| | | | - Herman Groen
- IQ Therapeutics, Rozenburglaan 13a, 9727 DL Groningen, the Netherlands
| | - Michael Hecker
- Institut für Mikrobiologie, Ernst-Moritz-Arndt Universität Greifswald, Friedrich-Ludwig-Jahn-Str. 15, D-17489 Greifswald, Germany
| | - Andreas Otto
- Institut für Mikrobiologie, Ernst-Moritz-Arndt Universität Greifswald, Friedrich-Ludwig-Jahn-Str. 15, D-17489 Greifswald, Germany
| | - Katrin Bäsell
- Institut für Mikrobiologie, Ernst-Moritz-Arndt Universität Greifswald, Friedrich-Ludwig-Jahn-Str. 15, D-17489 Greifswald, Germany
| | - Jörg Bernhardt
- Institut für Mikrobiologie, Ernst-Moritz-Arndt Universität Greifswald, Friedrich-Ludwig-Jahn-Str. 15, D-17489 Greifswald, Germany
| | - Jaap Willem Back
- Pepscan Therapeutics BV, P. O. Box 2098, 8203 AB Lelystad, the Netherlands
| | - Dörte Becher
- Institut für Mikrobiologie, Ernst-Moritz-Arndt Universität Greifswald, Friedrich-Ludwig-Jahn-Str. 15, D-17489 Greifswald, Germany
| | - Girbe Buist
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P. O. Box 30001, 9700 RB Groningen, the Netherlands
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P. O. Box 30001, 9700 RB Groningen, the Netherlands
| |
Collapse
|
11
|
Savijoki K, Miettinen I, Nyman TA, Kortesoja M, Hanski L, Varmanen P, Fallarero A. Growth Mode and Physiological State of Cells Prior to Biofilm Formation Affect Immune Evasion and Persistence of Staphylococcus aureus. Microorganisms 2020; 8:E106. [PMID: 31940921 PMCID: PMC7023439 DOI: 10.3390/microorganisms8010106] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 01/01/2023] Open
Abstract
The present study investigated Staphylococcus aureus ATCC25923 surfaceomes (cell surface proteins) during prolonged growth by subjecting planktonic and biofilm cultures (initiated from exponential or stationary cells) to label-free quantitative surfaceomics and phenotypic confirmations. The abundance of adhesion, autolytic, hemolytic, and lipolytic proteins decreased over time in both growth modes, while an opposite trend was detected for many tricarboxylic acid (TCA) cycle, reactive oxygen species (ROS) scavenging, Fe-S repair, and peptidolytic moonlighters. In planktonic cells, these changes were accompanied by decreasing and increasing adherence to hydrophobic surface and fibronectin, respectively. Specific RNA/DNA binding (cold-shock protein CspD and ribosomal proteins) and the immune evasion (SpA, ClfA, and IsaB) proteins were notably more abundant on fully mature biofilms initiated with stationary-phase cells (SDBF) compared to biofilms derived from exponential cells (EDBF) or equivalent planktonic cells. The fully matured SDBF cells demonstrated higher viability in THP-1 monocyte/macrophage cells compared to the EDBF cells. Peptidoglycan strengthening, specific urea-cycle, and detoxification enzymes were more abundant on planktonic than biofilm cells, indicating the activation of growth-mode specific pathways during prolonged cultivation. Thus, we show that S. aureus shapes its surfaceome in a growth mode-dependent manner to reach high levofloxacin tolerance (>200-times the minimum biofilm inhibitory concentration). This study also demonstrates that the phenotypic state of the cells prior to biofilm formation affects the immune-evasion and persistence-related traits of S. aureus.
Collapse
Affiliation(s)
- Kirsi Savijoki
- Pharmaceutical Design and Discovery (PharmDD) Group, Pharmaceutical Biology, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5, 00014 Helsinki, Finland; (I.M.); (M.K.); (L.H.); (A.F.)
| | - Ilkka Miettinen
- Pharmaceutical Design and Discovery (PharmDD) Group, Pharmaceutical Biology, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5, 00014 Helsinki, Finland; (I.M.); (M.K.); (L.H.); (A.F.)
| | - Tuula A. Nyman
- Department of Immunology, Institute of Clinical Medicine, University of Oslo and Rikshospitalet Oslo, 0372 Oslo, Norway; or
| | - Maarit Kortesoja
- Pharmaceutical Design and Discovery (PharmDD) Group, Pharmaceutical Biology, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5, 00014 Helsinki, Finland; (I.M.); (M.K.); (L.H.); (A.F.)
| | - Leena Hanski
- Pharmaceutical Design and Discovery (PharmDD) Group, Pharmaceutical Biology, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5, 00014 Helsinki, Finland; (I.M.); (M.K.); (L.H.); (A.F.)
| | - Pekka Varmanen
- Department of Food and Nutrition, University of Helsinki, 00014 Helsinki, Finland;
| | - Adyary Fallarero
- Pharmaceutical Design and Discovery (PharmDD) Group, Pharmaceutical Biology, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5, 00014 Helsinki, Finland; (I.M.); (M.K.); (L.H.); (A.F.)
| |
Collapse
|
12
|
Principle and potential applications of the non-classical protein secretory pathway in bacteria. Appl Microbiol Biotechnol 2019; 104:953-965. [PMID: 31853566 DOI: 10.1007/s00253-019-10285-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 10/22/2019] [Accepted: 10/27/2019] [Indexed: 12/15/2022]
Abstract
In addition to the extracellular proteins secreted by known secretory pathways, a number of cytoplasmic proteins without predicable or known signal sequences or secretory motifs have been found in the extracellular milieu, and were consequently classified as non-classically secreted proteins. Non-classical protein secretion is considered to be a general, conserved cellular phenomenon in both eukaryotes and prokaryotes. There are several research hotspots on the non-classical protein secretory pathway, and the most important two of them are the recognition principle of substrate proteins and possible secretory mechanisms. To date, researchers have made some progress in understanding the characteristics of these proteins. For example, it was discovered that many non-classically secreted proteins exist and are secreted in multimeric form. Some of these proteins prefer to be clustered and exported at the poles and the septum of the cell. The majority of these proteins play different functions when they are in the intra- and extracellular environments, and several of their functions are related to survival and pathogenicity. Furthermore, non-classically secreted proteins can be used as leading proteins to guide a POI (protein of interest) out of the cells, which provides a novel strategy for protein secretion with potential applications in the industry. Summarizing these findings, this review emphasizes the hot spots related to non-classically secreted proteins in bacteria, lists the most important hypotheses on the selection and secretion mechanisms of non-classically secreted proteins, and put forward their potential applications.
Collapse
|
13
|
Harvey KL, Jarocki VM, Charles IG, Djordjevic SP. The Diverse Functional Roles of Elongation Factor Tu (EF-Tu) in Microbial Pathogenesis. Front Microbiol 2019; 10:2351. [PMID: 31708880 PMCID: PMC6822514 DOI: 10.3389/fmicb.2019.02351] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 09/27/2019] [Indexed: 12/25/2022] Open
Abstract
Elongation factor thermal unstable Tu (EF-Tu) is a G protein that catalyzes the binding of aminoacyl-tRNA to the A-site of the ribosome inside living cells. Structural and biochemical studies have described the complex interactions needed to effect canonical function. However, EF-Tu has evolved the capacity to execute diverse functions on the extracellular surface of both eukaryote and prokaryote cells. EF-Tu can traffic to, and is retained on, cell surfaces where can interact with membrane receptors and with extracellular matrix on the surface of plant and animal cells. Our structural studies indicate that short linear motifs (SLiMs) in surface exposed, non-conserved regions of the molecule may play a key role in the moonlighting functions ascribed to this ancient, highly abundant protein. Here we explore the diverse moonlighting functions relating to pathogenesis of EF-Tu in bacteria and examine putative SLiMs on surface-exposed regions of the molecule.
Collapse
Affiliation(s)
- Kate L Harvey
- The ithree Institute, University of Technology Sydney, Ultimo, NSW, Australia
| | - Veronica M Jarocki
- The ithree Institute, University of Technology Sydney, Ultimo, NSW, Australia
| | - Ian G Charles
- Quadram Institute, Norwich, United Kingdom.,Norwich Medical School, Norwich, United Kingdom
| | - Steven P Djordjevic
- The ithree Institute, University of Technology Sydney, Ultimo, NSW, Australia
| |
Collapse
|
14
|
Duport C, Alpha-Bazin B, Armengaud J. Advanced Proteomics as a Powerful Tool for Studying Toxins of Human Bacterial Pathogens. Toxins (Basel) 2019; 11:toxins11100576. [PMID: 31590258 PMCID: PMC6832400 DOI: 10.3390/toxins11100576] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 09/27/2019] [Accepted: 09/30/2019] [Indexed: 12/15/2022] Open
Abstract
Exotoxins contribute to the infectious processes of many bacterial pathogens, mainly by causing host tissue damages. The production of exotoxins varies according to the bacterial species. Recent advances in proteomics revealed that pathogenic bacteria are capable of simultaneously producing more than a dozen exotoxins. Interestingly, these toxins may be subject to post-transcriptional modifications in response to environmental conditions. In this review, we give an outline of different bacterial exotoxins and their mechanism of action. We also report how proteomics contributed to immense progress in the study of toxinogenic potential of pathogenic bacteria over the last two decades.
Collapse
Affiliation(s)
- Catherine Duport
- SQPOV, UMR0408, Avignon Université, INRA, F-84914 Avignon, France
- Correspondence:
| | - Béatrice Alpha-Bazin
- Laboratoire Innovations technologiques pour la Détection et le Diagnostic (Li2D), Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, F-30207 Bagnols sur Cèze, France; (B.A.-B.); (J.A.)
| | - Jean Armengaud
- Laboratoire Innovations technologiques pour la Détection et le Diagnostic (Li2D), Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, F-30207 Bagnols sur Cèze, France; (B.A.-B.); (J.A.)
| |
Collapse
|
15
|
Zhao X, Palma Medina LM, Stobernack T, Glasner C, de Jong A, Utari P, Setroikromo R, Quax WJ, Otto A, Becher D, Buist G, van Dijl JM. Exoproteome Heterogeneity among Closely Related Staphylococcus aureus t437 Isolates and Possible Implications for Virulence. J Proteome Res 2019; 18:2859-2874. [PMID: 31119940 PMCID: PMC6617432 DOI: 10.1021/acs.jproteome.9b00179] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Staphylococcus aureus with spa-type t437 has been identified as a predominant community-associated methicillin-resistant S. aureus clone from Asia, which is also encountered in Europe. Molecular typing has previously shown that t437 isolates are highly similar regardless of geographical regions or host environments. The present study was aimed at assessing to what extent this high similarity is actually reflected in the production of secreted virulence factors. We therefore profiled the extracellular proteome, representing the main reservoir of virulence factors, of 20 representative clinical isolates by mass spectrometry. The results show that these isolates can be divided into three groups and nine subgroups based on exoproteome abundance signatures. This implies that S. aureus t437 isolates show substantial exoproteome heterogeneity. Nonetheless, 30 highly conserved extracellular proteins, of which about 50% have a predicted role in pathogenesis, were dominantly identified. To approximate the virulence of the 20 investigated isolates, we employed infection models based on Galleria mellonella and HeLa cells. The results show that the grouping of clinical isolates based on their exoproteome profile can be related to virulence. We consider this outcome important as our approach provides a tool to pinpoint differences in virulence among seemingly highly similar clinical isolates of S. aureus.
Collapse
Affiliation(s)
- Xin Zhao
- University of Groningen , University Medical Center Groningen, Department of Medical Microbiology , Hanzeplein 1 , P.O. Box 30001, 9700 RB Groningen , The Netherlands
| | - Laura M Palma Medina
- University of Groningen , University Medical Center Groningen, Department of Medical Microbiology , Hanzeplein 1 , P.O. Box 30001, 9700 RB Groningen , The Netherlands
| | - Tim Stobernack
- University of Groningen , University Medical Center Groningen, Department of Medical Microbiology , Hanzeplein 1 , P.O. Box 30001, 9700 RB Groningen , The Netherlands
| | - Corinna Glasner
- University of Groningen , University Medical Center Groningen, Department of Medical Microbiology , Hanzeplein 1 , P.O. Box 30001, 9700 RB Groningen , The Netherlands
| | - Anne de Jong
- University of Groningen , Groningen Biomolecular Sciences and Biotechnology Institute, Department of Molecular Genetics , 9747 AG Groningen , The Netherlands
| | - Putri Utari
- University of Groningen , Groningen Research Institute of Pharmacy, Department of Chemical and Pharmaceutical Biology , A. Deusinglaan 1 , 9713 AV Groningen , The Netherlands
| | - Rita Setroikromo
- University of Groningen , Groningen Research Institute of Pharmacy, Department of Chemical and Pharmaceutical Biology , A. Deusinglaan 1 , 9713 AV Groningen , The Netherlands
| | - Wim J Quax
- University of Groningen , Groningen Research Institute of Pharmacy, Department of Chemical and Pharmaceutical Biology , A. Deusinglaan 1 , 9713 AV Groningen , The Netherlands
| | - Andreas Otto
- Institut für Mikrobiologie , University of Greifswald , Felix-Hausdorff-Str. 8 , 17475 Greifswald , Germany
| | - Dörte Becher
- Institut für Mikrobiologie , University of Greifswald , Felix-Hausdorff-Str. 8 , 17475 Greifswald , Germany
| | - Girbe Buist
- University of Groningen , University Medical Center Groningen, Department of Medical Microbiology , Hanzeplein 1 , P.O. Box 30001, 9700 RB Groningen , The Netherlands
| | - Jan Maarten van Dijl
- University of Groningen , University Medical Center Groningen, Department of Medical Microbiology , Hanzeplein 1 , P.O. Box 30001, 9700 RB Groningen , The Netherlands
| |
Collapse
|
16
|
Wang Y, Wang X, Ali F, Li Z, Fu Y, Yang X, Lin W, Lin X. Comparative Extracellular Proteomics of Aeromonas hydrophila Reveals Iron-Regulated Secreted Proteins as Potential Vaccine Candidates. Front Immunol 2019; 10:256. [PMID: 30833947 PMCID: PMC6387970 DOI: 10.3389/fimmu.2019.00256] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 01/29/2019] [Indexed: 01/07/2023] Open
Abstract
In our previous study, several iron-related outer membrane proteins in Aeromonas hydrophila, a serious pathogen of farmed fish, conferred high immunoprotectivity to fish, and were proposed as potential vaccine candidates. However, the protective efficacy of these extracellular proteins against A. hydrophila remains largely unknown. Here, we identified secreted proteins that were differentially expressed in A. hydrophila LP-2 in response to iron starvation using an iTRAQ-based quantitative proteomics method. We identified 341 proteins, of which 9 were upregulated in response to iron starvation and 24 were downregulated. Many of the differently expressed proteins were associated with protease activity. We confirmed our proteomics results with Western blotting and qPCR. We constructed three mutants by knocking out three genes encoding differentially expressed proteins (Δorf01830, Δorf01609, and Δorf03641). The physiological characteristics of these mutants were investigated. In all these mutant strains, protease activity decreased, and Δorf01609, and Δorf01830 were less virulent in zebrafish. This indicated that the proteins encoded by these genes may play important roles in bacterial infection. We next evaluated the immune response provoked by the six iron-related recombinant proteins (ORF01609, ORF01830, ORF01839, ORF02943, ORF03355, and ORF03641) in zebrafish as well as the immunization efficacy of these proteins. Immunization with these proteins significantly increased the zebrafish immune response. In addition, the relative percent survival (RPS) of the immunized zebrafish was 50-80% when challenged with three virulent A. hydrophila strains, respectively. Thus, these extracellular secreted proteins might be effective vaccine candidates against A. hydrophila infection in fish.
Collapse
Affiliation(s)
- Yuqian Wang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaoyun Wang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou, China
| | - Farman Ali
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou, China
| | - Zeqi Li
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou, China
| | - Yuying Fu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou, China
| | - Xiaojun Yang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou, China
| | - Wenxiong Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou, China
| | - Xiangmin Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou, China
| |
Collapse
|
17
|
Ebner P, Götz F. Bacterial Excretion of Cytoplasmic Proteins (ECP): Occurrence, Mechanism, and Function. Trends Microbiol 2019; 27:176-187. [DOI: 10.1016/j.tim.2018.10.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/11/2018] [Accepted: 10/16/2018] [Indexed: 12/28/2022]
|
18
|
Busche T, Hillion M, Van Loi V, Berg D, Walther B, Semmler T, Strommenger B, Witte W, Cuny C, Mellmann A, Holmes MA, Kalinowski J, Adrian L, Bernhardt J, Antelmann H. Comparative Secretome Analyses of Human and Zoonotic Staphylococcus aureus Isolates CC8, CC22, and CC398. Mol Cell Proteomics 2018; 17:2412-2433. [PMID: 30201737 PMCID: PMC6283302 DOI: 10.1074/mcp.ra118.001036] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Indexed: 12/24/2022] Open
Abstract
The spread of methicillin-resistant Staphylococcus aureus (MRSA) in the community, hospitals and in livestock is mediated by highly diverse virulence factors that include secreted toxins, superantigens, enzymes and surface-associated adhesins allowing host adaptation and colonization. Here, we combined proteogenomics, secretome and phenotype analyses to compare the secreted virulence factors in selected S. aureus isolates of the dominant human- and livestock-associated genetic lineages CC8, CC22, and CC398. The proteogenomic comparison revealed 2181 core genes and 1306 accessory genes in 18 S. aureus isolates reflecting the high genome diversity. Using secretome analysis, we identified 869 secreted proteins with 538 commons in eight isolates of CC8, CC22, and CC398. These include 64 predicted extracellular and 37 cell surface proteins that account for 82.4% of total secretome abundance. Among the top 10 most abundantly secreted virulence factors are the major autolysins (Atl, IsaA, Sle1, SAUPAN006375000), lipases and lipoteichoic acid hydrolases (Lip, Geh, LtaS), cytolytic toxins (Hla, Hlb, PSMβ1) and proteases (SspB). The CC398 isolates showed lower secretion of cell wall proteins, but higher secretion of α- and β-hemolysins (Hla, Hlb) which correlated with an increased Agr activity and strong hemolysis. CC398 strains were further characterized by lower biofilm formation and staphyloxanthin levels because of decreased SigB activity. Overall, comparative secretome analyses revealed CC8- or CC22-specific enterotoxin and Spl protease secretion as well as Agr- and SigB-controlled differences in exotoxin and surface protein secretion between human-specific and zoonotic lineages of S. aureus.
Collapse
Affiliation(s)
- Tobias Busche
- Institute for Biology-Microbiology, Freie Universität Berlin, D-14195 Berlin, Germany; Center for Biotechnology, Bielefeld University, D-33594 Bielefeld, Germany
| | - Mélanie Hillion
- Institute for Biology-Microbiology, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Vu Van Loi
- Institute for Biology-Microbiology, Freie Universität Berlin, D-14195 Berlin, Germany
| | - David Berg
- Institute for Biology-Microbiology, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Birgit Walther
- Robert Koch Institute, Advanced Light and Electron Microscopy, D-13353 Berlin, Germany; Institute of Microbiology and Epizootics, Centre for Infection Medicine, Freie Universität Berlin, D-14153 Berlin, Germany
| | - Torsten Semmler
- Robert Koch Institute, Advanced Light and Electron Microscopy, D-13353 Berlin, Germany
| | | | - Wolfgang Witte
- Robert Koch Institute, Wernigerode Branch, D-38855 Wernigerode, Germany
| | - Christiane Cuny
- Robert Koch Institute, Wernigerode Branch, D-38855 Wernigerode, Germany
| | - Alexander Mellmann
- Institute of Hygiene, University Hospital Münster, D-48149 Münster, Germany
| | - Mark A Holmes
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Jörn Kalinowski
- Center for Biotechnology, Bielefeld University, D-33594 Bielefeld, Germany
| | - Lorenz Adrian
- Department Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, D-04318 Leipzig, Germany; Chair of Geobiotechnology, Technische Universität Berlin, D-13355 Berlin, Germany
| | - Jörg Bernhardt
- Institute for Biology-Microbiology, Freie Universität Berlin, D-14195 Berlin, Germany; Institute for Microbiology, University of Greifswald, D-17489 Greifswald, Germany
| | - Haike Antelmann
- Institute for Biology-Microbiology, Freie Universität Berlin, D-14195 Berlin, Germany.
| |
Collapse
|
19
|
Guo H, Wang XD, Lee DJ. Proteomic researches for lignocellulose-degrading enzymes: A mini-review. BIORESOURCE TECHNOLOGY 2018; 265:532-541. [PMID: 29884341 DOI: 10.1016/j.biortech.2018.05.101] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/29/2018] [Accepted: 05/30/2018] [Indexed: 05/14/2023]
Abstract
Protective action of lignin/hemicellulose networks and crystalline structures of embedded cellulose render lignocellulose material resistant to external enzymatic attack. To eliminate this bottleneck, research has been conducted in which advanced proteomic techniques are applied to identify effective commercial hydrolytic enzymes. This mini-review summarizes researches on lignocellulose-degrading enzymes, the mechanisms of the responses of various lignocellulose-degrading strains and microbial communities to various carbon sources and various biomass substrates, post-translational modifications of lignocellulose-degrading enzymes, new lignocellulose-degrading strains, new lignocellulose-degrading enzymes and a new method of secretome analysis. The challenges in the practical use of enzymatic hydrolysis process to realize lignocellulose biorefineries are discussed, along with the prospects for the same.
Collapse
Affiliation(s)
- Hongliang Guo
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Xiao-Dong Wang
- Research Center of Engineering Thermophysics, North China Electric Power University, Beijing 102206, China; School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan; Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.
| |
Collapse
|
20
|
Liang Y, Hou J, Liu Y, Luo Y, Tang J, Cheng JJ, Daroch M. Textile Dye Decolorizing Synechococcus PCC7942 Engineered With CotA Laccase. Front Bioeng Biotechnol 2018; 6:95. [PMID: 30050901 PMCID: PMC6052094 DOI: 10.3389/fbioe.2018.00095] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 06/25/2018] [Indexed: 01/20/2023] Open
Abstract
Cyanobacteria are prokaryotic phototrophs capable of achieving high cellular densities with minimal inputs. These prokaryotic organisms can grow using sunlight as energy source and carbon dioxide as carbon source what makes them promising candidates as microbial cell factories for the production of numerous compounds such as chemicals, fuels, or biocatalysts. In this study, we have successfully designed and constructed using synthetic biology approach two recombinant strains of Synechococcus elongatus PCC7942 for heterologous expression of the industrially relevant Bacillus subtilis CotA laccase. One of the strains (PCC7942-NSI-CotA) was constructed through integration of the laccase gene into neutral site I of the cyanobacterial genome whilst the other (PCC7942-NSII-CotA) targeted neutral site II of the genome. Of the two strains the one with CotA laccase integrated in neutral site II (PCC7942-NSII-CotA) was superior in terms of growth rate and enzymatic activity toward typical laccase substrates: ABTS [2,2-azino-bis (3-ethylbenzothiazoline-6-sulfonate)] and syringaldazine. That may suggest that two of the traditionally used neutral sites of S. elongatus PCC7942 are not equally suitable for the expression of certain transgenes. The PCC7942-NSII-CotA produced protein was capable of decolourising three classes of dyes namely: anthraquinonic-, azo-, and indigoid-type over 7 days of incubation making the strain a potentially useful microbial cell factory for the production of broad-spectrum biodegradation agent. Interestingly, presence of additional synthetic redox mediator ABTS had no effect on the degradation of these dyes.
Collapse
Affiliation(s)
- Yuanmei Liang
- School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, China
| | - Juan Hou
- School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, China
| | - Ying Liu
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Yifan Luo
- School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, China
| | - Jie Tang
- School of Pharmacy and Bioengineering, Chengdu University, Chengdu, China
| | - Jay J. Cheng
- School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, China
- Department of Biological and Agricultural Engineering, North Carolina State University, Raleigh, NC, United States
| | - Maurycy Daroch
- School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, China
| |
Collapse
|
21
|
Non-classical Protein Excretion Is Boosted by PSMα-Induced Cell Leakage. Cell Rep 2018; 20:1278-1286. [PMID: 28793253 DOI: 10.1016/j.celrep.2017.07.045] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/06/2017] [Accepted: 07/18/2017] [Indexed: 02/04/2023] Open
Abstract
Release of cytoplasmic proteins into the supernatant occurs both in bacteria and eukaryotes. Because the underlying mechanism remains unclear, the excretion of cytoplasmic proteins (ECP) has been referred to as "non-classical protein secretion." We show that none of the known specific protein transport systems of Gram-positive bacteria are involved in ECP. However, the expression of the cationic and amphipathic α-type phenol-soluble modulins (PSMs), particularly of PSMα2, significantly increase ECP, while PSMβ peptides or δ-toxin have no effect on ECP. Because psm expression is strictly controlled by the accessory gene regulator (agr), ECP is also reduced in agr-negative mutants. PSMα peptides damage the cytoplasmic membrane, as indicated by the release of not only CPs but also lipids, nucleic acids, and ATP. Thus, our results show that in Staphylococcus aureus, PSMα peptides non-specifically boost the translocation of CPs by their membrane-damaging activity.
Collapse
|
22
|
Lin MH, Li CC, Shu JC, Chu HW, Liu CC, Wu CC. Exoproteome Profiling Reveals the Involvement of the Foldase PrsA in the Cell Surface Properties and Pathogenesis ofStaphylococcus aureus. Proteomics 2018; 18:e1700195. [DOI: 10.1002/pmic.201700195] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 01/08/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Mei-Hui Lin
- Department of Medical Biotechnology and Laboratory Science; College of Medicine; Chang Gung University; Tao-Yuan Taiwan
- Department of Laboratory Medicine; Chang Gung Memorial Hospital; Linkou Tao-Yuan Taiwan
- Graduate Institute of Biomedical Sciences; College of Medicine; Chang Gung University; Tao-Yuan Taiwan
| | - Chi-Chun Li
- Department of Medical Biotechnology and Laboratory Science; College of Medicine; Chang Gung University; Tao-Yuan Taiwan
| | - Jwu-Ching Shu
- Department of Medical Biotechnology and Laboratory Science; College of Medicine; Chang Gung University; Tao-Yuan Taiwan
- Department of Laboratory Medicine; Chang Gung Memorial Hospital; Linkou Tao-Yuan Taiwan
- Graduate Institute of Biomedical Sciences; College of Medicine; Chang Gung University; Tao-Yuan Taiwan
| | - Hao-Wei Chu
- Department of Medical Biotechnology and Laboratory Science; College of Medicine; Chang Gung University; Tao-Yuan Taiwan
- Graduate Institute of Biomedical Sciences; College of Medicine; Chang Gung University; Tao-Yuan Taiwan
| | - Chao-Chin Liu
- Department of Medical Biotechnology and Laboratory Science; College of Medicine; Chang Gung University; Tao-Yuan Taiwan
- Graduate Institute of Biomedical Sciences; College of Medicine; Chang Gung University; Tao-Yuan Taiwan
| | - Chih-Ching Wu
- Department of Medical Biotechnology and Laboratory Science; College of Medicine; Chang Gung University; Tao-Yuan Taiwan
- Graduate Institute of Biomedical Sciences; College of Medicine; Chang Gung University; Tao-Yuan Taiwan
- Molecular Medicine Research Center; Chang Gung University; Tao-Yuan Taiwan
- Department of Otolaryngology-Head & Neck Surgery; Chang Gung Memorial Hospital; Linkou Tao-Yuan Taiwan
| |
Collapse
|
23
|
Yang Y, Li J, Yu Q, Hou J, Gao C, Li D, Liu Y, Ran C, Zhou Z. Conformational determinants necessary for secretion of Paecilomyces thermophila β-1,4-xylosidase that lacks a signal peptide. AMB Express 2018; 8:11. [PMID: 29368263 PMCID: PMC5783984 DOI: 10.1186/s13568-018-0542-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 01/15/2018] [Indexed: 11/12/2022] Open
Abstract
In this study, we investigated the secretion mechanism of the hyper-secretion signal peptide-lacking β-xylosidase PtXyl43, a non-classically secreted protein, from the fungus Paecilomyces thermophila in Escherichia coli BL21(DE3). PtXyl43 secretion is a two-step process, and the second step is accompanied by cell periplasmic leakage, indicating that PtXyl43 secretion is the result of semi-specific secretion. Homology modeling of PtXyl43 suggested that PtXyl43 had a canonical GH43 family β-xylosidase structure containing five blades. Seventeen blade deletions or circular mutants were designed to identify the conformational motif(s) involved in secretion. These mutants were expressed as recombinant, codon-optimized proteins in E. coli. Notably, only mutants containing blades 2–4 were effectively secreted. Blades 2–4 are necessary for secretion, but it appears that blade 1 or 5 must be present to maintain the structure of blades 2–4. Simultaneous deletion of blades 1 and 5 dramatically reduces excretion. The covalent and sequential linking of blades of 2, 3 and 4 are important for the excretion of mutants, as separate blades of 2 and 3 or 3 and 4 abolishes excretion. Fusion with PtXyl43 promotes the excretion of GFP from the periplasm to the extracellular milieu, which suggested that PtXyl43 had the potential to carry proteins. This study provides new insights into secretory mechanism of secretable signal peptide-lacking proteins in E. coli. To our knowledge, this is the first to definitively identify the conformational determinants for secretion of a signal peptide-lacking GH43 family β-xylosidase. This finding also has application potential for the secretion of recombinant proteins.
Collapse
|
24
|
García-Pérez AN, de Jong A, Junker S, Becher D, Chlebowicz MA, Duipmans JC, Jonkman MF, van Dijl JM. From the wound to the bench: exoproteome interplay between wound-colonizing Staphylococcus aureus strains and co-existing bacteria. Virulence 2018; 9:363-378. [PMID: 29233035 PMCID: PMC5955179 DOI: 10.1080/21505594.2017.1395129] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 10/09/2017] [Accepted: 10/15/2017] [Indexed: 11/16/2022] Open
Abstract
Wound-colonizing microorganisms can form complex and dynamic polymicrobial communities where pathogens and commensals may co-exist, cooperate or compete with each other. The present study was aimed at identifying possible interactions between different bacteria isolated from the same chronic wound of a patient with the genetic blistering disease epidermolysis bullosa (EB). Specifically, this involved two different isolates of the human pathogen Staphylococcus aureus, and isolates of Bacillus thuringiensis and Klebsiella oxytoca. Particular focus was attributed to interactions of S. aureus with the two other species, because of the high staphylococcal prevalence among chronic wounds. Intriguingly, upon co-cultivation, none of the wound isolates inhibited each other's growth. Since the extracellular proteome of bacterial pathogens is a reservoir of virulence factors, the exoproteomes of the staphylococcal isolates in monoculture and co-culture with B. thuringiensis and K. oxytoca were characterized by Mass Spectrometry to explore the inherent relationships between these co-exisiting bacteria. This revealed a massive reduction in the number of staphylococcal exoproteins upon co-culturing with K. oxytoca or B. thuringiensis. Interestingly, this decrease was particularly evident for extracellular proteins with a predicted cytoplasmic localization, which were recently implicated in staphylococcal virulence and epidemiology. Furthermore, our exoproteome analysis uncovered potential cooperativity between the two different S. aureus isolates. Altogether, the observed exoproteome variations upon co-culturing are indicative of unprecedented adaptive mechanisms that set limits to the production of secreted staphylococcal virulence factors.
Collapse
Affiliation(s)
- Andrea N. García-Pérez
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, the Netherlands
| | - Anne de Jong
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, AG Groningen, the Netherlands
| | - Sabryna Junker
- Institute for Microbiology, Ernst-Moritz-Arndt Universität Greifswald, Friedrich-Ludwig-Jahn-Str. 15, Greifswald, Germany
| | - Dörte Becher
- Institute for Microbiology, Ernst-Moritz-Arndt Universität Greifswald, Friedrich-Ludwig-Jahn-Str. 15, Greifswald, Germany
| | - Monika A. Chlebowicz
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, the Netherlands
| | - José C. Duipmans
- Department of Dermatology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, RB Groningen, the Netherlands
| | - Marcel F. Jonkman
- Department of Dermatology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, RB Groningen, the Netherlands
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, the Netherlands
| |
Collapse
|
25
|
Castro R, Reguera-Brito M, López-Campos GH, Blanco MM, Aguado-Urda M, Fernández-Garayzábal JF, Gibello A. How does temperature influences the development of lactococcosis? Transcriptomic and immunoproteomic in vitro approaches. JOURNAL OF FISH DISEASES 2017; 40:1285-1297. [PMID: 28093775 DOI: 10.1111/jfd.12601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/21/2016] [Accepted: 11/22/2016] [Indexed: 06/06/2023]
Abstract
Lactococcus garvieae is the aetiological agent of lactococcosis, a haemorrhagic septicaemia that affects marine and freshwater fish, with special incidence and economic relevance in farmed rainbow trout. Water temperature is one of the most important predisposing factors in the development of lactococcosis outbreaks. Lactococcosis in trout usually occur when water temperatures rise to about 18 °C, while fish carriers remain asymptomatic at temperatures below 13 °C. The aim of this work was to analyse the differences in the complete transcriptome response of L. garvieae grown at 18 °C and at 13 °C and to identify the immunogenic proteins expressed by this bacterium at 18 °C. Our results show that water temperature influences the expression of L. garvieae genes involved in the lysis of part of the bacterial cell population and in the cold response bacterial adaptation. Moreover, the surface immunogenic protein profile at 18 °C suggests an important role of the lysozyme-like enzyme, WxL surface proteins and some putative moonlighting proteins (proteins with more than one function, usually associated with different cellular locations) as virulence factors in L. garvieae. The results of this study could provide insights into the understanding of the virulence mechanisms of L. garvieae in fish.
Collapse
Affiliation(s)
- R Castro
- Department of Animal Health, Faculty of Veterinary Sciences, Complutense University, Madrid, Spain
| | - M Reguera-Brito
- Department of Animal Health, Faculty of Veterinary Sciences, Complutense University, Madrid, Spain
| | - G H López-Campos
- Health and Biomedical Informatics Research Unit, Medical School, University of Melbourne, Melbourne, VIC, Australia
| | - M M Blanco
- Department of Animal Health, Faculty of Veterinary Sciences, Complutense University, Madrid, Spain
| | - M Aguado-Urda
- Department of Animal Health, Faculty of Veterinary Sciences, Complutense University, Madrid, Spain
| | - J F Fernández-Garayzábal
- Department of Animal Health, Faculty of Veterinary Sciences, Complutense University, Madrid, Spain
- Animal Health Surveillance Center (VISAVET), Complutense University, Madrid, Spain
| | - A Gibello
- Department of Animal Health, Faculty of Veterinary Sciences, Complutense University, Madrid, Spain
| |
Collapse
|
26
|
Elongation factor Tu is a multifunctional and processed moonlighting protein. Sci Rep 2017; 7:11227. [PMID: 28894125 PMCID: PMC5593925 DOI: 10.1038/s41598-017-10644-z] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/10/2017] [Indexed: 01/10/2023] Open
Abstract
Many bacterial moonlighting proteins were originally described in medically, agriculturally, and commercially important members of the low G + C Firmicutes. We show Elongation factor Tu (Ef-Tu) moonlights on the surface of the human pathogens Staphylococcus aureus (SaEf-Tu) and Mycoplasma pneumoniae (MpnEf-Tu), and the porcine pathogen Mycoplasma hyopneumoniae (MhpEf-Tu). Ef-Tu is also a target of multiple processing events on the cell surface and these were characterised using an N-terminomics pipeline. Recombinant MpnEf-Tu bound strongly to a diverse range of host molecules, and when bound to plasminogen, was able to convert plasminogen to plasmin in the presence of plasminogen activators. Fragments of Ef-Tu retain binding capabilities to host proteins. Bioinformatics and structural modelling studies indicate that the accumulation of positively charged amino acids in short linear motifs (SLiMs), and protein processing promote multifunctional behaviour. Codon bias engendered by an A + T rich genome may influence how positively-charged residues accumulate in SLiMs.
Collapse
|
27
|
A new data processing routine facilitating the identification of surface adhered proteins from bacterial conditioning films via QCM-D/MALDI-ToF/MS. Anal Bioanal Chem 2017; 409:5965-5974. [PMID: 28801691 DOI: 10.1007/s00216-017-0521-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 07/04/2017] [Accepted: 07/12/2017] [Indexed: 10/19/2022]
Abstract
Conditioning films are an important factor in the initiation and development of microbial biofilms, which are the leading cause of chronic infections associated with medical devices. Here, we analyzed the protein content of conditioning films formed after exposure to supernatants of cultures of the human pathogen Pseudomonas aeruginosa PAO1. Adhesion of substances from the supernatant was monitored using quartz crystal microbalance with dissipation monitoring (QCM-D) sensor chips modified with the commonly used implant material titanium dioxide (TiO2). Attached proteins were identified after on-chip digestion using matrix-assisted laser desorption/ionization (MALDI) time of flight (ToF) mass spectrometry (MS), and a new data processing tool consisting of an XML-database with theoretical tryptic peptides of every PAO1 protein and PHP scripts. Sub-databases containing only proteins, that we found in all replicates, were created and used for MS/MS precursor selection. The obtained MS/MS peaklists were then matched against theoretical fragmentations of the expected peptide sequences to verify protein identification. Using this approach we were able to identify 40 surface-associated proteins. In addition to extracellular proteins such as adhesins, a number of intra-cellular proteins were identified which may be involved in conditioning film formation, suggesting an as-yet unidentified role for these proteins, possibly after cell lysis. Graphical Abstract Flowchart of the method.
Collapse
|
28
|
Gardiner M, Bournazos AM, Maturana-Martinez C, Zhong L, Egan S. Exoproteome Analysis of the Seaweed Pathogen Nautella italica R11 Reveals Temperature-Dependent Regulation of RTX-Like Proteins. Front Microbiol 2017; 8:1203. [PMID: 28706511 PMCID: PMC5489592 DOI: 10.3389/fmicb.2017.01203] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 06/13/2017] [Indexed: 12/29/2022] Open
Abstract
Climate fluctuations have been linked to an increased prevalence of disease in seaweeds, including the red alga Delisea pulchra, which is susceptible to a bleaching disease caused by the bacterium Nautella italica R11 under elevated seawater temperatures. To further investigate the role of temperature in the induction of disease by N. italica R11, we assessed the effect of temperature on the expression of the extracellular proteome (exoproteome) in this bacterium. Label-free quantitative mass spectrometry was used to identify 207 proteins secreted into supernatant fraction, which is equivalent to 5% of the protein coding genes in the N. italica R11 genome. Comparative analysis demonstrated that expression of over 30% of the N. italica R11 exoproteome is affected by temperature. The temperature-dependent proteins include traits that could facilitate the ATP-dependent transport of amino acid and carbohydrate, as well as several uncharacterized proteins. Further, potential virulence determinants, including two RTX-like proteins, exhibited significantly higher expression in the exoproteome at the disease inducing temperature of 24°C relative to non-inducing temperature (16°C). This is the first study to demonstrate that temperature has an influence exoproteome expression in a macroalgal pathogen. The results have revealed several temperature regulated candidate virulence factors that may have a role in macroalgal colonization and invasion at elevated sea-surface temperatures, including novel RTX-like proteins.
Collapse
Affiliation(s)
- Melissa Gardiner
- School of Biological Earth and Environmental Sciences-Centre for Marine Bio-Innovation, The University of New South Wales, Sydney,NSW, Australia
| | - Adam M Bournazos
- School of Biological Earth and Environmental Sciences-Centre for Marine Bio-Innovation, The University of New South Wales, Sydney,NSW, Australia
| | - Claudia Maturana-Martinez
- School of Biological Earth and Environmental Sciences-Centre for Marine Bio-Innovation, The University of New South Wales, Sydney,NSW, Australia
| | - Ling Zhong
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, The University of New South Wales, SydneyNSW, Australia
| | - Suhelen Egan
- School of Biological Earth and Environmental Sciences-Centre for Marine Bio-Innovation, The University of New South Wales, Sydney,NSW, Australia
| |
Collapse
|
29
|
Mekonnen SA, Palma Medina LM, Glasner C, Tsompanidou E, de Jong A, Grasso S, Schaffer M, Mäder U, Larsen AR, Gumpert H, Westh H, Völker U, Otto A, Becher D, van Dijl JM. Signatures of cytoplasmic proteins in the exoproteome distinguish community- and hospital-associated methicillin-resistant Staphylococcus aureus USA300 lineages. Virulence 2017; 8:891-907. [PMID: 28475476 PMCID: PMC5626246 DOI: 10.1080/21505594.2017.1325064] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is the common name for a heterogeneous group of highly drug-resistant staphylococci. Two major MRSA classes are distinguished based on epidemiology, namely community-associated (CA) and hospital-associated (HA) MRSA. Notably, the distinction of CA- and HA-MRSA based on molecular traits remains difficult due to the high genomic plasticity of S. aureus. Here we sought to pinpoint global distinguishing features of CA- and HA-MRSA through a comparative genome and proteome analysis of the notorious MRSA lineage USA300. We show for the first time that CA- and HA-MRSA isolates can be distinguished by 2 distinct extracellular protein abundance clusters that are predictive not only for epidemiologic behavior, but also for their growth and survival within epithelial cells. This ‘exoproteome profiling’ also groups more distantly related HA-MRSA isolates into the HA exoproteome cluster. Comparative genome analysis suggests that these distinctive features of CA- and HA-MRSA isolates relate predominantly to the accessory genome. Intriguingly, the identified exoproteome clusters differ in the relative abundance of typical cytoplasmic proteins, suggesting that signatures of cytoplasmic proteins in the exoproteome represent a new distinguishing feature of CA- and HA-MRSA. Our comparative genome and proteome analysis focuses attention on potentially distinctive roles of ‘liberated’ cytoplasmic proteins in the epidemiology and intracellular survival of CA- and HA-MRSA isolates. Such extracellular cytoplasmic proteins were recently invoked in staphylococcal virulence, but their implication in the epidemiology of MRSA is unprecedented.
Collapse
Affiliation(s)
- Solomon A Mekonnen
- a Department of Medical Microbiology , University of Groningen, University Medical Center, Groningen , Groningen , The Netherlands
| | - Laura M Palma Medina
- b Interfaculty Institute for Genetics and Functional Genomics , University Medicine Greifswald , Greifswald , Germany
| | - Corinna Glasner
- a Department of Medical Microbiology , University of Groningen, University Medical Center, Groningen , Groningen , The Netherlands
| | - Eleni Tsompanidou
- a Department of Medical Microbiology , University of Groningen, University Medical Center, Groningen , Groningen , The Netherlands
| | - Anne de Jong
- c Department of Molecular Genetics , University of Groningen, Groningen Biomolecular Sciences and Biotechnology Institute , Groningen , The Netherlands
| | - Stefano Grasso
- a Department of Medical Microbiology , University of Groningen, University Medical Center, Groningen , Groningen , The Netherlands
| | - Marc Schaffer
- b Interfaculty Institute for Genetics and Functional Genomics , University Medicine Greifswald , Greifswald , Germany
| | - Ulrike Mäder
- b Interfaculty Institute for Genetics and Functional Genomics , University Medicine Greifswald , Greifswald , Germany
| | - Anders R Larsen
- d National Center for Antimicrobials and Infection Control , Statens Serum Institut , Copenhagen , Denmark
| | - Heidi Gumpert
- e Department of Clinical Microbiology , Hvidovre University Hospital , Hvidovre , Denmark
| | - Henrik Westh
- e Department of Clinical Microbiology , Hvidovre University Hospital , Hvidovre , Denmark.,f Department of Clinical Medicine, Faculty of Health , University of Copenhagen , Copenhagen , Denmark
| | - Uwe Völker
- b Interfaculty Institute for Genetics and Functional Genomics , University Medicine Greifswald , Greifswald , Germany
| | - Andreas Otto
- g Institut für Mikrobiologie, Ernst-Moritz-Arndt-Universität Greifswald , Greifswald , Germany
| | - Dörte Becher
- g Institut für Mikrobiologie, Ernst-Moritz-Arndt-Universität Greifswald , Greifswald , Germany
| | - Jan Maarten van Dijl
- a Department of Medical Microbiology , University of Groningen, University Medical Center, Groningen , Groningen , The Netherlands
| |
Collapse
|
30
|
Hagemann L, Gründel A, Jacobs E, Dumke R. The surface-displayed chaperones GroEL and DnaK of Mycoplasma pneumoniae interact with human plasminogen and components of the extracellular matrix. Pathog Dis 2017; 75:2996644. [PMID: 28204467 DOI: 10.1093/femspd/ftx017] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/09/2017] [Indexed: 11/13/2022] Open
Abstract
Mycoplasma pneumoniae is a common cause of community-acquired infections of the human respiratory tract. The strongly reduced genome of the cell wall-less bacteria results in limited metabolic pathways and a small number of known virulence factors. In addition to the well-characterized adhesion apparatus and the expression of tissue-damaging substances, surface-exposed proteins with a primary function in cytosol-located processes such as glycolysis have been attracting attention in recent years. Due to interactions with host factors, it has been suggested that these bacterial proteins contribute to pathogenesis. Here, we investigated the chaperones GroEL and DnaK of M. pneumoniae as candidates for such moonlighting proteins. After successful expression in Escherichia coli and production of polyclonal antisera, the localization of both chaperones on the surface of bacteria was confirmed. Binding of recombinant GroEL and DnaK to human A549 cells, to plasminogen as well as to vitronectin, fibronectin, fibrinogen, lactoferrin and laminin was demonstrated. In the presence of both recombinant proteins and host activators, plasminogen can be activated to the protease plasmin, which is able to degrade vitronectin and fibrinogen. The results of the study extend the spectrum of surface-exposed proteins in M. pneumoniae and indicate an additional role of both chaperones in infection processes.
Collapse
|
31
|
Zhao L, Chen J, Sun J, Zhang D. Multimer recognition and secretion by the non-classical secretion pathway in Bacillus subtilis. Sci Rep 2017; 7:44023. [PMID: 28276482 PMCID: PMC5343618 DOI: 10.1038/srep44023] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 02/02/2017] [Indexed: 01/02/2023] Open
Abstract
Non-classical protein secretion in bacteria is a common phenomenon. However, the selection principle for non-classical secretion pathways remains unclear. Here, our experimental data, to our knowledge, are the first to show that folded multimeric proteins can be recognized and excreted by a non-classical secretion pathway in Bacillus subtilis. We explored the secretion pattern of a typical cytoplasmic protein D-psicose 3-epimerase from Ruminococcus sp. 5_1_39BFAA (RDPE), and showed that its non-classical secretion is not simply due to cell lysis. Analysis of truncation variants revealed that the C- and N-terminus, and two hydrophobic domains, are required for structural stability and non-classical secretion of RDPE. Alanine scanning mutagenesis of the hydrophobic segments of RDPE revealed that hydrophobic residues mediated the equilibrium between its folded and unfolded forms. Reporter mCherry and GFP fusions with RDPE regions show that its secretion requires an intact tetrameric protein complex. Using cross-linked tetramers, we show that folded tetrameric RDPE can be secreted as a single unit. Finally, we provide evidence that the non-classical secretion pathway has a strong preference for multimeric substrates, which accumulate at the poles and septum region. Altogether, these data show that a multimer recognition mechanism is likely applicable across the non-classical secretion pathway.
Collapse
Affiliation(s)
- Liuqun Zhao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, P. R. China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, P. R. China
| | - Jingqi Chen
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, P. R. China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, P. R. China
| | - Jibin Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, P. R. China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, P. R. China
| | - Dawei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, P. R. China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, P. R. China.,National Engineering Laboratory for Industrial Enzymes, Tianjin 300308, P. R. China
| |
Collapse
|
32
|
Exoproteomics of Pathogens: Analysis of Toxins and Other Virulence Factors by Proteomics. Methods Enzymol 2017; 586:211-227. [PMID: 28137564 DOI: 10.1016/bs.mie.2016.09.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Pathogens are known to release in their environment a large range of toxins and other virulence factors. Their pathogenicity relies on this arsenal of exoproteins and their orchestrated release upon changing environmental conditions. Exoproteomics aims at describing and quantifying the proteins found outside of the cells, thus takes advantage of the most recent methodologies of next-generation proteomics. This approach has been applied with great success to a variety of pathogens increasing the fundamental knowledge on pathogenicity. In this chapter, we describe how the exoproteome should be prepared and handled for high-throughput identification of exoproteins and their quantitation by label-free shotgun proteomics. We also mentioned some bioinformatics tools for extracting information such as toxin similarity search.
Collapse
|
33
|
Espinosa-Urgel M, Marqués S. New insights in the early extracellular events in hydrocarbon and lipid biodegradation. Environ Microbiol 2017; 19:15-18. [PMID: 27871137 DOI: 10.1111/1462-2920.13608] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Manuel Espinosa-Urgel
- Estación Experimental del Zaidín, Department of Environmental Protection, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Silvia Marqués
- Estación Experimental del Zaidín, Department of Environmental Protection, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| |
Collapse
|
34
|
Ennouri H, d'Abzac P, Hakil F, Branchu P, Naïtali M, Lomenech AM, Oueslati R, Desbrières J, Sivadon P, Grimaud R. The extracellular matrix of the oleolytic biofilms of Marinobacter hydrocarbonoclasticus comprises cytoplasmic proteins and T2SS effectors that promote growth on hydrocarbons and lipids. Environ Microbiol 2016; 19:159-173. [PMID: 27727521 DOI: 10.1111/1462-2920.13547] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/12/2016] [Accepted: 09/21/2016] [Indexed: 11/28/2022]
Abstract
The assimilation of the nearly water insoluble substrates hydrocarbons and lipids by bacteria entails specific adaptations such as the formation of oleolytic biofilms. The present article reports that the extracellular matrix of an oleolytic biofilm formed by Marinobacter hydrocarbonoclasticus at n-hexadecane-water interfaces is largely composed of proteins typically cytoplasmic such as translation factors and chaperones, and a lesser amount of proteins of unknown function that are predicted extra-cytoplasmic. Matrix proteins appear to form a structured film on hydrophobic interfaces and were found mandatory for the development of biofilms on lipids, alkanes and polystyrene. Exo-proteins secreted through the type-2 secretion system (T2SS) were shown to be essential for the formation of oleolytic biofilms on both alkanes and triglycerides. The T2SS effector involved in biofilm formation on triglycerides was identified as a lipase. In the case of biofilm formation on n-hexadecane, the T2SS effector is likely involved in the mass transfer, capture or transport of alkanes. We propose that M. hydrocarbonoclasticus uses cytoplasmic proteins released by cell lysis to form a proteinaceous matrix and dedicated proteins secreted through the T2SS to act specifically in the assimilation pathways of hydrophobic substrates.
Collapse
Affiliation(s)
- Habiba Ennouri
- IPREM - Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux, UMR 5254 CNRS, Université de Pau et des Pays de l'Adour Bâtiment IBEAS - UFR Sciences, avenue de l'Université, BP 1155, PAU Cedex, 64013, France.,Unité d'Immunologie, Microbiologie Environnementale et Cancérogenèse (IMEC), Faculté des sciences de Bizerte, Université de Carthage, 7021 Zarzouna, Bizerte, Tunisie
| | - Paul d'Abzac
- IPREM -Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux, UMR 5254 CNRS, Université de Pau et des Pays de l'Adour Technopole Hélioparc, 2 avenue du Président Pierre Angot, Pau Cedex 09, 64053, France
| | - Florence Hakil
- IPREM - Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux, UMR 5254 CNRS, Université de Pau et des Pays de l'Adour Bâtiment IBEAS - UFR Sciences, avenue de l'Université, BP 1155, PAU Cedex, 64013, France
| | - Priscilla Branchu
- Equipe Bioadhésion, Biofilm et Hygiène des Matériaux B2HM, UMR 1319 MICALIS, INRA AgroParisTech, Massy, France
| | - Murielle Naïtali
- Equipe Bioadhésion, Biofilm et Hygiène des Matériaux B2HM, UMR 1319 MICALIS, INRA AgroParisTech, Massy, France
| | - Anne-Marie Lomenech
- Plateforme Protéome, Centre Génomique Fonctionnelle Bordeaux, Université Bordeaux Segalen, 146 Rue Léo Saignat, Bordeaux, 33076, France
| | - Ridha Oueslati
- Unité d'Immunologie, Microbiologie Environnementale et Cancérogenèse (IMEC), Faculté des sciences de Bizerte, Université de Carthage, 7021 Zarzouna, Bizerte, Tunisie
| | - Jacques Desbrières
- IPREM -Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux, UMR 5254 CNRS, Université de Pau et des Pays de l'Adour Technopole Hélioparc, 2 avenue du Président Pierre Angot, Pau Cedex 09, 64053, France
| | - Pierre Sivadon
- IPREM - Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux, UMR 5254 CNRS, Université de Pau et des Pays de l'Adour Bâtiment IBEAS - UFR Sciences, avenue de l'Université, BP 1155, PAU Cedex, 64013, France
| | - Régis Grimaud
- IPREM - Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux, UMR 5254 CNRS, Université de Pau et des Pays de l'Adour Bâtiment IBEAS - UFR Sciences, avenue de l'Université, BP 1155, PAU Cedex, 64013, France
| |
Collapse
|
35
|
Duport C, Jobin M, Schmitt P. Adaptation in Bacillus cereus: From Stress to Disease. Front Microbiol 2016; 7:1550. [PMID: 27757102 PMCID: PMC5047918 DOI: 10.3389/fmicb.2016.01550] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 09/15/2016] [Indexed: 12/23/2022] Open
Abstract
Bacillus cereus is a food-borne pathogen that causes diarrheal disease in humans. After ingestion, B. cereus experiences in the human gastro-intestinal tract abiotic physical variables encountered in food, such as acidic pH in the stomach and changing oxygen conditions in the human intestine. B. cereus responds to environmental changing conditions (stress) by reversibly adjusting its physiology to maximize resource utilization while maintaining structural and genetic integrity by repairing and minimizing damage to cellular infrastructure. As reviewed in this article, B. cereus adapts to acidic pH and changing oxygen conditions through diverse regulatory mechanisms and then exploits its metabolic flexibility to grow and produce enterotoxins. We then focus on the intricate link between metabolism, redox homeostasis, and enterotoxins, which are recognized as important contributors of food-borne disease.
Collapse
Affiliation(s)
- Catherine Duport
- Sécurité et Qualité des Produits d'Origine Végétale, UMR0408, Avignon Université, Institut National de la Recherche Agronomique Avignon, France
| | - Michel Jobin
- Sécurité et Qualité des Produits d'Origine Végétale, UMR0408, Avignon Université, Institut National de la Recherche Agronomique Avignon, France
| | - Philippe Schmitt
- Sécurité et Qualité des Produits d'Origine Végétale, UMR0408, Avignon Université, Institut National de la Recherche Agronomique Avignon, France
| |
Collapse
|
36
|
Interactions of surface-displayed glycolytic enzymes of Mycoplasma pneumoniae with components of the human extracellular matrix. Int J Med Microbiol 2016; 306:675-685. [PMID: 27616280 DOI: 10.1016/j.ijmm.2016.09.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/30/2016] [Accepted: 09/01/2016] [Indexed: 11/24/2022] Open
Abstract
Mycoplasma pneumoniae is a major cause of community-acquired respiratory infections worldwide. Due to the strongly reduced genome, the number of virulence factors expressed by this cell wall-less pathogen is limited. To further understand the processes during host colonization, we investigated the interactions of the previously confirmed surface-located glycolytic enzymes of M. pneumoniae (pyruvate dehydrogenase A-C [PdhA-C], glyceraldehyde-3-phosphate dehydrogenase [GapA], lactate dehydrogenase [Ldh], phosphoglycerate mutase [Pgm], pyruvate kinase [Pyk] and transketolase [Tkt]) to the human extracellular matrix (ECM) proteins fibrinogen (Fn), fibronectin (Fc), lactoferrin (Lf), laminin (Ln) and vitronectin (Vc), respectively. Concentration-dependent interactions between Fn and Vc and all eight recombinant proteins derived from glycolytic enzymes, between Ln and PdhB-C, GapA, Ldh, Pgm, Pyk and Tkt, between Lf and PdhA-C, GapA and Pyk, and between Fc and PdhC and GapA were demonstrated. In most cases, these associations are significantly influenced by ionic forces and by polyclonal sera against recombinant proteins. In immunoblotting, the complex of human plasminogen, activator (tissue-type or urokinase plasminogen activator) and glycolytic enzyme was not able to degrade Fc, Lf and Ln, respectively. In contrast, degradation of Vc was confirmed in the presence of all eight enzymes tested. Our data suggest that the multifaceted associations of surface-localized glycolytic enzymes play a potential role in the adhesion and invasion processes during infection of human respiratory mucosa by M. pneumoniae.
Collapse
|
37
|
Guillot A, Boulay M, Chambellon É, Gitton C, Monnet V, Juillard V. Mass Spectrometry Analysis of the Extracellular Peptidome of Lactococcus lactis: Lines of Evidence for the Coexistence of Extracellular Protein Hydrolysis and Intracellular Peptide Excretion. J Proteome Res 2016; 15:3214-24. [DOI: 10.1021/acs.jproteome.6b00424] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Alain Guillot
- UMR Micalis,
INRA, AgroParisTech, Université Paris Saclay, F-78350 Jouy-en-Josas, France
| | - Mylène Boulay
- UMR Micalis,
INRA, AgroParisTech, Université Paris Saclay, F-78350 Jouy-en-Josas, France
| | - Émilie Chambellon
- UMR Micalis,
INRA, AgroParisTech, Université Paris Saclay, F-78350 Jouy-en-Josas, France
| | - Christophe Gitton
- UMR Micalis,
INRA, AgroParisTech, Université Paris Saclay, F-78350 Jouy-en-Josas, France
| | - Véronique Monnet
- UMR Micalis,
INRA, AgroParisTech, Université Paris Saclay, F-78350 Jouy-en-Josas, France
| | - Vincent Juillard
- UMR Micalis,
INRA, AgroParisTech, Université Paris Saclay, F-78350 Jouy-en-Josas, France
| |
Collapse
|
38
|
Luo T, Krüger T, Knüpfer U, Kasper L, Wielsch N, Hube B, Kortgen A, Bauer M, Giamarellos-Bourboulis EJ, Dimopoulos G, Brakhage AA, Kniemeyer O. Immunoproteomic Analysis of Antibody Responses to Extracellular Proteins of Candida albicans Revealing the Importance of Glycosylation for Antigen Recognition. J Proteome Res 2016; 15:2394-406. [PMID: 27386892 DOI: 10.1021/acs.jproteome.5b01065] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
During infection, the human pathogenic fungus Candida albicans undergoes a yeast-to-hypha transition, secretes numerous proteins for invasion of host tissues, and modulates the host's immune response. Little is known about the interplay of C. albicans secreted proteins and the host adaptive immune system. Here, we applied a combined 2D gel- and LC-MS/MS-based approach for the characterization of C. albicans extracellular proteins during the yeast-to-hypha transition, which led to a comprehensive C. albicans secretome map. The serological responses to C. albicans extracellular proteins were investigated by a 2D-immunoblotting approach combined with MS for protein identification. On the basis of the screening of sera from candidemia and three groups of noncandidemia patients, a core set of 19 immunodominant antibodies against secreted proteins of C. albicans was identified, seven of which represent potential diagnostic markers for candidemia (Xog1, Lip4, Asc1, Met6, Tsa1, Tpi1, and Prx1). Intriguingly, some secreted, strongly glycosylated protein antigens showed high cross-reactivity with sera from noncandidemia control groups. Enzymatic deglycosylation of proteins secreted from hyphae significantly impaired sera antibody recognition. Furthermore, deglycosylation of the recombinantly produced, secreted aspartyl protease Sap6 confirmed a significant contribution of glycan epitopes to the recognition of Sap6 by antibodies in patient's sera.
Collapse
Affiliation(s)
| | | | | | | | - Natalie Wielsch
- Department of Mass spectrometry/Proteomics, Max-Planck-Institute for Chemical Ecology , 07745 Jena, Germany
| | - Bernhard Hube
- Institute of Microbiology, Friedrich Schiller University Jena , 07743 Jena, Germany
| | | | | | | | | | - Axel A Brakhage
- Institute of Microbiology, Friedrich Schiller University Jena , 07743 Jena, Germany
| | - Olaf Kniemeyer
- Institute of Microbiology, Friedrich Schiller University Jena , 07743 Jena, Germany
| |
Collapse
|
39
|
Tuveng TR, Arntzen MØ, Bengtsson O, Gardner JG, Vaaje-Kolstad G, Eijsink VG. Proteomic investigation of the secretome ofCellvibrio japonicusduring growth on chitin. Proteomics 2016; 16:1904-14. [DOI: 10.1002/pmic.201500419] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 04/05/2016] [Accepted: 05/09/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Tina Rise Tuveng
- Department of Chemistry; Biotechnology and Food Science; Norwegian University of Life Sciences (NMBU); Aas Norway
| | - Magnus Øverlie Arntzen
- Department of Chemistry; Biotechnology and Food Science; Norwegian University of Life Sciences (NMBU); Aas Norway
| | - Oskar Bengtsson
- Department of Chemistry; Biotechnology and Food Science; Norwegian University of Life Sciences (NMBU); Aas Norway
| | - Jeffrey G. Gardner
- Department of Biological Sciences; University of Maryland - Baltimore County; Baltimore MD USA
| | - Gustav Vaaje-Kolstad
- Department of Chemistry; Biotechnology and Food Science; Norwegian University of Life Sciences (NMBU); Aas Norway
| | - Vincent G.H. Eijsink
- Department of Chemistry; Biotechnology and Food Science; Norwegian University of Life Sciences (NMBU); Aas Norway
| |
Collapse
|
40
|
Excreted Cytoplasmic Proteins Contribute to Pathogenicity in Staphylococcus aureus. Infect Immun 2016; 84:1672-81. [PMID: 27001537 DOI: 10.1128/iai.00138-16] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 03/13/2016] [Indexed: 11/20/2022] Open
Abstract
Excretion of cytoplasmic proteins in pro- and eukaryotes, also referred to as "nonclassical protein export," is a well-known phenomenon. However, comparatively little is known about the role of the excreted proteins in relation to pathogenicity. Here, the impact of two excreted glycolytic enzymes, aldolase (FbaA) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), on pathogenicity was investigated in Staphylococcus aureus Both enzymes bound to certain host matrix proteins and enhanced adherence of the bacterial cells to host cells but caused a decrease in host cell invasion. FbaA and GAPDH also bound to the cell surfaces of staphylococcal cells by interaction with the major autolysin, Atl, that is involved in host cell internalization. Surprisingly, FbaA showed high cytotoxicity to both MonoMac 6 (MM6) and HaCaT cells, while GAPDH was cytotoxic only for MM6 cells. Finally, the contribution of external FbaA and GAPDH to S. aureus pathogenicity was confirmed in an insect infection model.
Collapse
|
41
|
Bonar E, Wojcik I, Jankowska U, Kedracka-Krok S, Bukowski M, Polakowska K, Lis MW, Kosecka-Strojek M, Sabat AJ, Dubin G, Friedrich AW, Miedzobrodzki J, Dubin A, Wladyka B. Identification of Secreted Exoproteome Fingerprints of Highly-Virulent and Non-Virulent Staphylococcus aureus Strains. Front Cell Infect Microbiol 2016; 6:51. [PMID: 27242969 PMCID: PMC4874363 DOI: 10.3389/fcimb.2016.00051] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 04/19/2016] [Indexed: 12/18/2022] Open
Abstract
Staphylococcus aureus is a commensal inhabitant of skin and mucous membranes in nose vestibule but also an important opportunistic pathogen of humans and livestock. The extracellular proteome as a whole constitutes its major virulence determinant; however, the involvement of particular proteins is still relatively poorly understood. In this study, we compared the extracellular proteomes of poultry-derived S. aureus strains exhibiting a virulent (VIR) and non-virulent (NVIR) phenotype in a chicken embryo experimental infection model with the aim to identify proteomic signatures associated with the particular phenotypes. Despite significant heterogeneity within the analyzed proteomes, we identified alpha-haemolysin and bifunctional autolysin as indicators of virulence, whereas glutamylendopeptidase production was characteristic for non-virulent strains. Staphopain C (StpC) was identified in both the VIR and NVIR proteomes and the latter fact contradicted previous findings suggesting its involvement in virulence. By supplementing NVIR, StpC-negative strains with StpC, and comparing the virulence of parental and supplemented strains, we demonstrated that staphopain C alone does not affect staphylococcal virulence in a chicken embryo model.
Collapse
Affiliation(s)
- Emilia Bonar
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University Krakow, Poland
| | - Iwona Wojcik
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University Krakow, Poland
| | - Urszula Jankowska
- Malopolska Centre of Biotechnology, Jagiellonian University Krakow, Poland
| | - Sylwia Kedracka-Krok
- Malopolska Centre of Biotechnology, Jagiellonian UniversityKrakow, Poland; Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian UniversityKrakow, Poland
| | - Michal Bukowski
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University Krakow, Poland
| | - Klaudia Polakowska
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University Krakow, Poland
| | - Marcin W Lis
- Department of Veterinary and Animal Reproduction and Welfare, Faculty of Animal Welfare, University of Agriculture in Krakow Krakow, Poland
| | - Maja Kosecka-Strojek
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University Krakow, Poland
| | - Artur J Sabat
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen Groningen, Netherlands
| | - Grzegorz Dubin
- Malopolska Centre of Biotechnology, Jagiellonian UniversityKrakow, Poland; Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian UniversityKrakow, Poland
| | - Alexander W Friedrich
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen Groningen, Netherlands
| | - Jacek Miedzobrodzki
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University Krakow, Poland
| | - Adam Dubin
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University Krakow, Poland
| | - Benedykt Wladyka
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University Krakow, Poland
| |
Collapse
|
42
|
Lange MD, Beck BH, Brown JD, Farmer BD, Barnett LM, Webster CD. Missing the target: DNAk is a dominant epitope in the humoral immune response of channel catfish (Ictalurus punctatus) to Flavobacterium columnare. FISH & SHELLFISH IMMUNOLOGY 2016; 51:170-179. [PMID: 26892797 DOI: 10.1016/j.fsi.2016.02.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/10/2016] [Accepted: 02/11/2016] [Indexed: 06/05/2023]
Abstract
Vaccination remains a viable alternative for bacterial disease protection in fish; however additional work is required to understand the mechanisms of adaptive immunity in the channel catfish. To assess the humoral immune response to Flavobacterium columnare; a group of channel catfish were first immunized with F. columnare LV-359-01 cultured in iron-depleted media, before being challenged with wild type F. columnare LV-359-01. The immunization protocol did not confer increased protection against F. columnare; however both control and immunized responders generated serum and skin IgM antibodies against F. columnare proteins. Western blot analyses of individuals from both groups showed that IgM antibodies were generated to the same 70 kDa extracellular protein, which was identified to be the bacterial chaperonin protein DNAk. Antibodies generated were cross reactive to DNAk proteins found in other gram negative bacteria. Our data suggests that DNAk is the dominant epitope in the channel catfish B-cell response to F. columnare.
Collapse
Affiliation(s)
- Miles D Lange
- U.S. Department of Agriculture, Agricultural Research Service, Harry K. Dupree Stuttgart National Aquaculture Research Center, Stuttgart, AR USA.
| | - Benjamin H Beck
- U.S. Department of Agriculture, Agricultural Research Service, Harry K. Dupree Stuttgart National Aquaculture Research Center, Stuttgart, AR USA
| | - Jason D Brown
- U.S. Department of Agriculture, Agricultural Research Service, Harry K. Dupree Stuttgart National Aquaculture Research Center, Stuttgart, AR USA
| | - Bradley D Farmer
- U.S. Department of Agriculture, Agricultural Research Service, Harry K. Dupree Stuttgart National Aquaculture Research Center, Stuttgart, AR USA
| | - L Matthew Barnett
- U.S. Department of Agriculture, Agricultural Research Service, Harry K. Dupree Stuttgart National Aquaculture Research Center, Stuttgart, AR USA
| | - Carl D Webster
- U.S. Department of Agriculture, Agricultural Research Service, Harry K. Dupree Stuttgart National Aquaculture Research Center, Stuttgart, AR USA
| |
Collapse
|
43
|
Vorkapic D, Pressler K, Schild S. Multifaceted roles of extracellular DNA in bacterial physiology. Curr Genet 2016; 62:71-9. [PMID: 26328805 PMCID: PMC4723616 DOI: 10.1007/s00294-015-0514-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 08/20/2015] [Accepted: 08/21/2015] [Indexed: 11/08/2022]
Abstract
In textbooks, DNA is generally defined as the universal storage material for genetic information in all branches of life. Beyond this important intracellular role, DNA can also be present outside of living cells and is an abundant biopolymer in aquatic and terrestrial ecosystems. The origin of extracellular DNA in such ecological niches is diverse: it can be actively secreted or released by prokaryotic and eukaryotic cells by means of autolysis, apoptosis, necrosis, bacterial secretion systems or found in association with extracellular bacterial membrane vesicles. Especially for bacteria, extracellular DNA represents a significant and convenient element that can be enzymatically modulated and utilized for multiple purposes. Herein, we discuss briefly the main origins of extracellular DNA and the most relevant roles for the bacterial physiology, such as biofilm formation, nutrient source, antimicrobial means and horizontal gene transfer.
Collapse
Affiliation(s)
- Dina Vorkapic
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50, 8010, Graz, Austria
| | - Katharina Pressler
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50, 8010, Graz, Austria
| | - Stefan Schild
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50, 8010, Graz, Austria.
| |
Collapse
|
44
|
A novel proteomics sample preparation method for secretome analysis of Hypocrea jecorina growing on insoluble substrates. J Proteomics 2016; 131:104-112. [DOI: 10.1016/j.jprot.2015.10.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 09/21/2015] [Accepted: 10/12/2015] [Indexed: 11/23/2022]
|
45
|
Network of Surface-Displayed Glycolytic Enzymes in Mycoplasma pneumoniae and Their Interactions with Human Plasminogen. Infect Immun 2015; 84:666-76. [PMID: 26667841 DOI: 10.1128/iai.01071-15] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 12/11/2015] [Indexed: 12/30/2022] Open
Abstract
In different bacteria, primarily cytosolic and metabolic proteins are characterized as surface localized and interacting with different host factors. These moonlighting proteins include glycolytic enzymes, and it has been hypothesized that they influence the virulence of pathogenic species. The presence of surface-displayed glycolytic enzymes and their interaction with human plasminogen as an important host factor were investigated in the genome-reduced and cell wall-less microorganism Mycoplasma pneumoniae, a common agent of respiratory tract infections of humans. After successful expression of 19 glycolytic enzymes and production of polyclonal antisera, the localization of proteins in the mycoplasma cell was characterized using fractionation of total proteins, colony blot, mild proteolysis and immunofluorescence of M. pneumoniae cells. Eight glycolytic enzymes, pyruvate dehydrogenases A to C (PdhA-C), glyceraldehyde-3-phosphate dehydrogenase (GapA), lactate dehydrogenase (Ldh), phosphoglycerate mutase (Pgm), pyruvate kinase (Pyk), and transketolase (Tkt), were confirmed as surface expressed and all are able to interact with plasminogen. Plasminogen bound to recombinant proteins PdhB, GapA, and Pyk was converted to plasmin in the presence of urokinase plasminogen activator and plasmin-specific substrate d-valyl-leucyl-lysine-p-nitroanilide dihydrochloride. Furthermore, human fibrinogen was degraded by the complex of plasminogen and recombinant protein PdhB or Pgm. In addition, surface-displayed proteins (except PdhC) bind to human lung epithelial cells, and the interaction was reduced significantly by preincubation of cells with antiplasminogen. Our results suggest that plasminogen binding and activation by different surface-localized glycolytic enzymes of M. pneumoniae may play a role in successful and long-term colonization of the human respiratory tract.
Collapse
|
46
|
Perez-Casal J, Potter AA. Glyceradehyde-3-phosphate dehydrogenase as a suitable vaccine candidate for protection against bacterial and parasitic diseases. Vaccine 2015; 34:1012-7. [PMID: 26686572 DOI: 10.1016/j.vaccine.2015.11.072] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/04/2015] [Accepted: 11/27/2015] [Indexed: 11/26/2022]
Abstract
The enzyme glyceraldehyde-3-P-dehydrogenase (GAPDH) has been identified as having other properties in addition to its key role in glycolysis. The ability of GAPDH to bind to numerous extracellular matrices, modulation of host-immune responses, a role in virulence and surface location has prompted numerous investigators to postulate that GAPDH may be a good vaccine candidate for protection against numerous pathogens. Although immune responses against GAPDH have been described for many microorganisms, vaccines containing GAPDH have been successfully tested in few cases including those against the trematode-Schistosoma mansoni, the helminth-Enchinococcus multilocularis; the nematode filaria- Litomosoides sigmodontis; fish pathogens such as Aeromonas spp., Vibrio spp., Edwarsiella spp., and Streptococcus iniae; and environmental streptococci, namely, Streptococcus uberis and Streptococcus dysgalactiae. Before GAPDH-based vaccines are considered viable options for protection against numerous pathogens, we need to take into account the homology between the host and pathogen GAPDH proteins to prevent potential autoimmune reactions, thus protective GAPDH epitopes unique to the pathogen protein must be identified.
Collapse
Affiliation(s)
- Jose Perez-Casal
- Vaccine and Infectious Disease Organization, 120 Veterinary Rd. , Saskatoon, Saskatchewan S7N 5E3, Canada.
| | - Andrew A Potter
- Vaccine and Infectious Disease Organization, 120 Veterinary Rd. , Saskatoon, Saskatchewan S7N 5E3, Canada
| |
Collapse
|
47
|
Wang G, Xia Y, Song X, Ai L. Common Non-classically Secreted Bacterial Proteins with Experimental Evidence. Curr Microbiol 2015; 72:102-11. [DOI: 10.1007/s00284-015-0915-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 08/15/2015] [Indexed: 12/13/2022]
|
48
|
Excretion of cytoplasmic proteins in Staphylococcus is most likely not due to cell lysis. Curr Genet 2015; 62:19-23. [DOI: 10.1007/s00294-015-0504-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 06/24/2015] [Indexed: 01/02/2023]
|
49
|
Ebner P, Prax M, Nega M, Koch I, Dube L, Yu W, Rinker J, Popella P, Flötenmeyer M, Götz F. Excretion of cytoplasmic proteins (ECP) inStaphylococcus aureus. Mol Microbiol 2015; 97:775-89. [DOI: 10.1111/mmi.13065] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2015] [Indexed: 12/15/2022]
Affiliation(s)
- Patrick Ebner
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine (IMIT); University of Tübingen; Auf der Morgenstelle 28 72076 Tübingen Germany
| | - Marcel Prax
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine (IMIT); University of Tübingen; Auf der Morgenstelle 28 72076 Tübingen Germany
| | - Mulugeta Nega
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine (IMIT); University of Tübingen; Auf der Morgenstelle 28 72076 Tübingen Germany
| | - Iris Koch
- Max Planck Institute for Developmental Biology; Spemannstr. 35 72076 Tübingen Germany
| | - Linda Dube
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine (IMIT); University of Tübingen; Auf der Morgenstelle 28 72076 Tübingen Germany
| | - Wenqi Yu
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine (IMIT); University of Tübingen; Auf der Morgenstelle 28 72076 Tübingen Germany
| | - Janina Rinker
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine (IMIT); University of Tübingen; Auf der Morgenstelle 28 72076 Tübingen Germany
| | - Peter Popella
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine (IMIT); University of Tübingen; Auf der Morgenstelle 28 72076 Tübingen Germany
| | - Matthias Flötenmeyer
- Max Planck Institute for Developmental Biology; Spemannstr. 35 72076 Tübingen Germany
| | - Friedrich Götz
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine (IMIT); University of Tübingen; Auf der Morgenstelle 28 72076 Tübingen Germany
| |
Collapse
|
50
|
Braun V, Götz F, Schultz JE, Wohlleben W. The bacterial cell envelope: structure, function, and infection interface. Int J Med Microbiol 2014; 305:175-7. [PMID: 25660413 DOI: 10.1016/j.ijmm.2014.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Volkmar Braun
- Max Planck Institute for Developmental Biology, Department of Protein Evolution, Tübingen, Germany
| | - Friedrich Götz
- Microbial Genetics, Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Germany
| | - Joachim E Schultz
- Pharmazeutische Biochemie, Pharmazeutisches Institut, University of Tübingen, Germany
| | - Wolfgang Wohlleben
- Biotechnology/Microbiology, Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Germany.
| |
Collapse
|