1
|
Li Y, Suo J, Liang R, Liang L, Liu X, Ding J, Suo X, Tang X. Genetic manipulation for the non-model protozoan Eimeria: Advancements, challenges, and future perspective. iScience 2025; 28:112060. [PMID: 40109377 PMCID: PMC11919594 DOI: 10.1016/j.isci.2025.112060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025] Open
Abstract
Eimeria parasites pose a significant global threat to animal health, necessitating improved and cost-effective control measures. Genetic manipulation is pivotal for understanding Eimeria biology and designing targeted control strategies. Recent advancements, including genome sequencing and the development of transient and stable transfection systems, have significantly enhanced insights into the molecular biology of Eimeria. These advancements have paved the way for cutting-edge techniques like CRISPR-Cas9 gene editing. This review summarizes the key milestones in the development of genetic manipulation platforms for Eimeria and their transformative applications, such as the development of next-generation drugs, vaccines, and Eimeria-based vaccine vectors. Furthermore, this review provides insights that could be applicable to the establishment of genetic tools for other protozoan organisms.
Collapse
Affiliation(s)
- Yaru Li
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North) & Key Laboratory of Veterinary Biological Products and Chemical Drugs of MARA, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jingxia Suo
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the MARA, National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Ruiying Liang
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North) & Key Laboratory of Veterinary Biological Products and Chemical Drugs of MARA, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lin Liang
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North) & Key Laboratory of Veterinary Biological Products and Chemical Drugs of MARA, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xianyong Liu
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the MARA, National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jiabo Ding
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North) & Key Laboratory of Veterinary Biological Products and Chemical Drugs of MARA, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xun Suo
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the MARA, National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xinming Tang
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North) & Key Laboratory of Veterinary Biological Products and Chemical Drugs of MARA, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
2
|
Duan C, Abudureheman T, Wang S, Suo J, Yu Y, Shi F, Liu X, Salama DB, Srivastav RK, Gupta N, Suo X. Expression of IL-1β in transgenic Eimeria necatrix enhances the immunogenicity of parasites and promotes mucosal immunity against coccidiosis. Front Immunol 2024; 15:1435702. [PMID: 39221251 PMCID: PMC11361970 DOI: 10.3389/fimmu.2024.1435702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/12/2024] [Indexed: 09/04/2024] Open
Abstract
Anticoccidial vaccines comprising living oocysts of Eimeria tenella, Eimeria necatrix, Eimeria maxima, and Eimeria acervulina are used to control coccidiosis. This study explored the potential of IL-1β to act as a molecular adjuvant for enhancing the immunogenicity of Eimeria necatrix and mucosal immunity. We engineered E. necatrix to express a functional chIL-1β (EnIL-1β) and immunized chickens with oocysts of the wild type (EnWT) and tranegenic (EnIL-1β) strains, respectively. The chickens were then challenged with EnWT oocysts to examine the immunogenicity-enhancing potential of chIL-1β. As expected, the oocyst output of EnIL-1β-immunized chickens was significantly reduced compared to those immunized using EnWT. No difference in body weight gain and lesion scores of EnIL-1β and EnWT groups was observed. The parasite load in the small intestine and caeca showed that the invasion and replication of EnIL-1β was not affected. However, the markers of immunogenicity and mucosal barrier, Claudin-1 and avian β-defensin-1, were elevated in EnIL-1β-infected chickens. Ectopic expression of chIL-1β in E. necatrix thus appears to improve its immunogenicity and mucosal immunity, without increasing pathogenicity. Our findings support chIL-1β as a candidate for development of effective live-oocyst-based anticoccidial vaccines.
Collapse
Affiliation(s)
- Chunhui Duan
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Tumalisi Abudureheman
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Si Wang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jingxia Suo
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ying Yu
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Fangyun Shi
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xianyong Liu
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Dina B Salama
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Intracellular Parasite Education And Research Labs (iPEARL), Department of Biological Sciences, Birla Institute of Technology and Science, Pilani (BITS-P), Hyderabad, India
- Parasitology and Animal Disease Department, Veterinary Research Institute, National Research Centre, Giza, Egypt
| | - Ratnesh Kumar Srivastav
- Intracellular Parasite Education And Research Labs (iPEARL), Department of Biological Sciences, Birla Institute of Technology and Science, Pilani (BITS-P), Hyderabad, India
| | - Nishith Gupta
- Intracellular Parasite Education And Research Labs (iPEARL), Department of Biological Sciences, Birla Institute of Technology and Science, Pilani (BITS-P), Hyderabad, India
- Department of Molecular Parasitology, Institute of Biology, Faculty of Life Sciences, Humboldt University, Berlin, Germany
| | - Xun Suo
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
3
|
Guo Q, Yu Y, Suo J, Tang X, Zhang S, Crouch C, Bruton B, Tarpey I, Liu X, Zhao G, Suo X. Oral delivery of Eimeria acervulina transfected sequentially with two copies of the VP2 gene induces immunity against infectious bursal disease virus in chickens. Front Vet Sci 2024; 11:1367912. [PMID: 38659453 PMCID: PMC11041627 DOI: 10.3389/fvets.2024.1367912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/12/2024] [Indexed: 04/26/2024] Open
Abstract
Chicken coccidiosis caused by Eimeria spp. can occur on almost all poultry farms, causing huge economic losses to the industry. Genetically manipulated Eimeria parasites as a vaccine vector to deliver viral antigens have been reported. In our preliminary study, transgenic E. acervulina expressing a VP2 gene (Ea-VP2) of the infectious bursal disease virus (IBDV) demonstrated partial protection against IBDV infection. To enhance immune responses, we aimed to increase the VP2 gene copy number in transgenic E. acervulina. In this study, we used a novel plasmid vector carrying a VP2 gene fused with three flag tags and a red fluorescent reporter gene (mCherry). The vector was introduced into Ea-VP2 sporozoites through nucleofection, leading to the generation of Ea-2VP2. Subsequent analysis revealed a notable escalation in the fluorescent rate, increasing from 0.11 to 95.1% following four consecutive passages facilitated by fluorescent-activated cell sorting. Verification via PCR, Western blot, and immunofluorescence confirmed the successful construction of the Ea-2VP2 population. Despite lower fecundity compared to wild-type E. acervulina, Ea-2VP2 maintained immunogenicity. Our research effectively created a transgenic E. acervulina strain transfected sequentially with two copies of the VP2 gene from IBDV. This modification resulted in an increased humoral immune response after primary immunization in chickens. Additionally, it demonstrated a degree of protection within the bursa against IBDV infection. Future studies will focus on further enhancing immune response levels.
Collapse
Affiliation(s)
- Qingbin Guo
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
- National Animal Protozoa Laboratory and College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ying Yu
- National Animal Protozoa Laboratory and College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jingxia Suo
- National Animal Protozoa Laboratory and College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xinming Tang
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North) of MARA, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Sixin Zhang
- National Animal Protozoa Laboratory and College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Colin Crouch
- MSD Animal Health, Milton Keynes, United Kingdom
| | - Beth Bruton
- MSD Animal Health, Milton Keynes, United Kingdom
| | - Ian Tarpey
- MSD Animal Health, Milton Keynes, United Kingdom
| | - Xianyong Liu
- National Animal Protozoa Laboratory and College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Guanghui Zhao
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Xun Suo
- National Animal Protozoa Laboratory and College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
4
|
Liu Q, Liu X, Zhao X, Zhu XQ, Suo X. Live attenuated anticoccidial vaccines for chickens. Trends Parasitol 2023; 39:1087-1099. [PMID: 37770352 DOI: 10.1016/j.pt.2023.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/30/2023] [Accepted: 09/03/2023] [Indexed: 09/30/2023]
Abstract
Chicken coccidiosis, caused by infection with single or multiple Eimeria species, results in significant economic losses to the global poultry industry. Over the past decades, considerable efforts have been made to generate attenuated Eimeria strains, and the use of live attenuated anticoccidial vaccines for disease prevention has achieved tremendous success. In this review, we evaluate the advantages and limitations of the methods of attenuation as well as attenuated Eimeria strains in a historical perspective. Also, we summarize the recent exciting research advances in transient/stable transfection systems and clustered regularly interspaced short palindromic repeats (CRISPR)-based genome editing developed for Eimeria parasites, and discuss trends and challenges of developing live attenuated anticoccidial vaccines based on transgenesis and genome editing.
Collapse
Affiliation(s)
- Qing Liu
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province 030801, PR China
| | - Xianyong Liu
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology and Zoonosis of the Ministry of Agriculture and Rural Affairs, National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing 100093, PR China
| | - Xiaomin Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong Province 271018, PR China
| | - Xing-Quan Zhu
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province 030801, PR China.
| | - Xun Suo
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology and Zoonosis of the Ministry of Agriculture and Rural Affairs, National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing 100093, PR China.
| |
Collapse
|
5
|
Towards Innovative Design and Application of Recombinant Eimeria as a Vaccine Vector. Infect Immun 2020; 88:IAI.00861-19. [PMID: 32094255 DOI: 10.1128/iai.00861-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Efficient delivery of antigenic cargo to trigger protective immune responses is critical to the success of vaccination. Genetically engineered microorganisms, including virus, bacteria, and protozoa, can be modified to carry and deliver heterologous antigens to the host immune system. The biological vectors can induce a broad range of immune responses and enhance heterologous antigen-specific immunological outcomes. The protozoan genus Eimeria is widespread in domestic animals, causing serious coccidiosis. Eimeria parasites with strong immunogenicity are potent coccidiosis vaccine candidates and offer a valuable model of live vaccines against infectious diseases in animals. Eimeria parasites can also function as a vaccine vector. Herein, we review recent advances in design and application of recombinant Eimeria as a vaccine vector, which has been a topic of ongoing research in our laboratory. By recapitulating the establishment of an Eimeria transfection platform and its application, it will help lay the foundation for the future development of effective parasite-based vaccine delivery vectors and beyond.
Collapse
|
6
|
Tang X, Wang C, Liang L, Hu D, Zhang S, Duan C, Suo J, Liu X, Suo X, Cui S. Co-immunization with two recombinant Eimeria tenella lines expressing immunoprotective antigens of E. maxima elicits enhanced protection against E. maxima infection. Parasit Vectors 2019; 12:347. [PMID: 31300007 PMCID: PMC6626336 DOI: 10.1186/s13071-019-3605-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 07/06/2019] [Indexed: 01/23/2023] Open
Abstract
Background Live anticoccidial vaccines have been a tremendous success for disease prevention. The establishment of the reverse genetic manipulation platform has enabled the development of Eimeria parasites, the live anticoccidial vaccine strains, as vaccine vectors. In our previous study, recombinant E. tenella expressing a single immunodominant antigen of E. maxima (Et-EmIMP1) was able to protect chickens against challenge infection with E. maxima. This promising result encouraged us to further explore strategies to improve the protection efficacy of recombinant Eimeria and develop it as a vaccine vector. Results We constructed a novel recombinant Eimeria line expressing apical membrane antigen 1 of E. maxima (Et-EmAMA1) and then immunized chickens with Et-EmAMA1 and/or Et-EmIMP1. We found that the E. maxima soluble antigen-specific cell-mediated immunity was much stronger in the birds that were co-immunized with Et-EmAMA1 and Et-EmIMP1 than in those that were immunized with Et-EmAMA1 or Et-EmIMP1 alone. The oocyst production after E. maxima infection was significantly reduced in the recombinant Eimeria-immunized birds compared with the wild-type-immunized and naïve birds. The oocyst production in the birds co-immunized with Et-EmAMA1 and Et-EmIMP1 was consistently the lowest among the treatment groups after E. maxima infection. Conclusions These results demonstrated that Eimeria is an effective vaccine vector that can carry and deliver heterologous Eimeria antigens to the host immune system and trigger specific immune responses. Our results also suggested that increasing the number of recombinant Eimeria lines is an effective approach to enhance protective immunity against infections with heterologous pathogens.
Collapse
Affiliation(s)
- Xinming Tang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chaoyue Wang
- Key Laboratory of Zoonosis of Ministry of Agriculture & National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Lin Liang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.,Beijing Scientific Observation and Experimental Station of Veterinary Drugs and Diagnostic Technology, Ministry of Agriculture, Beijing, China
| | - Dandan Hu
- Key Laboratory of Zoonosis of Ministry of Agriculture & National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Sixin Zhang
- Key Laboratory of Zoonosis of Ministry of Agriculture & National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Chunhui Duan
- Key Laboratory of Zoonosis of Ministry of Agriculture & National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jingxia Suo
- Key Laboratory of Zoonosis of Ministry of Agriculture & National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xianyong Liu
- Key Laboratory of Zoonosis of Ministry of Agriculture & National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xun Suo
- Key Laboratory of Zoonosis of Ministry of Agriculture & National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Shangjin Cui
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China. .,Beijing Scientific Observation and Experimental Station of Veterinary Drugs and Diagnostic Technology, Ministry of Agriculture, Beijing, China.
| |
Collapse
|
7
|
Duan C, Hu D, Tang X, Suo J, Wang S, Zhang S, Tao G, Li C, Wang C, Gu X, Tang X, Huang G, Xiang B, Wu S, Mamoun CB, Suo X, Liu X. Stable transfection of Eimeria necatrix through nucleofection of second generation merozoites. Mol Biochem Parasitol 2019; 228:1-5. [PMID: 30658178 DOI: 10.1016/j.molbiopara.2019.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/16/2018] [Accepted: 01/10/2019] [Indexed: 11/19/2022]
Abstract
Eimeria spp., the causative agents of coccidiosis, are the most common protozoan pathogens of chickens. Infection with these parasites can result in poor development or death of animals leading to a devastating economic impact on poultry production. The establishment of transfection protocols for genetic manipulation of Eimeria species and stable expression of genes would help advance the biology of these parasites as well as establish these organisms as novel vaccine delivery vehicles. Here, we report the selection of the first stable transgenic E. necatrix population, EnHA1, consitutively expressing the EYFP reporter following transfection of the 2nd generation merozoites with a linear DNA fragment harboring the EYFP reporter gene, the HA1 gene from the avian influenza virus H9N2 and the TgDHFR-TS selectable marker, which confers resistance to pyrimethamine. Transfected merozoites were inoculated into chickens via the cloacal route, and feces from 18 h to 72 h post inoculation were collected and subjected to subsequent serial passages, FACS sorting and pyrimethamine selection. A gradual increase in the number of EYFP-expressing sporulated oocysts was noticed with more than 90% EYFP + oocysts obtained after five passages. Immunofluorescence assay confirmed successful expression of the HA1 antigen in the EnHA1 population. The ability to genetically manipulate E. necatrix merozoites and express heterologous genes in this parasite will pave the way for possible use of this organism as a vaccine-delivery vehicle.
Collapse
Affiliation(s)
- Chunhui Duan
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China; National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Dandan Hu
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China; National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Xinming Tang
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China; National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Jingxia Suo
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China; National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Si Wang
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China; National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Sixin Zhang
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China; National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Geru Tao
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China; National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Chao Li
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China; National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Chaoyue Wang
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China; National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Xiaolong Gu
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China; National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Xiaoli Tang
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China; National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Guangping Huang
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China; National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Biqi Xiang
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China; National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Shaoqiang Wu
- Chinese Academy of Inspection and Quarantine, Yizhuang, Beijing, China
| | - Choukri Ben Mamoun
- Department of Medicine / Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Xun Suo
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China; National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Xianyong Liu
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China; National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
8
|
Calaça GM, Café MB, Andrade MA, Stringhini JH, Araújo ICS, Leandro NSM. FRANGOS DESAFIADOS EXPERIMENTALMENTE COM Salmonella enterica SOROVAR ENTERITIDIS E Eimeria tenella E TRATADOS COM ÁCIDOS ORGÂNICOS. CIÊNCIA ANIMAL BRASILEIRA 2019. [DOI: 10.1590/1809-6891v20e-43084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
Resumo Foi avaliado um composto comercial de ácidos orgânicos, adicionado à ração, no controle da Salmonella de frangos de corte desafiados com Salmonella Enteritidis e Salmonella Enteritidis associadas à Eimeria tenella. Foram utilizados 504 pintos de um dia, fêmeas, da linhagem Hubbard®, sendo o delineamento inteiramente casualizado em esquema fatorial 2x3, totalizando seis tratamentos com seis repetições e 14 aves a unidade experimental. Foi analisado o pH intestinal, o escore de lesão dos cecos, contagem de oocistos fecais e a presença de salmonela no baço e tonsilas cecais das aves. Aves desafiadas com S. Enteritidis que receberam ácidos apresentaram menor frequência de isolamento da bactéria nos órgãos linfoides analisados. Assim como apresentaram redução no número de oocistos de E. tenella nas excretas coletadas diretamente na bandeja e redução dos escores de lesão intestinal provocadas pela infecção por Eimeria tenella. Os ácidos orgânicos promoveram benefício à saúde intestinal dos frangos de corte com reflexos positivos no controle da Salmonella Enteritidis juntamente com a Eimeria tenella.
Collapse
|
9
|
Tang X, Liu X, Yin G, Suo J, Tao G, Zhang S, Suo X. A Novel Vaccine Delivery Model of the Apicomplexan Eimeria tenella Expressing Eimeria maxima Antigen Protects Chickens against Infection of the Two Parasites. Front Immunol 2018; 8:1982. [PMID: 29375584 PMCID: PMC5767589 DOI: 10.3389/fimmu.2017.01982] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 12/20/2017] [Indexed: 12/05/2022] Open
Abstract
Vaccine delivery is critical in antigen discovery and vaccine efficacy and safety. The diversity of infectious diseases in humans and livestock has required the development of varied delivery vehicles to target different pathogens. In livestock animals, previous strategies for the development of coccidiosis vaccines have encountered several hurdles, limiting the development of multiple species vaccine formulations. Here, we describe a novel vaccine delivery system using transgenic Eimeria tenella expressing immunodominant antigens of Eimeria maxima. In this delivery system, the immune mapped protein 1 of E. maxima (EmIMP1) was delivered by the closely related species of E. tenella to the host immune system during the whole endogenous life cycle. The overexpression of the exogenous antigen did not interfere with the reproduction and immunogenicity of transgenic Eimeria. After immunization with the transgenic parasite, we detected EmIMP1’s and E. maxima oocyst antigens’ specific humoral and cellular immune responses. In particular, we observed partial protection of chickens immunized with transgenic E. tenella against subsequent E. maxima infections. Our results demonstrate that the transgenic Eimeria parasite is an ideal coccidia antigen delivery vehicle and represents a new type of coccidiosis vaccines. In addition, this model could potentially be used in the development of malaria live sporozoite vaccines, in which antigens from different strains can be expressed in the vaccine strain.
Collapse
Affiliation(s)
- Xinming Tang
- State Key Laboratory of Agrobiotechnology, College of Veterinary Medicine, China Agricultural University, Beijing, China.,Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China.,National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xianyong Liu
- State Key Laboratory of Agrobiotechnology, College of Veterinary Medicine, China Agricultural University, Beijing, China.,Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China.,National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Guangwen Yin
- Engineering Laboratory of Animal Pharmaceuticals, College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jingxia Suo
- State Key Laboratory of Agrobiotechnology, College of Veterinary Medicine, China Agricultural University, Beijing, China.,Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China.,National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Geru Tao
- State Key Laboratory of Agrobiotechnology, College of Veterinary Medicine, China Agricultural University, Beijing, China.,Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China.,National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Sixin Zhang
- State Key Laboratory of Agrobiotechnology, College of Veterinary Medicine, China Agricultural University, Beijing, China.,Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China.,National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xun Suo
- State Key Laboratory of Agrobiotechnology, College of Veterinary Medicine, China Agricultural University, Beijing, China.,Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China.,National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
10
|
Lin RQ, Lillehoj HS, Lee SK, Oh S, Panebra A, Lillehoj EP. Vaccination with Eimeria tenella elongation factor-1α recombinant protein induces protective immunity against E. tenella and E. maxima infections. Vet Parasitol 2017; 243:79-84. [PMID: 28807316 DOI: 10.1016/j.vetpar.2017.06.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 06/01/2017] [Accepted: 06/02/2017] [Indexed: 11/18/2022]
Abstract
Avian coccidiosis is caused by multiple species of the apicomplexan protozoan, Eimeria, and is one of the most economically devastating enteric diseases for the poultry industry worldwide. Host immunity to Eimeria infection, however, is relatively species-specific. The ability to immunize chickens against different species of Eimeria using a single vaccine will have a major beneficial impact on commercial poultry production. In this paper, we describe the molecular cloning, purification, and vaccination efficacy of a novel Eimeria vaccine candidate, elongation factor-1α (EF-1α). One day-old broiler chickens were given two subcutaneous immunizations one week apart with E. coli-expressed E. tenella recombinant (r)EF-1α protein and evaluated for protection against challenge infection with E. tenella or E. maxima. rEF-1α-vaccinated chickens exhibited increased body weight gains, decreased fecal oocyst output, and greater serum anti-EF-1α antibody levels following challenge infection with either E. tenella or E. maxima compared with unimmunized controls. Vaccination with EF-1α may represent a new approach to inducing cross-protective immunity against avian coccidiosis in the field.
Collapse
Affiliation(s)
- Rui-Qing Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People's Republic of China; Animal Biosciences And Biotechnology Laboratory, Beltsville Agricultural Research Service, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD, 20705, USA
| | - Hyun S Lillehoj
- Animal Biosciences And Biotechnology Laboratory, Beltsville Agricultural Research Service, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD, 20705, USA.
| | - Seung Kyoo Lee
- Animal Biosciences And Biotechnology Laboratory, Beltsville Agricultural Research Service, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD, 20705, USA
| | - Sungtaek Oh
- Animal Biosciences And Biotechnology Laboratory, Beltsville Agricultural Research Service, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD, 20705, USA
| | - Alfredo Panebra
- Animal Biosciences And Biotechnology Laboratory, Beltsville Agricultural Research Service, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD, 20705, USA
| | - Erik P Lillehoj
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| |
Collapse
|
11
|
El-Ashram S, Suo X. Exploring the microbial community (microflora) associated with ovine Haemonchus contortus (macroflora) field strains. Sci Rep 2017; 7:70. [PMID: 28250429 PMCID: PMC5427911 DOI: 10.1038/s41598-017-00171-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 02/13/2017] [Indexed: 01/02/2023] Open
Abstract
High-throughput sequencing technology has shown tremendous promise for microbial community composition and diversity. Illumina MiSeq platform was exploited to study the microbial community associated with the different stages of the life-cycle of ovine Haemonchus contortus field strains using two distinct amplification primer sets (targeting V3–V4, and V5–V7). Scanning electron microscope and polymerase chain reaction coupled with Illumina MiSeq platform were employed to confirm the absence of any parasite surface contamination by intact bacteria or their DNA products. Results showed 48 (V3–V4 tags) and 28 (V5–V7 tags) bacterial genera comprised the microbial flora of H. contortus microbiome. The dominant bacterial genera belonged to Escherichia-Shigella, Pseudomonas and Ochrobactrum, which were shared in all the stages of the parasite life-cycle using V3–V4 and V5–V7 amplicons. Moreover, the parasite microbiome could reflect the external micro-organisms (i.e. micro- and macro-habitats). There is abundant room for further progress in comparing microbiome of different helminths, which has, and will continue to offer considerable potential for better understanding a wide-variety of devastating animal and human diseases.
Collapse
Affiliation(s)
- Saeed El-Ashram
- State Key Laboratory for Agrobiotechnology & College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China. .,National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China. .,Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, Beijing, 100193, China. .,Faculty of Science, Kafr El-Sheikh University, Kafr El-Sheikh, Egypt.
| | - Xun Suo
- State Key Laboratory for Agrobiotechnology & College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.,National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.,Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, Beijing, 100193, China
| |
Collapse
|
12
|
Tao G, Shi T, Tang X, Duszynski DW, Wang Y, Li C, Suo J, Tian X, Liu X, Suo X. Transgenic Eimeria magna Pérard, 1925 Displays Similar Parasitological Properties to the Wild-type Strain and Induces an Exogenous Protein-Specific Immune Response in Rabbits ( Oryctolagus cuniculus L.). Front Immunol 2017; 8:2. [PMID: 28167939 PMCID: PMC5253372 DOI: 10.3389/fimmu.2017.00002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 01/03/2017] [Indexed: 12/18/2022] Open
Abstract
Rabbit coccidiosis causes great economic losses to world rabbitries. Little work has been done considering genetic manipulation on the etiological agents, rabbit Eimeria spp. In this study, we constructed a transgenic line of Eimeria magna (EmagER) expressing enhanced yellow fluorescent protein (EYFP) and red fluorescent protein (RFP) using regulatory sequences of Eimeria tenella and Toxoplasma gondii. We observed the life cycle of EmagER and confirmed that the transgenic parasites express exogenous proteins targeted to different cellular compartments throughout the entire life cycle. EYFP was expressed mainly in the nucleus and RFP both in the nucleus and cytoplasm. Then, coccidia-free, laboratory-reared 40-day-old rabbits were primarily infected with either EmagER or wild-type strain oocysts and challenged with the wild-type strain. EmagER showed similar reproductivity and immunogenicity to the wild-type strain. Finally, we examined the foreign protein-specific immune response elicited by EmagER. Rabbits were immunized with either transgenic or wild-type oocysts. Immune response against parasite-soluble antigen, EYFP and RFP in spleen, and mesenteric lymph nodes were detected by quantitative real-time PCR. The relative expression level of IFN-γ, IL-2, and TNF-α were higher in EmagER-immunized rabbits than wild-type parasites-immunized rabbits after stimulation with EYFP and RFP. Our study confirmed that a specific immune response was induced by the exogenous protein expressed by EmagER and favored future studies on application of transgenic rabbit coccidia as recombinant vaccine vectors.
Collapse
Affiliation(s)
- Geru Tao
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
- National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Tuanyuan Shi
- Department of Animal Parasitology, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Xinming Tang
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
- National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, China
| | | | - Yunzhou Wang
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
- National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Chao Li
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
- National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jingxia Suo
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
- National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiuling Tian
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
- National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xianyong Liu
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
- National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xun Suo
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
- National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
13
|
Tang X, Yin G, Qin M, Tao G, Suo J, Liu X, Suo X. Transgenic Eimeria tenella as a vaccine vehicle: expressing TgSAG1 elicits protective immunity against Toxoplasma gondii infections in chickens and mice. Sci Rep 2016; 6:29379. [PMID: 27387302 PMCID: PMC4937369 DOI: 10.1038/srep29379] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 06/17/2016] [Indexed: 02/02/2023] Open
Abstract
The surface antigen 1 of Toxoplasma gondii (TgSAG1) is a major immunodominant antigen and is widely considered an ideal candidate for the development of an effective recombinant vaccine against toxoplasmosis. Eimeria tenella, an affinis apicomplexan parasite with T. gondii, is a potential vaccine vector carrying exogenous antigens that stimulates specific immune responses. Here, we engineered TgSAG1 into E. tenella and obtained a stably transfected E. tenella line (Et-TgSAG1). We found TgSAG1 localized on the cell surface of Et-TgSAG1, which is similar to its native distribution in T. gondii tachyzoites. We immunized the chickens with Et-TgSAG1 orally and detected TgSAG1-specific immune responses, which partly reduced T. gondii infection. In the mouse model, we immunized the mice with Et-TgSAG1 sporozoites intraperitoneally and challenged them with T. gondii tachyzoites RH strain. We found that the mice immunized with Et-TgSAG1 showed a TgSAG1 specific Th 1-dominant immune response and a prolonged survival time compared with wild-type E. tenella and non-immunized mice. Collectively, our results demonstrated that Et-TgSAG1, utilized as a recombinant vaccine against toxoplasmosis, could be applied in both chickens and mice. Our findings also provide a promising persuasion for the development of transgenic Eimeria as vaccine vectors for use in birds and mammals.
Collapse
Affiliation(s)
- Xinming Tang
- State Key Laboratory of Agrobiotechnology &Key Laboratory of Zoonosis of Ministry of Agriculture &National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Guangwen Yin
- Engineering Laboratory of Animal Pharmaceuticals, College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian Province, China
| | - Mei Qin
- State Key Laboratory of Agrobiotechnology &Key Laboratory of Zoonosis of Ministry of Agriculture &National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Geru Tao
- State Key Laboratory of Agrobiotechnology &Key Laboratory of Zoonosis of Ministry of Agriculture &National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Jingxia Suo
- State Key Laboratory of Agrobiotechnology &Key Laboratory of Zoonosis of Ministry of Agriculture &National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Xianyong Liu
- State Key Laboratory of Agrobiotechnology &Key Laboratory of Zoonosis of Ministry of Agriculture &National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Xun Suo
- State Key Laboratory of Agrobiotechnology &Key Laboratory of Zoonosis of Ministry of Agriculture &National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
14
|
Tang X, Liu X, Tao G, Qin M, Yin G, Suo J, Suo X. "Self-cleaving" 2A peptide from porcine teschovirus-1 mediates cleavage of dual fluorescent proteins in transgenic Eimeria tenella. Vet Res 2016; 47:68. [PMID: 27352927 PMCID: PMC4924277 DOI: 10.1186/s13567-016-0351-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 04/08/2016] [Indexed: 01/13/2023] Open
Abstract
The "self-cleaving" 2A sequence of picornavirus, which mediates ribosome-skipping events, enables the generation of two or more separate peptide products from one mRNA containing one or more "self-cleaving" 2A sequences. In this study, we introduced a single 2A sequence of porcine teschovirus-1 (P2A) linked to two fluorescent protein genes, the enhanced yellow fluorescent protein (EYFP) gene and the red fluorescent protein (RFP) gene, in a single cassette into transgenic Eimeria tenella (EtER). As expected, we obtained two separated protein molecules rather than a fused protein, although the two molecules were translated from the same mRNA carrying a single "self-cleaving" 2A sequence. Importantly, RFP led by a secretion signal was secreted into parasitophorous vacuoles, while EYFP localized mainly to the nucleus of EtER. Our results demonstrate that the "self-cleaving" 2A sequence actively mediated cleavage of polyproteins in the apicomplexan parasite E. tenella.
Collapse
Affiliation(s)
- Xinming Tang
- />State Key Laboratory of Agrobiotechnology and College of Veterinary Medicine, China Agricultural University, Beijing, 100193 China
- />National Animal Protozoa Laboratory and College of Veterinary Medicine, China Agricultural University, Beijing, 100193 China
| | - Xianyong Liu
- />State Key Laboratory of Agrobiotechnology and College of Veterinary Medicine, China Agricultural University, Beijing, 100193 China
- />National Animal Protozoa Laboratory and College of Veterinary Medicine, China Agricultural University, Beijing, 100193 China
- />Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, China Agricultural University, Beijing, 100193 China
| | - Geru Tao
- />State Key Laboratory of Agrobiotechnology and College of Veterinary Medicine, China Agricultural University, Beijing, 100193 China
- />National Animal Protozoa Laboratory and College of Veterinary Medicine, China Agricultural University, Beijing, 100193 China
| | - Mei Qin
- />National Animal Protozoa Laboratory and College of Veterinary Medicine, China Agricultural University, Beijing, 100193 China
| | - Guangwen Yin
- />National Animal Protozoa Laboratory and College of Veterinary Medicine, China Agricultural University, Beijing, 100193 China
| | - Jingxia Suo
- />State Key Laboratory of Agrobiotechnology and College of Veterinary Medicine, China Agricultural University, Beijing, 100193 China
- />National Animal Protozoa Laboratory and College of Veterinary Medicine, China Agricultural University, Beijing, 100193 China
| | - Xun Suo
- />State Key Laboratory of Agrobiotechnology and College of Veterinary Medicine, China Agricultural University, Beijing, 100193 China
- />National Animal Protozoa Laboratory and College of Veterinary Medicine, China Agricultural University, Beijing, 100193 China
- />Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
15
|
Qin M, Tang X, Yin G, Liu X, Suo J, Tao G, Ei-Ashram S, Li Y, Suo X. Chicken IgY Fc expressed by Eimeria mitis enhances the immunogenicity of E. mitis. Parasit Vectors 2016; 9:164. [PMID: 27000834 PMCID: PMC4802925 DOI: 10.1186/s13071-016-1451-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 03/14/2016] [Indexed: 11/17/2022] Open
Abstract
Background Eimeria species are obligate intracellular apicomplexan parasites, causing great economic losses in the poultry industry. Currently wild-and attenuated- type anticoccidial vaccines are used to control coccidiosis. However, their use in fast growing broilers is limited by vaccination side effects caused by medium and/or low immunogenic Eimeria spp. There is, therefore, a need for a vaccine with high immunogenicity for broilers. Methods The avian yolk sac IgY Fc is the avian counterpart of the mammalian IgG Fc, which enhances immunogenicity of Fc-fusion proteins. Here, we developed a stable transgenic Eimeria mitis expressing IgY Fc (Emi.chFc) and investigated whether the avian IgY Fc fragment enhances the immunogenicity of E. mitis. Two-week-old broilers were immunized with either Emi.chFc or wild type Eimeria and challenged with wild type E. mitis to analyze the protective properties of transgenic Emi.chFc. Results Chickens immunized with Emi.chFc had significantly lower oocyst output, in comparison with PBS, mock control (transgenic E. mitis expressing HA1 from H9N2 avian influenza virus) and wildtype E. mitis immunized groups after challenge, indicating that IgY Fc enhanced the immunogenicity of E. mitis. Conclusions Our findings suggest that IgY Fc-expressing Eimeria may be a better coccidiosis vaccine, and transgenic Eimeria expressing Fc-fused exogenous antigens may be used as a novel vaccine-delivery vehicle against a wide variety of pathogens.
Collapse
Affiliation(s)
- Mei Qin
- State Key Laboratory of Agrobiotechnology, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.,National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Xinming Tang
- State Key Laboratory of Agrobiotechnology, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.,National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Guangwen Yin
- Engineering Laboratory of Animal Pharmaceuticals, College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, 350002, China
| | - Xianyong Liu
- State Key Laboratory of Agrobiotechnology, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.,National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.,Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, China Agricultural University, Beijing, 100193, China
| | - Jingxia Suo
- State Key Laboratory of Agrobiotechnology, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.,National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Geru Tao
- State Key Laboratory of Agrobiotechnology, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.,National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Saeed Ei-Ashram
- State Key Laboratory of Agrobiotechnology, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.,National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Yuan Li
- State Key Laboratory of Agrobiotechnology, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.,National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Xun Suo
- State Key Laboratory of Agrobiotechnology, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China. .,National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China. .,Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
16
|
Li Z, Tang X, Suo J, Qin M, Yin G, Liu X, Suo X. Transgenic Eimeria mitis expressing chicken interleukin 2 stimulated higher cellular immune response in chickens compared with the wild-type parasites. Front Microbiol 2015; 6:533. [PMID: 26082759 PMCID: PMC4451583 DOI: 10.3389/fmicb.2015.00533] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 05/14/2015] [Indexed: 01/01/2023] Open
Abstract
Chicken coccidiosis, caused by Eimeria sp., occurs in almost all poultry farms and causes huge economic losses in the poultry industry. Although this disease could be controlled by vaccination, the reduced feed conservation ratio limits the widespread application of anticoccidial vaccines in broilers because some intermediate and/or low immunogenic Eimeria sp. only elicit partial protection. It is of importance to enhance the immunogenicity of these Eimeria sp. by adjuvants for more effective prevention of coccidiosis. Cytokines have remarkable effects on the immunogenicity of antigens. Interleukin 2 (IL-2), for example, significantly stimulates the activation of CD8+ T cells and other immune cells. In this study, we constructed a transgenic Eimeria mitis line (EmiChIL-2) expressing chicken IL-2 (ChIL-2) to investigate the adjuvant effect of ChIL-2 to enhance the immunogenicity of E. mitis against its infection. Stable transfected EmiChIL-2 population was obtained by pyrimethamine selection and verified by PCR, genome walking, western blotting and indirect immunofluorescence assay. Cellular immune response, E. mitis-specific IFN-γ secretion lymphocytes in the peripheral blood mononuclear cells, stimulated by EmiChIL-2 was analyzed by enzyme-linked immunospot assay (ELISPOT). The results showed that EmiChIL-2 stimulated a higher cellular immune response compared with that of the wild-type parasite infection in chickens. Moreover, after the immunization with EmiChIL-2, elevated cellular immune response as well as reduced oocyst output were observed These results indicated that ChIL-2 expressed by Eimeria sp. functions as adjuvant and IL-2 expressing Eimeria parasites are valuable vaccine strains against coccidiosis.
Collapse
Affiliation(s)
- Zhuoran Li
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing China ; National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing China ; The High School attached to Tsinghua University, Beijing China
| | - Xinming Tang
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing China ; National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing China
| | - Jingxia Suo
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing China ; National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing China
| | - Mei Qin
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing China ; National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing China
| | - Guangwen Yin
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing China ; National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing China
| | - Xianyong Liu
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing China ; National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing China ; Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, China Agricultural University, Beijing China
| | - Xun Suo
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing China ; National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing China ; Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, China Agricultural University, Beijing China
| |
Collapse
|
17
|
Wu LL, Lin RQ, Sun MF, Liu LD, Duan WF, Zou SS, Yuan ZG, Weng YB. Biological characteristics of Chinese precocious strain of eimeria acervulina and its immune efficacy against different field strains. Avian Dis 2015; 58:367-72. [PMID: 25518429 DOI: 10.1637/10706-102413.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In this study, the biologic characteristics of one experimental precocious strain of Eimeria acervulina and seven field isolates from different geographic locations in China were compared, and the immune efficacy of two precocious strains against coccidiosis in chickens was assessed to explore their potential use as coccidiosis vaccines. All the different strains were purified by single oocyst separation and their monospecificity was confirmed using E acervulina-specific PCR assays. The average sizes of E. acervulina oocysts were 18.28-20.19 X 14.09-14.79 microm and the shape indexes were from 1.28 to 1.40. The prepatent periods ranged from 93 to 115 hr, except for the Heyuan precocious strain (HYP; 75 hr). Chickens infected with Huadu field strain (GHD) produced the highest oocyst output whereas HYP induced the lowest level. When inoculated with 50,000 sporulated oocysts or more, the average weight gains of infected chickens were reduced, with apparent clinical symptoms. To assess the immunogenicity of precocious strains HYP and Baoding (BDP), birds were orally immunized and challenged with seven different field strains of E. acervulina. Body weight gain, fecal oocyst output, and gut lesion scores were compared to evaluate their vaccine potential. The results showed that the average body weight gains of chickens in all the vaccinated and challenged groups were higher than those of nonvaccinated and challenged groups. In general, oocyst shedding was reduced 34.39%-95.31% and gut lesion scores decreased 31.03%-86.21% compared with unvaccinated and challenged control chickens. In summary, this study indicated that the precocious strains of E. acervulina could induce a protective immune effect with various responses against coccidiosis caused by different field strains.
Collapse
|
18
|
Transfection of Eimeria mitis with yellow fluorescent protein as reporter and the endogenous development of the transgenic parasite. PLoS One 2014; 9:e114188. [PMID: 25490541 PMCID: PMC4260837 DOI: 10.1371/journal.pone.0114188] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 11/05/2014] [Indexed: 12/05/2022] Open
Abstract
Background Advancements have been made in the genetic manipulation of apicomplexan parasites. Both the in vitro transient and in vivo stable transfection of Eimeria tenella have been developed successfully. Herein, we report the transient and stable transfection of Eimeria mitis. Methods and Findings Sporozoites of E. mitis transfected with enhanced yellow fluorescent protein (EYFP) expression plasmid were inoculated into chickens via the cloacal route. The recovered fluorescent oocysts were sorted by fluorescence activated cell sorting (FACS) and then passaged 6 generations successively in chickens. The resulting population was analyzed by genome walking and Western blot. The endogenous development of the transgenic E. mitis was observed and its reproduction potential was tested. The stable transfection of E. mitis was developed. Genome walking confirmed the random integration of plasmid DNA into the genome; while Western blot analysis demonstrated the expression of foreign proteins. Constitutive expression of EYFP was observed in all stages of merogony, gametogony and sporogony. The peak of the transgenic oocyst output was delayed by 24 h and the total oocyst reproduction was reduced by 7-fold when compared to the parental strain. Conclusion Stable transfection of E. mitis was successfully developed. The expression of foreign antigens in the transgenic parasites will facilitate the development of transgenic E. mitis as a vaccine vector.
Collapse
|
19
|
Yan X, Liu X, Ji Y, Tao G, Suo X. Ethanol and isopropanol trigger rapid egress of intracellular Eimeria tenella sporozoites. Parasitol Res 2014; 114:625-30. [PMID: 25407127 DOI: 10.1007/s00436-014-4224-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 11/06/2014] [Indexed: 10/24/2022]
Abstract
Egress from host cells is a vital step of the intracellular life cycle of apicomplexan parasites such as Toxoplasma gondii. This phenomenon has attracted attentions from many research groups. Previous studies have shown that ethanol could stimulate the release of microneme proteins by elevating intracellular Ca(2+) concentration of T. gondii, resulting in the parasite egress from host cells. However, little information about egress is known on Eimeria species, the causative agent of coccidiosis in poultry and livestock. In this report, we studied the effect of ethanol and isopropanol on the egress of eimerian parasites. Eimeria tenella sporozoites cultured in primary chicken kidney cells were treated with ethanol and isopropanol, then the egressed parasites were analyzed. Ethanol and isopropanol could induce the rapid egress of E. tenella sporozoites from host cells. No substantial damage was found in parasite-egressed host cells. Compared to the freshly isolated sporozoites, the re-invading ability and reproductivity of the egressed parasites significantly decreased by 43.4 and 44.1 % individually. We also found that fewer sporozoites egressed from host cells when the parasites developed for a longer time before the alcohol treatment. These results demonstrate an in vitro egress mode different from that of T. gondii, facilitating the deciphering of the mechanisms of egress of eimerian parasites.
Collapse
Affiliation(s)
- Xinlei Yan
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China
| | | | | | | | | |
Collapse
|
20
|
Yin G, Lin Q, Wei W, Qin M, Liu X, Suo X, Huang Z. Protective immunity against Eimeria tenella infection in chickens induced by immunization with a recombinant C-terminal derivative of EtIMP1. Vet Immunol Immunopathol 2014; 162:117-21. [PMID: 25464823 DOI: 10.1016/j.vetimm.2014.10.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 10/17/2014] [Accepted: 10/21/2014] [Indexed: 11/29/2022]
Abstract
Immune mapped protein-1 (IMP1) is a new protective protein in apicomplexan parasites, and exits in Eimeria tenella. Cloning and sequence analysis has predicted the antigen to be a novel membrane protein of apicomplexan parasites. In order to assess the immunogenicity of EtIMP1, a C-terminal derivative of EtIMP1 was expressed in a bacterial host system and was used to immunize chickens. The protective efficacy against a homologous challenge was evaluated by body weight gains, lesion scores and fecal oocyst shedding. The results showed that the subunit vaccine can improve weight gains, reduced cecal pathology and lower oocyst fecal shedding compared with non immunized controls. The results suggested that the C-terminal derivative of EtIMP1 might be considered as a candidate in the development of subunit vaccines against Eimeria infection.
Collapse
Affiliation(s)
- Guangwen Yin
- Engineering Laboratory of Animal Pharmaceuticals, College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, China
| | - Qian Lin
- Engineering Laboratory of Animal Pharmaceuticals, College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, China
| | - Wenjun Wei
- Engineering Laboratory of Animal Pharmaceuticals, College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, China
| | - Mei Qin
- National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xianyong Liu
- National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Key Laboratory of Zoonosis, China Ministry of Agriculture & College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xun Suo
- National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Key Laboratory of Zoonosis, China Ministry of Agriculture & College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Zhijian Huang
- Engineering Laboratory of Animal Pharmaceuticals, College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, China.
| |
Collapse
|
21
|
Chapman HD, Barta JR, Blake D, Gruber A, Jenkins M, Smith NC, Suo X, Tomley FM. A selective review of advances in coccidiosis research. ADVANCES IN PARASITOLOGY 2014; 83:93-171. [PMID: 23876872 DOI: 10.1016/b978-0-12-407705-8.00002-1] [Citation(s) in RCA: 175] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Coccidiosis is a widespread and economically significant disease of livestock caused by protozoan parasites of the genus Eimeria. This disease is worldwide in occurrence and costs the animal agricultural industry many millions of dollars to control. In recent years, the modern tools of molecular biology, biochemistry, cell biology and immunology have been used to expand greatly our knowledge of these parasites and the disease they cause. Such studies are essential if we are to develop new means for the control of coccidiosis. In this chapter, selective aspects of the biology of these organisms, with emphasis on recent research in poultry, are reviewed. Topics considered include taxonomy, systematics, genetics, genomics, transcriptomics, proteomics, transfection, oocyst biogenesis, host cell invasion, immunobiology, diagnostics and control.
Collapse
Affiliation(s)
- H David Chapman
- Department of Poultry Science, University of Arkansas, Fayetteville, Arkansas, USA.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Yin G, Qin M, Liu X, Suo J, Tang X, Tao G, Han Q, Suo X, Wu W. An Eimeria vaccine candidate based on Eimeria tenella immune mapped protein 1 and the TLR-5 agonist Salmonella typhimurium FliC flagellin. Biochem Biophys Res Commun 2013; 440:437-42. [PMID: 24076159 DOI: 10.1016/j.bbrc.2013.09.088] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 09/17/2013] [Indexed: 01/04/2023]
Abstract
Immune mapped protein-1 (IMP1) is a new protective protein in apicomplexan parasites, and exits in Eimeria tenella. But its structure and immunogenicity in E. tenella are still unknown. In this study, IMPI in E. tenella was predicted to be a membrane protein. To evaluate immunogenicity of IMPI in E. tenella, a chimeric subunit vaccine consisting of E. tenella IMP1 (EtIMP1) and a molecular adjuvant (a truncated flagellin, FliC) was constructed and over-expressed in Escherichia coli and its efficacy against E. tenella infection was evaluated. Three-week-old AA broiler chickens were vaccinated with the recombinant EtIMP1-truncated FliC without adjuvant or EtIMP1 with Freund's Complete Adjuvant. Immunization of chickens with the recombinant EtIMP1-truncated FliC fusion protein resulted in stronger cellular immune responses than immunization with only recombinant EtIMP1 with adjuvant. The clinical effect of the EtIMP1-truncated FliC without adjuvant was also greater than that of the EtIMP1 with adjuvant, which was evidenced by the differences between the two groups in body weight gain, oocyst output and caecal lesions of E. tenella-challenged chickens. The results suggested that the EtIMP1-flagellin fusion protein can be used as an effective immunogen in the development of subunit vaccines against Eimeria infection. This is the first demonstration of antigen-specific protective immunity against avian coccidiosis using a recombinant flagellin as an apicomplexan parasite vaccine adjuvant in chickens.
Collapse
Affiliation(s)
- Guangwen Yin
- National Animal Protozoa Laboratory and College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Yin G, Qin M, Liu X, Suo J, Suo X. Interferon-γ enzyme-linked immunosorbent spot assay as a tool to study T cell responses to Eimeria tenella infection in chickens. Poult Sci 2013; 92:1758-63. [PMID: 23776262 DOI: 10.3382/ps.2012-02998] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The enzyme-linked immunosorbent spot (ELISPOT) assay is a sensitive and easy-to-use tool to quantify the number of interferon (IFN)-γ-producing cells and offers a viable alternative for the quantitative measurement of T cell functions in chickens. To study the development of cell-mediated immunity in Eimeria-infected chickens, we measured the number of IFN-γ-producing cells in peripheral blood mononuclear cells by ELISPOT after 3 oral inoculations of Eimeria tenella oocysts at 2-wk intervals. We found that the number of IFN-γ-producing cells was significantly increased at 2 wk after the primary infection compared with the control group. The IFN-γ-producing cells were further increased after repeated infections, and there was a statistically significant increase in the number of IFN-γ-producing cells after the third infection than after the first infection. Our results indicated that the ELISPOT assay can be used to quantitatively measure antigen-specific T cell responses to coccidia or other avian pathogens.
Collapse
|
24
|
Yin G, Qin M, Liu X, Suo J, Suo X. Expression of Toxoplasma gondii dense granule protein7 (GRA7) in Eimeria tenella. Parasitol Res 2013; 112:2105-9. [DOI: 10.1007/s00436-013-3307-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2012] [Accepted: 01/18/2013] [Indexed: 10/27/2022]
|
25
|
Clark JD, Oakes RD, Redhead K, Crouch CF, Francis MJ, Tomley FM, Blake DP. Eimeria species parasites as novel vaccine delivery vectors: Anti-Campylobacter jejuni protective immunity induced by Eimeria tenella-delivered CjaA. Vaccine 2012; 30:2683-8. [DOI: 10.1016/j.vaccine.2012.02.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 01/27/2012] [Accepted: 02/01/2012] [Indexed: 10/14/2022]
|