1
|
Sakyi PO, Broni E, Amewu RK, Miller WA, Wilson MD, Kwofie SK. Homology Modeling, de Novo Design of Ligands, and Molecular Docking Identify Potential Inhibitors of Leishmania donovani 24-Sterol Methyltransferase. Front Cell Infect Microbiol 2022; 12:859981. [PMID: 35719359 PMCID: PMC9201040 DOI: 10.3389/fcimb.2022.859981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
The therapeutic challenges pertaining to leishmaniasis due to reported chemoresistance and toxicity necessitate the need to explore novel pathways to identify plausible inhibitory molecules. Leishmania donovani 24-sterol methyltransferase (LdSMT) is vital for the synthesis of ergosterols, the main constituents of Leishmania cellular membranes. So far, mammals have not been shown to possess SMT or ergosterols, making the pathway a prime candidate for drug discovery. The structural model of LdSMT was elucidated using homology modeling to identify potential novel 24-SMT inhibitors via virtual screening, scaffold hopping, and de-novo fragment-based design. Altogether, six potential novel inhibitors were identified with binding energies ranging from −7.0 to −8.4 kcal/mol with e-LEA3D using 22,26-azasterol and S1–S4 obtained from scaffold hopping via the ChEMBL, DrugBank, PubChem, ChemSpider, and ZINC15 databases. These ligands showed comparable binding energy to 22,26-azasterol (−7.6 kcal/mol), the main inhibitor of LdSMT. Moreover, all the compounds had plausible ligand efficiency-dependent lipophilicity (LELP) scores above 3. The binding mechanism identified Tyr92 to be critical for binding, and this was corroborated via molecular dynamics simulations and molecular mechanics Poisson–Boltzmann surface area (MM-PBSA) calculations. The ligand A1 was predicted to possess antileishmanial properties with a probability of activity (Pa) of 0.362 and a probability of inactivity (Pi) of 0.066, while A5 and A6 possessed dermatological properties with Pa values of 0.205 and 0.249 and Pi values of 0.162 and 0.120, respectively. Structural similarity search via DrugBank identified vabicaserin, daledalin, zanapezil, imipramine, and cefradine with antileishmanial properties suggesting that the de-novo compounds could be explored as potential antileishmanial agents.
Collapse
Affiliation(s)
- Patrick O. Sakyi
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- Department of Chemical Sciences, School of Sciences, University of Energy and Natural Resources, Sunyani, Ghana
| | - Emmanuel Broni
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic & Applied Sciences, University of Ghana, Accra, Ghana
- Department of Parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences (CHS), University of Ghana, Accra, Ghana
| | - Richard K. Amewu
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Whelton A. Miller
- Department of Medicine, Loyola University Medical Center, Maywood, IL, United States
- Department of Molecular Pharmacology and Neuroscience, Loyola University Medical Center, Maywood, IL, United States
- Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
| | - Michael D. Wilson
- Department of Parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences (CHS), University of Ghana, Accra, Ghana
- Department of Medicine, Loyola University Medical Center, Maywood, IL, United States
| | - Samuel Kojo Kwofie
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic & Applied Sciences, University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- *Correspondence: Samuel Kojo Kwofie,
| |
Collapse
|
2
|
Sakyi PO, Amewu RK, Devine RNOA, Bienibuor AK, Miller WA, Kwofie SK. Unravelling the myth surrounding sterol biosynthesis as plausible target for drug design against leishmaniasis. J Parasit Dis 2021; 45:1152-1171. [PMID: 34790000 PMCID: PMC8556451 DOI: 10.1007/s12639-021-01390-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/07/2021] [Indexed: 12/13/2022] Open
Abstract
The mortality rate of leishmaniasis is increasing at an alarming rate and is currently second to malaria amongst the other neglected tropical diseases. Unfortunately, many governments and key stakeholders are not investing enough in the development of new therapeutic interventions. The available treatment options targeting different pathways of the parasite have seen inefficiencies, drug resistance, and toxic side effects coupled with longer treatment durations. Numerous studies to understand the biochemistry of leishmaniasis and its pathogenesis have identified druggable targets including ornithine decarboxylase, trypanothione reductase, and pteridine reductase, which are relevant for the survival and growth of the parasites. Another plausible target is the sterol biosynthetic pathway; however, this has not been fully investigated. Sterol biosynthesis is essential for the survival of the Leishmania species because its inhibition could lead to the death of the parasites. This review seeks to evaluate how critical the enzymes involved in sterol biosynthetic pathway are to the survival of the leishmania parasite. The review also highlights both synthetic and natural product compounds with their IC50 values against selected enzymes. Finally, recent advancements in drug design strategies targeting the sterol biosynthesis pathway of Leishmania are discussed.
Collapse
Affiliation(s)
- Patrick O. Sakyi
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences, University of Ghana, PMB LG 56, Legon, Accra, Ghana
- Department of Chemical Sciences, School of Sciences, University of Energy and Natural Resources, Box 214, Sunyani, Ghana
| | - Richard K. Amewu
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences, University of Ghana, PMB LG 56, Legon, Accra, Ghana
| | - Robert N. O. A. Devine
- Department of Chemical Sciences, School of Sciences, University of Energy and Natural Resources, Box 214, Sunyani, Ghana
| | - Alfred K. Bienibuor
- Department of Chemical Sciences, School of Sciences, University of Energy and Natural Resources, Box 214, Sunyani, Ghana
| | - Whelton A. Miller
- Department of Medicine, Loyola University Medical Center, Maywood, IL 60153 USA
- Department of Molecular Pharmacology and Neuroscience, Loyola University Medical Center, Maywood, IL 60153 USA
- Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, IL 19104 USA
| | - Samuel K. Kwofie
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic & Applied Sciences, University of Ghana, PMB LG 77, Legon, Accra, Ghana
- West African Center for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| |
Collapse
|
3
|
Dumoulin PC, Burleigh BA. Metabolic flexibility in Trypanosoma cruzi amastigotes: implications for persistence and drug sensitivity. Curr Opin Microbiol 2021; 63:244-249. [PMID: 34455305 DOI: 10.1016/j.mib.2021.07.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/19/2021] [Accepted: 07/24/2021] [Indexed: 12/18/2022]
Abstract
Throughout their life cycle, parasitic organisms experience a variety of environmental conditions. To ensure persistence and transmission, some protozoan parasites are capable of adjusting their replication or converting to distinct life cycle stages. Trypanosoma cruzi is a 'generalist' parasite that is competent to infect various insect (triatomine) vectors and mammalian hosts. Within the mammalian host, T. cruzi replicates intracellularly as amastigotes and can persist for the lifetime of the host. The persistence of the parasites in tissues can lead to the development of Chagas disease. Recent work has identified growth plasticity and metabolic flexibility as aspects of amastigote biology that are important determinants of persistence in varied growth conditions and under drug pressure. A better understanding of the link between amastigote and host/tissue metabolism will aid in the development of new drugs or therapies that can limit disease pathology.
Collapse
Affiliation(s)
- Peter C Dumoulin
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115, United States.
| | - Barbara A Burleigh
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115, United States
| |
Collapse
|
4
|
Mukherjee S, Moitra S, Xu W, Hernandez V, Zhang K. Sterol 14-α-demethylase is vital for mitochondrial functions and stress tolerance in Leishmania major. PLoS Pathog 2020; 16:e1008810. [PMID: 32817704 PMCID: PMC7462297 DOI: 10.1371/journal.ppat.1008810] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 09/01/2020] [Accepted: 07/14/2020] [Indexed: 11/18/2022] Open
Abstract
Sterol 14-α-demethylase (C14DM) is a key enzyme in the biosynthesis of sterols and the primary target of azoles. In Leishmania major, genetic or chemical inactivation of C14DM leads to accumulation of 14-methylated sterol intermediates and profound plasma membrane abnormalities including increased fluidity and failure to maintain ordered membrane microdomains. These defects likely contribute to the hypersensitivity to heat and severely reduced virulence displayed by the C14DM-null mutants (c14dm‾). In addition to plasma membrane, sterols are present in intracellular organelles. In this study, we investigated the impact of C14DM ablation on mitochondria. Our results demonstrate that c14dm‾ mutants have significantly higher mitochondrial membrane potential than wild type parasites. Such high potential leads to the buildup of reactive oxygen species in the mitochondria, especially under nutrient-limiting conditions. Consistent with these mitochondrial alterations, c14dm‾ mutants show impairment in respiration and are heavily dependent on glucose uptake and glycolysis to generate energy. Consequently, these mutants are extremely sensitive to glucose deprivation and such vulnerability can be rescued through the supplementation of glucose or glycerol. In addition, the accumulation of oxidants may also contribute to the heat sensitivity exhibited by c14dm‾. Finally, genetic or chemical ablation of C14DM causes increased susceptibility to pentamidine, an antimicrobial agent with activity against trypanosomatids. In summary, our investigation reveals that alteration of sterol synthesis can negatively affect multiple cellular processes in Leishmania parasites and make them vulnerable to clinically relevant stress conditions.
Collapse
Affiliation(s)
- Sumit Mukherjee
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
| | - Samrat Moitra
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
| | - Wei Xu
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
| | - Veronica Hernandez
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
| | - Kai Zhang
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
- * E-mail:
| |
Collapse
|
5
|
Lathosterol Oxidase (Sterol C-5 Desaturase) Deletion Confers Resistance to Amphotericin B and Sensitivity to Acidic Stress in Leishmania major. mSphere 2020; 5:5/4/e00380-20. [PMID: 32611698 PMCID: PMC7333571 DOI: 10.1128/msphere.00380-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Sterols are essential membrane components in eukaryotes, and sterol synthesis inhibitors can have potent effects against pathogenic fungi and trypanosomatids. Understanding the roles of sterols will facilitate the development of new drugs and counter drug resistance. LSO is required for the formation of the C-5–C-6 double bond in the sterol core structure in mammals, fungi, protozoans, plants, and algae. Functions of this C-5–C-6 double bond are not well understood. In this study, we generated and characterized a lathosterol oxidase-null mutant in Leishmania major. Our data suggest that LSO is vital for the structure and membrane-stabilizing functions of leishmanial sterols. In addition, our results imply that while mutations in lathosterol oxidase can confer resistance to amphotericin B, an important antifungal and antiprotozoal agent, the alteration in sterol structure leads to significant defects in stress response that could be exploited for drug development. Lathosterol oxidase (LSO) catalyzes the formation of the C-5–C-6 double bond in the synthesis of various types of sterols in mammals, fungi, plants, and protozoa. In Leishmania parasites, mutations in LSO or other sterol biosynthetic genes are associated with amphotericin B resistance. To investigate the biological roles of sterol C-5–C-6 desaturation, we generated an LSO-null mutant line (lso−) in Leishmania major, the causative agent for cutaneous leishmaniasis. lso− parasites lacked the ergostane-based sterols commonly found in wild-type L. major and instead accumulated equivalent sterol species without the C-5–C-6 double bond. These mutant parasites were replicative in culture and displayed heightened resistance to amphotericin B. However, they survived poorly after reaching the maximal density and were highly vulnerable to the membrane-disrupting detergent Triton X-100. In addition, lso− mutants showed defects in regulating intracellular pH and were hypersensitive to acidic conditions. They also had potential alterations in the carbohydrate composition of lipophosphoglycan, a membrane-bound virulence factor in Leishmania. All these defects in lso− were corrected upon the restoration of LSO expression. Together, these findings suggest that the C-5–C-6 double bond is vital for the structure of the sterol core, and while the loss of LSO can lead to amphotericin B resistance, it also makes Leishmania parasites vulnerable to biologically relevant stress. IMPORTANCE Sterols are essential membrane components in eukaryotes, and sterol synthesis inhibitors can have potent effects against pathogenic fungi and trypanosomatids. Understanding the roles of sterols will facilitate the development of new drugs and counter drug resistance. LSO is required for the formation of the C-5–C-6 double bond in the sterol core structure in mammals, fungi, protozoans, plants, and algae. Functions of this C-5–C-6 double bond are not well understood. In this study, we generated and characterized a lathosterol oxidase-null mutant in Leishmania major. Our data suggest that LSO is vital for the structure and membrane-stabilizing functions of leishmanial sterols. In addition, our results imply that while mutations in lathosterol oxidase can confer resistance to amphotericin B, an important antifungal and antiprotozoal agent, the alteration in sterol structure leads to significant defects in stress response that could be exploited for drug development.
Collapse
|
6
|
Mosquillo MF, Smircich P, Ciganda M, Lima A, Gambino D, Garat B, Pérez-Díaz L. Comparative high-throughput analysis of the Trypanosoma cruzi response to organometallic compounds. Metallomics 2020; 12:813-828. [DOI: 10.1039/d0mt00030b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An in-depth, comparative look at the effects of two structurally related organometallic Pd and Pt compounds on the global gene expression pattern of T. cruzi epimastigotes. This parasite is the causative agent of Chagas disease.
Collapse
Affiliation(s)
- M. Florencia Mosquillo
- Laboratorio de Interacciones Moleculares
- Facultad de Ciencias
- Universidad de la República
- Montevideo
- Uruguay
| | - Pablo Smircich
- Laboratorio de Interacciones Moleculares
- Facultad de Ciencias
- Universidad de la República
- Montevideo
- Uruguay
| | | | - Analía Lima
- Instituto de Investigaciones Biológicas Clemente Estable
- Montevideo
- Uruguay
- Unidad de Bioquímica y Proteómica Analíticas
- Institut Pasteur de Montevideo
| | - Dinorah Gambino
- Área Química Inorgánica
- Facultad de Química
- Universidad de la República
- Montevideo
- Uruguay
| | - Beatriz Garat
- Laboratorio de Interacciones Moleculares
- Facultad de Ciencias
- Universidad de la República
- Montevideo
- Uruguay
| | - Leticia Pérez-Díaz
- Laboratorio de Interacciones Moleculares
- Facultad de Ciencias
- Universidad de la República
- Montevideo
- Uruguay
| |
Collapse
|
7
|
Osorio-Méndez JF, Cevallos AM. Discovery and Genetic Validation of Chemotherapeutic Targets for Chagas' Disease. Front Cell Infect Microbiol 2019; 8:439. [PMID: 30666299 PMCID: PMC6330712 DOI: 10.3389/fcimb.2018.00439] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 12/10/2018] [Indexed: 01/06/2023] Open
Abstract
There is an urgent need to develop new treatments for Chagas' disease. To identify drug targets, it is important to understand the basic biology of Trypanosoma cruzi, in particular with respect to the biological pathways or proteins that are essential for its survival within the host. This review provides a streamlined approach for identifying drug targets using freely available chemogenetic databases and outlines the relevant characteristics of an ideal chemotherapeutic target. Among those are their essentiality, druggability, availability of structural information, and selectivity. At the moment only 16 genes have been found as essential by gene disruption in T. cruzi. At the TDR Targets database, a chemogenomics resource for neglected diseases, information about published structures for these genes was only found for three of these genes, and annotation of validated inhibitors was found in two. These inhibitors have activity against the parasitic stages present in the host. We then analyzed three of the pathways that are considered promising in the search for new targets: (1) Ergosterol biosynthesis, (2) Resistance to oxidative stress, (3) Synthesis of surface glycoconjugates. We have annotated all the genes that participate in them, identified those that are considered as druggable, and incorporated evidence from either Trypanosoma brucei, and Leishmania spp. that supports the hypothesis that these pathways are essential for T. cruzi survival.
Collapse
Affiliation(s)
- Juan Felipe Osorio-Méndez
- Laboratorio de Microbiología y Biología Molecular, Programa de Medicina, Corporación Universitaria Empresarial Alexander von Humboldt, Armenia, Colombia.,Grupo de Estudio en Parasitología Molecular, Centro de Investigaciones Biomédicas, Universidad del Quindío, Armenia, Colombia
| | - Ana María Cevallos
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
8
|
Mukherjee S, Xu W, Hsu FF, Patel J, Huang J, Zhang K. Sterol methyltransferase is required for optimal mitochondrial function and virulence in Leishmania major. Mol Microbiol 2019; 111:65-81. [PMID: 30260041 PMCID: PMC6351164 DOI: 10.1111/mmi.14139] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2018] [Indexed: 12/24/2022]
Abstract
Limited knowledge on the exact functions of ergostane-based sterols has hampered the application of sterol synthesis inhibitors against trypanosomatid parasites. Sterol methyltransferase (SMT) is directly involved in the synthesis of parasite-specific C24-methylated sterols, including ergosterol and 5-dehydroepisterol. While pharmacological studies hint at its potential as a drug target against trypanosomatids, direct evidence for the cellular function and essentiality of SMT is lacking. Here, we characterized the SMT knockout mutants and their complemented strains in Leishmania major, the causative agent for cutaneous leishmaniasis. Deletion of SMT alleles led to a complete loss of C24-methylated sterols, which were replaced by cholestane-based sterols. SMT-null mutants were fully viable and replicative in culture but showed increased sensitivity to sphingolipid synthesis inhibition. They were not particularly vulnerable to heat, acidic pH, nitrosative or oxidative stress, yet exhibited high mitochondrial membrane potential and increased superoxide generation indicating altered physiology of the mitochondria. Despite possessing high levels of GPI-anchored glycoconjugates, SMT-null mutants showed significantly attenuated virulence in mice. In total, our study reveals that the biosynthesis of ergostane-based sterols is crucial for the proper function of mitochondria and the proliferation of Leishmania parasites in mammals.
Collapse
Affiliation(s)
- Sumit Mukherjee
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Wei Xu
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
- Current address: Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Fong-Fu Hsu
- Mass Spectrometry Resource, Division of Endocrinology, Diabetes, Metabolism, and Lipid research, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jigesh Patel
- Department of Physics, Texas Tech University, Lubbock, TX 79409, USA
| | - Juyang Huang
- Department of Physics, Texas Tech University, Lubbock, TX 79409, USA
| | - Kai Zhang
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
9
|
Millerioux Y, Mazet M, Bouyssou G, Allmann S, Kiema TR, Bertiaux E, Fouillen L, Thapa C, Biran M, Plazolles N, Dittrich-Domergue F, Crouzols A, Wierenga RK, Rotureau B, Moreau P, Bringaud F. De novo biosynthesis of sterols and fatty acids in the Trypanosoma brucei procyclic form: Carbon source preferences and metabolic flux redistributions. PLoS Pathog 2018; 14:e1007116. [PMID: 29813135 PMCID: PMC5993337 DOI: 10.1371/journal.ppat.1007116] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 06/08/2018] [Accepted: 05/22/2018] [Indexed: 12/27/2022] Open
Abstract
De novo biosynthesis of lipids is essential for Trypanosoma brucei, a protist responsible for the sleeping sickness. Here, we demonstrate that the ketogenic carbon sources, threonine, acetate and glucose, are precursors for both fatty acid and sterol synthesis, while leucine only contributes to sterol production in the tsetse fly midgut stage of the parasite. Degradation of these carbon sources into lipids was investigated using a combination of reverse genetics and analysis of radio-labelled precursors incorporation into lipids. For instance, (i) deletion of the gene encoding isovaleryl-CoA dehydrogenase, involved in the leucine degradation pathway, abolished leucine incorporation into sterols, and (ii) RNAi-mediated down-regulation of the SCP2-thiolase gene expression abolished incorporation of the three ketogenic carbon sources into sterols. The SCP2-thiolase is part of a unidirectional two-step bridge between the fatty acid precursor, acetyl-CoA, and the precursor of the mevalonate pathway leading to sterol biosynthesis, 3-hydroxy-3-methylglutaryl-CoA. Metabolic flux through this bridge is increased either in the isovaleryl-CoA dehydrogenase null mutant or when the degradation of the ketogenic carbon sources is affected. We also observed a preference for fatty acids synthesis from ketogenic carbon sources, since blocking acetyl-CoA production from both glucose and threonine abolished acetate incorporation into sterols, while incorporation of acetate into fatty acids was increased. Interestingly, the growth of the isovaleryl-CoA dehydrogenase null mutant, but not that of the parental cells, is interrupted in the absence of ketogenic carbon sources, including lipids, which demonstrates the essential role of the mevalonate pathway. We concluded that procyclic trypanosomes have a strong preference for fatty acid versus sterol biosynthesis from ketogenic carbon sources, and as a consequence, that leucine is likely to be the main source, if not the only one, used by trypanosomes in the infected insect vector digestive tract to feed the mevalonate pathway.
Collapse
Affiliation(s)
- Yoann Millerioux
- Laboratoire de Microbiologie Fondamentale et Pathogénicité (MFP), Université de Bordeaux, CNRS UMR-5234, Bordeaux, France
- Centre de Résonance Magnétique des Systèmes Biologiques (RMSB), Université de Bordeaux, CNRS UMR-5536, Bordeaux, France
| | - Muriel Mazet
- Laboratoire de Microbiologie Fondamentale et Pathogénicité (MFP), Université de Bordeaux, CNRS UMR-5234, Bordeaux, France
- Centre de Résonance Magnétique des Systèmes Biologiques (RMSB), Université de Bordeaux, CNRS UMR-5536, Bordeaux, France
| | - Guillaume Bouyssou
- Membrane Biogenesis Laboratory, CNRS-University of Bordeaux, UMR-5200, INRA Bordeaux Aquitaine, Villenave d'Ornon, France
| | - Stefan Allmann
- Laboratoire de Microbiologie Fondamentale et Pathogénicité (MFP), Université de Bordeaux, CNRS UMR-5234, Bordeaux, France
- Centre de Résonance Magnétique des Systèmes Biologiques (RMSB), Université de Bordeaux, CNRS UMR-5536, Bordeaux, France
| | - Tiila-Riikka Kiema
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Eloïse Bertiaux
- Trypanosome Transmission Group, Trypanosome Cell Biology Unit, Department of Parasites and Insect Vectors, INSERM U1201, Institut Pasteur, Paris, France
| | - Laetitia Fouillen
- Membrane Biogenesis Laboratory, CNRS-University of Bordeaux, UMR-5200, INRA Bordeaux Aquitaine, Villenave d'Ornon, France
- Metabolome Facility of Bordeaux, Functional Genomics Center, Villenave d'Ornon
| | - Chandan Thapa
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Marc Biran
- Centre de Résonance Magnétique des Systèmes Biologiques (RMSB), Université de Bordeaux, CNRS UMR-5536, Bordeaux, France
| | - Nicolas Plazolles
- Laboratoire de Microbiologie Fondamentale et Pathogénicité (MFP), Université de Bordeaux, CNRS UMR-5234, Bordeaux, France
| | - Franziska Dittrich-Domergue
- Membrane Biogenesis Laboratory, CNRS-University of Bordeaux, UMR-5200, INRA Bordeaux Aquitaine, Villenave d'Ornon, France
| | - Aline Crouzols
- Trypanosome Transmission Group, Trypanosome Cell Biology Unit, Department of Parasites and Insect Vectors, INSERM U1201, Institut Pasteur, Paris, France
| | - Rik K. Wierenga
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Brice Rotureau
- Trypanosome Transmission Group, Trypanosome Cell Biology Unit, Department of Parasites and Insect Vectors, INSERM U1201, Institut Pasteur, Paris, France
| | - Patrick Moreau
- Membrane Biogenesis Laboratory, CNRS-University of Bordeaux, UMR-5200, INRA Bordeaux Aquitaine, Villenave d'Ornon, France
| | - Frédéric Bringaud
- Laboratoire de Microbiologie Fondamentale et Pathogénicité (MFP), Université de Bordeaux, CNRS UMR-5234, Bordeaux, France
- Centre de Résonance Magnétique des Systèmes Biologiques (RMSB), Université de Bordeaux, CNRS UMR-5536, Bordeaux, France
- * E-mail:
| |
Collapse
|
10
|
Dauchy FA, Bonhivers M, Landrein N, Dacheux D, Courtois P, Lauruol F, Daulouède S, Vincendeau P, Robinson DR. Trypanosoma brucei CYP51: Essentiality and Targeting Therapy in an Experimental Model. PLoS Negl Trop Dis 2016; 10:e0005125. [PMID: 27855164 PMCID: PMC5113867 DOI: 10.1371/journal.pntd.0005125] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 10/24/2016] [Indexed: 01/03/2023] Open
Abstract
Trypanosoma brucei gambiense is the main causative agent of Human African Trypanosomiasis (HAT), also known as sleeping sickness. Because of limited alternatives and treatment toxicities, new therapeutic options are urgently needed for patients with HAT. Sterol 14alpha-demethylase (CYP51) is a potential drug target but its essentiality has not been determined in T. brucei. We used a tetracycline-inducible RNAi system to assess the essentiality of CYP51 in T. brucei bloodstream form (BSF) cells and we evaluated the effect of posaconazole, a well-tolerated triazole drug, within a panel of virulent strains in vitro and in a murine model. Expression of CYP51 in several T. brucei cell lines was demonstrated by western blot and its essentiality was demonstrated by RNA interference (CYP51RNAi) in vitro. Following reduction of TbCYP51 expression by RNAi, cell growth was reduced and eventually stopped compared to WT or non-induced cells, showing the requirement of CYP51 in T. brucei. These phenotypes were rescued by addition of ergosterol. Additionally, CYP51RNAi induction caused morphological defects with multiflagellated cells (p<0.05), suggesting cytokinesis dysfunction. The survival of CYP51RNAi Doxycycline-treated mice (p = 0.053) and of CYP51RNAi 5-day pre-induced Doxycycline-treated mice (p = 0.008) were improved compared to WT showing a CYP51 RNAi effect on trypanosomal virulence in mice. The posaconazole concentrations that inhibited parasite growth by 50% (IC50) were 8.5, 2.7, 1.6 and 0.12 μM for T. b. brucei 427 90-13, T. b. brucei Antat 1.1, T. b. gambiense Feo (Feo/ITMAP/1893) and T. b. gambiense Biyamina (MHOM/SD/82), respectively. During infection with these last three virulent strains, posaconazole-eflornithine and nifurtimox-eflornithine combinations showed similar improvement in mice survival (p≤0.001). Our results provide support for a CYP51 targeting based treatment in HAT. Thus posaconazole used in combination may represent a therapeutic alternative for trypanosomiasis.
Collapse
Affiliation(s)
- Frédéric-Antoine Dauchy
- University of Bordeaux, laboratoire de parasitologie, France
- IRD-CIRAD-University of Bordeaux, France
- University Hospital of Bordeaux, Department of infectious and tropical diseases, Hôpital Pellegrin, France
- * E-mail:
| | - Mélanie Bonhivers
- University of Bordeaux, Microbiologie Fondamentale et Pathogénicité, France
- CNRS, Microbiologie Fondamentale et Pathogénicité, France
| | - Nicolas Landrein
- University of Bordeaux, Microbiologie Fondamentale et Pathogénicité, France
- CNRS, Microbiologie Fondamentale et Pathogénicité, France
| | - Denis Dacheux
- University of Bordeaux, Microbiologie Fondamentale et Pathogénicité, France
- CNRS, Microbiologie Fondamentale et Pathogénicité, France
- Bordeaux INP, ENSTBB, Microbiologie Fondamentale et Pathogénicité, France
| | - Pierrette Courtois
- University of Bordeaux, laboratoire de parasitologie, France
- IRD-CIRAD-University of Bordeaux, France
| | - Florian Lauruol
- University of Bordeaux, laboratoire de parasitologie, France
- IRD-CIRAD-University of Bordeaux, France
| | - Sylvie Daulouède
- University of Bordeaux, laboratoire de parasitologie, France
- IRD-CIRAD-University of Bordeaux, France
| | - Philippe Vincendeau
- University of Bordeaux, laboratoire de parasitologie, France
- IRD-CIRAD-University of Bordeaux, France
- University Hospital of Bordeaux, laboratoire de parasitologie, Hôpital Pellegrin, France
| | - Derrick R. Robinson
- University of Bordeaux, Microbiologie Fondamentale et Pathogénicité, France
- CNRS, Microbiologie Fondamentale et Pathogénicité, France
| |
Collapse
|
11
|
Antileishmanial Activity of Ezetimibe: Inhibition of Sterol Biosynthesis, In Vitro Synergy with Azoles, and Efficacy in Experimental Cutaneous Leishmaniasis. Antimicrob Agents Chemother 2016; 60:6844-6852. [PMID: 27600041 DOI: 10.1128/aac.01545-16] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 08/28/2016] [Indexed: 12/11/2022] Open
Abstract
Leishmaniasis affects mainly low-income populations in tropical regions. Radical innovation in drug discovery is time-consuming and expensive, imposing severe restrictions on the ability to launch new chemical entities for the treatment of neglected diseases. Drug repositioning is an attractive strategy for addressing a specific demand more easily. In this project, we have evaluated the antileishmanial activities of 30 drugs currently in clinical use for various morbidities. Ezetimibe, clinically used to reduce intestinal cholesterol absorption in dyslipidemic patients, killed Leishmania amazonensis promastigotes with a 50% inhibitory concentration (IC50) of 30 μM. Morphological analysis revealed that ezetimibe caused the parasites to become rounded, with multiple nuclei and flagella. Analysis by gas chromatography (GC)-mass spectrometry (MS) showed that promastigotes treated with ezetimibe had smaller amounts of C-14-demethylated sterols, and accumulated more cholesterol and lanosterol, than untreated promastigotes. We then evaluated the combination of ezetimibe with well-known antileishmanial azoles. The fractional inhibitory concentration index (FICI) indicated synergy when ezetimibe was combined with ketoconazole or miconazole. The activity of ezetimibe against intracellular amastigotes was confirmed, with an IC50 of 20 μM, and ezetimibe reduced the IC90s of ketoconazole and miconazole from 11.3 and 11.5 μM to 4.14 and 8.25 μM, respectively. Subsequently, we confirmed the activity of ezetimibe in vivo, showing that it decreased lesion development and parasite loads in murine cutaneous leishmaniasis. We concluded that ezetimibe has promising antileishmanial activity and should be considered in combination with azoles in further preclinical and clinical studies.
Collapse
|
12
|
Kraeva N, Butenko A, Hlaváčová J, Kostygov A, Myškova J, Grybchuk D, Leštinová T, Votýpka J, Volf P, Opperdoes F, Flegontov P, Lukeš J, Yurchenko V. Leptomonas seymouri: Adaptations to the Dixenous Life Cycle Analyzed by Genome Sequencing, Transcriptome Profiling and Co-infection with Leishmania donovani. PLoS Pathog 2015; 11:e1005127. [PMID: 26317207 PMCID: PMC4552786 DOI: 10.1371/journal.ppat.1005127] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 08/04/2015] [Indexed: 11/18/2022] Open
Abstract
The co-infection cases involving dixenous Leishmania spp. (mostly of the L. donovani complex) and presumably monoxenous trypanosomatids in immunocompromised mammalian hosts including humans are well documented. The main opportunistic parasite has been identified as Leptomonas seymouri of the sub-family Leishmaniinae. The molecular mechanisms allowing a parasite of insects to withstand elevated temperature and substantially different conditions of vertebrate tissues are not understood. Here we demonstrate that L. seymouri is well adapted for the environment of the warm-blooded host. We sequenced the genome and compared the whole transcriptome profiles of this species cultivated at low and high temperatures (mimicking the vector and the vertebrate host, respectively) and identified genes and pathways differentially expressed under these experimental conditions. Moreover, Leptomonas seymouri was found to persist for several days in two species of Phlebotomus spp. implicated in Leishmania donovani transmission. Despite of all these adaptations, L. seymouri remains a predominantly monoxenous species not capable of infecting vertebrate cells under normal conditions.
Collapse
Affiliation(s)
- Natalya Kraeva
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Anzhelika Butenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Jana Hlaváčová
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Alexei Kostygov
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Zoological Institute of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Jitka Myškova
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Danyil Grybchuk
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Tereza Leštinová
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jan Votýpka
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Petr Volf
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Fred Opperdoes
- de Duve Institute and Université catholique de Louvain, Brussels, Belgium
| | - Pavel Flegontov
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Julius Lukeš
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
- Canadian Institute for Advanced Research, Toronto, Ontario, Canada
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail:
| |
Collapse
|
13
|
Choi JY, Podust LM, Roush WR. Drug strategies targeting CYP51 in neglected tropical diseases. Chem Rev 2014; 114:11242-71. [PMID: 25337991 PMCID: PMC4254036 DOI: 10.1021/cr5003134] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Indexed: 01/04/2023]
Affiliation(s)
- Jun Yong Choi
- Department
of Chemistry, Scripps Florida, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Larissa M. Podust
- Center for Discovery and Innovation in Parasitic Diseases, and Department of
Pathology, University of California—San
Francisco, San Francisco, California 94158, United States
| | - William R. Roush
- Department
of Chemistry, Scripps Florida, 130 Scripps Way, Jupiter, Florida 33458, United States
| |
Collapse
|
14
|
Haubrich BA, Singha UK, Miller MB, Nes CR, Anyatonwu H, Lecordier L, Patkar P, Leaver DJ, Villalta F, Vanhollebeke B, Chaudhuri M, Nes WD. Discovery of an ergosterol-signaling factor that regulates Trypanosoma brucei growth. J Lipid Res 2014; 56:331-41. [PMID: 25424002 DOI: 10.1194/jlr.m054643] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ergosterol biosynthesis and homeostasis in the parasitic protozoan Trypanosoma brucei was analyzed by RNAi silencing and inhibition of sterol C24β-methyltransferase (TbSMT) and sterol 14α-demethylase [TbSDM (TbCYP51)] to explore the functions of sterols in T. brucei growth. Inhibition of the amount or activity of these enzymes depletes ergosterol from cells at <6 fg/cell for procyclic form (PCF) cells or <0.01 fg/cell for bloodstream form (BSF) cells and reduces infectivity in a mouse model of infection. Silencing of TbSMT expression by RNAi in PCF or BSF in combination with 25-azalanosterol (AZA) inhibited parasite growth and this inhibition was restored completely by adding synergistic cholesterol (7.8 μM from lipid-depleted media) with small amounts of ergosterol (1.2 μM) to the medium. These observations are consistent with the proposed requirement for ergosterol as a signaling factor to spark cell proliferation while imported cholesterol or the endogenously formed cholesta-5,7,24-trienol act as bulk membrane components. To test the potential chemotherapeutic importance of disrupting ergosterol biosynthesis using pairs of mechanism-based inhibitors that block two enzymes in the post-squalene segment, parasites were treated with AZA and itraconazole at 1 μM each (ED50 values) resulting in parasite death. Taken together, our results demonstrate that the ergosterol pathway is a prime drug target for intervention in T. brucei infection.
Collapse
Affiliation(s)
- Brad A Haubrich
- Center for Chemical Biology and Department of Chemistry and Biochemistry Texas Tech University, Lubbock, TX 79409
| | - Ujjal K Singha
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, TN 37208
| | - Matthew B Miller
- Center for Chemical Biology and Department of Chemistry and Biochemistry Texas Tech University, Lubbock, TX 79409
| | - Craigen R Nes
- Center for Chemical Biology and Department of Chemistry and Biochemistry Texas Tech University, Lubbock, TX 79409
| | - Hosanna Anyatonwu
- Center for Chemical Biology and Department of Chemistry and Biochemistry Texas Tech University, Lubbock, TX 79409
| | - Laurence Lecordier
- Laboratoire de Parasitologie Moléculaire, IBMM, Université Libre de Bruxelles, B6041 Gosselies, Belgium
| | - Presheet Patkar
- Center for Chemical Biology and Department of Chemistry and Biochemistry Texas Tech University, Lubbock, TX 79409
| | - David J Leaver
- Center for Chemical Biology and Department of Chemistry and Biochemistry Texas Tech University, Lubbock, TX 79409 Institute of Chemistry and Biomedical Sciences, Nanjing University, Nanjing 210023, People's Republic of China
| | - Fernando Villalta
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, TN 37208
| | - Benoit Vanhollebeke
- Laboratoire de Parasitologie Moléculaire, IBMM, Université Libre de Bruxelles, B6041 Gosselies, Belgium
| | - Minu Chaudhuri
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, TN 37208
| | - W David Nes
- Center for Chemical Biology and Department of Chemistry and Biochemistry Texas Tech University, Lubbock, TX 79409
| |
Collapse
|
15
|
Wang Z, Wu M. Phylogenomic reconstruction indicates mitochondrial ancestor was an energy parasite. PLoS One 2014; 9:e110685. [PMID: 25333787 PMCID: PMC4198247 DOI: 10.1371/journal.pone.0110685] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 09/22/2014] [Indexed: 11/18/2022] Open
Abstract
Reconstruction of mitochondrial ancestor has great impact on our understanding of the origin of mitochondria. Previous studies have largely focused on reconstructing the last common ancestor of all contemporary mitochondria (proto-mitochondria), but not on the more informative pre-mitochondria (the last common ancestor of mitochondria and their alphaproteobacterial sister clade). Using a phylogenomic approach and leveraging on the increased taxonomic sampling of alphaproteobacterial and eukaryotic genomes, we reconstructed the metabolisms of both proto-mitochondria and pre-mitochondria. Our reconstruction depicts a more streamlined proto-mitochondrion than these predicted by previous studies, and revealed several novel insights into the mitochondria-derived eukaryotic metabolisms including the lipid metabolism. Most strikingly, pre-mitochondrion was predicted to possess a plastid/parasite type of ATP/ADP translocase that imports ATP from the host, which posits pre-mitochondrion as an energy parasite that directly contrasts with the current role of mitochondria as the cell's energy producer. In addition, pre-mitochondrion was predicted to encode a large number of flagellar genes and several cytochrome oxidases functioning under low oxygen level, strongly supporting the previous finding that the mitochondrial ancestor was likely motile and capable of oxidative phosphorylation under microoxic condition.
Collapse
Affiliation(s)
- Zhang Wang
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Martin Wu
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|
16
|
Shang N, Li Q, Ko TP, Chan HC, Li J, Zheng Y, Huang CH, Ren F, Chen CC, Zhu Z, Galizzi M, Li ZH, Rodrigues-Poveda CA, Gonzalez-Pacanowska D, Veiga-Santos P, de Carvalho TMU, de Souza W, Urbina JA, Wang AHJ, Docampo R, Li K, Liu YL, Oldfield E, Guo RT. Squalene synthase as a target for Chagas disease therapeutics. PLoS Pathog 2014; 10:e1004114. [PMID: 24789335 PMCID: PMC4006925 DOI: 10.1371/journal.ppat.1004114] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 03/28/2014] [Indexed: 12/20/2022] Open
Abstract
Trypanosomatid parasites are the causative agents of many neglected tropical diseases and there is currently considerable interest in targeting endogenous sterol biosynthesis in these organisms as a route to the development of novel anti-infective drugs. Here, we report the first x-ray crystallographic structures of the enzyme squalene synthase (SQS) from a trypanosomatid parasite, Trypanosoma cruzi, the causative agent of Chagas disease. We obtained five structures of T. cruzi SQS and eight structures of human SQS with four classes of inhibitors: the substrate-analog S-thiolo-farnesyl diphosphate, the quinuclidines E5700 and ER119884, several lipophilic bisphosphonates, and the thiocyanate WC-9, with the structures of the two very potent quinuclidines suggesting strategies for selective inhibitor development. We also show that the lipophilic bisphosphonates have low nM activity against T. cruzi and inhibit endogenous sterol biosynthesis and that E5700 acts synergistically with the azole drug, posaconazole. The determination of the structures of trypanosomatid and human SQS enzymes with a diverse set of inhibitors active in cells provides insights into SQS inhibition, of interest in the context of the development of drugs against Chagas disease. Chagas disease is caused by the protozoan parasite Trypanosoma cruzi and affects eight million individuals, primarily in Latin America. Currently there is no cure for chronic T. cruzi infections. Unlike humans, this parasite use a variety of sterols (e.g. ergosterol, 24-ethyl-cholesta-5,7,22-trien-3 beta ol, and its 22-dihydro analogs), rather than cholesterol in their cell membranes, so inhibiting endogenous sterol biosynthesis is an important therapeutic target. Here, we report the first structure of the parasite's squalene synthase, which catalyzes the first committed step in sterol biosynthesis, as well as the structures of a broad range of squalene synthase inhibitors active against the clinically relevant intracellular stages, opening the way to new approaches to treating this neglected tropical disease.
Collapse
Affiliation(s)
- Na Shang
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Qian Li
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Tzu-Ping Ko
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Hsiu-Chien Chan
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Jikun Li
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Yingying Zheng
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Chun-Hsiang Huang
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Feifei Ren
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Chun-Chi Chen
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Zhen Zhu
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Melina Galizzi
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Zhu-Hong Li
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Carlos A. Rodrigues-Poveda
- Instituto de Parasitología y Biomedicina “Lopez-Neyra”, Consejo Superior de Investigaciones Cientificas, Granada, Spain
| | - Dolores Gonzalez-Pacanowska
- Instituto de Parasitología y Biomedicina “Lopez-Neyra”, Consejo Superior de Investigaciones Cientificas, Granada, Spain
| | - Phercyles Veiga-Santos
- Laboratório de Ultraestrutura Celular Hertha Meyer, CCS, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Ilha do Fundão, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, Brazil
- Diretoria de Programa, Instituto Nacional de Metrologia, Normalização e Qualidade Industrial–INMETRO, Duque de Caxias, Rio de Janeiro, Brazil
| | - Tecia Maria Ulisses de Carvalho
- Laboratório de Ultraestrutura Celular Hertha Meyer, CCS, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Ilha do Fundão, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, Brazil
- Diretoria de Programa, Instituto Nacional de Metrologia, Normalização e Qualidade Industrial–INMETRO, Duque de Caxias, Rio de Janeiro, Brazil
| | - Wanderley de Souza
- Laboratório de Ultraestrutura Celular Hertha Meyer, CCS, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Ilha do Fundão, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, Brazil
- Diretoria de Programa, Instituto Nacional de Metrologia, Normalização e Qualidade Industrial–INMETRO, Duque de Caxias, Rio de Janeiro, Brazil
| | - Julio A. Urbina
- Instituto Venezolano de Investigaciones Cientificas, Caracas, Venezuela
| | | | - Roberto Docampo
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Kai Li
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Yi-Liang Liu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Eric Oldfield
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- * E-mail: (EO); (RTG)
| | - Rey-Ting Guo
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- * E-mail: (EO); (RTG)
| |
Collapse
|
17
|
Povelones ML. Beyond replication: division and segregation of mitochondrial DNA in kinetoplastids. Mol Biochem Parasitol 2014; 196:53-60. [PMID: 24704441 DOI: 10.1016/j.molbiopara.2014.03.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 03/18/2014] [Accepted: 03/25/2014] [Indexed: 11/29/2022]
Abstract
The mitochondrial genome of kinetoplastids, called kinetoplast DNA (kDNA) is a complex structure that must be faithfully duplicated exactly once per cell cycle. Despite many years of thorough investigation into the kDNA replication mechanism, many of the molecular details of the later stages of the process, particularly kDNA division and segregation, remain mysterious. In addition, perturbation of several cellular activities, some only indirectly related to kDNA, can lead to asymmetric kDNA division and other segregation defects. This review will examine unifying features and possible explanations for these phenotypes in the context of current models for kDNA division and segregation.
Collapse
|
18
|
The double-edged sword in pathogenic trypanosomatids: the pivotal role of mitochondria in oxidative stress and bioenergetics. BIOMED RESEARCH INTERNATIONAL 2014; 2014:614014. [PMID: 24800243 PMCID: PMC3988864 DOI: 10.1155/2014/614014] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 02/17/2014] [Indexed: 11/17/2022]
Abstract
The pathogenic trypanosomatids Trypanosoma brucei, Trypanosoma cruzi, and Leishmania spp. are the causative agents of African trypanosomiasis, Chagas disease, and leishmaniasis, respectively. These diseases are considered to be neglected tropical illnesses that persist under conditions of poverty and are concentrated in impoverished populations in the developing world. Novel efficient and nontoxic drugs are urgently needed as substitutes for the currently limited chemotherapy. Trypanosomatids display a single mitochondrion with several peculiar features, such as the presence of different energetic and antioxidant enzymes and a specific arrangement of mitochondrial DNA (kinetoplast DNA). Due to mitochondrial differences between mammals and trypanosomatids, this organelle is an excellent candidate for drug intervention. Additionally, during trypanosomatids' life cycle, the shape and functional plasticity of their single mitochondrion undergo profound alterations, reflecting adaptation to different environments. In an uncoupling situation, the organelle produces high amounts of reactive oxygen species. However, these species role in parasite biology is still controversial, involving parasite death, cell signalling, or even proliferation. Novel perspectives on trypanosomatid-targeting chemotherapy could be developed based on better comprehension of mitochondrial oxidative regulation processes.
Collapse
|
19
|
Castillo-Acosta VM, Vidal AE, Ruiz-Pérez LM, Van Damme EJM, Igarashi Y, Balzarini J, González-Pacanowska D. Carbohydrate-binding agents act as potent trypanocidals that elicit modifications in VSG glycosylation and reduced virulence in Trypanosoma brucei. Mol Microbiol 2013; 90:665-79. [PMID: 23926900 DOI: 10.1111/mmi.12359] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2013] [Indexed: 01/19/2023]
Abstract
The surface of Trypanosoma brucei is covered by a dense coat of glycosylphosphatidylinositol-anchored glycoproteins. The major component is the variant surface glycoprotein (VSG) which is glycosylated by both paucimannose and oligomannose N-glycans. Surface glycans are poorly accessible and killing mediated by peptide lectin-VSG complexes is hindered by active endocytosis. However, contrary to previous observations, here we show that high-affinity carbohydrate binding agents bind to surface glycoproteins and abrogate growth of T. brucei bloodstream forms. Specifically, binding of the mannose-specific Hippeastrum hybrid agglutinin (HHA) resulted in profound perturbations in endocytosis and parasite lysis. Prolonged exposure to HHA led to the loss of triantennary oligomannose structures in surface glycoproteins as a result of genetic rearrangements that abolished expression of the oligosaccharyltransferase TbSTT3B gene and yielded novel chimeric enzymes. Mutant parasites exhibited markedly reduced infectivity thus demonstrating the importance of specific glycosylation patterns in parasite virulence.
Collapse
Affiliation(s)
- Víctor M Castillo-Acosta
- Instituto de Parasitología y Biomedicina 'López-Neyra'. Consejo Superior de Investigaciones Científicas, Parque Tecnológico de Ciencias de la Salud, Avenida del Conocimiento, s/n 18016, Armilla, Granada, Spain
| | | | | | | | | | | | | |
Collapse
|
20
|
Povelones ML, Tiengwe C, Gluenz E, Gull K, Englund PT, Jensen RE. Mitochondrial shape and function in trypanosomes requires the outer membrane protein, TbLOK1. Mol Microbiol 2013; 87:713-29. [PMID: 23336702 DOI: 10.1111/mmi.12089] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2012] [Indexed: 01/01/2023]
Abstract
In an RNAi library screen for loss of kinetoplast DNA (kDNA), we identified an uncharacterized Trypanosoma brucei protein, named TbLOK1, required for maintenance of mitochondrial shape and function. We found the TbLOK1 protein located in discrete patches in the mitochondrial outer membrane. Knock-down of TbLOK1 in procyclic trypanosomes caused the highly interconnected mitochondrial structure to collapse, forming an unbranched tubule remarkably similar to the streamlined organelle seen in the bloodstream form. Following RNAi, defects in mitochondrial respiration, inner membrane potential and mitochondrial transcription were observed. At later times following TbLOK1 depletion, kDNA was lost and a more drastic alteration in mitochondrial structure was found. Our results demonstrate the close relationship between organelle structure and function in trypanosomes.
Collapse
Affiliation(s)
- Megan L Povelones
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | |
Collapse
|