1
|
Ismail A, Abdelsalam MA, Shahin MH, Ahmed Y, Bahcecioglu IH, Yalniz M, Tawheed A. Hepatobiliary fascioliasis: A neglected re-emerging threat, its diagnostic and management challenges. World J Gastrointest Pathophysiol 2025; 16:107599. [DOI: 10.4291/wjgp.v16.i2.107599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 04/26/2025] [Accepted: 05/29/2025] [Indexed: 06/19/2025] Open
Abstract
Hepatobiliary fascioliasis is a neglected but re-emerging parasitic disease caused by Fasciola hepatica. Humans become infected by consuming contaminated water or aquatic plants, allowing the parasite to enter the digestive tract. From there, immature flukes penetrate the intestinal wall and migrate through the liver, triggering inflammation, fibrosis, and biliary complications. Over time, this can lead to cholangitis, biliary obstruction, and long-term liver damage. Due to its vague clinical symptoms and the limitations of current diagnostic methods, fascioliasis could be easily missed. Stool analysis is still used to detect eggs in diagnosis. However, this method is unreliable due to the inconsistency of the egg shedding. Also, serological tests are often linked to false positives due to the cross-reactions with other parasites. Imaging techniques such as ultrasound, computed tomography, and magnetic resonance imaging can reveal its complications, especially in the biliary phase, yet this is not specific. Molecular tests like polymerase chain reaction (PCR) have higher sensitivity and specificity and allow earlier diagnosis, but they are still not widely available, especially in low-resource settings. Triclabendazole is the only recommended medical treatment, yet it is not widely available. In addition, the emerging reports of resistance represent a potential threat in managing this infection. Other modalities could be needed in addition to triclabendazole, such as endoscopic retrograde cholangiopancreatography in patients with biliary complications. All the previously mentioned challenges necessitate the urgent need to make the newly developed diagnostic methods, such as PCR, available, especially in areas where fascioliasis is endemic. Additionally, new medical treatments and therapeutic options should be considered to provide a second line of management, particularly in light of emerging reports of resistance.
Collapse
Affiliation(s)
- Alaa Ismail
- Faculty of Medicine, Helwan University, Cairo 11795, Al Qāhirah, Egypt
| | | | - Mustafa H Shahin
- Faculty of Medicine, Helwan University, Cairo 11795, Al Qāhirah, Egypt
| | - Yusuf Ahmed
- Faculty of Medicine, Helwan University, Cairo 11795, Al Qāhirah, Egypt
| | | | - Mehmet Yalniz
- Department of Gastroenterology, Firat University, Elazig 23119, Türkiye
| | - Ahmed Tawheed
- Department of Gastroenterology, Al Emadi Hospital, Doha 50000, Doha, Qatar
| |
Collapse
|
2
|
Jiang M, Zhou C, Wang S, Liu L, Zhang S, Wang L, Pan X. Identification of a Tetrahymena species infecting guppies, pathology, and expression of beta-tubulin during infection. Parasitol Res 2024; 123:104. [PMID: 38240890 DOI: 10.1007/s00436-024-08117-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/04/2024] [Indexed: 01/23/2024]
Abstract
Tetrahymenosis is caused by the ciliated protozoan Tetrahymena and is responsible for serious economic losses to the aquaculture industry worldwide. However, information regarding the molecular mechanism leading to tetrahymenosis is limited. In previous transcriptome sequencing work, it was found that one of the two β-tubulin genes in T. pyriformis was significantly expressed in infected fish, we speculated that β-tubulin is involved in T. pyriformis infecting fish. Herein, the potential biological function of the β-tubulin gene in Tetrahymena species when establishing infection in guppies was investigated by cloning the full-length cDNA of this T. pyriformis β-tubulin (BTU1) gene. The full-length cDNA of T. pyriformis BTU1 gene was 1873 bp, and the ORF occupied 1134 bp, whereas 5' UTR 434 bp, and 3' UTR 305 bp whose poly (A) tail contained 12 bases. The predicted protein encoded by T. pyriformis BTU1 gene had a calculated molecular weight of 42.26 kDa and pI of 4.48. Moreover, secondary structure analysis and tertiary structure prediction of BTU1 protein were also conducted. In addition, morphology, infraciliature, phylogeny, and histopathology of T. pyriformis isolated from guppies from a fish market in Harbin were also investigated. Furthermore, qRT-PCR analysis and experimental infection assays indicated that the expression of BTU1 gene resulted in efficient cell proliferation during infection. Collectively, our data revealed that BTU1 is a key gene involved in T. pyriformis infection in guppies, and the findings discussed herein provide valuable insights for future studies on tetrahymenosis.
Collapse
Affiliation(s)
- Mingyue Jiang
- Laboratory of Protozoology, Harbin Normal University, Harbin, 150025, China
| | - Chunyu Zhou
- Laboratory of Protozoology, Harbin Normal University, Harbin, 150025, China
| | - Sihan Wang
- Laboratory of Protozoology, Harbin Normal University, Harbin, 150025, China
| | - Lihui Liu
- Laboratory of Protozoology, Harbin Normal University, Harbin, 150025, China
| | - Shuixian Zhang
- Panzhou No.4 Primary School, Panzhou, 553599, Guizhou Province, China
| | - Li Wang
- Laboratory of Protozoology, Harbin Normal University, Harbin, 150025, China
| | - Xuming Pan
- Laboratory of Protozoology, Harbin Normal University, Harbin, 150025, China.
| |
Collapse
|
3
|
Olivares-Ferretti P, Beltrán JF, Salazar LA, Fonseca-Salamanca F. Protein Modelling and Molecular Docking Analysis of Fasciola hepatica β-Tubulin's Interaction Sites, with Triclabendazole, Triclabendazole Sulphoxide and Triclabendazole Sulphone. Acta Parasitol 2023; 68:535-547. [PMID: 37330945 DOI: 10.1007/s11686-023-00692-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 05/29/2023] [Indexed: 06/20/2023]
Abstract
PURPOSE Fasciola hepatica is a globally distributed trematode that causes significant economic losses. Triclabendazole is the primary pharmacological treatment for this parasite. However, the increasing resistance to triclabendazole limits its efficacy. Previous pharmacodynamics studies suggested that triclabendazole acts by interacting mainly with the β monomer of tubulin. METHODS We used a high-quality method to model the six isotypes of F. hepatica β-tubulin in the absence of three-dimensional structures. Molecular dockings were conducted to evaluate the destabilization regions in the molecule against the ligands triclabendazole, triclabendazole sulphoxide and triclabendazole sulphone. RESULTS The nucleotide binding site demonstrates higher affinity than the binding sites of colchicine, albendazole, the T7 loop and pβVII (p < 0.05). We suggest that the binding of the ligands to the polymerization site of β-tubulin can lead a microtubule disruption. Furthermore, we found that triclabendazole sulphone exhibited significantly higher binding affinity than other ligands (p < 0.05) across all isotypes of β-tubulin. CONCLUSIONS Our investigation has yielded new insight on the mechanism of action of triclabendazole and its sulphometabolites on F. hepatica β-tubulin through computational tools. These findings have significant implications for ongoing scientific research ongoing towards the discovery of novel therapeutics to treat F. hepatica infections.
Collapse
Affiliation(s)
- Pamela Olivares-Ferretti
- Laboratory of Molecular Immunoparasitology, Center of Excellence in Translational Medicine-Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Temuco, Chile
| | - Jorge F Beltrán
- Chemical Engineering Department, Faculty of Engineering and Science, Universidad de La Frontera, Temuco, Chile
| | - Luis A Salazar
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Avenida Francisco Salazar 01145, 4811230, Temuco, Chile
| | - Flery Fonseca-Salamanca
- Laboratory of Molecular Immunoparasitology, Center of Excellence in Translational Medicine-Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Temuco, Chile.
- Preclinical Sciences Department, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile.
| |
Collapse
|
4
|
Orosz G, Szabó L, Bereti S, Zámbó V, Csala M, Kereszturi É. Molecular Basis of Unequal Alternative Splicing of Human SCD5 and Its Alteration by Natural Genetic Variations. Int J Mol Sci 2023; 24:ijms24076517. [PMID: 37047490 PMCID: PMC10095032 DOI: 10.3390/ijms24076517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/22/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Alternative splicing (AS) is a major means of post-transcriptional control of gene expression, and provides a dynamic versatility of protein isoforms. Cancer-related AS disorders have diagnostic, prognostic and therapeutic values. Changes in the expression and AS of human stearoyl-CoA desaturase-5 (SCD5) are promising specific tumor markers, although the transcript variants (TVs) of the gene have not yet been confirmed. Our in silico, in vitro and in vivo study focuses on the distribution of SCD5 TVs (A and B) in human tissues, the functionality of the relevant splice sites, and their modulation by certain single-nucleotide variations (SNVs). An order of magnitude higher SCD5A expression was found compared with SCD5B. This unequal splicing is attributed to a weaker recognition of the SCD5B-specific splicing acceptor site, based on predictions confirmed by an optimized minigene assay. The pronounced dominance of SCD5A was largely modified (rs1430176385_A, rs1011850309_A) or even inverted (rs1011850309_C) by natural SNVs at the TV-specific splice sites. Our results provide long missing data on the proportion of SCD5 TVs in human tissues and reveal mutation-driven changes in SCD5 AS, potentially affecting tumor-associated reprogramming of lipid metabolism, thus having prognostic significance, which may be utilized for novel and personalized therapeutic approaches.
Collapse
Affiliation(s)
- Gabriella Orosz
- Department of Molecular Biology, Semmelweis University, H-1085 Budapest, Hungary
| | - Luca Szabó
- Department of Molecular Biology, Semmelweis University, H-1085 Budapest, Hungary
| | - Szanna Bereti
- Department of Molecular Biology, Semmelweis University, H-1085 Budapest, Hungary
| | - Veronika Zámbó
- Department of Molecular Biology, Semmelweis University, H-1085 Budapest, Hungary
| | - Miklós Csala
- Department of Molecular Biology, Semmelweis University, H-1085 Budapest, Hungary
| | - Éva Kereszturi
- Department of Molecular Biology, Semmelweis University, H-1085 Budapest, Hungary
| |
Collapse
|
5
|
Beesley NJ, Cwiklinski K, Allen K, Hoyle RC, Spithill TW, La Course EJ, Williams DJL, Paterson S, Hodgkinson JE. A major locus confers triclabendazole resistance in Fasciola hepatica and shows dominant inheritance. PLoS Pathog 2023; 19:e1011081. [PMID: 36701396 PMCID: PMC9904461 DOI: 10.1371/journal.ppat.1011081] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 02/07/2023] [Accepted: 12/22/2022] [Indexed: 01/27/2023] Open
Abstract
Fasciola hepatica infection is responsible for substantial economic losses in livestock worldwide and poses a threat to human health in endemic areas. The mainstay of control in livestock and the only drug licenced for use in humans is triclabendazole (TCBZ). TCBZ resistance has been reported on every continent and threatens effective control of fasciolosis in many parts of the world. To date, understanding the genetic mechanisms underlying TCBZ resistance has been limited to studies of candidate genes, based on assumptions of their role in drug action. Taking an alternative approach, we combined a genetic cross with whole-genome sequencing to localise a ~3.2Mbp locus within the 1.2Gbp F. hepatica genome that confers TCBZ resistance. We validated this locus independently using bulk segregant analysis of F. hepatica populations and showed that it is the target of drug selection in the field. We genotyped individual parasites and tracked segregation and reassortment of SNPs to show that TCBZ resistance exhibits Mendelian inheritance and is conferred by a dominant allele. We defined gene content within this locus to pinpoint genes involved in membrane transport, (e.g. ATP-binding cassette family B, ABCB1), transmembrane signalling and signal transduction (e.g. GTP-Ras-adenylyl cyclase and EGF-like protein), DNA/RNA binding and transcriptional regulation (e.g. SANT/Myb-like DNA-binding domain protein) and drug storage and sequestration (e.g. fatty acid binding protein, FABP) as prime candidates for conferring TCBZ resistance. This study constitutes the first experimental cross and genome-wide approach for any heritable trait in F. hepatica and is key to understanding the evolution of drug resistance in Fasciola spp. to inform deployment of efficacious anthelmintic treatments in the field.
Collapse
Affiliation(s)
- Nicola J Beesley
- Veterinary Parasitology, Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Krystyna Cwiklinski
- Veterinary Parasitology, Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Katherine Allen
- Veterinary Parasitology, Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Rebecca C Hoyle
- Veterinary Parasitology, Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Terry W Spithill
- Department of Animal, Plant and Soil Sciences and Centre for AgriBioscience, La Trobe University, Bundoora, Australia
| | | | - Diana J L Williams
- Veterinary Parasitology, Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Steve Paterson
- Centre for Genomic Research, Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Jane E Hodgkinson
- Veterinary Parasitology, Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
6
|
Moving beyond the state of the art of understanding resistance mechanisms in hookworms: confirming old and suggesting new associated SNPs. Acta Trop 2022; 233:106533. [PMID: 35598651 DOI: 10.1016/j.actatropica.2022.106533] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/04/2022] [Accepted: 05/18/2022] [Indexed: 11/23/2022]
Abstract
Hookworms represent a serious problem for human and animal health in different parts of the world. One of the suggested control strategies for parasitosis caused by members of the Ancylostomatidae family is mass drug aministration with benzimidazole compounds. This strategy has been proven to lead to the establishment of resistant strains in several nematodes related to SNPs at codons 167, 198 and 200 of the beta-tubulin isotype-1 gene. Through bioassay and in vivo analysis, we successfully isolated an albendazole-resistant A. ceylanicum strain by drug selective pressure. We observed a strong correlation between the presence of SNPs at codon 198 and drug resistance. We also described for the first time, in hookworms, the presence of SNP A200L, already described at low frequencies in ruminant nematodes. The results presented here are important for updating the current knowledge about anthelmintic resistance in hookworms. The answers and the new questions raised may provide a basis for the establishment of more effective control strategies.
Collapse
|
7
|
Fairweather I, Brennan GP, Hanna REB, Robinson MW, Skuce PJ. Drug resistance in liver flukes. Int J Parasitol Drugs Drug Resist 2020; 12:39-59. [PMID: 32179499 PMCID: PMC7078123 DOI: 10.1016/j.ijpddr.2019.11.003] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 02/07/2023]
Abstract
Liver flukes include Fasciola hepatica, Fasciola gigantica, Clonorchis sinensis, Opisthorchis spp., Fascioloides magna, Gigantocotyle explanatum and Dicrocoelium spp. The two main species, F. hepatica and F. gigantica, are major parasites of livestock and infections result in huge economic losses. As with C. sinensis, Opisthorchis spp. and Dicrocoelium spp., they affect millions of people worldwide, causing severe health problems. Collectively, the group is referred to as the Food-Borne Trematodes and their true significance is now being more widely recognised. However, reports of resistance to triclabendazole (TCBZ), the most widely used anti-Fasciola drug, and to other current drugs are increasing. This is a worrying scenario. In this review, progress in understanding the mechanism(s) of resistance to TCBZ is discussed, focusing on tubulin mutations, altered drug uptake and changes in drug metabolism. There is much interest in the development of new drugs and drug combinations, the re-purposing of non-flukicidal drugs, and the development of new drug formulations and delivery systems; all this work will be reviewed. Sound farm management practices also need to be put in place, with effective treatment programmes, so that drugs can be used wisely and their efficacy conserved as much as is possible. This depends on reliable advice being given by veterinarians and other advisors. Accurate diagnosis and identification of drug-resistant fluke populations is central to effective control: to determine the actual extent of the problem and to determine how well or otherwise a treatment has worked; for research on establishing the mechanism of resistance (and identifying molecular markers of resistance); for informing treatment options; and for testing the efficacy of new drug candidates. Several diagnostic methods are available, but there are no recommended guidelines or standardised protocols in place and this is an issue that needs to be addressed.
Collapse
Affiliation(s)
- I Fairweather
- School of Biological Sciences, The Queen's University of Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK.
| | - G P Brennan
- School of Biological Sciences, The Queen's University of Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| | - R E B Hanna
- Veterinary Sciences Division, Agri-Food and Biosciences Institute (AFBI), Stormont, Belfast, BT4 3SD, UK
| | - M W Robinson
- School of Biological Sciences, The Queen's University of Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| | - P J Skuce
- Disease Control, Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Edinburgh, EH26 0PZ, UK
| |
Collapse
|
8
|
Recent developments in the epidemiology, diagnosis, and treatment of Fasciola infection. Curr Opin Infect Dis 2019; 31:409-414. [PMID: 30113327 DOI: 10.1097/qco.0000000000000482] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
PURPOSE OF REVIEW This review aims at describing the latest research in Fasciola epidemiology, diagnosis, treatment, and control in endemic countries. RECENT FINDINGS The geographic distribution and range of reservoirs for Fasciola hepatica continues to expand. The impact of fascioliasis goes beyond human disease to affect food security and income in developed and developing countries. Promising serologic and molecular methods to diagnose fascioliasis have been described, but are not widely available. Triclabendazole remains the only highly active medication to treat human and livestock infected with juvenile and adult forms of Fasciola spp. Efforts to control fascioliasis may be hindered by the emergence of resistance to triclabendazole among livestock and subsequently in humans. SUMMARY Increased awareness and surveillance are likely to uncover the real distribution and burden of fascioliasis in human. Research into new drugs or adjuvants to tackle the emerging resistance to triclabendazole is imperative to treat and control Fasciola infection.
Collapse
|
9
|
Proteomic analysis of Fasciola gigantica excretory and secretory products (FgESPs) interacting with buffalo serum of different infection periods by shotgun LC-MS/MS. Parasitol Res 2018; 118:453-460. [PMID: 30565193 DOI: 10.1007/s00436-018-6169-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 11/29/2018] [Indexed: 02/06/2023]
Abstract
Fasciolosis, caused by Fasciola hepatica and Fasciola gigantica, is an important zoonotic disease in the world. It affects livestock, especially for sheep and cattle, causing major economic loss due to morbidity and mortality. Although the excretory and secretory products (ESPs) of F. hepatica have been relatively well studied, little is known about the interaction between the ESP and host, and the mechanism of the key proteins involved in interaction. In this study, buffaloes were infected by Fasciola gigantica, and infection serum was collected at three different periods (42dpi, 70dpi, and 98dpi). The interaction proteins were pulled down with three different period serum by Co-IP assay, respectively, and then identified by LC-MS/MS analysis. A number of proteins were identified; some of them related to the biological function of the parasite, while most of them the functions were unknown. For the annotated proteins, 13, 5, and 7 proteins were pulled down by the infected serum in 42dpi, 70dpi, and 98dpi, respectively, and 18 proteins could be detected in all three periods. Among them, 13 belong to the cathepsin family, 4 proteins related to glutathione S-transferase, and 3 proteins are calcium-binding protein; other proteins related to catalytic activity and cellular process. This study could provide new insights into the central role played by ESPs in the protection of F. gigantica from the host immune response. At the same time, our research provided material for further studies about the interaction between F. gigantica and host.
Collapse
|
10
|
Thomas CM, Timson DJ. Calmodulins from Schistosoma mansoni: Biochemical analysis and interaction with IQ-motifs from voltage-gated calcium channels. Cell Calcium 2018; 74:1-13. [DOI: 10.1016/j.ceca.2018.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 05/08/2018] [Accepted: 05/16/2018] [Indexed: 01/27/2023]
|
11
|
Radio S, Fontenla S, Solana V, Matos Salim AC, Araújo FMG, Ortiz P, Hoban C, Miranda E, Gayo V, Pais FSM, Solana H, Oliveira G, Smircich P, Tort JF. Pleiotropic alterations in gene expression in Latin American Fasciola hepatica isolates with different susceptibility to drugs. Parasit Vectors 2018; 11:56. [PMID: 29368659 PMCID: PMC5781333 DOI: 10.1186/s13071-017-2553-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/26/2017] [Indexed: 01/22/2023] Open
Abstract
Background Fasciola hepatica is the main agent of fasciolosis, a zoonotic disease affecting livestock worldwide, and an emerging food-borne disease in humans. Even when effective treatments are available, drugs are costly and can result in tolerance, liver damage and normally they do not prevent reinfection. Drug-resistant strains in livestock have been reported in various countries and, more worryingly, drug resistance in human cases has emerged in South America. The present study aims to characterize the transcriptome of two South American resistant isolates, the Cajamarca isolate from Peru, resistant to both triclabendazole and albendazole (TCBZR/ABZR) and the Rubino isolate from Uruguay, resistant to ABZ (TCBZS/ABZR), and compare them to a sensitive strain (Cenapa, Mexico, TCBZS/ABZS) to reveal putative molecular mechanisms leading to drug resistance. Results We observed a major reduction in transcription in the Cajamarca TCBZR/ABZR isolate in comparison to the other isolates. While most of the differentially expressed genes are still unannotated, several trends could be detected. Specific reduction in the expression levels of cytoskeleton proteins was consistent with a role of tubulins as putative targets of triclabendazole (TCBZ). A marked reduction of adenylate cyclase might be underlying pleiotropic effects on diverse metabolic pathways of the parasite. Upregulation of GST mu isoforms suggests this detoxifying mechanism as one of the strategies associated with resistance. Conclusions Our results stress the value of transcriptomic approaches as a means of providing novel insights to advance the understanding of drug mode of action and drug resistance. The results provide evidence for pleiotropic variations in drug-resistant isolates consistent with early observations of TCBZ and ABZ effects and recent proteomic findings. Electronic supplementary material The online version of this article (10.1186/s13071-017-2553-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Santiago Radio
- Departamento de Genética, Facultad de Medicina, Universidad de la Republica, UDELAR, Montevideo, Uruguay.,Present address: Instituto de Investigaciones Biológicas Clemente 28 Estable. MEC, Montevideo 29, Uruguay
| | - Santiago Fontenla
- Departamento de Genética, Facultad de Medicina, Universidad de la Republica, UDELAR, Montevideo, Uruguay
| | - Victoria Solana
- Laboratorio de Biología Celular y Molecular, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Argentina
| | - Anna C Matos Salim
- Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | | | - Pedro Ortiz
- Laboratorio de Inmunología, Facultad de Ciencias Veterinarias, Universidad Nacional de Cajamarca, Cajamarca, Peru
| | - Cristian Hoban
- Laboratorio de Inmunología, Facultad de Ciencias Veterinarias, Universidad Nacional de Cajamarca, Cajamarca, Peru
| | - Estefan Miranda
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Secretaria de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación, Morelos, Mexico
| | - Valeria Gayo
- Departamento de Parasitología, División de Laboratorios Veterinarios (DILAVE), "Miguel C. Rubino", Ministerio de Ganadería, Agricultura y Pesca (MGAP), Montevideo, Uruguay
| | | | - Hugo Solana
- Laboratorio de Biología Celular y Molecular, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Argentina
| | - Guilherme Oliveira
- Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil.,Present address: Instituto Tecnológico Vale, Belém, Brazil
| | - Pablo Smircich
- Departamento de Genética, Facultad de Medicina, Universidad de la Republica, UDELAR, Montevideo, Uruguay. .,Present address: Instituto de Investigaciones Biológicas Clemente 28 Estable. MEC, Montevideo 29, Uruguay. .,Laboratorio de Interacciones Moleculares, Facultad de Ciencias, Universidad de la Republica, UDELAR, Montevideo, Uruguay.
| | - José F Tort
- Departamento de Genética, Facultad de Medicina, Universidad de la Republica, UDELAR, Montevideo, Uruguay.
| |
Collapse
|
12
|
Furtado LFV, de Paiva Bello ACP, Rabelo ÉML. Benzimidazole resistance in helminths: From problem to diagnosis. Acta Trop 2016; 162:95-102. [PMID: 27338184 DOI: 10.1016/j.actatropica.2016.06.021] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 06/16/2016] [Accepted: 06/18/2016] [Indexed: 11/29/2022]
Abstract
Helminth parasites cause significant morbidity and mortality in endemic countries. Given the severity of symptoms that helminths may elicit in the host, intervention with prophylactic and therapeutic measures is imperative. Treatment with benzimidazoles is the most widely used means of combatting these parasites. However, widespread use of these drugs can select for drug-resistant parasite strains. In this review, we approach the problem of benzimidazole resistance in helminths in both humans and animals, focusing on the properties of the drug, the molecular mechanisms of drug resistance and how resistance is diagnosed.
Collapse
Affiliation(s)
- Luis Fernando Viana Furtado
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Avenida Presidente Antônio Carlos, 6627, Departamento de Parasitologia, L4 237, Laboratório de Parasitologia Molecular, Pampulha, CEP 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Ana Cristina Passos de Paiva Bello
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Avenida Presidente Antônio Carlos, 6627, Departamento de Parasitologia, L4 237, Laboratório de Parasitologia Molecular, Pampulha, CEP 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Élida Mara Leite Rabelo
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Avenida Presidente Antônio Carlos, 6627, Departamento de Parasitologia, L4 237, Laboratório de Parasitologia Molecular, Pampulha, CEP 31270-901, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
13
|
Tydén E, Skarin M, Andersson-Franko M, Sjöblom M, Höglund J. Differential expression of β-tubulin isotypes in different life stages of Parascaris spp after exposure to thiabendazole. Mol Biochem Parasitol 2016; 205:22-8. [DOI: 10.1016/j.molbiopara.2016.02.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 02/10/2016] [Accepted: 02/11/2016] [Indexed: 11/25/2022]
|
14
|
Cwiklinski K, Dalton JP, Dufresne PJ, La Course J, Williams DJ, Hodgkinson J, Paterson S. The Fasciola hepatica genome: gene duplication and polymorphism reveals adaptation to the host environment and the capacity for rapid evolution. Genome Biol 2015; 16:71. [PMID: 25887684 PMCID: PMC4404566 DOI: 10.1186/s13059-015-0632-2] [Citation(s) in RCA: 210] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 03/13/2015] [Indexed: 12/30/2022] Open
Abstract
Background The liver fluke Fasciola hepatica is a major pathogen of livestock worldwide, causing huge economic losses to agriculture, as well as 2.4 million human infections annually. Results Here we provide a draft genome for F. hepatica, which we find to be among the largest known pathogen genomes at 1.3 Gb. This size cannot be explained by genome duplication or expansion of a single repeat element, and remains a paradox given the burden it may impose on egg production necessary to transmit infection. Despite the potential for inbreeding by facultative self-fertilisation, substantial levels of polymorphism were found, which highlights the evolutionary potential for rapid adaptation to changes in host availability, climate change or to drug or vaccine interventions. Non-synonymous polymorphisms were elevated in genes shared with parasitic taxa, which may be particularly relevant for the ability of the parasite to adapt to a broad range of definitive mammalian and intermediate molluscan hosts. Large-scale transcriptional changes, particularly within expanded protease and tubulin families, were found as the parasite migrated from the gut, across the peritoneum and through the liver to mature in the bile ducts. We identify novel members of anti-oxidant and detoxification pathways and defined their differential expression through infection, which may explain the stage-specific efficacy of different anthelmintic drugs. Conclusions The genome analysis described here provides new insights into the evolution of this important pathogen, its adaptation to the host environment and external selection pressures. This analysis also provides a platform for research into novel drugs and vaccines. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0632-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Krystyna Cwiklinski
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK. .,School of Biological Sciences, Medical Biology Centre, Queen's University of Belfast, Belfast, Northern Ireland, UK.
| | - John Pius Dalton
- School of Biological Sciences, Medical Biology Centre, Queen's University of Belfast, Belfast, Northern Ireland, UK. .,Institute of Parasitology, McGill University, Montreal, Quebec, Canada.
| | - Philippe J Dufresne
- Institute of Parasitology, McGill University, Montreal, Quebec, Canada. .,Institut National de Santé Publique du Québec, Montreal, Quebec, Canada.
| | | | - Diana Jl Williams
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK.
| | - Jane Hodgkinson
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK.
| | - Steve Paterson
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK.
| |
Collapse
|
15
|
Kotze AC, Hunt PW, Skuce P, von Samson-Himmelstjerna G, Martin RJ, Sager H, Krücken J, Hodgkinson J, Lespine A, Jex AR, Gilleard JS, Beech RN, Wolstenholme AJ, Demeler J, Robertson AP, Charvet CL, Neveu C, Kaminsky R, Rufener L, Alberich M, Menez C, Prichard RK. Recent advances in candidate-gene and whole-genome approaches to the discovery of anthelmintic resistance markers and the description of drug/receptor interactions. Int J Parasitol Drugs Drug Resist 2014; 4:164-84. [PMID: 25516826 PMCID: PMC4266812 DOI: 10.1016/j.ijpddr.2014.07.007] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 07/25/2014] [Accepted: 07/29/2014] [Indexed: 12/30/2022]
Abstract
Anthelmintic resistance has a great impact on livestock production systems worldwide, is an emerging concern in companion animal medicine, and represents a threat to our ongoing ability to control human soil-transmitted helminths. The Consortium for Anthelmintic Resistance and Susceptibility (CARS) provides a forum for scientists to meet and discuss the latest developments in the search for molecular markers of anthelmintic resistance. Such markers are important for detecting drug resistant worm populations, and indicating the likely impact of the resistance on drug efficacy. The molecular basis of resistance is also important for understanding how anthelmintics work, and how drug resistant populations arise. Changes to target receptors, drug efflux and other biological processes can be involved. This paper reports on the CARS group meeting held in August 2013 in Perth, Australia. The latest knowledge on the development of molecular markers for resistance to each of the principal classes of anthelmintics is reviewed. The molecular basis of resistance is best understood for the benzimidazole group of compounds, and we examine recent work to translate this knowledge into useful diagnostics for field use. We examine recent candidate-gene and whole-genome approaches to understanding anthelmintic resistance and identify markers. We also look at drug transporters in terms of providing both useful markers for resistance, as well as opportunities to overcome resistance through the targeting of the transporters themselves with inhibitors. Finally, we describe the tools available for the application of the newest high-throughput sequencing technologies to the study of anthelmintic resistance.
Collapse
Affiliation(s)
- Andrew C. Kotze
- CSIRO Animal, Food and Health Sciences, Brisbane, QLD, Australia
| | - Peter W. Hunt
- CSIRO Animal, Food and Health Sciences, Armidale, NSW, Australia
| | - Philip Skuce
- Parasitology Division, Moredun Research Institute, Penicuik, Midlothian, UK
| | | | - Richard J. Martin
- Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
| | - Heinz Sager
- Novartis Centre de Recherche Sante Animale, St. Aubin, Switzerland
| | - Jürgen Krücken
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universitat Berlin, Berlin, Germany
| | - Jane Hodgkinson
- Veterinary Parasitology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Anne Lespine
- INRA, Toxalim, Research Centre in Food Toxicology, Toulouse, France
| | - Aaron R. Jex
- Faculty of Veterinary Science, University of Melbourne, Parkville, VIC, Australia
| | - John S. Gilleard
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Robin N. Beech
- Institute of Parasitology, McGill University, QC, Canada
| | - Adrian J. Wolstenholme
- Department of Infectious Diseases & Center for Tropical and Emerging Global Disease, University of Georgia, Athens, GA, USA
| | - Janina Demeler
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universitat Berlin, Berlin, Germany
| | - Alan P. Robertson
- Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
| | - Claude L. Charvet
- INRA, Infectiologie et Santé Publique, Nouzilly, France
- Université François Rabelais de Tours, Infectiologie et Santé Publique, Tours, France
| | - Cedric Neveu
- INRA, Infectiologie et Santé Publique, Nouzilly, France
- Université François Rabelais de Tours, Infectiologie et Santé Publique, Tours, France
| | - Ronald Kaminsky
- Novartis Centre de Recherche Sante Animale, St. Aubin, Switzerland
| | - Lucien Rufener
- Novartis Centre de Recherche Sante Animale, St. Aubin, Switzerland
| | - Melanie Alberich
- INRA, Toxalim, Research Centre in Food Toxicology, Toulouse, France
| | - Cecile Menez
- INRA, Toxalim, Research Centre in Food Toxicology, Toulouse, France
| | | |
Collapse
|