1
|
Nolasco-Pérez TDJ, Salazar-Castañón VH, Cervantes-Candelas LA, Buendía-González FO, Aguilar-Castro J, Legorreta-Herrera M. Testosterone Modulates Oxidative Stress in a Sexually Dimorphic Manner in CBA/Ca Mice Infected with Plasmodium berghei ANKA. Int J Mol Sci 2025; 26:3898. [PMID: 40332798 PMCID: PMC12027734 DOI: 10.3390/ijms26083898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/16/2025] [Accepted: 04/18/2025] [Indexed: 05/08/2025] Open
Abstract
Malaria, the deadliest parasitic disease in the world, is sexually dimorphic, inflammatory, and oxidative. Males experience more severe symptoms and mortality than females do; therefore, the roles of 17β-estradiol and testosterone in this phenomenon have been studied. Both hormones affect oxidative stress, the primary mechanism of Plasmodium elimination. Estradiol has antioxidant activity, but the role of testosterone is controversial. Testosterone increases oxidative stress by reducing superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) activities, which increase lipoperoxidation in the testis. However, the antioxidant properties of testosterone in prostate and nervous tissue have also been reported. The discrepancies are probably because when testosterone levels increase, the aromatase enzyme transforms testosterone into estrogens that possess antioxidant activity, which masks the results. Therefore, it is unknown whether testosterone is involved in the sexual dimorphism that occurs in oxidative stress in malaria. In this work, we administered testosterone and simultaneously inhibited aromatase with letrozole to evaluate the role of testosterone in the sexually dimorphic pattern of oxidative stress that occurs in the blood, spleen, and brain of male and female CBA/Ca mice infected with Plasmodium berghei ANKA (P. berghei ANKA). Testosterone triggers parasitemia in males, who also display more oxidative stress than females in the absence of infection, leading to sexually dimorphic patterns. Interestingly, increasing testosterone levels in infected mice reduced oxidative stress in males and increased oxidative stress in females, reversing or eliminating the dimorphic patterns observed. Oxidative stress varies in each tissue; the brain was the most protected, while the blood was the greatest damaged. Our findings highlight the role of testosterone as a regulator of oxidative stress in a tissue and sex-specific manner; therefore, understanding the role of testosterone in malaria may contribute to the development of sex-specific personalized antimalarial therapies.
Collapse
Affiliation(s)
- Teresita de Jesús Nolasco-Pérez
- Laboratorio de Inmunología Molecular, Unidad de Investigación Química Computacional, Síntesis y Farmacología en Moléculas de Interés Biológico, División de Estudios de Posgrado e Investigación, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 09320, CP, Mexico; (T.d.J.N.-P.); (V.H.S.-C.); (L.A.C.-C.); (F.O.B.-G.); (J.A.-C.)
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Universidad Nacional Autónoma de México, Circuito de Posgrados, Ciudad Universitaria, Ciudad de México 04510, CP, Mexico
| | - Víctor Hugo Salazar-Castañón
- Laboratorio de Inmunología Molecular, Unidad de Investigación Química Computacional, Síntesis y Farmacología en Moléculas de Interés Biológico, División de Estudios de Posgrado e Investigación, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 09320, CP, Mexico; (T.d.J.N.-P.); (V.H.S.-C.); (L.A.C.-C.); (F.O.B.-G.); (J.A.-C.)
| | - Luis Antonio Cervantes-Candelas
- Laboratorio de Inmunología Molecular, Unidad de Investigación Química Computacional, Síntesis y Farmacología en Moléculas de Interés Biológico, División de Estudios de Posgrado e Investigación, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 09320, CP, Mexico; (T.d.J.N.-P.); (V.H.S.-C.); (L.A.C.-C.); (F.O.B.-G.); (J.A.-C.)
| | - Fidel Orlando Buendía-González
- Laboratorio de Inmunología Molecular, Unidad de Investigación Química Computacional, Síntesis y Farmacología en Moléculas de Interés Biológico, División de Estudios de Posgrado e Investigación, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 09320, CP, Mexico; (T.d.J.N.-P.); (V.H.S.-C.); (L.A.C.-C.); (F.O.B.-G.); (J.A.-C.)
| | - Jesús Aguilar-Castro
- Laboratorio de Inmunología Molecular, Unidad de Investigación Química Computacional, Síntesis y Farmacología en Moléculas de Interés Biológico, División de Estudios de Posgrado e Investigación, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 09320, CP, Mexico; (T.d.J.N.-P.); (V.H.S.-C.); (L.A.C.-C.); (F.O.B.-G.); (J.A.-C.)
| | - Martha Legorreta-Herrera
- Laboratorio de Inmunología Molecular, Unidad de Investigación Química Computacional, Síntesis y Farmacología en Moléculas de Interés Biológico, División de Estudios de Posgrado e Investigación, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 09320, CP, Mexico; (T.d.J.N.-P.); (V.H.S.-C.); (L.A.C.-C.); (F.O.B.-G.); (J.A.-C.)
| |
Collapse
|
2
|
Goli VVN, Tatineni S, Hani U, Ghazwani M, Talath S, Sridhar SB, Alhamhoom Y, Fatima F, Osmani RAM, Shivaswamy U, Chandrasekaran V, Gurupadayya B. Pharmacokinetics and Pharmacodynamics of a Nanostructured Lipid Carrier Co-Encapsulating Artemether and miRNA for Mitigating Cerebral Malaria. Pharmaceuticals (Basel) 2024; 17:466. [PMID: 38675426 PMCID: PMC11053970 DOI: 10.3390/ph17040466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/27/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
Cerebral malaria (CM), a severe neurological pathology caused by Plasmodium falciparum infection, poses a significant global health threat and has a high mortality rate. Conventional therapeutics cannot cross the blood-brain barrier (BBB) efficiently. Therefore, finding effective treatments remains challenging. The novelty of the treatment proposed in this study lies in the feasibility of intranasal (IN) delivery of the nanostructured lipid carrier system (NLC) combining microRNA (miRNA) and artemether (ARM) to enhance bioavailability and brain targeting. The rational use of NLCs and RNA-targeted therapeutics could revolutionize the treatment strategies for CM management. This study can potentially address the challenges in treating CM, allowing drugs to pass through the BBB. The NLC formulation was developed by a hot-melt homogenization process utilizing 3% (w/w) precirol and 1.5% (w/v) labrasol, resulting in particles with a size of 94.39 nm. This indicates an effective delivery to the brain via IN administration. The results further suggest the effective intracellular delivery of encapsulated miRNAs in the NLCs. Investigations with an experimental cerebral malaria mouse model showed a reduction in parasitaemia, preservation of BBB integrity, and reduced cerebral haemorrhages with the ARM+ miRNA-NLC treatment. Additionally, molecular discoveries revealed that nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2) and Interleukin-6 (IL-6) levels were reduced in the treated groups in comparison to the CM group. These results support the use of nanocarriers for IN administration, offering a viable method for mitigating CM through the increased bioavailability of therapeutics. Our findings have far-reaching implications for future research and personalized therapy.
Collapse
Affiliation(s)
- Veera Venkata Nishanth Goli
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Shivarathreeshwara Nagara, Mysuru 570015, India; (V.V.N.G.); (S.T.)
| | - Spandana Tatineni
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Shivarathreeshwara Nagara, Mysuru 570015, India; (V.V.N.G.); (S.T.)
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia; (U.H.); (M.G.); (Y.A.)
| | - Mohammed Ghazwani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia; (U.H.); (M.G.); (Y.A.)
| | - Sirajunisa Talath
- Department of Pharmaceutical Chemistry, RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates;
| | - Sathvik Belagodu Sridhar
- Department of Clinical Pharmacy & Pharmacology, RAK College of Pharmaceutical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates;
| | - Yahya Alhamhoom
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia; (U.H.); (M.G.); (Y.A.)
| | - Farhat Fatima
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Riyaz Ali M. Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Shivarathreeshwara Nagara, Mysuru 570015, India;
| | | | - Vichitra Chandrasekaran
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Shivarathreeshwara Nagara, Mysuru 570015, India;
| | - Bannimath Gurupadayya
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Shivarathreeshwara Nagara, Mysuru 570015, India; (V.V.N.G.); (S.T.)
| |
Collapse
|
3
|
Gomes ARQ, Cunha N, Varela ELP, Brígido HPC, Vale VV, Dolabela MF, de Carvalho EP, Percário S. Oxidative Stress in Malaria: Potential Benefits of Antioxidant Therapy. Int J Mol Sci 2022; 23:ijms23115949. [PMID: 35682626 PMCID: PMC9180384 DOI: 10.3390/ijms23115949] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 01/07/2023] Open
Abstract
Malaria is an infectious disease and a serious public health problem in the world, with 3.3 billion people in endemic areas in 100 countries and about 200 million new cases each year, resulting in almost 1 million deaths in 2018. Although studies look for strategies to eradicate malaria, it is necessary to know more about its pathophysiology to understand the underlying mechanisms involved, particularly the redox balance, to guarantee success in combating this disease. In this review, we addressed the involvement of oxidative stress in malaria and the potential benefits of antioxidant supplementation as an adjuvant antimalarial therapy.
Collapse
Affiliation(s)
- Antonio Rafael Quadros Gomes
- Post-Graduate Program in Pharmaceutica Innovation, Institute of Health Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; (A.R.Q.G.); (H.P.C.B.); (V.V.V.); (M.F.D.)
- Oxidative Stress Research Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; (N.C.); (E.L.P.V.); (E.P.d.C.)
| | - Natasha Cunha
- Oxidative Stress Research Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; (N.C.); (E.L.P.V.); (E.P.d.C.)
| | - Everton Luiz Pompeu Varela
- Oxidative Stress Research Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; (N.C.); (E.L.P.V.); (E.P.d.C.)
- Post-graduate Program in Biodiversity and Biotechnology (BIONORTE), Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil
| | - Heliton Patrick Cordovil Brígido
- Post-Graduate Program in Pharmaceutica Innovation, Institute of Health Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; (A.R.Q.G.); (H.P.C.B.); (V.V.V.); (M.F.D.)
| | - Valdicley Vieira Vale
- Post-Graduate Program in Pharmaceutica Innovation, Institute of Health Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; (A.R.Q.G.); (H.P.C.B.); (V.V.V.); (M.F.D.)
| | - Maria Fâni Dolabela
- Post-Graduate Program in Pharmaceutica Innovation, Institute of Health Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; (A.R.Q.G.); (H.P.C.B.); (V.V.V.); (M.F.D.)
- Post-graduate Program in Biodiversity and Biotechnology (BIONORTE), Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil
| | - Eliete Pereira de Carvalho
- Oxidative Stress Research Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; (N.C.); (E.L.P.V.); (E.P.d.C.)
- Post-graduate Program in Biodiversity and Biotechnology (BIONORTE), Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil
| | - Sandro Percário
- Oxidative Stress Research Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; (N.C.); (E.L.P.V.); (E.P.d.C.)
- Post-graduate Program in Biodiversity and Biotechnology (BIONORTE), Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil
- Correspondence:
| |
Collapse
|
4
|
Imai T, Ngo-Thanh H, Suzue K, Shimo A, Nakamura A, Horiuchi Y, Hisaeda H, Murakami T. Live Vaccination with Blood-Stage Plasmodium yoelii 17XNL Prevents the Development of Experimental Cerebral Malaria. Vaccines (Basel) 2022; 10:vaccines10050762. [PMID: 35632518 PMCID: PMC9145751 DOI: 10.3390/vaccines10050762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/09/2022] [Accepted: 05/09/2022] [Indexed: 01/27/2023] Open
Abstract
In our work, we aim to develop a malaria vaccine with cross-strain (-species) protection. C57BL/6 mice infected with the P. berghei ANKA strain (PbA) develop experimental cerebral malaria (ECM). In contrast, ECM development is inhibited in infected mice depleted of T cells. The clinical applications of immune-cell depletion are limited due to the benefits of host defense against infectious diseases. Therefore, in the present study we attempted to develop a new method for preventing ECM without immune cell depletion. We demonstrated that mice inoculated with a heterologous live-vaccine of P. yoelii 17XNL were able to prevent both ECM and lung pathology and survived longer than control mice when challenged with PbA. Live vaccination protected blood–organ barriers from PbA infection. Meanwhile, live vaccination conferred sterile protection against homologous challenge with the P. yoelii 17XL virulent strain for the long-term. Analysis of the immune response induced by live vaccination showed that cross-reactive antibodies against PbA antigens were generated. IL-10, which has an immunosuppressive effect, was strongly induced in mice challenged with PbA, unlike the pro-inflammatory cytokine IFNγ. These results suggest that the protective effect of heterologous live vaccination against ECM development results from IL-10-mediated host protection.
Collapse
Affiliation(s)
- Takashi Imai
- Department of Infectious Diseases and Host Defense, Graduate School of Medicine, Gunma University, Maebashi 371-8511, Japan; (H.N.-T.); (K.S.)
- Department of Microbiology, Saitama Medical University, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan; (A.S.); (A.N.); (Y.H.); (T.M.)
- Correspondence: ; Tel.: +81-49-276-1166
| | - Ha Ngo-Thanh
- Department of Infectious Diseases and Host Defense, Graduate School of Medicine, Gunma University, Maebashi 371-8511, Japan; (H.N.-T.); (K.S.)
- National Hospital for Tropical Disease, 78 Giai Phong, Dong Da, Hanoi 10000, Vietnam
| | - Kazutomo Suzue
- Department of Infectious Diseases and Host Defense, Graduate School of Medicine, Gunma University, Maebashi 371-8511, Japan; (H.N.-T.); (K.S.)
| | - Aoi Shimo
- Department of Microbiology, Saitama Medical University, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan; (A.S.); (A.N.); (Y.H.); (T.M.)
| | - Akihiro Nakamura
- Department of Microbiology, Saitama Medical University, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan; (A.S.); (A.N.); (Y.H.); (T.M.)
| | - Yutaka Horiuchi
- Department of Microbiology, Saitama Medical University, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan; (A.S.); (A.N.); (Y.H.); (T.M.)
| | - Hajime Hisaeda
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo 162-0052, Japan;
| | - Takashi Murakami
- Department of Microbiology, Saitama Medical University, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan; (A.S.); (A.N.); (Y.H.); (T.M.)
| |
Collapse
|
5
|
Plasmodium berghei-Mediated NRF2 Activation in Infected Hepatocytes Enhances Parasite Survival. Cell Microbiol 2022. [DOI: 10.1155/2022/7647976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The protozoan parasite Plasmodium, causative agent of malaria, initially invades and develops in hepatocytes where it resides in a parasitophorous vacuole (PV). A single invaded parasite develops into thousands of daughter parasites. Survival of the host cell is crucial for successful completion of liver stage development. Nuclear factor erythroid-derived 2-related factor 2 (NRF2) is a transcription factor known to induce transcription of cytoprotective genes when activated. Here we show that NRF2 is activated in Plasmodium berghei-infected hepatocytes. We observed that this NRF2 activation depends on PV membrane resident p62 recruiting KEAP1, the negative regulator of NRF2. Disrupting the NRF2 gene results in reduced parasite survival, indicating that NRF2 signaling is an important event for parasite development in hepatocytes. Together, our observations uncovered a novel mechanism of how Plasmodium parasites ensure host cell survival during liver stage development.
Collapse
|
6
|
Vasquez M, Zuniga M, Rodriguez A. Oxidative Stress and Pathogenesis in Malaria. Front Cell Infect Microbiol 2021; 11:768182. [PMID: 34917519 PMCID: PMC8669614 DOI: 10.3389/fcimb.2021.768182] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/16/2021] [Indexed: 02/05/2023] Open
Abstract
Malaria is a highly inflammatory and oxidative disease. The production of reactive oxygen species by host phagocytes is an essential component of the host response to Plasmodium infection. Moreover, host oxidative enzymes, such as xanthine oxidase, are upregulated in malaria patients. Although increased production of reactive oxygen species contributes to the clearance of the parasite, excessive amounts of these free radicals can mediate inflammation and cause extensive damage to host cells and tissues, probably contributing to severe pathologies. Plasmodium has a variety of antioxidant enzymes that allow it to survive amidst this oxidative onslaught. However, parasitic degradation of hemoglobin within the infected red blood cell generates free heme, which is released at the end of the replication cycle, further aggravating the oxidative burden on the host and possibly contributing to the severity of life-threatening malarial complications. Additionally, the highly inflammatory response to malaria contributes to exacerbate the oxidative response. In this review, we discuss host and parasite-derived sources of oxidative stress that may promote severe disease in P. falciparum infection. Therapeutics that restore and maintain oxidative balance in malaria patients may be useful in preventing lethal complications of this disease.
Collapse
Affiliation(s)
| | | | - Ana Rodriguez
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
7
|
Kumar SP, Babu PP. NADPH Oxidase: a Possible Therapeutic Target for Cognitive Impairment in Experimental Cerebral Malaria. Mol Neurobiol 2021; 59:800-820. [PMID: 34782951 DOI: 10.1007/s12035-021-02598-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/12/2021] [Indexed: 12/19/2022]
Abstract
Long-term cognitive impairment associated with seizure-induced hippocampal damage is the key feature of cerebral malaria (CM) pathogenesis. One-fourth of child survivors of CM suffer from long-lasting neurological deficits and behavioral anomalies. However, mechanisms on hippocampal dysfunction are unclear. In this study, we elucidated whether gp91phox isoform of nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2) (a potent marker of oxidative stress) mediates hippocampal neuronal abnormalities and cognitive dysfunction in experimental CM (ECM). Mice symptomatic to CM were rescue treated with artemether monotherapy (ARM) and in combination with apocynin (ARM + APO) adjunctive based on scores of Rapid Murine Come behavior Scale (RMCBS). After a 30-day survivability period, we performed Barnes maze, T-maze, and novel object recognition cognitive tests to evaluate working and reference memory in all the experimental groups except CM. Sensorimotor tests were conducted in all the cohorts to assess motor coordination. We performed Golgi-Cox staining to illustrate cornu ammonis-1 (CA1) pyramidal neuronal morphology and study overall hippocampal neuronal density changes. Further, expression of NOX2, NeuN (neuronal marker) in hippocampal CA1 and dentate gyrus was determined using double immunofluorescence experiments in all the experimental groups. Mice administered with ARM monotherapy and APO adjunctive treatment exhibited similar survivability. The latter showed better locomotor and cognitive functions, reduced ROS levels, and hippocampal NOX2 immunoreactivity in ECM. Our results show a substantial increase in hippocampal NeuN immunoreactivity and dendritic arborization in ARM + APO cohorts compared to ARM-treated brain samples. Overall, our study suggests that overexpression of NOX2 could result in loss of hippocampal neuronal density and dendritic spines of CA1 neurons affecting the spatial working and reference memory during ECM. Notably, ARM + APO adjunctive therapy reversed the altered neuronal morphology and oxidative damage in hippocampal neurons restoring long-term cognitive functions after CM.
Collapse
Affiliation(s)
- Simhadri Praveen Kumar
- F-23/71, Neuroscience Laboratory, Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500 046, India
| | - Phanithi Prakash Babu
- F-23/71, Neuroscience Laboratory, Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500 046, India.
| |
Collapse
|
8
|
Karikari AA, Wruck W, Adjaye J. Transcriptome-based analysis of blood samples reveals elevation of DNA damage response, neutrophil degranulation, cancer and neurodegenerative pathways in Plasmodium falciparum patients. Malar J 2021; 20:383. [PMID: 34565410 PMCID: PMC8474955 DOI: 10.1186/s12936-021-03918-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/14/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Malaria caused by Plasmodium falciparum results in severe complications including cerebral malaria (CM) especially in children. While the majority of falciparum malaria survivors make a full recovery, there are reports of some patients ending up with neurological sequelae or cognitive deficit. METHODS An analysis of pooled transcriptome data of whole blood samples derived from two studies involving various P. falciparum infections, comprising mild malaria (MM), non-cerebral severe malaria (NCM) and CM was performed. Pathways and gene ontologies (GOs) elevated in the distinct P. falciparum infections were determined. RESULTS In all, 2876 genes were expressed in common between the 3 forms of falciparum malaria, with CM having the least number of expressed genes. In contrast to other research findings, the analysis from this study showed MM share similar biological processes with cancer and neurodegenerative diseases, NCM is associated with drug resistance and glutathione metabolism and CM is correlated with endocannabinoid signalling and non-alcoholic fatty liver disease (NAFLD). GO revealed the terms biogenesis, DNA damage response and IL-10 production in MM, down-regulation of cytoskeletal organization and amyloid-beta clearance in NCM and aberrant signalling, neutrophil degranulation and gene repression in CM. Differential gene expression analysis between CM and NCM showed the up-regulation of neutrophil activation and response to herbicides, while regulation of axon diameter was down-regulated in CM. CONCLUSIONS Results from this study reveal that P. falciparum-mediated inflammatory and cellular stress mechanisms may impair brain function in MM, NCM and CM. However, the neurological deficits predominantly reported in CM cases could be attributed to the down-regulation of various genes involved in cellular function through transcriptional repression, axonal dysfunction, dysregulation of signalling pathways and neurodegeneration. It is anticipated that the data from this study, might form the basis for future hypothesis-driven malaria research.
Collapse
Affiliation(s)
- Akua A. Karikari
- Department of Biomedical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Wasco Wruck
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - James Adjaye
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine University, 40225 Düsseldorf, Germany
| |
Collapse
|
9
|
Ngo-Thanh H, Sasaki T, Suzue K, Yokoo H, Isoda K, Kamitani W, Shimokawa C, Hisaeda H, Imai T. Blood-cerebrospinal fluid barrier: another site disrupted during experimental cerebral malaria caused by Plasmodium berghei ANKA. Int J Parasitol 2020; 50:1167-1175. [PMID: 32882285 DOI: 10.1016/j.ijpara.2020.07.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 07/09/2020] [Accepted: 07/11/2020] [Indexed: 12/01/2022]
Abstract
Cerebral malaria is one of the most severe pathologies of malaria; it induces neuro-cognitive sequelae and has a high mortality rate. Although many factors involved in the development of cerebral malaria have been discovered, its pathogenic mechanisms are still not completely understood. Most studies on cerebral malaria have focused on the blood-brain barrier, despite the importance of the blood-cerebrospinal fluid barrier, which protects the brain from peripheral inflammation. Consequently, the pathological role of the blood-cerebrospinal fluid barrier in cerebral malaria is currently unknown. To examine the status of the blood-cerebrospinal fluid barrier in cerebral malaria and malaria without this pathology (non-cerebral malaria), we developed a new method for evaluating the permeabilization of the blood-cerebrospinal fluid barrier during cerebral malaria in mice, using Evans blue dye and a software-assisted image analysis. Using C57BL/6J (B6) mice infected with Plasmodium berghei ANKA strain as an experimental cerebral malaria model and B6 mice infected with P. berghei NK65 strain or Plasmodium yoelii as non-cerebral malaria models, we revealed that the permeability of the blood-cerebrospinal fluid barrier increased during experimental cerebral malaria but not during non-cerebral malaria. We observed haemorrhaging in the cerebral ventricles and hemozoin-like structures in the choroid plexus, which is a key component of the blood-cerebrospinal fluid barrier, in cerebral malaria mice. Taken together, this evidence indicates that the blood-cerebrospinal fluid barrier is disrupted in experimental cerebral malaria, whereas it remains intact in non-cerebral malaria. We also found that P. berghei ANKA parasites and CD8+ T cells are involved in the blood-cerebrospinal fluid barrier disruption in experimental cerebral malaria. An understanding of the mechanisms underlying cerebral malaria might help in the development of effective strategies to prevent and manage cerebral malaria in humans.
Collapse
Affiliation(s)
- Ha Ngo-Thanh
- Department of Infectious Diseases and Host Defense, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Tsutomu Sasaki
- Laboratory of Metabolic Signal, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Kazutomo Suzue
- Department of Infectious Diseases and Host Defense, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Hideaki Yokoo
- Department of Pathology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Koji Isoda
- Department of Pathology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Wataru Kamitani
- Department of Infectious Diseases and Host Defense, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan; Laboratory of Clinical Research on Infectious Diseases, Research Institute for Microbial Disease, Osaka University, Osaka, Japan
| | - Chikako Shimokawa
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hajime Hisaeda
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takashi Imai
- Department of Infectious Diseases and Host Defense, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan.
| |
Collapse
|
10
|
Imai T, Suzue K, Ngo-Thanh H, Shimokawa C, Hisaeda H. Potential and Limitations of Cross-Protective Vaccine against Malaria by Blood-Stage Naturally Attenuated Parasite. Vaccines (Basel) 2020; 8:vaccines8030375. [PMID: 32664476 PMCID: PMC7564742 DOI: 10.3390/vaccines8030375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/07/2020] [Accepted: 07/09/2020] [Indexed: 01/13/2023] Open
Abstract
Human malaria vaccine trials have revealed vaccine efficacy but improvement is still needed. In this study, we aimed to re-evaluate vaccination with blood-stage naturally attenuated parasites, as a whole-organism vaccine model against cross-strain and cross-species malaria, to establish a better vaccination strategy. C57BL/6 mice controlled blood-stage Plasmodium yoelii 17XNL (PyNL) within 1 month of infection, while mice with a variety of immunodeficiencies demonstrated different susceptibilities to PyNL, including succumbing to hyperparasitemia. However, after recovery, survivors had complete protection against a challenge with the lethal strain PyL. Unlike cross-strain protection, PyNL-recovered mice failed to induce sterile immunity against Plasmodium berghei ANKA, although prolonged survival was observed in some vaccinated mice. Splenomegaly is a typical characteristic of malaria; the splenic structure became reorganized to prioritize extra-medullary hematopoiesis and to eliminate parasites. We also found that the peritoneal lymph node was enlarged, containing activated/memory phenotype cells that did not confer protection against PyL challenge. Hemozoins remained in the spleen several months after PyNL infection. Generation of an attenuated human blood-stage parasite expressing proteins from multiple species of malaria would greatly improve anti-malaria vaccination.
Collapse
Affiliation(s)
- Takashi Imai
- Department of Infectious Diseases and Host Defense, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan; (K.S.); (H.N.-T.)
- Department of Parasitology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Correspondence: ; Tel.: +81-27-220-8023
| | - Kazutomo Suzue
- Department of Infectious Diseases and Host Defense, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan; (K.S.); (H.N.-T.)
| | - Ha Ngo-Thanh
- Department of Infectious Diseases and Host Defense, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan; (K.S.); (H.N.-T.)
| | - Chikako Shimokawa
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo 162-0052, Japan; (C.S.); (H.H.)
| | - Hajime Hisaeda
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo 162-0052, Japan; (C.S.); (H.H.)
| |
Collapse
|
11
|
Pereira DMS, Carvalho Júnior AR, Lacerda EMDCB, da Silva LCN, Marinho CRF, André E, Fernandes ES. Oxidative and nitrosative stresses in cerebral malaria: can we target them to avoid a bad prognosis? J Antimicrob Chemother 2020; 75:1363-1373. [PMID: 32105324 DOI: 10.1093/jac/dkaa032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
There is currently a global effort to reduce malaria morbidity and mortality. However, malaria still results in the deaths of thousands of people every year. Malaria is caused by Plasmodium spp., parasites transmitted through the bite of an infected female Anopheles mosquito. Treatment timing plays a decisive role in reducing mortality and sequelae associated with the severe forms of the disease such as cerebral malaria (CM). The available antimalarial therapy is considered effective but parasite resistance to these drugs has been observed in some countries. Antimalarial drugs act by increasing parasite lysis, especially through targeting oxidative stress pathways. Here we discuss the roles of reactive oxygen species and reactive nitrogen intermediates in CM as a result of host-parasite interactions. We also present evidence of the potential contribution of oxidative and nitrosative stress-based antimalarial drugs to disease treatment and control.
Collapse
Affiliation(s)
| | | | | | | | | | - Eunice André
- Departamento de Farmacologia, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Elizabeth Soares Fernandes
- Programa de Pós-graduação, Universidade CEUMA, São Luís, MA, Brazil.,Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, PR, Brazil.,Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| |
Collapse
|
12
|
Dimorphic effect of 17β-oestradiol on pathology and oxidative stress in experimental malaria. Immunobiology 2019; 225:151873. [PMID: 31812344 DOI: 10.1016/j.imbio.2019.11.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 11/23/2019] [Indexed: 02/08/2023]
Abstract
Malaria is the parasitic disease with the highest mortality worldwide; males exhibit higher mortality and more severe symptomatology than females, suggesting the participation of sexual hormones in protection and pathology. We have documented that gonadectomy modifies oxidative stress in Plasmodium berghei ANKA-infected mice in a dimorphic manner. However, gonadectomy decreases all sexual steroids levels, making it difficult to determine the contribution of each hormone to the results. This study aimed to explore the participation of 17β-oestradiol (E2) in oxidative stress in the blood, spleen, liver and brain of P. berghei-infected female and male mice. E2 was administered to intact or gonadectomized (GX) male and female mice to assess their effects on parasitaemia, body weight loss and hypothermia. We also measured the effect of E2 on the specific activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) and on malondialdehyde (MDA) levels in the blood, spleen, liver and brain of CBA/Ca male and female mice infected with P. berghei ANKA. We detected the effects of E2 and sexual dimorphism on all tissues and variables analysed. Administration of E2 increased parasitaemia in intact mice. However, reconstitution of GX female mice with E2 decreased parasitaemia. E2 decreased body weight and differentially modulated oxidative stress depending on the sex, infection and tissue analysed. Low antioxidant activity was detected in the brain, suggesting additional protective antioxidant mechanisms in the brain independent of antioxidant enzymes. Our results explained, at least in part, the sexual dimorphism in this experimental model of malaria.
Collapse
|
13
|
Imai T, Suzue K, Ngo-Thanh H, Ono S, Orita W, Suzuki H, Shimokawa C, Olia A, Obi S, Taniguchi T, Ishida H, Van Kaer L, Murata S, Tanaka K, Hisaeda H. Fluctuations of Spleen Cytokine and Blood Lactate, Importance of Cellular Immunity in Host Defense Against Blood Stage Malaria Plasmodium yoelii. Front Immunol 2019; 10:2207. [PMID: 31608052 PMCID: PMC6773889 DOI: 10.3389/fimmu.2019.02207] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 09/02/2019] [Indexed: 12/27/2022] Open
Abstract
Our previous studies of protective immunity and pathology against blood stage malaria parasites have shown that not only CD4+ T cells, but also CD8+ T cells and macrophages, are important for host defense against blood stage malaria infection. Furthermore, we found that Plasmodium yoelii 17XNL (PyNL) parasitizes erythroblasts, the red blood cell (RBC) precursor cells, which then express MHC class I molecules. In the present study, we analyzed spleen cytokine production. In CD8+ T cell-depleted mice, IL-10 production in early stage infection was increased over two-fold relative to infected control animals and IL-10+ CD3- cells were increased, whereas IFN-γ production in the late stage of infection was decreased. At day 16 after PyNL infection, CD8+ T cells produced more IFN-γ than CD4+ T cells. We evaluated the involvement of the immunoproteasome in induction of immune CD8+ T cells, and the role of Fas in protection against PyNL both of which are downstream of IFN-γ. In cell transfer experiments, at least the single molecules LMP7, LMP2, and PA28 are not essential for CD8+ T cell induction. The Fas mutant LPR mouse was weaker in resistance to PyNL infection than WT mice, and 20% of the animals died. LPR-derived parasitized erythroid cells exhibited less externalization of phosphatidylserine (PS), and phagocytosis by macrophages was impaired. Furthermore, we tried to identify the cause of death in malaria infection. Blood lactate concentration was increased in the CD8+ T cell-depleted PyNL-infected group at day 19 (around peak parasitemia) to similar levels as day 7 after infection with a lethal strain of Py. When we injected mice with lactate at day 4 and 6 of PyNL infection, all mice died at day 8 despite demonstrating low parasitemia, suggesting that hyperlactatemia is one of the causes of death in CD8+ T cell-depleted PyNL-infected mice. We conclude that CD8+ T cells might control cytokine production to some extent and regulate hyperparasitemia and hyperlactatemia in protection against blood stage malaria parasites.
Collapse
Affiliation(s)
- Takashi Imai
- Department of Infectious Diseases and Host Defense, Gunma University Graduate School of Medicine, Maebashi, Japan.,Department of Parasitology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazutomo Suzue
- Department of Infectious Diseases and Host Defense, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Ha Ngo-Thanh
- Department of Infectious Diseases and Host Defense, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Suguri Ono
- Department of Infectious Diseases and Host Defense, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Wakako Orita
- Department of Infectious Diseases and Host Defense, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Haruka Suzuki
- Department of Infectious Diseases and Host Defense, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Chikako Shimokawa
- Department of Infectious Diseases and Host Defense, Gunma University Graduate School of Medicine, Maebashi, Japan.,Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Alex Olia
- Department of Infectious Diseases and Host Defense, Gunma University Graduate School of Medicine, Maebashi, Japan.,Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Seiji Obi
- Department of Infectious Diseases and Host Defense, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Tomoyo Taniguchi
- Center for Medical Education, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Hidekazu Ishida
- Department of Parasitology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Shigeo Murata
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Keiji Tanaka
- Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Hajime Hisaeda
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
14
|
Nyariki JN, Ochola LA, Jillani NE, Nyamweya NO, Amwayi PE, Yole DS, Azonvide L, Isaac AO. Oral administration of Coenzyme Q 10 protects mice against oxidative stress and neuro-inflammation during experimental cerebral malaria. Parasitol Int 2019; 71:106-120. [PMID: 30981893 DOI: 10.1016/j.parint.2019.04.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 01/08/2019] [Accepted: 04/09/2019] [Indexed: 12/12/2022]
Abstract
In animal model of experimental cerebral malaria (ECM), the genesis of neuropathology is associated with oxidative stress and inflammatory mediators. There is limited progress in the development of new approaches to the treatment of cerebral malaria. Here, we tested whether oral supplementation of Coenzyme Q10 (CoQ10) would offer protection against oxidative stress and brain associated inflammation following Plasmodium berghei ANKA (PbA) infection in C57BL/6 J mouse model. For this purpose, one group of C57BL/6 mice was used as control; second group of mice were orally supplemented with 200 mg/kg CoQ10 and then infected with PbA and the third group was PbA infected alone. Clinical, biochemical, immunoblot and immunological features of ECM was monitored. We observed that oral administration of CoQ10 for 1 month and after PbA infection was able to improve survival, significantly reduced oedema, TNF-α and MIP-1β gene expression in brain samples in PbA infected mice. The result also shows the ability of CoQ10 to reduce cholesterol and triglycerides lipids, levels of matrix metalloproteinases-9, angiopoietin-2 and angiopoietin-1 in the brain. In addition, CoQ10 was very effective in decreasing NF-κB phosphorylation. Furthermore, CoQ10 supplementation abrogated Malondialdehyde, and 8-OHDG and restored cellular glutathione. These results constitute the first demonstration that oral supplementation of CoQ10 can protect mice against PbA induced oxidative stress and neuro-inflammation usually observed in ECM. Thus, the need to study CoQ10 as a candidate of antioxidant and immunomodulatory molecule in ECM and testing it in clinical studies either alone or in combination with antimalaria regimens to provide insight into a potential translatable therapy.
Collapse
Affiliation(s)
- James N Nyariki
- Department of Biochemistry and Biotechnology, Technical University of Kenya, P.O. Box, 52428, 00200 Nairobi, Kenya.
| | - Lucy A Ochola
- Department of Tropical and Infectious Diseases, Institute of Primate Research, P.O. Box, 24481, 00502 Karen, Kenya
| | - Ngalla E Jillani
- Department of Non-communicable diseases, Institute of Primate Research, P.O. Box, 24481, 00502 Karen, Kenya
| | - Nemwel O Nyamweya
- Departmwent of Biochemistry and Molecular Biology, Egerton University, P.O. Box 536, Egerton, Kenya
| | - Peris E Amwayi
- Department of Biochemistry and Biotechnology, Technical University of Kenya, P.O. Box, 52428, 00200 Nairobi, Kenya
| | - Dorcas S Yole
- School of Biological and Life Sciences, Technical University of Kenya, P.O. Box, 52428, 00200 Nairobi, Kenya
| | - Laurent Azonvide
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Alfred Orina Isaac
- School of Health Sciences, Technical University of Kenya, P.O. Box, 52428, 00200 Nairobi, Kenya
| |
Collapse
|
15
|
Sekiguchi A, Motegi SI, Uchiyama A, Uehara A, Fujiwara C, Yamazaki S, Perera B, Nakamura H, Ogino S, Yokoyama Y, Akai R, Iwawaki T, Ishikawa O. Botulinum toxin B suppresses the pressure ulcer formation in cutaneous ischemia-reperfusion injury mouse model: Possible regulation of oxidative and endoplasmic reticulum stress. J Dermatol Sci 2018; 90:144-153. [PMID: 29402605 DOI: 10.1016/j.jdermsci.2018.01.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 12/22/2017] [Accepted: 01/14/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND We previously identified that botulinum toxin A (BTX-A) suppressed pressure ulcer (PU) formation after cutaneous ischemia-reperfusion (I/R) injury; however, regulation of cutaneous I/R-induced oxidative and endoplasmic reticulum (ER) stress by BTX-B was not investigated. Additionally, the efficacy of BTX-B injection has never been examined. OBJECTIVE Objective was to assess the effects of BTX-B on the formation of PU by cutaneous I/R injury, and the regulation of oxidative and ER stress in I/R injury by BTX-B. METHODS BTX-B was subcutaneously injected into I/R area, and wound size, vascular damage, hypoxic area, and apoptotic cells in I/R area were analyzed. We evaluated the extent of oxidative and ER stress in I/R area by using OKD48 mice and ERAI mice, respectively, which enabled evaluating oxidative and ER stress through bioluminescence detection. RESULTS BTX-B injection significantly suppressed the formation of PU by cutaneous I/R injury. Cutaneous I/R-induced vascular damage, hypoxic area, and number of oxidative-damaged cells and apoptotic cells were suppressed by BTX-B injection. BTX-B administration significantly inhibited I/R-induced oxidative stress signal in OKD48 mice. BTX-B reduced the I/R-induced oxidative stress-associated factors. BTX-B significantly inhibited the oxidant-induced reactive oxygen species and apoptosis of endothelial cells and fibroblasts. BTX-B significantly inhibited I/R-induced ER stress signal in ERAI mice. Cutaneous I/R injury-induced ER stress-response factors and GRP78/BiP and CHOP-positive cells in I/R area were significantly decreased by BTX-B injection. CONCLUSION BTX-B injection might have protective effects against PU formation after cutaneous I/R injury by reducing vascular damage, hypoxia-induced oxidative and ER stress, and apoptosis.
Collapse
Affiliation(s)
- Akiko Sekiguchi
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Sei-Ichiro Motegi
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan.
| | - Akihiko Uchiyama
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Akihito Uehara
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Chisako Fujiwara
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Sahori Yamazaki
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Buddhini Perera
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Hideharu Nakamura
- Division of Plastic Surgery, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Sachiko Ogino
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yoko Yokoyama
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Ryoko Akai
- Division of Cell Medicine, Department of Life Science, Medical Research Institute, Kanazawa Medical University, Ishikawa, Japan
| | - Takao Iwawaki
- Division of Cell Medicine, Department of Life Science, Medical Research Institute, Kanazawa Medical University, Ishikawa, Japan
| | - Osamu Ishikawa
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| |
Collapse
|
16
|
Motegi SI, Sekiguchi A, Uchiyama A, Uehara A, Fujiwara C, Yamazaki S, Perera B, Nakamura H, Ogino S, Yokoyama Y, Akai R, Iwawaki T, Ishikawa O. Protective effect of mesenchymal stem cells on the pressure ulcer formation by the regulation of oxidative and endoplasmic reticulum stress. Sci Rep 2017; 7:17186. [PMID: 29215059 PMCID: PMC5719411 DOI: 10.1038/s41598-017-17630-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 11/28/2017] [Indexed: 01/08/2023] Open
Abstract
Cutaneous ischemia-reperfusion (I/R) injury is associated with the early pathogenesis of cutaneous pressure ulcers (PUs). The objective of this study was to investigate the effect of mesenchymal stem cells (MSCs) injection on the formation of PUs after I/R injury and determine the underlying mechanisms. We found that the subcutaneous injection of MSCs into areas of I/R injured skin significantly suppressed the formation of PUs. I/R-induced vascular damage, hypoxia, oxidative DNA damage, and apoptosis were decreased by MSCs injection. Oxidative stress signals detected after I/R in OKD48 (Keap1-dependent oxidative stress detector, No-48-luciferase) mice were decreased by the injection of MSCs. In cultured fibroblasts, MSCs-conditioned medium significantly inhibited oxidant-induced reactive oxygen species (ROS) generation and apoptosis. Furthermore, endoplasmic reticulum (ER) stress signals detected after I/R in ERAI (ER stress-activated indicator) mice were also decreased by the injection of MSCs. These results suggest that the injection of MSCs might protect against the development of PUs after cutaneous I/R injury by reducing vascular damage, oxidative cellular damage, oxidative stress, ER stress, and apoptosis.
Collapse
Affiliation(s)
- Sei-Ichiro Motegi
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan.
| | - Akiko Sekiguchi
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Akihiko Uchiyama
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Akihito Uehara
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Chisako Fujiwara
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Sahori Yamazaki
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Buddhini Perera
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Hideharu Nakamura
- Division of Plastic Surgery, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Sachiko Ogino
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yoko Yokoyama
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Ryoko Akai
- Division of Cell Medicine, Department of Life Science, Medical Research Institute, Kanazawa Medical University, Ishikawa, Japan
| | - Takao Iwawaki
- Division of Cell Medicine, Department of Life Science, Medical Research Institute, Kanazawa Medical University, Ishikawa, Japan
| | - Osamu Ishikawa
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| |
Collapse
|
17
|
Simhadri PK, Malwade R, Vanka R, Nakka VP, Kuppusamy G, Babu PP. Dysregulation of LIMK-1/cofilin-1 pathway: A possible basis for alteration of neuronal morphology in experimental cerebral malaria. Ann Neurol 2017; 82:429-443. [PMID: 28843047 DOI: 10.1002/ana.25028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 08/02/2017] [Accepted: 08/18/2017] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Loss of cognition even after survival is the salient feature of cerebral malaria (CM). Currently, the fate of neuronal morphology is not studied at the ultrastructural level in CM. Recent studies suggest that maintenance of neuronal morphology and dendritic spine density (actin dynamics in particular) are essential for proper cognitive function. LIMK-1/cofilin-1 signaling pathway is known to be involved in the maintenance of actin dynamics through regulation of cofilin-1, and in executing learning and memory functions. METHODS Using an experimental mouse model, we analyzed the behavioral parameters of asymptomatic mice with CM by performing a rapid murine coma and behavior scale experiment. We performed Golgi-Cox staining to assess neuronal morphology, dendritic spine density, and arborization in brain cortex subjected to Plasmodium berghei ANKA infection compared to asymptomatic, anemic, and control groups. We studied the neural gene expression pattern of LIMK-1, cofilin-1, and β-actin in all the experimental groups by semiquantitative and quantitative polymerase chain reaction followed by immunoblotting and immunofluorescence. RESULTS We observed significant loss of dendritic spine density, abnormal spine morphology, reduced dendritic arborization, and extensive dendritic varicosities in the cortical neurons of CM-infected brain. Furthermore, these observations correlated with diminished protein levels of LIMK-1, cofilin-1, phospho-cofilin-1, and β-actin in the whole brain lysates as well as formation of actin-cofilin rods in the brain sections of symptomatic mice with CM. INTERPRETATION Overall, our findings suggest that the altered neuronal morphology and dysregulation of LIMK-1/cofilin-1 pathway could affect the cognitive outcome after experimental CM. Therefore, this study could help to establish newer therapeutic strategies addressing long-term cognitive impairment after CM. Ann Neurol 2017;82:429-443.
Collapse
Affiliation(s)
- Praveen Kumar Simhadri
- Department of Biotechnology and Bioinformatics, School of life Sciences, University of Hyderabad, Hyderabad, Telangana
| | - Ruchi Malwade
- Department of Biotechnology and Bioinformatics, School of life Sciences, University of Hyderabad, Hyderabad, Telangana
| | - Ravisankar Vanka
- Department of Pharmaceutics, JSS College of Pharmacy, Udhagamandalam, Tamil Nadu, India
| | - Venkata Prasuja Nakka
- Department of Biotechnology and Bioinformatics, School of life Sciences, University of Hyderabad, Hyderabad, Telangana
| | | | - Phanithi Prakash Babu
- Department of Biotechnology and Bioinformatics, School of life Sciences, University of Hyderabad, Hyderabad, Telangana
| |
Collapse
|
18
|
Visualization of Oxidative Stress Induced by Experimental Periodontitis in Keap1-Dependent Oxidative Stress Detector-Luciferase Mice. Int J Mol Sci 2016; 17:ijms17111907. [PMID: 27854327 PMCID: PMC5133905 DOI: 10.3390/ijms17111907] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 11/03/2016] [Accepted: 11/07/2016] [Indexed: 12/29/2022] Open
Abstract
The aim of this study was to investigate whether a Keap1-dependent oxidative stress detector-luciferase (OKD-LUC) mouse model would be useful for the visualization of oxidative stress induced by experimental periodontitis. A ligature was placed around the mandibular first molars for seven days to induce periodontitis. Luciferase activity was measured with an intraperitoneal injection of d-luciferin on days 0, 1, and 7. The luciferase activity in the periodontitis group was significantly greater than that in the control group at seven days. The expressions of heme oxygenase-1 (HO-1) and malondialdehyde in periodontal tissue were significantly higher in the periodontitis group than in the control group. Immunofluorescent analysis confirmed that the nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) occurred more frequently in the periodontitis group than in the control group. This study found that under oxidative stress induced by experimental periodontitis, the Nrf2/antioxidant defense pathway was activated and could be visualized from the luciferase activity in the OKD-LUC model. Thus, the OKD-LUC mouse model may be useful for exploring the mechanism underlying the relationship between the Nrf2/antioxidant defense pathway and periodontitis by enabling the visualization of oxidative stress over time.
Collapse
|
19
|
DellaValle B, Hempel C, Staalsoe T, Johansen FF, Kurtzhals JAL. Glucagon-like peptide-1 analogue, liraglutide, in experimental cerebral malaria: implications for the role of oxidative stress in cerebral malaria. Malar J 2016; 15:427. [PMID: 27554094 PMCID: PMC4995661 DOI: 10.1186/s12936-016-1486-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 08/11/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Cerebral malaria from Plasmodium falciparum infection is major cause of death in the tropics. The pathogenesis of the disease is complex and the contribution of reactive oxygen and nitrogen species (ROS/RNS) in the brain is incompletely understood. Insulinotropic glucagon-like peptide-1 (GLP-1) mimetics have potent neuroprotective effects in animal models of neuropathology associated with ROS/RNS dysfunction. This study investigates the effect of the GLP-1 analogue, liraglutide against the clinical outcome of experimental cerebral malaria (ECM) and Plasmodium falciparum growth. Furthermore the role of oxidative stress on ECM pathogenesis is evaluated. METHODS ECM was induced in Plasmodium berghei ANKA-infected C57Bl/6j mice. Infected Balb/c (non-cerebral malaria) and uninfected C57Bl/6j mice were included as controls. Mice were treated twice-daily with vehicle or liraglutide (200 μg/kg). ROS/RNS were quantified with in vivo imaging and further analyzed ex vivo. Brains were assayed for cAMP, activation of cAMP response element binding protein (CREB) and nitrate/nitrite. Plasmodium falciparum was cultivated in vitro with increasing doses of liraglutide and growth and metabolism were quantified. RESULTS The development and progression of ECM was not affected by liraglutide. Indeed, although ROS/RNS were increased in peripheral organs, ROS/RNS generation was not present in the brain. Interestingly, CREB was activated in the ECM brain and may protect against ROS/RNS stress. Parasite growth was not adversely affected by liraglutide in mice or in P. falciparum cultures indicating safety should not be a concern in type-II diabetics in endemic regions. CONCLUSIONS Despite the breadth of models where GLP-1 is neuroprotective, ECM was not affected by liraglutide providing important insight into the pathogenesis of ECM. Furthermore, ECM does not induce excess ROS/RNS in the brain potentially associated with activation of the CREB system.
Collapse
Affiliation(s)
- Brian DellaValle
- Department of Immunology and Microbiology, Centre for Medical Parasitology, University of Copenhagen, Copenhagen, Denmark. .,Department of Biomedical Sciences, Biotech Research and Innovation Center, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark. .,Department of Clinical Microbiology, Copenhagen University Hospital, Copenhagen, Denmark.
| | - Casper Hempel
- Department of Immunology and Microbiology, Centre for Medical Parasitology, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Microbiology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Trine Staalsoe
- Department of Immunology and Microbiology, Centre for Medical Parasitology, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Microbiology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Flemming Fryd Johansen
- Department of Biomedical Sciences, Biotech Research and Innovation Center, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jørgen Anders Lindholm Kurtzhals
- Department of Immunology and Microbiology, Centre for Medical Parasitology, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Microbiology, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
20
|
Sahu PK, Satpathi S, Behera PK, Mishra SK, Mohanty S, Wassmer SC. Pathogenesis of cerebral malaria: new diagnostic tools, biomarkers, and therapeutic approaches. Front Cell Infect Microbiol 2015; 5:75. [PMID: 26579500 PMCID: PMC4621481 DOI: 10.3389/fcimb.2015.00075] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 10/05/2015] [Indexed: 12/28/2022] Open
Abstract
Cerebral malaria is a severe neuropathological complication of Plasmodium falciparum infection. It results in high mortality and post-recovery neuro-cognitive disorders in children, even after appropriate treatment with effective anti-parasitic drugs. While the complete landscape of the pathogenesis of cerebral malaria still remains to be elucidated, numerous innovative approaches have been developed in recent years in order to improve the early detection of this neurological syndrome and, subsequently, the clinical care of affected patients. In this review, we briefly summarize the current understanding of cerebral malaria pathogenesis, compile the array of new biomarkers and tools available for diagnosis and research, and describe the emerging therapeutic approaches to tackle this pathology effectively.
Collapse
Affiliation(s)
- Praveen K Sahu
- Center for the Study of Complex Malaria in India, Ispat General Hospital Rourkela, India
| | | | | | - Saroj K Mishra
- Center for the Study of Complex Malaria in India, Ispat General Hospital Rourkela, India
| | - Sanjib Mohanty
- Center for the Study of Complex Malaria in India, Ispat General Hospital Rourkela, India
| | - Samuel Crocodile Wassmer
- Department of Microbiology, New York University School of Medicine New York, NY, USA ; Department of Pathology, The University of Sydney Sydney, NSW, Australia
| |
Collapse
|
21
|
Siciliano G, Alano P. Enlightening the malaria parasite life cycle: bioluminescent Plasmodium in fundamental and applied research. Front Microbiol 2015; 6:391. [PMID: 26029172 PMCID: PMC4426725 DOI: 10.3389/fmicb.2015.00391] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 04/16/2015] [Indexed: 12/31/2022] Open
Abstract
The unicellular protozoan parasites of the genus Plasmodium impose on human health worldwide the enormous burden of malaria. The possibility to genetically modify several species of malaria parasites represented a major advance in the possibility to elucidate their biology and is now turning laboratory lines of transgenic Plasmodium into precious weapons to fight malaria. Amongst the various genetically modified plasmodia, transgenic parasite lines expressing bioluminescent reporters have been essential to unveil mechanisms of parasite gene expression and to develop in vivo imaging approaches in mouse malaria models. Mainly the human malaria parasite Plasmodium falciparum and the rodent parasite P. berghei have been engineered to express bioluminescent reporters in almost all the developmental stages of the parasite along its complex life cycle between the insect and the vertebrate hosts. Plasmodium lines expressing conventional and improved luciferase reporters are now gaining a central role to develop cell based assays in the much needed search of new antimalarial drugs and to open innovative approaches for both fundamental and applied research in malaria.
Collapse
Affiliation(s)
| | - Pietro Alano
- Dipartimento di Malattie Infettive, Parassitarie ed Immunomediate, Istituto Superiore di SanitàRome, Italy
| |
Collapse
|