1
|
Henriques-Santos BM, Baker D, Zhou N, Snavely T, Sacchettini JC, Pietrantonio PV. Target-based discovery of antagonists of the tick (Rhipicephalus microplus) kinin receptor identifies small molecules that inhibit midgut contractions. PEST MANAGEMENT SCIENCE 2024; 80:5168-5179. [PMID: 38899490 DOI: 10.1002/ps.8242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/23/2024] [Accepted: 06/02/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND A GPCR (G protein-coupled receptor) target-based approach was applied to identify antagonists of the arthropod-specific tick kinin receptor. These small molecules were expected to reproduce the detrimental phenotypic effects that had been observed in Rhipicephalus microplus females when the kinin receptor was silenced by RNA interference. Rhipicephalus microplus, the southern cattle tick, cattle fever tick, or Asian blue tick, is the vector of pathogenic microorganisms causing the deadly bovine babesiosis and anaplasmosis. The widespread resistance to acaricides in tick populations worldwide emphasizes that exploring novel targets for effective tick control is imperative. RESULTS Fifty-three structural analogs of previously identified tick kinin antagonists were screened in a 'dual-addition' calcium fluorescence assay using a CHO-K1 cell line expressing the tick kinin receptor. Seven molecules were validated as non-cytotoxic antagonists, four of which were partial (SACC-0428764, SACC-0428780, SACC-0428800, and SACC-0428803), and three were full antagonists (SACC-0428799, SACC-0428801, and SACC-0428815). Four of these antagonists (SACC-0428764, SACC-0428780, SACC-0428799, and SACC-0428815) also inhibited the tick midgut contractions induced by the myotropic kinin agonist analog 1728, verifying their antagonistic bioactivity. The small molecules were tested on recombinant human neurokinin (NK) receptors, the one most similar to the invertebrate kinin receptors. Most molecules were inhibitors of the NK1 receptor, except SACC-0412066, a previously identified tick kinin receptor antagonist, which inhibited the NK1 receptor only at the highest concentration tested (25 μm). None of the molecules inhibited the NK3 human receptor. CONCLUSION Molecules identified through this approach could be useful probes for studying the tick kinin signaling system and midgut physiology. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Dwight Baker
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Nian Zhou
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Thomas Snavely
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - James C Sacchettini
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | | |
Collapse
|
2
|
Šofranková L, Baňas M, Pipová N, Majláth I, Kurimský J, Cimbala R, Zbojovský J, Šimo L, Majláthová V. Anthropogenic electromagnetic radiation alters the transcription levels of the genes encoding the SIFamide and myoinhibitory peptide and their receptors in Ixodes ricinus synganglion. Parasitol Res 2024; 123:306. [PMID: 39167261 PMCID: PMC11339154 DOI: 10.1007/s00436-024-08326-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024]
Abstract
The research of the influences of man-made electromagnetic fields on tick physiology has been very sparse and long neglected since the pioneer studies published in 1996 and 2000. Once multiple behavioral tests confirmed an attraction and possible perception of electromagnetic fields in ticks, a new interest in this topic erupted in recent years. In this study, qRT-PCR is utilized to determine the changes in the mRNA transcript levels of neuropeptides SIFamide and myoinhibitory peptide (mip and sifa) and their representative receptors (mip-r1 and sifa-r1) in the synganglia of the tick Ixodes ricinus irradiated by 900 MHz radiofrequency electromagnetic field. It was determined that 40 V/m intensity has a significant suppressory effect on the transcript levels of all genes after at least 60 minutes of constant exposure in both sexes. Commonly occurring intensity of radiation in urban areas (2 V/m) produced an elevation in mRNA levels after various timespans in every gene. A significant decrease of transcript abundances was detected in females after one hour of exposure to 2 V/m. Results of this study widen the knowledge of EMF-induced alterations in the neurophysiology of I. ricinus, the most commonly distributed hard tick in Europe.
Collapse
Affiliation(s)
- Lívia Šofranková
- Department of Animal Physiology, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 04180, Košice, Slovakia
| | - Miroslav Baňas
- Department of Animal Physiology, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 04180, Košice, Slovakia
| | - Natália Pipová
- Department of Animal Physiology, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 04180, Košice, Slovakia
| | - Igor Majláth
- Department of Animal Physiology, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 04180, Košice, Slovakia
| | - Juraj Kurimský
- Department of Electric Power Engineering, Faculty of Electrical Engeneering and Informatics, Technical University of Košice, Mäsiarska 74, 04120, Košice, Slovakia
| | - Roman Cimbala
- Department of Electric Power Engineering, Faculty of Electrical Engeneering and Informatics, Technical University of Košice, Mäsiarska 74, 04120, Košice, Slovakia
| | - Ján Zbojovský
- Department of Electric Power Engineering, Faculty of Electrical Engeneering and Informatics, Technical University of Košice, Mäsiarska 74, 04120, Košice, Slovakia
| | - Ladislav Šimo
- Laboratoire de Santé Animale, Unitè Mixte de Recherche de Biologie Molèculaire et d'Immunologie Parasitaires (UMR BIPAR), École Nationale Vétérinaire d'Alfort, INRAE, F-94700, Maisons-Alfort, ANSES, France
| | - Viktória Majláthová
- Department of Animal Physiology, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 04180, Košice, Slovakia.
| |
Collapse
|
3
|
Hernandez JR, Xiong C, Pietrantonio PV. A fluorescently-tagged tick kinin neuropeptide triggers peristalsis and labels tick midgut muscles. Sci Rep 2024; 14:10863. [PMID: 38740831 DOI: 10.1038/s41598-024-61570-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024] Open
Abstract
Ticks are blood-feeding arthropods that require heme for their successful reproduction. During feeding they also acquire pathogens that are subsequently transmitted to humans, wildlife and/or livestock. Understanding the regulation of tick midgut is important for blood meal digestion, heme and nutrient absorption processes and for aspects of pathogen biology in the host. We previously demonstrated the activity of tick kinins on the cognate G protein-coupled receptor. Herein we uncovered the physiological role of the kinin receptor in the tick midgut. A fluorescently-labeled kinin peptide with the endogenous kinin 8 sequence (TMR-RK8), identical in the ticks Rhipicephalus microplus and R. sanguineus, activated and labeled the recombinant R. microplus receptor expressed in CHO-K1 cells. When applied to the live midgut the TMR-RK8 labeled the kinin receptor in muscles while the labeled peptide with the scrambled-sequence of kinin 8 (TMR-Scrambled) did not. The unlabeled kinin 8 peptide competed TMR-RK8, decreasing confocal microscopy signal intensity, indicating TMR-RK8 specificity to muscles. TMR-RK8 was active, inducing significant midgut peristalsis that was video-recorded and evaluated with video tracking software. The TMR-Scrambled peptide used as a negative control did not elicit peristalsis. The myotropic function of kinins in eliciting tick midgut peristalsis was established.
Collapse
Affiliation(s)
- Jonathan R Hernandez
- Department of Entomology, Texas A&M University, College Station, TX, 77843-2475, USA
| | - Caixing Xiong
- Department of Entomology, Texas A&M University, College Station, TX, 77843-2475, USA
| | | |
Collapse
|
4
|
Wang J, Chai Y, Yang J, Chen K, Liu G, Luo J, Guan G, Ren Q, Yin H. Insight into Hyalomma anatolicum biology by comparative genomics analyses. Int J Parasitol 2024; 54:157-170. [PMID: 37858900 DOI: 10.1016/j.ijpara.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/21/2023]
Abstract
Hyalomma anatolicum is an obligatory blood-sucking ectoparasite and contributes to the transmission of Crimean-Congo haemorrhagic fever (CCHF) virus, Theileria spp. and Babesia spp. Progress in exploring the adaptive strategy of this ectoparasite and developing tools to fight it has been hindered by the lack of a complete genome. Herein, we assembled the genome using diverse sources of data from multiple sequencing platforms and annotated the 1.96 Gb genome of Hy. anatolicum. Comparative genome analyses and the predicted protein encoding genes reveal unique facets of this genome, including gene family expansion associated with blood feeding and digestion, multi-gene families involved in detoxification, a great number of neuropeptides and corresponding receptors regulating tick growth, development, and reproduction, and glutathione S-transferase genes playing roles in insecticide resistance and detoxification of multiple xenobiotic factors. This high quality reference genome provides fundamental data for obtaining insights into a variety of aspects of tick biology and developing novel strategies to fight notorious tick vectors of human and animal pathogens.
Collapse
Affiliation(s)
- Jinming Wang
- State Key Laboratory for Animal Disease and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu 730046, China.
| | - Yijun Chai
- State Key Laboratory for Animal Disease and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu 730046, China
| | - Jifei Yang
- State Key Laboratory for Animal Disease and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu 730046, China
| | - Kai Chen
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Guangyuan Liu
- State Key Laboratory for Animal Disease and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu 730046, China
| | - Jianxun Luo
- State Key Laboratory for Animal Disease and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu 730046, China
| | - Guiquan Guan
- State Key Laboratory for Animal Disease and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu 730046, China.
| | - Qiaoyun Ren
- State Key Laboratory for Animal Disease and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu 730046, China.
| | - Hong Yin
- State Key Laboratory for Animal Disease and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu 730046, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
5
|
Ochwoto M, Offerdahl DK, Leung JM, Schwartz CL, Long D, Rosenke R, Stewart PE, Saturday GA, Bloom ME. Cytoarchitecture of ex vivo midgut cultures of unfed Ixodes scapularis infected with a tick-borne flavivirus. Ticks Tick Borne Dis 2024; 15:102301. [PMID: 38134511 PMCID: PMC10923016 DOI: 10.1016/j.ttbdis.2023.102301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023]
Abstract
A bite from an infected tick is the primary means of transmission for tick-borne flaviviruses (TBFV). Ticks ingest the virus while feeding on infected blood. The traditional view is that the virus first replicates in and transits the tick midgut prior to dissemination to other organs, including salivary glands. Thus, understanding TBFV infection in the tick midgut is a key first step in identifying potential countermeasures against infection. Ex vivo midgut cultures prepared from unfed adult female Ixodes scapularis ticks were viable and remained morphologically intact for more than 8 days. The midgut consisted of two clearly defined cell layers separated by a basement membrane: an exterior network of smooth muscle cells and an internal epithelium composed of digestive generative cells. The smooth muscle cells were arranged in a stellate circumferential pattern spaced at regular intervals along the long axis of midgut diverticula. When the cultures were infected with the TBFV Langat virus (LGTV), virus production increased by two logs with a peak at 96 hours post-infection. Infected cells were readily identified by immunofluorescence staining for the viral envelope protein, nonstructural protein 3 (NS3) and dsRNA. Microscopy of the stained cultures suggested that generative cells were the primary target for virus infection in the midgut. Infected cells exhibited an expansion of membranes derived from the endoplasmic reticulum; a finding consistent with TBFV infected cell cultures. Electron microscopy of infected cultures revealed virus particles in the basolateral region between epithelial cells. These results demonstrated LGTV replication in midgut generative cells of artificially infected, ex vivo cultures of unfed adult female I. scapularis ticks.
Collapse
Affiliation(s)
- Missiani Ochwoto
- Biology of Vector Borne Viruses Section, Laboratory of Virology, Rocky Mountain Laboratories, NIAID, NIH, USA.
| | - Danielle K Offerdahl
- Biology of Vector Borne Viruses Section, Laboratory of Virology, Rocky Mountain Laboratories, NIAID, NIH, USA
| | - Jacqueline M Leung
- Research Technologies Branch, Rocky Mountain Laboratories, NIAID, NIH, USA
| | - Cindi L Schwartz
- Research Technologies Branch, Rocky Mountain Laboratories, NIAID, NIH, USA
| | - Dan Long
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, NIAID, NIH, USA
| | - Rebecca Rosenke
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, NIAID, NIH, USA
| | - Philip E Stewart
- Biology of Vector Borne Viruses Section, Laboratory of Virology, Rocky Mountain Laboratories, NIAID, NIH, USA
| | - Greg A Saturday
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, NIAID, NIH, USA
| | - Marshall E Bloom
- Biology of Vector Borne Viruses Section, Laboratory of Virology, Rocky Mountain Laboratories, NIAID, NIH, USA.
| |
Collapse
|
6
|
Šofranková L, Baňas M, Pipová N, Majláth I, Kurimský J, Cimbala R, Pavlík M, Mateos-Hernández L, Šimo L, Majláthová V. Effects of Electromagnetic Radiation on Neuropeptide Transcript Levels in the Synganglion of Ixodes ricinus. Pathogens 2023; 12:1398. [PMID: 38133283 PMCID: PMC10747470 DOI: 10.3390/pathogens12121398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/06/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
Anthropogenic electromagnetic radiation is an important environmental factor affecting the functionality of biological systems. Sensitivity to various frequencies of electromagnetic radiation has been detected in ixodid ticks in the past. However, the physiological aspects of radiation effects have not yet been studied in ticks. In the presented experiment, 360 Ixodes ricinus ticks, 180 males and 180 females, were divided into 16 irradiated and 8 control groups. The irradiated groups were exposed to two different intensities of electromagnetic radiation with a frequency of 900 MHz at different lengths of exposure time. RT-PCR was utilized to determine the changes in mRNA levels in tick synganglia after irradiation. Four randomly selected neuropeptide genes were tested-allatotropin (at), FGLa-related allatostatins (fgla/ast), kinin, and arginine-vasopressin-like peptide (avpl). A significant decrease in transcript levels in all female groups exposed to higher intensity radiofrequency radiation for 1 to 3 h was found. After one hour of radiofrequency exposure, a significant downregulation in allatotropin expression in males was detected. A consistent downregulation of the at gene was detected in males irradiated with at a higher intensity. Unfortunately, the specific functions of the studied neuropeptides in ticks are not known yet, so a more comprehensive study is necessary to describe the effects of EMF on observed neuropeptides. This study represents the first report on the effects of the abiotic environment on tick neurophysiology.
Collapse
Affiliation(s)
- Lívia Šofranková
- Department of Animal Physiology, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 04180 Košice, Slovakia; (L.Š.); (M.B.); (N.P.); (I.M.)
| | - Miroslav Baňas
- Department of Animal Physiology, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 04180 Košice, Slovakia; (L.Š.); (M.B.); (N.P.); (I.M.)
| | - Natália Pipová
- Department of Animal Physiology, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 04180 Košice, Slovakia; (L.Š.); (M.B.); (N.P.); (I.M.)
| | - Igor Majláth
- Department of Animal Physiology, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 04180 Košice, Slovakia; (L.Š.); (M.B.); (N.P.); (I.M.)
| | - Juraj Kurimský
- Department of Electrical Power Engineering, Faculty of Electrical Engeneering and Informatics, Technical University of Košice, Mäsiarska 74, 04120 Košice, Slovakia; (J.K.); (R.C.); (M.P.)
| | - Roman Cimbala
- Department of Electrical Power Engineering, Faculty of Electrical Engeneering and Informatics, Technical University of Košice, Mäsiarska 74, 04120 Košice, Slovakia; (J.K.); (R.C.); (M.P.)
| | - Marek Pavlík
- Department of Electrical Power Engineering, Faculty of Electrical Engeneering and Informatics, Technical University of Košice, Mäsiarska 74, 04120 Košice, Slovakia; (J.K.); (R.C.); (M.P.)
| | - Lourdes Mateos-Hernández
- Laboratoire de Santé Animale, Unitè Mixte de Recherche de Biologie Molèculaire et d’Immunologie Parasitaires (UMR BIPAR), Ecole Nationale Vétérinaire d’Alfort, INRAE, ANSES, F-94700 Maisons-Alfort, France; (L.M.-H.); (L.Š.)
| | - Ladislav Šimo
- Laboratoire de Santé Animale, Unitè Mixte de Recherche de Biologie Molèculaire et d’Immunologie Parasitaires (UMR BIPAR), Ecole Nationale Vétérinaire d’Alfort, INRAE, ANSES, F-94700 Maisons-Alfort, France; (L.M.-H.); (L.Š.)
| | - Viktória Majláthová
- Department of Animal Physiology, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 04180 Košice, Slovakia; (L.Š.); (M.B.); (N.P.); (I.M.)
| |
Collapse
|
7
|
Boussaine K, Taha M, Nìng C, Cartereau A, Rakotobe S, Mateos-Hernandez L, Taillebois E, Šimo L, Thany SH. Isolation and electrophysiological recording of Ixodes ricinus synganglion neurons. J Pharmacol Toxicol Methods 2023; 124:107473. [PMID: 37866797 DOI: 10.1016/j.vascn.2023.107473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/10/2023] [Accepted: 10/19/2023] [Indexed: 10/24/2023]
Abstract
The central nervous system of hard ticks (Ixodidae) consists of a concentrated merged nerve mass known as the synganglion. Although knowledge of tick neurobiology has dramatically improved over the last two decades, this is the first time that isolation and electrophysiological recordings have been carried out on tick neurons from the synganglion. Method: We developed a simple protocol for synganglion neuron isolation and used a whole-cell patch clamp to measure ionic currents induced by acetylcholine, nicotine and muscarine. Relatively large neurons (∼ 25 μm and ∼ 35 μm) were isolated and 1 mM acetylcholine was used to induce strong inward currents of -0.38 ± 0.1 nA and - 1.04 ± 0.1 nA, respectively, with the corresponding cell capacitances being at around 142 pF and 188 pF. In addition, successive application of 1 mM acetylcholine through ∼25 μm and ∼ 35 μm cells for increasing amounts of time resulted in a rapid reduction in current amplitudes. We also found that acetylcholine-evoked currents were associated with a reversible increase in intracellular calcium levels for each neuronal type. In contrast, 1 mM muscarine and nicotine induced a strong and non-reversible increase in intracellular calcium levels. This study serves as a proof of concept for the mechanical isolation of tick synganglion neurons followed by their electrophysiological recording. This approach will aid investigations into the pharmacological properties of tick neurons and provides the tools needed for the identification of drug-targeted sites and effective tick control measures.
Collapse
Affiliation(s)
- Khalid Boussaine
- University of Orleans, Laboratory Physiology, Ecology and Environment (P2E) USC-INRAE 1328, 1 rue de Chartres, Orléans Cedex, France; ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 22 rue Pierre et Marie Curie, Maisons-Alfort, France
| | - Maria Taha
- University of Orleans, Laboratory Physiology, Ecology and Environment (P2E) USC-INRAE 1328, 1 rue de Chartres, Orléans Cedex, France
| | - Cáinà Nìng
- University of Orleans, Laboratory Physiology, Ecology and Environment (P2E) USC-INRAE 1328, 1 rue de Chartres, Orléans Cedex, France; ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 22 rue Pierre et Marie Curie, Maisons-Alfort, France
| | - Alison Cartereau
- University of Orleans, Laboratory Physiology, Ecology and Environment (P2E) USC-INRAE 1328, 1 rue de Chartres, Orléans Cedex, France
| | - Sabine Rakotobe
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 22 rue Pierre et Marie Curie, Maisons-Alfort, France
| | - Lourdes Mateos-Hernandez
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 22 rue Pierre et Marie Curie, Maisons-Alfort, France
| | - Emiliane Taillebois
- University of Orleans, Laboratory Physiology, Ecology and Environment (P2E) USC-INRAE 1328, 1 rue de Chartres, Orléans Cedex, France
| | - Ladislav Šimo
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 22 rue Pierre et Marie Curie, Maisons-Alfort, France
| | - Steeve H Thany
- University of Orleans, Laboratory Physiology, Ecology and Environment (P2E) USC-INRAE 1328, 1 rue de Chartres, Orléans Cedex, France.
| |
Collapse
|
8
|
Guerrib F, Ning C, Mateos-Hernandéz L, Rakotobe S, Park Y, Hajdusek O, Perner J, Vancová M, Valdés JJ, Šimo L. Dual SIFamide receptors in Ixodes salivary glands. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023:103963. [PMID: 37257628 DOI: 10.1016/j.ibmb.2023.103963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/05/2023] [Accepted: 05/13/2023] [Indexed: 06/02/2023]
Abstract
Salivary glands are vital to tick feeding success and also play a crucial role in tick-borne pathogen transmission. In previous studies of Ixodes scapularis salivary glands, we demonstrated that saliva-producing type II and III acini are innervated by neuropeptidergic axons which release different classes of neuropeptides via their terminals (Šimo et al., 2009b, 2013). Among these, the neuropeptide SIFamide-along with its cognate receptor-were postulated to control the basally located acinar valve via basal epithelial and myoepithelial cells (Vancová et al., 2019). Here, we functionally characterized a second SIFamide receptor (SIFa_R2) from the I. scapularis genome and proved that it senses a low nanomolar level of its corresponding ligand. Insect SIFamide paralogs, SMYamides, also activated the receptor but less effectively compared to SIFamide. Bioinformatic and molecular dynamic analyses suggested that I. scapularis SIFamide receptors are class A GPCRs where the peptide amidated carboxy-terminus is oriented within the receptor binding cavity. The receptor was found to be expressed in Ixodes ricinus salivary glands, synganglia, midguts, trachea, and ovaries, but not in Malpighian tubules. Investigation of the temporal expression patterns suggests that the receptor transcript is highly expressed in unfed I. ricinus female salivary glands and then decreases during feeding. In synganglia, a significant transcript increase was detected in replete ticks. In salivary gland acini, an antibody targeting the second SIFamide receptor recognized basal epithelial cells, myoepithelial cells, and basal granular cells in close proximity to the SIFamide-releasing axon terminals. Immunoreactivity was also detected in specific neurons distributed throughout various I. ricinus synganglion locations. The current findings, alongside previous reports from our group, indicate that the neuropeptide SIFamide acts via two different receptors that regulate distinct or common cell types in the basal region of type II and III acini in I. ricinus salivary glands. The current study investigates the peptidergic regulation of the I. ricinus salivary gland in detail, emphasizing the complexity of this system.
Collapse
Affiliation(s)
- Fetta Guerrib
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France
| | - Caina Ning
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France
| | - Lourdes Mateos-Hernandéz
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France
| | - Sabine Rakotobe
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France
| | - Yoonseong Park
- Entomolgy department, Kansas State University, 123 Waters Hall, 66506-4004, Manhattan, KS, USA
| | - Ondrej Hajdusek
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, 37005, České Budějovice, Czech Republic
| | - Jan Perner
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, 37005, České Budějovice, Czech Republic
| | - Marie Vancová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, 37005, České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, České Budějovice, 37005, Czech Republic
| | - James J Valdés
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, 37005, České Budějovice, Czech Republic
| | - Ladislav Šimo
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France.
| |
Collapse
|
9
|
Waldman J, Klafke GM, Tirloni L, Logullo C, da Silva Vaz I. Putative target sites in synganglion for novel ixodid tick control strategies. Ticks Tick Borne Dis 2023; 14:102123. [PMID: 36716581 PMCID: PMC10033424 DOI: 10.1016/j.ttbdis.2023.102123] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/23/2022] [Accepted: 01/07/2023] [Indexed: 01/21/2023]
Abstract
Acaricide resistance is a global problem that has impacts worldwide. Tick populations with broad resistance to all commercially available acaricides have been reported. Since resistance selection in ticks and their role in pathogen transmission to animals and humans result in important economic and public health burden, it is essential to develop new strategies for their control (i.e., novel chemical compounds, vaccines, biological control). The synganglion is the tick central nervous system and it is responsible for synthesizing and releasing signaling molecules with different physiological functions. Synganglion proteins are the targets of the majority of available acaricides. In this review we provide an overview of the mode-of-action and resistance mechanisms against neurotoxic acaricides in ticks, as well as putative target sites in synganglion, as a supporting tool to identify new target proteins and to develop new strategies for tick control.
Collapse
Affiliation(s)
- Jéssica Waldman
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Guilherme Marcondes Klafke
- Instituto de Pesquisas Veterinárias Desidério Finamor - Centro de Pesquisa em Saúde Animal, Secretaria da Agricultura, Pecuária e Desenvolvimento Rural, Eldorado do Sul, RS, Brazil; Instituto Nacional de Ciência e Tecnologia - Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - Lucas Tirloni
- Laboratory of Bacteriology, Tick-Pathogen Transmission Unit, National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA
| | - Carlos Logullo
- Instituto Nacional de Ciência e Tecnologia - Entomologia Molecular, Rio de Janeiro, RJ, Brazil; Laboratório de Bioquímica de Artrópodes Hematófagos, IBqM, Universidade Federal do Rio de Janeiro, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Itabajara da Silva Vaz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Instituto Nacional de Ciência e Tecnologia - Entomologia Molecular, Rio de Janeiro, RJ, Brazil; Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
10
|
Hodosi R, Kazimirova M, Soltys K. What do we know about the microbiome of I. ricinus? Front Cell Infect Microbiol 2022; 12:990889. [PMID: 36467722 PMCID: PMC9709289 DOI: 10.3389/fcimb.2022.990889] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 10/17/2022] [Indexed: 10/07/2023] Open
Abstract
I. ricinus is an obligate hematophagous parasitic arthropod that is responsible for the transmission of a wide range of zoonotic pathogens including spirochetes of the genus Borrelia, Rickettsia spp., C. burnetii, Anaplasma phagocytophilum and Francisella tularensis, which are part the tick´s microbiome. Most of the studies focus on "pathogens" and only very few elucidate the role of "non-pathogenic" symbiotic microorganisms in I. ricinus. While most of the members of the microbiome are leading an intracellular lifestyle, they are able to complement tick´s nutrition and stress response having a great impact on tick´s survival and transmission of pathogens. The composition of the tick´s microbiome is not consistent and can be tied to the environment, tick species, developmental stage, or specific organ or tissue. Ovarian tissue harbors a stable microbiome consisting mainly but not exclusively of endosymbiotic bacteria, while the microbiome of the digestive system is rather unstable, and together with salivary glands, is mostly comprised of pathogens. The most prevalent endosymbionts found in ticks are Rickettsia spp., Ricketsiella spp., Coxiella-like and Francisella-like endosymbionts, Spiroplasma spp. and Candidatus Midichloria spp. Since microorganisms can modify ticks' behavior, such as mobility, feeding or saliva production, which results in increased survival rates, we aimed to elucidate the potential, tight relationship, and interaction between bacteria of the I. ricinus microbiome. Here we show that endosymbionts including Coxiella-like spp., can provide I. ricinus with different types of vitamin B (B2, B6, B7, B9) essential for eukaryotic organisms. Furthermore, we hypothesize that survival of Wolbachia spp., or the bacterial pathogen A. phagocytophilum can be supported by the tick itself since coinfection with symbiotic Spiroplasma ixodetis provides I. ricinus with complete metabolic pathway of folate biosynthesis necessary for DNA synthesis and cell division. Manipulation of tick´s endosymbiotic microbiome could present a perspective way of I. ricinus control and regulation of spread of emerging bacterial pathogens.
Collapse
Affiliation(s)
- Richard Hodosi
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Maria Kazimirova
- Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Katarina Soltys
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
- Comenius University Science Park, Comenius University in Bratislava, Bratislava, Slovakia
| |
Collapse
|
11
|
Wulff JP, Temeyer KB, Tidwell JP, Schlechte KG, Lohmeyer KH, Pietrantonio PV. Periviscerokinin (Cap 2b; CAPA) receptor silencing in females of Rhipicephalus microplus reduces survival, weight and reproductive output. Parasit Vectors 2022; 15:359. [PMID: 36203198 PMCID: PMC9535995 DOI: 10.1186/s13071-022-05457-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/24/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The cattle fever tick, Rhipicephalus (Boophilus) microplus, is a vector of pathogens causative of babesiosis and anaplasmosis, both highly lethal bovine diseases that affect cattle worldwide. In Ecdysozoa, neuropeptides and their G-protein-coupled receptors play a critical integrative role in the regulation of all physiological processes. However, the physiological activity of many neuropeptides is still unknown in ticks. Periviscerokinins (CAP2b/PVKs) are neuropeptides associated with myotropic and diuretic activities in insects. These peptides have been identified only in a few tick species, such as Ixodes ricinus, Ixodes scapularis and R. microplus, and their cognate receptor only characterized for the last two. METHODS Expression of the periviscerokinin receptor (Rhimi-CAP2bR) was investigated throughout the developmental stages of R. microplus and silenced by RNA interference (RNAi) in the females. In a first experiment, three double-stranded (ds) RNAs, named ds680-805, ds956-1109 and ds1102-1200, respectively, were tested in vivo. All three caused phenotypic effects, but only the last one was chosen for subsequent experiments. Resulting RNAi phenotypic variables were compared to those of negative controls, both non-injected and dsRNA beta-lactamase-injected ticks, and to positive controls injected with beta-actin dsRNA. Rhimi-CAP2bR silencing was verified by quantitative reverse-transcriptase PCR in whole females and dissected tissues. RESULTS Rhimi-CAP2bR transcript expression was detected throughout all developmental stages. Rhimi-CAP2bR silencing was associated with increased female mortality, decreased weight of surviving females and of egg masses, a delayed egg incubation period and decreased egg hatching (P < 0.05). CONCLUSIONS CAP2b/PVKs appear to be associated with the regulation of female feeding, reproduction and survival. Since the Rhimi-CAP2bR loss of function was detrimental to females, the discovery of antagonistic molecules of the CAP2b/PVK signaling system should cause similar effects. Our results point to this signaling system as a promising target for tick control.
Collapse
Affiliation(s)
- Juan P. Wulff
- Department of Entomology, Texas A&M University, College Station, TX 77843-2475 USA
| | - Kevin B. Temeyer
- Knipling-Bushland U.S. Livestock Insects Research Laboratory and Veterinary Pest Genomics Center, United States Department of Agriculture–Agricultural Research Service, 2700 Fredericksburg Road, Kerrville, TX 78028-9184 USA
| | - Jason P. Tidwell
- Cattle Fever Tick Research Laboratory, United States Department of Agriculture–Agricultural Research Service, 22675 N. Moorefield Rd. Building 6419, Edinburg, TX 78541-5033 USA
| | - Kristie G. Schlechte
- Knipling-Bushland U.S. Livestock Insects Research Laboratory and Veterinary Pest Genomics Center, United States Department of Agriculture–Agricultural Research Service, 2700 Fredericksburg Road, Kerrville, TX 78028-9184 USA
| | - Kimberly H. Lohmeyer
- Knipling-Bushland U.S. Livestock Insects Research Laboratory and Veterinary Pest Genomics Center, United States Department of Agriculture–Agricultural Research Service, 2700 Fredericksburg Road, Kerrville, TX 78028-9184 USA
| | | |
Collapse
|
12
|
Wulff JP, Temeyer KB, Tidwell JP, Schlechte KG, Xiong C, Lohmeyer KH, Pietrantonio PV. Pyrokinin receptor silencing in females of the southern cattle tick Rhipicephalus (Boophilus) microplus is associated with a reproductive fitness cost. Parasit Vectors 2022; 15:252. [PMID: 35818078 PMCID: PMC9272880 DOI: 10.1186/s13071-022-05349-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/28/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Rhipicephalus microplus is the vector of deadly cattle pathogens, especially Babesia spp., for which a recombinant vaccine is not available. Therefore, disease control depends on tick vector control. However, R. microplus populations worldwide have developed resistance to available acaricides, prompting the search for novel acaricide targets. G protein-coupled receptors (GPCRs) are involved in the regulation of many physiological processes and have been suggested as druggable targets for the control of arthropod vectors. Arthropod-specific signaling systems of small neuropeptides are being investigated for this purpose. The pyrokinin receptor (PKR) is a GPCR previously characterized in ticks. Myotropic activity of pyrokinins in feeding-related tissues of Rhipicephalus sanguineus and Ixodes scapularis was recently reported. METHODS The R. microplus pyrokinin receptor (Rhimi-PKR) was silenced through RNA interference (RNAi) in female ticks. To optimize RNAi, a dual-luciferase assay was applied to determine the silencing efficiency of two Rhimi-PKR double-stranded RNAs (dsRNA) prior to injecting dsRNA in ticks to be placed on cattle. Phenotypic variables of female ticks obtained at the endpoint of the RNAi experiment were compared to those of control female ticks (non-injected and beta-lactamase dsRNA-injected). Rhimi-PKR silencing was verified by quantitative reverse-transcriptase PCR in whole females and dissected tissues. RESULTS The Rhimi-PKR transcript was expressed in all developmental stages. Rhimi-PKR silencing was confirmed in whole ticks 4 days after injection, and in the tick carcass, ovary and synganglion 6 days after injection. Rhimi-PKR silencing was associated with an increased mortality and decreased weight of both surviving females and egg masses (P < 0.05). Delays in repletion, pre-oviposition and incubation periods were observed (P < 0.05). CONCLUSIONS Rhimi-PKR silencing negatively affected female reproductive fitness. The PKR appears to be directly or indirectly associated with the regulation of female feeding and/or reproductive output in R. microplus. Antagonists of the pyrokinin signaling system could be explored for tick control.
Collapse
Affiliation(s)
- Juan P. Wulff
- Department of Entomology, Texas A&M University, College Station, TX 77843-2475 USA
| | - Kevin B. Temeyer
- Knipling-Bushland U.S. Livestock Insects Research Laboratory and Veterinary Pest Genomics Center, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), 2700 Fredericksburg Road, Kerrville, TX 78028-9184 USA
| | - Jason P. Tidwell
- Cattle Fever Tick Research Laboratory, USDA-ARS, 22675 N. Moorefield Rd. Building 6419, Edinburg, TX 78541-5033 USA
| | - Kristie G. Schlechte
- Knipling-Bushland U.S. Livestock Insects Research Laboratory and Veterinary Pest Genomics Center, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), 2700 Fredericksburg Road, Kerrville, TX 78028-9184 USA
| | - Caixing Xiong
- Department of Entomology, Texas A&M University, College Station, TX 77843-2475 USA
| | - Kimberly H. Lohmeyer
- Knipling-Bushland U.S. Livestock Insects Research Laboratory and Veterinary Pest Genomics Center, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), 2700 Fredericksburg Road, Kerrville, TX 78028-9184 USA
| | - Patricia V. Pietrantonio
- Knipling-Bushland U.S. Livestock Insects Research Laboratory and Veterinary Pest Genomics Center, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), 2700 Fredericksburg Road, Kerrville, TX 78028-9184 USA
| |
Collapse
|
13
|
Maldonado-Ruiz LP, Urban J, Davis BN, Park JJ, Zurek L, Park Y. Dermal secretion physiology and thermoregulation in the lone star tick, Amblyomma americanum. Ticks Tick Borne Dis 2022; 13:101962. [PMID: 35525214 DOI: 10.1016/j.ttbdis.2022.101962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 03/21/2022] [Accepted: 04/24/2022] [Indexed: 11/29/2022]
Abstract
Ticks are hematophagous ectoparasites that transmit a wide range of pathogens. The lone star tick, Amblyomma americanum, is one of the most widely distributed ticks in the Midwest and Eastern United States. Lone star ticks, as other three-host ixodid ticks, can survive in harsh environments for extended periods without a blood meal. Physiological mechanisms that allow them to survive during hot and dry seasons include thermal tolerance and water homeostasis. Dermal fluid secretions have been described in metastriate ticks including A. americanum. We hypothesized that tick dermal secretion in the unfed tick plays a role in thermoregulation, as described in other hematophagous arthropods during blood feeding. In this study, we found that physical contact with a heat probe at 45 °C or high environmental temperature at ∼50 °C can trigger dermal secretion in A. americanum and other metastriate ticks in the off-host period. We demonstrated that dermal secretion plays a role in evaporative cooling when ticks are exposed to high temperatures. We find that type II dermal glands, having paired two cells and forming large glandular structures, are the source of dermal secretion. The secretion was triggered by an injection of serotonin, and the serotonin-mediated secretion was suppressed by a pretreatment with ouabain, a Na/K-ATPase blocker, implying that the secretion is controlled by serotonin and the downstream Na/K-ATPase.
Collapse
Affiliation(s)
| | - Joshua Urban
- Department of Entomology, Kansas State University, Manhattan KS66506, USA
| | - Brianna N Davis
- Department of Entomology, Kansas State University, Manhattan KS66506, USA
| | - Jessica J Park
- Department of Entomology, Kansas State University, Manhattan KS66506, USA
| | - Ludek Zurek
- Department of Chemistry and Biochemistry, Mendel University, Brno, Czech Republic; Department of Microbiology, Nutrition and Dietetics, Czech Agricultural University, Prague, Czech Republic
| | - Yoonseong Park
- Department of Entomology, Kansas State University, Manhattan KS66506, USA.
| |
Collapse
|
14
|
Wegener C, Chen J. Allatostatin A Signalling: Progress and New Challenges From a Paradigmatic Pleiotropic Invertebrate Neuropeptide Family. Front Physiol 2022; 13:920529. [PMID: 35812311 PMCID: PMC9263205 DOI: 10.3389/fphys.2022.920529] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/31/2022] [Indexed: 02/02/2023] Open
Abstract
Neuropeptides have gained broad attraction in insect neuroscience and physiology, as new genetic tools are increasingly uncovering their wide-ranging pleiotropic functions with high cellular resolution. Allatostatin A (AstA) peptides constitute one of the best studied insect neuropeptide families. In insects and other panarthropods, AstA peptides qualify as brain-gut peptides and have regained attention with the discovery of their role in regulating feeding, growth, activity/sleep and learning. AstA receptor homologs are found throughout the protostomia and group with vertebrate somatostatin/galanin/kisspeptin receptors. In this review, we summarise the current knowledge on the evolution and the pleiotropic and cell-specific non-allatostatic functions of AstA. We speculate about the core functions of AstA signalling, and derive open questions and challengesfor future research on AstA and invertebrate neuropeptides in general.
Collapse
Affiliation(s)
- Christian Wegener
- Neurobiology and Genetics, Würzburg Insect Research, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
- *Correspondence: Christian Wegener,
| | - Jiangtian Chen
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, RI, United States
| |
Collapse
|
15
|
Waldman J, Xavier MA, Vieira LR, Logullo R, Braz GRC, Tirloni L, Ribeiro JMC, Veenstra JA, Silva Vaz ID. Neuropeptides in Rhipicephalus microplus and other hard ticks. Ticks Tick Borne Dis 2022; 13:101910. [PMID: 35121230 PMCID: PMC9477089 DOI: 10.1016/j.ttbdis.2022.101910] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 12/15/2022]
Abstract
The synganglion is the central nervous system of ticks and, as such, controls tick physiology. It does so through the production and release of signaling molecules, many of which are neuropeptides. These peptides can function as neurotransmitters, neuromodulators and/or neurohormones, although in most cases their functions remain to be established. We identified and performed in silico characterization of neuropeptides present in different life stages and organs of Rhipicephalus microplus, generating transcriptomes from ovary, salivary glands, fat body, midgut and embryo. Annotation of synganglion transcripts led to the identification of 32 functional categories of proteins, of which the most abundant were: secreted, energetic metabolism and oxidant metabolism/detoxification. Neuropeptide precursors are among the sequences over-represented in R. microplus synganglion, with at least 5-fold higher transcription compared with other stages/organs. A total of 52 neuropeptide precursors were identified: ACP, achatin, allatostatins A, CC and CCC, allatotropin, bursicon A/B, calcitonin A and B, CCAP, CCHamide, CCRFamide, CCH/ITP, corazonin, DH31, DH44, eclosion hormone, EFLamide, EFLGGPamide, elevenin, ETH, FMRFamide myosuppressin-like, glycoprotein A2/B5, gonadulin, IGF, inotocin, insulin-like peptides, iPTH, leucokinin, myoinhibitory peptide, NPF 1 and 2, orcokinin, proctolin, pyrokinin/periviscerokinin, relaxin, RYamide, SIFamide, sNPF, sulfakinin, tachykinin and trissin. Several of these neuropeptides have not been previously reported in ticks, as the presence of ETH that was first clearly identified in Parasitiformes, which include ticks and mites. Prediction of the mature neuropeptides from precursor sequences was performed using available information about these peptides from other species, conserved domains and motifs. Almost all neuropeptides identified are also present in other tick species. Characterizing the role of neuropeptides and their respective receptors in tick physiology can aid the evaluation of their potential as drug targets.
Collapse
Affiliation(s)
- Jéssica Waldman
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Marina Amaral Xavier
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Larissa Rezende Vieira
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Raquel Logullo
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Gloria Regina Cardoso Braz
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia - Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - Lucas Tirloni
- Tick-Pathogen Transmission Unit, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA
| | - José Marcos C Ribeiro
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Rockville, MD, USA
| | - Jan A Veenstra
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287 CNRS, Université de Bordeaux, Bordeaux, France
| | - Itabajara da Silva Vaz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Instituto Nacional de Ciência e Tecnologia - Entomologia Molecular, Rio de Janeiro, RJ, Brazil; Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
16
|
Hromníková D, Furka D, Furka S, Santana JAD, Ravingerová T, Klöcklerová V, Žitňan D. Prevention of tick-borne diseases: challenge to recent medicine. Biologia (Bratisl) 2022; 77:1533-1554. [PMID: 35283489 PMCID: PMC8905283 DOI: 10.1007/s11756-021-00966-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 11/10/2021] [Indexed: 12/14/2022]
Abstract
Abstract Ticks represent important vectors and reservoirs of pathogens, causing a number of diseases in humans and animals, and significant damage to livestock every year. Modern research into protection against ticks and tick-borne diseases focuses mainly on the feeding stage, i.e. the period when ticks take their blood meal from their hosts during which pathogens are transmitted. Physiological functions in ticks, such as food intake, saliva production, reproduction, development, and others are under control of neuropeptides and peptide hormones which may be involved in pathogen transmission that cause Lyme borreliosis or tick-borne encephalitis. According to current knowledge, ticks are not reservoirs or vectors for the spread of COVID-19 disease. The search for new vaccination methods to protect against ticks and their transmissible pathogens is a challenge for current science in view of global changes, including the increasing migration of the human population. Highlights • Tick-borne diseases have an increasing incidence due to climate change and increased human migration • To date, there is no evidence of transmission of coronavirus COVID-19 by tick as a vector • To date, there are only a few modern, effective, and actively- used vaccines against ticks or tick-borne diseases • Neuropeptides and their receptors expressed in ticks may be potentially used for vaccine design
Collapse
Affiliation(s)
- Dominika Hromníková
- Department of Molecular Physiology, Slovak Academy of Sciences, Institute of Zoology, Dúbravská cesta 9, 84506 Bratislava, Slovakia
| | - Daniel Furka
- Faculty of Natural Sciences, Department of Physical and Theoretical Chemistry, Comenius University, Mlynská dolina, Ilkovičova 6, 84104 Bratislava, SK Slovakia
- Department of Cardiovascular Physiology and Pathophysiology, Slovak Academy of Sciences, Institute of Heart Research, Dúbravská cesta 9, SK 84005 Bratislava, Slovakia
| | - Samuel Furka
- Faculty of Natural Sciences, Department of Physical and Theoretical Chemistry, Comenius University, Mlynská dolina, Ilkovičova 6, 84104 Bratislava, SK Slovakia
- Department of Cardiovascular Physiology and Pathophysiology, Slovak Academy of Sciences, Institute of Heart Research, Dúbravská cesta 9, SK 84005 Bratislava, Slovakia
| | - Julio Ariel Dueñas Santana
- Chemical Engineering Department, University of Matanzas, Km 3 Carretera a Varadero, 44740 Matanzas, CU Cuba
| | - Táňa Ravingerová
- Department of Cardiovascular Physiology and Pathophysiology, Slovak Academy of Sciences, Institute of Heart Research, Dúbravská cesta 9, SK 84005 Bratislava, Slovakia
| | - Vanda Klöcklerová
- Department of Molecular Physiology, Slovak Academy of Sciences, Institute of Zoology, Dúbravská cesta 9, 84506 Bratislava, Slovakia
| | - Dušan Žitňan
- Department of Molecular Physiology, Slovak Academy of Sciences, Institute of Zoology, Dúbravská cesta 9, 84506 Bratislava, Slovakia
| |
Collapse
|
17
|
Xiong C, Baker D, Pietrantonio PV. A random small molecule library screen identifies novel antagonists of the kinin receptor from the cattle fever tick, Rhipicephalus microplus (Acari: Ixodidae). PEST MANAGEMENT SCIENCE 2021; 77:2238-2251. [PMID: 33415807 DOI: 10.1002/ps.6249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/17/2020] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND The southern cattle tick, Rhipicephalus microplus, is a primary vector of the deadly bovine disease babesiosis. Worldwide populations of ticks have developed resistance to acaricides, underscoring the need for novel target discovery for tick control. The arthropod-specific R. microplus kinin receptor is such a target, previously validated by silencing, which resulted in female reproductive fitness costs, including a reduced percentage of eggs hatching. RESULTS In order to identify potent small molecules that bind and activate or inhibit the kinin receptor, a high-throughput screening (HTS) assay was developed using a CHO-K1 cell line expressing the recombinant tick kinin receptor (BMLK3 ). A total of ~20 000 molecules from a random in-house small molecule library were screened in a 'dual-addition' calcium fluorescence assay. This was followed by dose-response validation of the hit molecules identified both from HTS and an in silico screen of ~390 000 molecules. We validated 29 antagonists, 11 of them were full antagonists with IC50 values between 0.67 and 8 μmol L-1 . To explore the structure-activity relationships (SAR) of the small molecules, we tested the activities of seven analogs of the most potent identified antagonist, additionally discovering three full antagonists and four partial antagonists. These three potent antagonists (IC50 < 3.2 μmol L-1 ) were validated in vitro using the recombinant mosquito kinin receptor and showed similar antagonistic activities. In vivo, these three compounds also inhibited the mosquito hindgut contraction rate induced by a myotropic kinin agonist analog 1728. CONCLUSION Antagonists identified in this study could become pesticide leads and are reagents for probing the kinin signaling system. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Caixing Xiong
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - Dwight Baker
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | | |
Collapse
|
18
|
Pictorial dissection guide and internal anatomy of the cattle tick, Rhipicephalus (Boophilus) microplus (Canestrini). Ticks Tick Borne Dis 2021; 12:101685. [PMID: 33611153 DOI: 10.1016/j.ttbdis.2021.101685] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 12/24/2020] [Accepted: 01/23/2021] [Indexed: 11/24/2022]
Abstract
Ticks are pests and vectors of diseases that are of public health and veterinary importance. The cattle tick, Rhipicephalus microplus (Canestrini, 1888), is one of the most studied tick species because of its impact on livestock health and production in the tropical and subtropical parts of the world, costing the cattle industry billions annually. Control methods have evolved throughout the years but so has R. microplus. Reliance upon chemical control has created a consistent need to develop new technologies to overcome the pesticide resistance that occurs as the ticks adapt. In order to utilize the more advanced tools such as RNAi or Crispr/Cas9 systems, tick tissues need to be isolated and manipulated. Unfortunately, there are a limited number of dissection guides available providing a detailed view of tick internal anatomy. This manual includes photomicrographs to guide the dissection of R. microplus adults, male and female. Topography and anatomical differences between the internal organs of unfed and gravid adult females are described. We were able to locate the crucial tissues for cattle tick physiology and lay out spatial and temporal guidelines for their identification and dissection. Examples of how this information can be used at the nexus between organismal and molecular research to innovate tick control technologies is discussed.
Collapse
|
19
|
Almazán C, Šimo L, Fourniol L, Rakotobe S, Borneres J, Cote M, Peltier S, Mayé J, Versillé N, Richardson J, Bonnet SI. Multiple Antigenic Peptide-Based Vaccines Targeting Ixodes ricinus Neuropeptides Induce a Specific Antibody Response but Do Not Impact Tick Infestation. Pathogens 2020; 9:pathogens9110900. [PMID: 33126686 PMCID: PMC7693490 DOI: 10.3390/pathogens9110900] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/22/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023] Open
Abstract
Synthetic peptide vaccines were designed to target the neuropeptides innervating Ixodes ricinus salivary glands and hindgut and they were tested for their capacity to afford protective immunity against nymphs or larvae and Anaplasma phagocytophilum-infected nymph infestation, in mice and sheep, respectively. In both models, the assembly of SIFamide (SIFa) or myoinhibitory peptide (MIP) neuropeptides into multiple antigenic peptide constructs (MAPs) elicited a robust IgG antibody response following immunization. Nevertheless, no observable detrimental impact on nymphs was evidenced in mice, and, unfortunately, the number of engorged nymphs on sheep was insufficient for firm conclusions to be drawn, including for bacterial transmission. Regarding larvae, while vaccination of the sheep did not globally diminish tick feeding success or development, analyses of animals at the individual level revealed a negative correlation between anti-SIFa and MIP antibody levels and larva-to-nymph molting success for both antigens. Our results provide a proof of principle and precedent for the use of MAPs for the induction of immunity against tick peptide molecules. Although the present study did not provide the expected level of protection, it inaugurates a new strategy for protection against ticks based on the immunological targeting of key components of their nervous system.
Collapse
Affiliation(s)
- Consuelo Almazán
- UMR BIPAR 0956, INRAE, National Veterinary School of Alfort, ANSES, Paris-Est University, 94700 Maisons-Alfort, France; (C.A.); (L.Š.); (L.F.); (S.R.); (M.C.)
| | - Ladislav Šimo
- UMR BIPAR 0956, INRAE, National Veterinary School of Alfort, ANSES, Paris-Est University, 94700 Maisons-Alfort, France; (C.A.); (L.Š.); (L.F.); (S.R.); (M.C.)
| | - Lisa Fourniol
- UMR BIPAR 0956, INRAE, National Veterinary School of Alfort, ANSES, Paris-Est University, 94700 Maisons-Alfort, France; (C.A.); (L.Š.); (L.F.); (S.R.); (M.C.)
| | - Sabine Rakotobe
- UMR BIPAR 0956, INRAE, National Veterinary School of Alfort, ANSES, Paris-Est University, 94700 Maisons-Alfort, France; (C.A.); (L.Š.); (L.F.); (S.R.); (M.C.)
| | - Jérémie Borneres
- SEPPIC Paris La Défense, 92250 La Garenne Colombes, France; (J.B.); (S.P.); (J.M.); (N.V.)
| | - Martine Cote
- UMR BIPAR 0956, INRAE, National Veterinary School of Alfort, ANSES, Paris-Est University, 94700 Maisons-Alfort, France; (C.A.); (L.Š.); (L.F.); (S.R.); (M.C.)
| | - Sandy Peltier
- SEPPIC Paris La Défense, 92250 La Garenne Colombes, France; (J.B.); (S.P.); (J.M.); (N.V.)
| | - Jennifer Mayé
- SEPPIC Paris La Défense, 92250 La Garenne Colombes, France; (J.B.); (S.P.); (J.M.); (N.V.)
| | - Nicolas Versillé
- SEPPIC Paris La Défense, 92250 La Garenne Colombes, France; (J.B.); (S.P.); (J.M.); (N.V.)
| | - Jennifer Richardson
- UMR Virologie 1161, INRAE, National Veterinary School of Alfort, ANSES, Paris-Est University, 94700 Maisons-Alfort, France;
| | - Sarah I. Bonnet
- UMR BIPAR 0956, INRAE, National Veterinary School of Alfort, ANSES, Paris-Est University, 94700 Maisons-Alfort, France; (C.A.); (L.Š.); (L.F.); (S.R.); (M.C.)
- Correspondence:
| |
Collapse
|
20
|
Dickinson PS, Samuel HM, Stemmler EA, Christie AE. SIFamide peptides modulate cardiac activity differently in two species of Cancer crab. Gen Comp Endocrinol 2019; 282:113204. [PMID: 31201801 PMCID: PMC6719312 DOI: 10.1016/j.ygcen.2019.06.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/06/2019] [Accepted: 06/11/2019] [Indexed: 12/15/2022]
Abstract
The SIFamides are a broadly conserved arthropod peptide family characterized by the C-terminal motif -SIFamide. In decapod crustaceans, two isoforms of SIFamide are known, GYRKPPFNGSIFamide (Gly1-SIFamide), which is nearly ubiquitously conserved in the order, and VYRKPPFNGSIFamide (Val1-SIFamide), known only from members of the astacidean genus Homarus. While much work has focused on the identification of SIFamide isoforms in decapods, there are few direct demonstrations of physiological function for members of the peptide family in this taxon. Here, we assessed the effects of Gly1- and Val1-SIFamide on the cardiac neuromuscular system of two closely related species of Cancer crab, Cancer borealis and Cancer irroratus. In each species, both peptides were cardioactive, with identical, dose-dependent effects elicited by both isoforms in a given species. Threshold concentrations for bioactivity are in the range typically associated with hormonal delivery, i.e., 10-9 to 10-8 M. Interestingly, and quite surprisingly, while the predicted effects of SIFamide on cardiac output are similar in both C. borealis and C. irroratus, frequency effects predominate in C. borealis, while amplitude effects predominate in C. irroratus. These findings suggest that, while SIFamide is likely to increase cardiac output in both crabs, the mechanism through which this is achieved is different in the two species. Immunohistochemical/mass spectrometric data suggest that SIFamide is delivered to the heart hormonally rather than locally, with the source of hormonal release being midgut epithelial endocrine cells in both Cancer species. If so, midgut-derived SIFamide may function as a regulator of cardiac output during the process of digestion.
Collapse
Affiliation(s)
- Patsy S Dickinson
- Department of Biology, Bowdoin College, 6500 College Station, Brunswick, ME 04011, USA.
| | - Heidi M Samuel
- Department of Biology, Bowdoin College, 6500 College Station, Brunswick, ME 04011, USA
| | - Elizabeth A Stemmler
- Department of Chemistry, Bowdoin College, 6600 College Station, Brunswick, ME 04011, USA
| | - Andrew E Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA
| |
Collapse
|
21
|
Kim D, Šimo L, Vancová M, Urban J, Park Y. Neural and endocrine regulation of osmoregulatory organs in tick: Recent discoveries and implications. Gen Comp Endocrinol 2019; 278:42-49. [PMID: 30077796 DOI: 10.1016/j.ygcen.2018.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/03/2018] [Accepted: 08/01/2018] [Indexed: 11/17/2022]
Abstract
Ticks can survive in harsh and fluctuating vegetated environments for long durations between blood feedings with highly developed osmoregulatory mechanisms. Like the unique life history of hematophagous ticks, osmoregulatory organs and their regulatory mechanisms are significantly different from those in the closely related insect taxa. Over the last ten years, research has uncovered several neuropeptidergic innervations of the primary osmoregulatory organ, the salivary glands: myoinhibitory peptide (MIP), SIFamide, and elevenin. These neuropeptides are thought to be modulators of dopamine's autocrine or paracrine actions controlling the salivary glands, including the activation of fluid transport into the lumen of salivary acini and the pumping and gating action of salivary acini for expelling fluids out into salivary ducts. These actions are through two different dopamine receptors, D1 receptor and invertebrate D1-like dopamine receptor, respectively. Interestingly, MIP and SIFamide are also involved in the control of another important excretory/osmoregulatory organ, the hindgut, where SIFamide is myostimulatory, with MIP having antagonistic effects. FGLamide related allatostatin is also found to have axonal projections located on the surface of the rectum. Investigations of the osmoregulatory mechanisms of these critical vector species will potentially lead to the development of a measure to control tick species.
Collapse
Affiliation(s)
- Donghun Kim
- Kansas State University, Department of Entomology, Kansas State University, Manhattan, KS 66504, USA
| | - Ladislav Šimo
- UMR BIPAR, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Marie Vancová
- Laboratory of EM, Institute of Parasitology, Biology Centre of the ASCR, České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Joshua Urban
- Kansas State University, Department of Entomology, Kansas State University, Manhattan, KS 66504, USA
| | - Yoonseong Park
- Kansas State University, Department of Entomology, Kansas State University, Manhattan, KS 66504, USA.
| |
Collapse
|
22
|
Brock CM, Temeyer KB, Tidwell J, Yang Y, Blandon MA, Carreón-Camacho D, Longnecker MT, Almazán C, Pérez de León AA, Pietrantonio PV. The leucokinin-like peptide receptor from the cattle fever tick, Rhipicephalus microplus, is localized in the midgut periphery and receptor silencing with validated double-stranded RNAs causes a reproductive fitness cost. Int J Parasitol 2019; 49:287-299. [PMID: 30673587 DOI: 10.1016/j.ijpara.2018.11.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 10/31/2018] [Accepted: 11/04/2018] [Indexed: 12/25/2022]
Abstract
The cattle fever tick, Rhipicephalus microplus (Canestrini) (Acari: Ixodidae), is a one-host tick that infests primarily cattle in tropical and sub-tropical regions of the world. This species transmits deadly cattle pathogens, especially Babesia spp., for which a recombinant vaccine is not available. Therefore, disease control depends on tick vector control. Although R. microplus was eradicated in the USA, tick populations in Mexico and South America have acquired resistance to many of the applied acaricides. Recent acaricide-resistant tick reintroductions detected in the U.S. underscore the need for novel tick control methods. The octopamine and tyramine/octopamine receptors, both G protein-coupled receptors (GPCR), are believed to be the main molecular targets of the acaricide amitraz. This provides the proof of principle that investigating tick GPCRs, especially those that are invertebrate-specific, may be a feasible strategy for discovering novel targets and subsequently new anti-tick compounds. The R. microplus leucokinin-like peptide receptor (LKR), also known as the myokinin- or kinin receptor, is such a GPCR. While the receptor was previously characterized in vitro, the function of the leucokinin signaling system in ticks remains unknown. In this work, the LKR was immunolocalized to the periphery of the female midgut and silenced through RNA interference (RNAi) in females. To optimize RNAi experiments, a dual-luciferase system was developed to determine the silencing efficiency of LKR-double stranded RNA (dsRNA) constructs prior to testing those in ticks placed on cattle. This assay identified two effective dsRNAs. Silencing of the LKR with these two validated dsRNA constructs was verified by quantitative real time PCR (qRT-PCR) of female tick dissected tissues. Silencing was significant in midguts and carcasses. Silencing caused decreases in weights of egg masses and in the percentages of eggs hatched per egg mass, as well as delays in time to oviposition and egg hatching. A role of the kinin receptor in tick reproduction is apparent.
Collapse
Affiliation(s)
- Christina M Brock
- Department of Entomology, Texas A&M University, College Station, TX 77843-2475, USA
| | - Kevin B Temeyer
- Knipling-Bushland U.S. Livestock Insects Research Laboratory and Veterinary Pest Genomics Center, United States Department of Agriculture - Agricultural Research Service, 2700 Fredericksburg Road Kerrville, TX 78028-9184, USA
| | - Jason Tidwell
- Cattle Fever Tick Research Laboratory, United States Department of Agriculture - Agricultural Research Service, 22675 N. Moorefield Rd. Building 6419 Edinburg, TX 78541-5033, USA
| | - Yunlong Yang
- Department of Entomology, Texas A&M University, College Station, TX 77843-2475, USA
| | - Maria A Blandon
- Department of Entomology, Texas A&M University, College Station, TX 77843-2475, USA
| | - Diana Carreón-Camacho
- Universidad Autónoma de Tamaulipas, Facultad de Medicina Veterinaria y Zootecnia, CP87000 Victoria, Tamaulipas, Mexico
| | - Michael T Longnecker
- Department of Statistics, Texas A&M University, College Station, TX 77843-2475, USA
| | - Consuelo Almazán
- Universidad Autónoma de Tamaulipas, Facultad de Medicina Veterinaria y Zootecnia, CP87000 Victoria, Tamaulipas, Mexico
| | - Adalberto A Pérez de León
- Knipling-Bushland U.S. Livestock Insects Research Laboratory and Veterinary Pest Genomics Center, United States Department of Agriculture - Agricultural Research Service, 2700 Fredericksburg Road Kerrville, TX 78028-9184, USA
| | | |
Collapse
|
23
|
Lismont E, Mortelmans N, Verlinden H, Vanden Broeck J. Molecular cloning and characterization of the SIFamide precursor and receptor in a hymenopteran insect, Bombus terrestris. Gen Comp Endocrinol 2018; 258:39-52. [PMID: 29127004 DOI: 10.1016/j.ygcen.2017.10.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 10/10/2017] [Accepted: 10/21/2017] [Indexed: 01/09/2023]
Abstract
SIFamides (SIFa) are a family of neuropeptides that are highly conserved among arthropods. In insects, this peptide is mainly expressed in four medial interneurons in the pars intercerebralis and affects sexual behavior, sleep regulation and pupal mortality. Furthermore, an influence on the hatching rate has been observed. The first SIFa receptor (SIFR) was pharmacologically characterized in Drosophila melanogaster and is homologous to the vertebrate gonadotropin-inhibitory hormone (GnIH) receptor (NPFFR). In this study, we pharmacologically characterized the SIFR of the buff-tailed bumblebee Bombus terrestris. We demonstrated an intracellular increase in calcium ions and cyclic AMP (cAMP) upon ligand binding with an EC50 value in the picomolar and nanomolar range, respectively. In addition, we studied the agonistic properties of a range of related and modified peptides. By means of quantitative real time PCR (qPCR), we examined the relative transcript levels of Bomte-SIFa and Bomte-SIFR in a variety of tissues.
Collapse
Affiliation(s)
- Els Lismont
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59 box 2465, B-3000 Leuven, Belgium.
| | - Nele Mortelmans
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59 box 2465, B-3000 Leuven, Belgium.
| | - Heleen Verlinden
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59 box 2465, B-3000 Leuven, Belgium.
| | - Jozef Vanden Broeck
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59 box 2465, B-3000 Leuven, Belgium.
| |
Collapse
|
24
|
Sawadro M, Bednarek A, Babczyńska A. The current state of knowledge on the neuroactive compounds that affect the development, mating and reproduction of spiders (Araneae) compared to insects. INVERTEBRATE NEUROSCIENCE 2017; 17:4. [DOI: 10.1007/s10158-017-0197-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 04/03/2017] [Indexed: 12/19/2022]
|
25
|
Gondalia K, Qudrat A, Bruno B, Fleites Medina J, Paluzzi JPV. Identification and functional characterization of a pyrokinin neuropeptide receptor in the Lyme disease vector, Ixodes scapularis. Peptides 2016; 86:42-54. [PMID: 27667704 DOI: 10.1016/j.peptides.2016.09.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/19/2016] [Accepted: 09/21/2016] [Indexed: 10/21/2022]
Abstract
Pyrokinin-related peptides are pleiotropic factors that are defined by their conserved C-terminal sequence FXPRL-NH2. The pyrokinin nomenclature derives from their originally identified myotropic actions and, as seen in some family members, a blocked amino terminus with pyroglutamate. The black-legged tick, Ixodes scapularis, is well known as a vector of Lyme disease and various other illnesses; however, in comparison to blood-feeding insects, knowledge on its physiology (along with other Ixodid ticks) is rather limited. In this study, we have isolated, examined the expression profile, and functionally deorphanized the pyrokinin peptide receptor in the medically important tick, I. scapularis. Phylogenetic analysis supports that the cloned receptor is indeed a bona fide member of the pyrokinin-related peptide receptor family. The tick pyrokinin receptor transcript expression is most abundant in the central nervous system (i.e. synganglion), but is also detected in trachea, female reproductive tissues, and in a pooled sample comprised of Malpighian (renal) tubules and the hindgut. Finally, functional characterization of the identified receptor confirmed it as a pyrokinin peptide receptor as it was activated equally by four endogenous pyrokinin-related peptides. The receptor was slightly promiscuous as it was also activated by a peptide sharing some structural similarity, namely the CAPA-periviserokinin (CAPA-PVK) peptide. Nonetheless, the I. scapularis pyrokinin receptor required a CAPA-PVK peptide concentration of well over three orders of magnitude to achieve a comparable receptor activation response, which indicates it is quite selective for its native pyrokinin peptide ligands. This study sets the stage for future research to examine the prospective tissue targets identified in order to resolve the physiological roles of this family of peptides in Ixodid ticks.
Collapse
Affiliation(s)
- Kinsi Gondalia
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3, Canada
| | - Anam Qudrat
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3, Canada
| | - Brigida Bruno
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3, Canada
| | - Janet Fleites Medina
- Vivarium Facility, York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3, Canada
| | - Jean-Paul V Paluzzi
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3, Canada.
| |
Collapse
|
26
|
Veenstra JA. Neuropeptide Evolution: Chelicerate Neurohormone and Neuropeptide Genes may reflect one or more whole genome duplications. Gen Comp Endocrinol 2016:S0016-6480(15)00248-8. [PMID: 27838380 DOI: 10.1016/j.ygcen.2015.07.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 07/16/2015] [Accepted: 07/26/2015] [Indexed: 12/16/2022]
Abstract
Four genomes and two transcriptomes from six Chelicerate species were analyzed for the presence of neuropeptide and neurohormone precursors and their GPCRs. The genome from the spider Stegodyphus mimosarum yielded 87 neuropeptide precursors and 101 neuropeptide GPCRs. High neuropeptide transcripts were also found in the trancriptomes of three other spiders, Latrodectus hesperus, Parasteatoda tepidariorum and Acanthoscurria geniculata. For the scorpion Mesobuthus martensii the numbers are 79 and 74 respectively. The very small genome of the house dust mite, Dermatophagoides farinae, on the other hand contains a much smaller number of such genes. A few new putative Arthropod neuropeptide genes were discovered. Thus, both spiders and the scorpion have an achatin gene and in spiders there are two different genes encoding myosuppressin-like peptides while spiders also have two genes encoding novel LGamides. Another finding is the presence of trissin in spiders and scorpions, while neuropeptide genes that seem to be orthologs of Lottia LFRYamide and Platynereis CCRFamide were also found. Such genes were also found in various insect species, but seem to be lacking from the Holometabola. The Chelicerate neuropeptide and neuropeptide GPCR genes often have paralogs. As the large majority of these are probably not due to local gene duplications, is not impossible that they reflect the effects of one or more ancient whole genome duplications.
Collapse
Affiliation(s)
- Jan A Veenstra
- INCIA UMR 5287 CNRS, Université de Bordeaux, Pessac, France.
| |
Collapse
|
27
|
Zhang J, Zhang Y, Li J, Liu M, Liu Z. Midgut Transcriptome of the Cockroach Periplaneta americana and Its Microbiota: Digestion, Detoxification and Oxidative Stress Response. PLoS One 2016; 11:e0155254. [PMID: 27153200 PMCID: PMC4859610 DOI: 10.1371/journal.pone.0155254] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 04/26/2016] [Indexed: 02/01/2023] Open
Abstract
The cockroach, Periplaneta americana, is an obnoxious and notorious pest of the world, with a strong ability to adapt to a variety of complex environments. However, the molecular mechanism of this adaptability is mostly unknown. In this study, the genes and microbiota composition associated with the adaptation mechanism were studied by analyzing the transcriptome and 16S rDNA pyrosequencing of the P. americana midgut, respectively. Midgut transcriptome analysis identified 82,905 unigenes, among which 64 genes putatively involved in digestion (11 genes), detoxification (37 genes) and oxidative stress response (16 genes) were found. Evaluation of gene expression following treatment with cycloxaprid further revealed that the selected genes (CYP6J1, CYP4C1, CYP6K1, Delta GST, alpha-amylase, beta-glucosidase and aminopeptidase) were upregulated at least 2.0-fold at the transcriptional level, and four genes were upregulated more than 10.0-fold. An interesting finding was that three digestive enzymes positively responded to cycloxaprid application. Tissue expression profiles further showed that most of the selected genes were midgut-biased, with the exception of CYP6K1. The midgut microbiota composition was obtained via 16S rDNA pyrosequencing and was found to be mainly dominated by organisms from the Firmicutes phylum, among which Clostridiales, Lactobacillales and Burkholderiales were the main orders which might assist the host in the food digestion or detoxification of noxious compounds. The preponderant species, Clostridium cellulovorans, was previously reported to degrade lignocellulose efficiently in insects. The abundance of genes involved in digestion, detoxification and response to oxidative stress, and the diversity of microbiota in the midgut might provide P. americana high capacity to adapt to complex environments.
Collapse
Affiliation(s)
- Jianhua Zhang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yixi Zhang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Jingjing Li
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Meiling Liu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Zewen Liu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- * E-mail:
| |
Collapse
|
28
|
Veenstra JA. Neuropeptide evolution: Chelicerate neurohormone and neuropeptide genes may reflect one or more whole genome duplications. Gen Comp Endocrinol 2016; 229:41-55. [PMID: 26928473 DOI: 10.1016/j.ygcen.2015.11.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 11/20/2015] [Accepted: 11/29/2015] [Indexed: 01/08/2023]
Abstract
Four genomes and two transcriptomes from six Chelicerate species were analyzed for the presence of neuropeptide and neurohormone precursors and their GPCRs. The genome from the spider Stegodyphus mimosarum yielded 87 neuropeptide precursors and 120 neuropeptide GPCRs. Many neuropeptide transcripts were also found in the transcriptomes of three other spiders, Latrodectus hesperus, Parasteatoda tepidariorum and Acanthoscurria geniculata. For the scorpion Mesobuthus martensii the numbers are 79 and 93 respectively. The very small genome of the house dust mite, Dermatophagoides farinae, on the other hand contains a much smaller number of such genes. A few new putative Arthropod neuropeptide genes were discovered. Thus, both spiders and the scorpion have an achatin gene and in spiders there are two different genes encoding myosuppressin-like peptides while spiders also have two genes encoding novel LGamides. Another finding is the presence of trissin in spiders and scorpions, while neuropeptide genes that seem to be orthologs of Lottia LFRYamide and Platynereis CCRFamide were also found. Such genes were also found in various insect species, but seem to be lacking from the Holometabola. The Chelicerate neuropeptide and neuropeptide GPCR genes often have paralogs. As the large majority of these are probably not due to local gene duplications, is plausible that they reflect the effects of one or more ancient whole genome duplications.
Collapse
Affiliation(s)
- Jan A Veenstra
- INCIA UMR 5287 CNRS, Université de Bordeaux, Pessac, France.
| |
Collapse
|
29
|
Egekwu N, Sonenshine DE, Garman H, Barshis DJ, Cox N, Bissinger BW, Zhu J, M Roe R. Comparison of synganglion neuropeptides, neuropeptide receptors and neurotransmitter receptors and their gene expression in response to feeding in Ixodes scapularis (Ixodidae) vs. Ornithodoros turicata (Argasidae). INSECT MOLECULAR BIOLOGY 2016; 25:72-92. [PMID: 26783017 DOI: 10.1111/imb.12202] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Illumina GAII high-throughput sequencing was used to compare expressed genes for female synganglion neuropeptides, neuropeptide receptors and neurotransmitter receptors of the soft tick Ornithodoros turicata with the hard tick Ixodes scapularis. Gene ontology molecular level three mapping revealed no significant differences amongst the same categories represented in O. turicata and I. scapularis. Transcripts predicting 22 neuropeptides or their receptors in the O. turicata synganglion were similar to annotations for 23 neuropeptides or receptors previously identified from I scapularis, with minor exceptions. A transcript predicting ecdysis triggering hormone receptor was identified in O. turicata; transcripts encoding for proprotein convertase and glycoprotein B were identified in both species. Transcripts predicting the same neurotransmitter receptors were found in the synganglion of both species. Gene expression of the transcripts showed numerous differences in response to feeding. Major differences were observed in expression of genes believed important in regulating slow vs. rapid feeding, blood water elimination, cuticle synthesis plasticity and in signalling reproductive activity. Although the glutamate receptor was strongly upregulated in both species, the gamma aminobutyric acid receptor, which inhibits glutamate, was upregulated significantly only in I. scapularis. These differences are consistent with the slow vs. rapid action of the pharyngeal pump in the two species.
Collapse
Affiliation(s)
- N Egekwu
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA
| | - D E Sonenshine
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA
| | - H Garman
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA
| | - D J Barshis
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA
| | - N Cox
- Eastern Virginia Medical School, Norfolk, VA, USA
| | - B W Bissinger
- Tyra Tech, R&D, Repellents & Animal Health, Morrisville, NC, USA
| | - J Zhu
- Department of Entomology, North Carolina State University, Raleigh, NC, USA
| | - R M Roe
- Department of Entomology, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
30
|
Jiang H, Kim D, Dobesh S, Evans JD, Nachman RJ, Kaczmarek K, Zabrocki J, Park Y. Ligand selectivity in tachykinin and natalisin neuropeptidergic systems of the honey bee parasitic mite Varroa destructor. Sci Rep 2016; 6:19547. [PMID: 26817786 PMCID: PMC4730192 DOI: 10.1038/srep19547] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 11/13/2015] [Indexed: 01/08/2023] Open
Abstract
The varroa mite, Varroa destructor, is a devastating ectoparasite of the honey bees Apis mellifera and A. cerana. Control of these mites in beehives is a challenge in part due to the lack of toxic agents that are specific to mites and not to the host honey bee. In searching for a specific toxic target of varroa mites, we investigated two closely related neuropeptidergic systems, tachykinin-related peptide (TRP) and natalisin (NTL), and their respective receptors. Honey bees lack both NTL and the NTL receptor in their genome sequences, providing the rationale for investigating these receptors to understand their specificities to various ligands. We characterized the receptors for NTL and TRP of V. destructor (VdNTL-R and VdTRP-R, respectively) and for TRP of A. mellifera (AmTRP-R) in a heterologous reporter assay system to determine the activities of various ligands including TRP/NTL peptides and peptidomimetics. Although we found that AmTRP-R is highly promiscuous, activated by various ligands including two VdNTL peptides when a total of 36 ligands were tested, we serendipitously found that peptides carrying the C-terminal motif -FWxxRamide are highly specific to VdTRP-R. This motif can serve as a seed sequence for designing a VdTRP-R-specific agonist.
Collapse
Affiliation(s)
- Hongbo Jiang
- Department of Entomology, Kansas State University, Manhattan, Kansas 66506, United States
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, People’s Republic of China
| | - Donghun Kim
- Department of Entomology, Kansas State University, Manhattan, Kansas 66506, United States
| | - Sharon Dobesh
- Department of Entomology, Kansas State University, Manhattan, Kansas 66506, United States
| | - Jay D. Evans
- Bee Research Laboratory, BARC-E, USDA-Agricultural Research Service, Beltsville, MD 20705, USA
| | - Ronald J. Nachman
- Insect Control and Cotton Disease Research Unit, Southern Plains Agricultural Research Center, USDA, 2881 F/B Road, College Station, TX 77845, United States
| | - Krzysztof Kaczmarek
- Insect Control and Cotton Disease Research Unit, Southern Plains Agricultural Research Center, USDA, 2881 F/B Road, College Station, TX 77845, United States
- Institute of Organic Chemistry, Lodz University of Technology, 90-924 Lodz, Poland
| | - Janusz Zabrocki
- Insect Control and Cotton Disease Research Unit, Southern Plains Agricultural Research Center, USDA, 2881 F/B Road, College Station, TX 77845, United States
- Institute of Organic Chemistry, Lodz University of Technology, 90-924 Lodz, Poland
| | - Yoonseong Park
- Department of Entomology, Kansas State University, Manhattan, Kansas 66506, United States
| |
Collapse
|
31
|
Sellami A, Veenstra JA. SIFamide acts on fruitless neurons to modulate sexual behavior in Drosophila melanogaster. Peptides 2015; 74:50-6. [PMID: 26469541 DOI: 10.1016/j.peptides.2015.10.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 10/07/2015] [Accepted: 10/07/2015] [Indexed: 10/22/2022]
Abstract
The Drosophila gene fruitless expresses male and female specific transcription factors which are responsible for the generation of male specific neuronal circuitry for courtship behavior. Mutations in this gene may lead to bisexual behavior in males. Bisexual behavior in males also occurs in the absence of the neuropeptide SIFamide. We show here that the SIFamide neurons do not express fruitless. However, when fruitless neurons are made to express RNAi specific for the SIFamide receptor, male flies engage in bisexual behavior, showing that SIFamide acts on fruitless neurons. If neurons expressing a SIFaR-gal4 transgene are killed by the apoptotic protein reaper or when these neurons express SIFamide receptor RNAi, males also show male-male courtship behavior. We next used this transgene to localize neurons that express the SIFamide receptor. Such neurons are ubiquitously present in the central nervous and we also found two neurons in the uterus that project into the central nervous system.
Collapse
Affiliation(s)
- Azza Sellami
- Université de Bordeaux, CNRS, INCIA UMR 5287, 33400 Talence, France
| | - Jan A Veenstra
- Université de Bordeaux, CNRS, INCIA UMR 5287, 33400 Talence, France.
| |
Collapse
|
32
|
Ladislav R, Ladislav Š, Akira M, Mirko S, Yoonseong P, Dušan Ž. Orcokinin-like immunoreactivity in central neurons innervating the salivary glands and hindgut of ixodid ticks. Cell Tissue Res 2015; 360:209-22. [PMID: 25792509 DOI: 10.1007/s00441-015-2121-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 01/08/2015] [Indexed: 01/28/2023]
Abstract
Orcokinins are conserved neuropeptides within the Arthropoda but their cellular distribution and functions in ticks are unknown. We use an antibody against the highly conserved N-terminal (NFDEIDR) of mature orcokinin peptides to examine their distribution in six ixodid species: Amblyomma variegatum, Dermacentor reticulatus, Hyalomma anatolicum, Ixodes scapularis, Ixodes ricinus and Rhipicephalus appendiculatus. Numerous immunoreactive neurons (~100) were detected in various regions of the synganglion (central nervous system) in all examined tick species. Immunoreactive projections of two prominent groups of efferent neurons in the post-oesophageal region were examined in detail: (1) neurons innervating the salivary glands; (2) neurons innervating the hindgut. Using matrix-assisted laser desorption/ionisation-time-of-flight (MALDI-TOF), we detected orcokinin peaks in extracts of the synganglia and hindguts but not in the salivary glands of I. scapularis females. Our data provide further evidence of the presence of orcokinin in ixodid ticks and establish a morphological basis for functional studies of identified peptidergic neuronal networks.
Collapse
Affiliation(s)
- Roller Ladislav
- Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia
| | | | | | | | | | | |
Collapse
|
33
|
Williams EA, Conzelmann M, Jékely G. Myoinhibitory peptide regulates feeding in the marine annelid Platynereis. Front Zool 2015; 12:1. [PMID: 25628752 PMCID: PMC4307165 DOI: 10.1186/s12983-014-0093-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 12/12/2014] [Indexed: 11/19/2022] Open
Abstract
Background During larval settlement and metamorphosis, marine invertebrates undergo changes in habitat, morphology, behavior and physiology. This change between life-cycle stages is often associated with a change in diet or a transition between a non-feeding and a feeding form. How larvae regulate changes in feeding during this life-cycle transition is not well understood. Neuropeptides are known to regulate several aspects of feeding, such as food search, ingestion and digestion. The marine annelid Platynereis dumerilii has a complex life cycle with a pelagic non-feeding larval stage and a benthic feeding postlarval stage, linked by the process of settlement. The conserved neuropeptide myoinhibitory peptide (MIP) is a key regulator of larval settlement behavior in Platynereis. Whether MIP also regulates the initiation of feeding, another aspect of the pelagic-to-benthic transition in Platynereis, is currently unknown. Results Here, we explore the contribution of MIP to the regulation of feeding behavior in settled Platynereis postlarvae. We find that in addition to expression in the brain, MIP is expressed in the gut of developing larvae in sensory neurons that densely innervate the hindgut, the foregut, and the midgut. Activating MIP signaling by synthetic neuropeptide addition causes increased gut peristalsis and more frequent pharynx extensions leading to increased food intake. Conversely, morpholino-mediated knockdown of MIP expression inhibits feeding. In the long-term, treatment of Platynereis postlarvae with synthetic MIP increases growth rate and results in earlier cephalic metamorphosis. Conclusions Our results show that MIP activates ingestion and gut peristalsis in Platynereis postlarvae. MIP is expressed in enteroendocrine cells of the digestive system suggesting that following larval settlement, feeding may be initiated by a direct sensory-neurosecretory mechanism. This is similar to the mechanism by which MIP induces larval settlement. The pleiotropic roles of MIP may thus have evolved by redeploying the same signaling mechanism in different aspects of a life-cycle transition. Electronic supplementary material The online version of this article (doi:10.1186/s12983-014-0093-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elizabeth A Williams
- Max Planck Institute for Developmental Biology, Spemannstrasse 35, Tübingen, 72076 Germany
| | - Markus Conzelmann
- Max Planck Institute for Developmental Biology, Spemannstrasse 35, Tübingen, 72076 Germany
| | - Gáspár Jékely
- Max Planck Institute for Developmental Biology, Spemannstrasse 35, Tübingen, 72076 Germany
| |
Collapse
|
34
|
Veenstra JA. The contribution of the genomes of a termite and a locust to our understanding of insect neuropeptides and neurohormones. Front Physiol 2014; 5:454. [PMID: 25477824 PMCID: PMC4237046 DOI: 10.3389/fphys.2014.00454] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 11/03/2014] [Indexed: 12/29/2022] Open
Abstract
The genomes of the migratory locust Locusta migratoria and the termite Zootermopsis nevadensis were mined for the presence of genes encoding neuropeptides, neurohormones, and their G-protein coupled receptors (GPCRs). Both species have retained a larger number of neuropeptide and neuropeptide GPCRs than the better known holometabolous insect species, while other genes that in holometabolous species appear to have a single transcript produce two different precursors in the locust, the termite or both. Thus, the recently discovered CNMa neuropeptide gene has two transcripts predicted to produce two structurally different CNMa peptides in the termite, while the locust produces two different myosuppressin peptides in the same fashion. Both these species also have a calcitonin gene, which is different from the gene encoding the calcitonin-like insect diuretic hormone. This gene produces two types of calcitonins, calcitonins A and B. It is also present in Lepidoptera and Coleoptera and some Diptera, but absent from mosquitoes and Drosophila. However, in holometabolous insect species, only the B transcript is produced. Their putative receptors were also identified. In contrast, Locusta has a highly unusual gene that codes for a salivation stimulatory peptide. The Locusta genes for neuroparsin and vasopressin are particularly interesting. The neuroparsin gene produces five different transcripts, of which only one codes for the neurohormone identified from the corpora cardiaca. The other four transcripts code for neuroparsin-like proteins, which lack four amino acid residues, and that for that reason we called neoneuroparsins. The number of transcripts for the neoneuroparsins is about 200 times larger than the number of neuroparsin transcripts. The first exon and the putative promoter of the vasopressin genes, of which there are about seven copies in the genome, is very well-conserved, but the remainder of these genes is not. The relevance of these findings is discussed.
Collapse
Affiliation(s)
- Jan A Veenstra
- INCIA UMR 5287 CNRS, Université de Bordeaux Pessac, France
| |
Collapse
|