1
|
Li Y, Suo J, Liang R, Liang L, Liu X, Ding J, Suo X, Tang X. Genetic manipulation for the non-model protozoan Eimeria: Advancements, challenges, and future perspective. iScience 2025; 28:112060. [PMID: 40109377 PMCID: PMC11919594 DOI: 10.1016/j.isci.2025.112060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025] Open
Abstract
Eimeria parasites pose a significant global threat to animal health, necessitating improved and cost-effective control measures. Genetic manipulation is pivotal for understanding Eimeria biology and designing targeted control strategies. Recent advancements, including genome sequencing and the development of transient and stable transfection systems, have significantly enhanced insights into the molecular biology of Eimeria. These advancements have paved the way for cutting-edge techniques like CRISPR-Cas9 gene editing. This review summarizes the key milestones in the development of genetic manipulation platforms for Eimeria and their transformative applications, such as the development of next-generation drugs, vaccines, and Eimeria-based vaccine vectors. Furthermore, this review provides insights that could be applicable to the establishment of genetic tools for other protozoan organisms.
Collapse
Affiliation(s)
- Yaru Li
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North) & Key Laboratory of Veterinary Biological Products and Chemical Drugs of MARA, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jingxia Suo
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the MARA, National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Ruiying Liang
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North) & Key Laboratory of Veterinary Biological Products and Chemical Drugs of MARA, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lin Liang
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North) & Key Laboratory of Veterinary Biological Products and Chemical Drugs of MARA, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xianyong Liu
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the MARA, National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jiabo Ding
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North) & Key Laboratory of Veterinary Biological Products and Chemical Drugs of MARA, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xun Suo
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the MARA, National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xinming Tang
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North) & Key Laboratory of Veterinary Biological Products and Chemical Drugs of MARA, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
2
|
Rahman SMR, Alzan HF, Laughery JM, Bastos RG, Ueti MW, Suarez CE. Structural and antigenic characterization of Babesia Bovis HAP2 domains. Sci Rep 2025; 15:7781. [PMID: 40044720 PMCID: PMC11882828 DOI: 10.1038/s41598-025-91359-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 02/19/2025] [Indexed: 03/09/2025] Open
Abstract
The tick-borne apicomplexan parasite Babesia bovis causes bovine babesiosis which leads to enormous food and economic losses around the world. The existing resources to manage this disease are limited and have pitfalls, therefore, introduction of new strategies is urgently needed. B. bovis reproduces sexually in the midgut of its tick vector. HAP2, a well conserved ancient protein, plays a crucial role in the gamete fusion of this parasite and is a strong candidate for developing transmission-blocking vaccines. We previously demonstrated that immunization of cattle with full size B. bovis HAP2 blocks transmission of the parasite by Rhipicephalus microplus. Understanding the conserved structural features and antigenicity of HAP2 protein and its domains will facilitate developing effective methods to control pathogen transmission. In this study, we analyzed and compared AlphaFold2-predicted 3D structure of B. bovis HAP2 with the well-characterized crystal structures of HAP2 of Chlamydomonas reinhardtii and Arabidopsis thaliana. The comparisons and structural analysis resulted in the definition of three domains' sequences, fusion loops, and disulfide bonds in the B. bovis HAP2. In addition, recombinant versions of each three predicted HAP2 domains were recognized by antibodies from HAP2 immunized and transmission-protected cattle, confirming their antigenicity. Remarkably, domain II was highly recognized compared to the other two domains. This study introduces new directions in designing novel functional assays and improved vaccine design through targeting the HAP2 protein.
Collapse
Affiliation(s)
- S M Raihan Rahman
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Heba F Alzan
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
- Parasitology and Animal Diseases Department, National Research Center, Dokki, Giza, Egypt
| | - Jacob M Laughery
- Animal Disease Research Unit, United States Department of Agriculture - Agricultural Research Service, Pullman, WA, USA
| | - Reginaldo G Bastos
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
- Animal Disease Research Unit, United States Department of Agriculture - Agricultural Research Service, Pullman, WA, USA
| | - Massaro W Ueti
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
- Animal Disease Research Unit, United States Department of Agriculture - Agricultural Research Service, Pullman, WA, USA
| | - Carlos E Suarez
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA.
- Animal Disease Research Unit, United States Department of Agriculture - Agricultural Research Service, Pullman, WA, USA.
| |
Collapse
|
3
|
Tiwari M, Gas-Pascual E, Goyal M, Popov M, Matsumoto K, Grafe M, Gräf R, Haltiwanger RS, Olszewski N, Orlando R, Samuelson JC, West CM. Novel antibodies detect nucleocytoplasmic O-fucose in protist pathogens, cellular slime molds, and plants. mSphere 2025; 10:e0094524. [PMID: 39912628 PMCID: PMC11853108 DOI: 10.1128/msphere.00945-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 12/18/2024] [Indexed: 02/07/2025] Open
Abstract
Cellular adaptations to change often involve post-translational modifications of nuclear and cytoplasmic proteins. An example found in protists and plants is the modification of serine and threonine residues of dozens to hundreds of nucleocytoplasmic proteins with a single fucose (O-fucose). A nucleocytoplasmic O-fucosyltransferase occurs in the pathogen Toxoplasma gondii, the social amoeba Dictyostelium, and higher plants, where it is called Spy because mutants have a spindly appearance. O-fucosylation, which is required for optimal proliferation of Toxoplasma and Dictyostelium, is paralogous to the O-GlcNAcylation of nucleocytoplasmic proteins of plants and animals that are involved in stress and nutritional responses. O-fucose was first discovered in Toxoplasma using Aleuria aurantia lectin, but its broad specificity for terminal fucose residues on N- and O-linked glycans in the secretory pathway limits its use. Here we present affinity-purified rabbit antisera that are selective for the detection and enrichment of proteins bearing fucose-O-Ser or fucose-O-Thr. These antibodies detect numerous nucleocytoplasmic proteins in Toxoplasma, Dictyostelium, and Arabidopsis, as well as O-fucose occurring on secretory proteins of Dictyostelium and mammalian cells except when blocked by further glycosylation. The antibodies label Toxoplasma, Acanthamoeba, and Dictyostelium in a pattern reminiscent of O-GlcNAc in animal cells including nuclear pores. The O-fucome of Dictyostelium is partially conserved with that of Toxoplasma and is highly induced during starvation-induced development. These antisera demonstrate the unique antigenicity of O-fucose, document the conservation of the O-fucome among unrelated protists, and enable the study of the O-fucomes of other organisms possessing O-fucosyltransferase-like genes.IMPORTANCEO-fucose (O-Fuc), a form of mono-glycosylation on serine and threonine residues of nuclear and cytoplasmic proteins of some parasites, other unicellular eukaryotes, and plants, is understudied because it is difficult to detect owing to its neutral charge and lability during mass spectrometry. Yet, the O-fucosyltransferase enzyme (OFT) is required for optimal growth of the agent for toxoplasmosis, Toxoplasma gondii, and an unrelated protist, the social amoeba Dictyostelium discoideum. Furthermore, O-fucosylation is closely related to the analogous process of O-GlcNAcylation of thousands of proteins of animal cells, where it plays a central role in stress and nutritional responses. O-Fuc is currently best detected using Aleuria aurantia lectin (AAL), but in most organisms, AAL also recognizes a multitude of proteins in the secretory pathway that are modified with fucose in different ways. By establishing the potential to induce highly specific rabbit antisera that discriminate O-Fuc from all other forms of protein fucosylation, this study expands knowledge about the protist O-fucome and opens a gateway to explore the potential occurrence and roles of this intriguing posttranslational modification in bacteria and other protist pathogens such as Acanthamoeba castellanii.
Collapse
Affiliation(s)
- Megna Tiwari
- Center for Tropical and Emerging Global Diseases, Athens, Georgia, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Elisabet Gas-Pascual
- Center for Tropical and Emerging Global Diseases, Athens, Georgia, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
- Complex Carbohydrate Research Center, Athens, Georgia, USA
| | - Manish Goyal
- Department of Molecular and Cell Biology, Boston University School of Dental Medicine, Boston, Massachusetts, USA
| | | | | | - Marianne Grafe
- Department of Cell Biology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Ralph Gräf
- Department of Cell Biology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Robert S. Haltiwanger
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
- Complex Carbohydrate Research Center, Athens, Georgia, USA
| | - Neil Olszewski
- Department of Plant & Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - Ron Orlando
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
- Complex Carbohydrate Research Center, Athens, Georgia, USA
- GlycoScientific LLC, Athens, Georgia, USA
| | - John C. Samuelson
- Department of Molecular and Cell Biology, Boston University School of Dental Medicine, Boston, Massachusetts, USA
| | - Christopher M. West
- Center for Tropical and Emerging Global Diseases, Athens, Georgia, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
- Complex Carbohydrate Research Center, Athens, Georgia, USA
| |
Collapse
|
4
|
Jonsdottir T, Paoletta M, Ishizaki T, Hernandez S, Ivanova M, Herrera Curbelo A, Saiki P, Selinger M, Das D, Henriksson J, Bushell EC. A scalable CRISPR-Cas9 gene editing system facilitates CRISPR screens in the malaria parasite Plasmodium berghei. Nucleic Acids Res 2025; 53:gkaf005. [PMID: 39844455 PMCID: PMC11754126 DOI: 10.1093/nar/gkaf005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 11/30/2024] [Accepted: 01/09/2025] [Indexed: 01/24/2025] Open
Abstract
Many Plasmodium genes remain uncharacterized due to low genetic tractability. Previous large-scale knockout screens have only been able to target about half of the genome in the more genetically tractable rodent malaria parasite Plasmodium berghei. To overcome this limitation, we have developed a scalable CRISPR system called P. berghei high-throughput (PbHiT), which uses a single cloning step to generate targeting vectors with 100-bp homology arms physically linked to a guide RNA (gRNA) that effectively integrate into the target locus. We show that PbHiT coupled with gRNA sequencing robustly recapitulates known knockout mutant phenotypes in pooled transfections. Furthermore, we provide an online resource of knockout and tagging designs to target the entire P. berghei genome and scale-up vector production using a pooled ligation approach. This work presents for the first time a tool for high-throughput CRISPR screens in Plasmodium for studying the parasite's biology at scale.
Collapse
Affiliation(s)
- Thorey K Jonsdottir
- The Laboratory for Molecular Infection Medicine Sweden, Umeå University, Försörjningsvägen 2A, 901 87 Umeå, Sweden
- Department of Molecular Biology, Umeå University, Försörjningsvägen 2A, 901 87 Umeå, Sweden
| | - Martina S Paoletta
- The Laboratory for Molecular Infection Medicine Sweden, Umeå University, Försörjningsvägen 2A, 901 87 Umeå, Sweden
- Department of Molecular Biology, Umeå University, Försörjningsvägen 2A, 901 87 Umeå, Sweden
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), INTA–CONICET, de Los Reseros y Dr. Nicolás Repetto s/n, P.O. Box 25 (B1712WAA), Hurlingham, Buenos Aires, Argentina
| | - Takahiro Ishizaki
- The Laboratory for Molecular Infection Medicine Sweden, Umeå University, Försörjningsvägen 2A, 901 87 Umeå, Sweden
- Department of Molecular Biology, Umeå University, Försörjningsvägen 2A, 901 87 Umeå, Sweden
- Parasitology and Zoology Unit, Department of Infection and Pathology, School of Veterinary Medicine, Rakuno Gakuen University, 582 Bunkyodai-midorimachi, Ebetsu, Hokkaido, 069-8501, Japan
| | - Sophia Hernandez
- The Laboratory for Molecular Infection Medicine Sweden, Umeå University, Försörjningsvägen 2A, 901 87 Umeå, Sweden
- Department of Molecular Biology, Umeå University, Försörjningsvägen 2A, 901 87 Umeå, Sweden
| | - Maria Ivanova
- The Laboratory for Molecular Infection Medicine Sweden, Umeå University, Försörjningsvägen 2A, 901 87 Umeå, Sweden
- Department of Molecular Biology, Umeå University, Försörjningsvägen 2A, 901 87 Umeå, Sweden
| | - Alicia Herrera Curbelo
- The Laboratory for Molecular Infection Medicine Sweden, Umeå University, Försörjningsvägen 2A, 901 87 Umeå, Sweden
- Department of Molecular Biology, Umeå University, Försörjningsvägen 2A, 901 87 Umeå, Sweden
| | - Paulina A Saiki
- The Laboratory for Molecular Infection Medicine Sweden, Umeå University, Försörjningsvägen 2A, 901 87 Umeå, Sweden
- Department of Molecular Biology, Umeå University, Försörjningsvägen 2A, 901 87 Umeå, Sweden
| | - Martin Selinger
- The Laboratory for Molecular Infection Medicine Sweden, Umeå University, Försörjningsvägen 2A, 901 87 Umeå, Sweden
- Department of Molecular Biology, Umeå University, Försörjningsvägen 2A, 901 87 Umeå, Sweden
| | - Debojyoti Das
- The Laboratory for Molecular Infection Medicine Sweden, Umeå University, Försörjningsvägen 2A, 901 87 Umeå, Sweden
- Department of Molecular Biology, Umeå University, Försörjningsvägen 2A, 901 87 Umeå, Sweden
- Division of Children’s and Women’s Health (BKH), Department of Biomedical and Clinical Sciences (BKV), Linköping University, Sjukhusvägen Building 511, 581 83 Linköping, Sweden
| | - Johan Henriksson
- The Laboratory for Molecular Infection Medicine Sweden, Umeå University, Försörjningsvägen 2A, 901 87 Umeå, Sweden
- Department of Molecular Biology, Umeå University, Försörjningsvägen 2A, 901 87 Umeå, Sweden
- Umeå Center for Microbial Research (UCMR), Umeå University, Universitetstorget 4, 901 87 Umeå, Sweden
- IceLab, Umeå University, Naturvetarhuset, Universitetsvägen, 901 87 Umeå, Sweden
| | - Ellen S C Bushell
- The Laboratory for Molecular Infection Medicine Sweden, Umeå University, Försörjningsvägen 2A, 901 87 Umeå, Sweden
- Department of Molecular Biology, Umeå University, Försörjningsvägen 2A, 901 87 Umeå, Sweden
- Umeå Center for Microbial Research (UCMR), Umeå University, Universitetstorget 4, 901 87 Umeå, Sweden
| |
Collapse
|
5
|
Faloye KO, Tripathi MK, Fakola EG, Adepiti AO, Adesida SA, Oyeleke IO, Adebayo PA, Aregbesola AE, Famuyiwa SO, Akinyele OF. Plasmepsin II inhibitory potential of phytochemicals isolated from African antimalarial plants: a computational approach. J Biomol Struct Dyn 2025; 43:505-520. [PMID: 37968884 DOI: 10.1080/07391102.2023.2283146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 11/08/2023] [Indexed: 11/17/2023]
Abstract
Plamepsin II has been identified as a therapeutic target in the Plasmodium falciparum's life cycle and may lead to a drastic reduction in deaths caused by malaria worldwide. Africa flora is rich in medicinal qualities and possesses both simple and complex bioactive phytochemicals. This study utilized computational approaches like molecular docking, molecular dynamics simulation, quantum chemical calculations and ADMET to evaluate the plasmepsin II inhibitory properties of phytochemicals isolated from African antimalarial plants. Molecular docking was carried out to estimate the binding affinity of 229 phytochemicals whereby ekeberin A, dichamanetin, 10-hydroxyusambaresine, chamuvaritin and diuvaretin were selected. Further, RMSD and RMSF plots from the 100 ns simulation results showed that the screened phytochemicals were stable in the enzyme's binding pocket. The quantum chemical calculation revealed that all the phytochemicals are strong electrophiles, while ekeberin A was identified as the most stable and dichamanetin as the most reactive. Also, ADMET studies established the drug candidacy of the phytochemicals. Thus, these phytochemicals could act as good antimalarial agents after extensive in vitro and in vivo studies.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Kolade O Faloye
- Department of Chemistry, Faculty of Science, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Manish Kumar Tripathi
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Emmanuel G Fakola
- Department of Chemistry, Faculty of Science, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Awodayo O Adepiti
- Department of Pharmacognosy, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Stephen A Adesida
- Department of Pharmacognosy, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Ibukun O Oyeleke
- Department of Pharmacognosy, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Praise A Adebayo
- Department of Pharmacognosy, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Adeola E Aregbesola
- Department of Chemistry, Faculty of Science, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Samson O Famuyiwa
- Department of Chemistry, Faculty of Science, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Olawale F Akinyele
- Department of Chemistry, Faculty of Science, Obafemi Awolowo University, Ile-Ife, Nigeria
| |
Collapse
|
6
|
Webi E, Abkallo HM, Obiero G, Ndegwa P, Xie S, Zhao S, Nene V, Steinaa L. Genome Editing in Apicomplexan Parasites: Current Status, Challenges, and Future Possibilities. CRISPR J 2024; 7:310-326. [PMID: 39387255 DOI: 10.1089/crispr.2024.0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein (Cas) technology has revolutionized genome editing across various biological systems, including the Apicomplexa phylum. This review describes the status, challenges, and applications of CRISPR-Cas9 editing technology in apicomplexan parasites, such as Plasmodium, Toxoplasma, Theileria, Babesia, and Cryptosporidium. The discussion encompasses successfully implemented CRISPR-Cas9-based techniques in these parasites, highlighting the achieved milestones, from precise gene modifications to genome-wide screening. In addition, the review addresses the challenges hampering efficient genome editing, including the parasites' complex life cycles, multiple intracellular stages, and the lack of robust genetic tools. It further explores the ethical and policy considerations surrounding genome editing and the future perspectives of CRISPR-Cas applications in apicomplexan parasites.
Collapse
Affiliation(s)
- Ethel Webi
- Animal and Human Health Program, International Livestock Research Institute, Nairobi, Kenya
- Department of Biochemistry, University of Nairobi, Nairobi, Kenya
| | - Hussein M Abkallo
- Animal and Human Health Program, International Livestock Research Institute, Nairobi, Kenya
| | - George Obiero
- Department of Biochemistry, University of Nairobi, Nairobi, Kenya
| | - Paul Ndegwa
- Department of Biology, University of Nairobi, Nairobi, Kenya
| | - Shengsong Xie
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, P. R. China
| | - Shuhong Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, P. R. China
| | - Vishvanath Nene
- Animal and Human Health Program, International Livestock Research Institute, Nairobi, Kenya
| | - Lucilla Steinaa
- Animal and Human Health Program, International Livestock Research Institute, Nairobi, Kenya
| |
Collapse
|
7
|
Ndawula C, Emudong P, Muwereza N, Currà C. Insights into Theileria transmission-blocking vaccines for East Coast fever control: A disease with an "outdated vaccination approach". Ticks Tick Borne Dis 2024; 15:102386. [PMID: 39128161 DOI: 10.1016/j.ttbdis.2024.102386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 08/13/2024]
Abstract
Instead of using the Infection and Treatment Method (ITM)-based vaccine, is it possible to control East Coast Fever (ECF) through blocking Theileria parva transmission in ticks and cattle? This review pursues this question. It's over 100 years since Arnold Theiler (1912) first illustrated the natural ITM as a vaccination approach against ECF-cattle disease. The approach entails infecting cattle with live Theileria sporozoites and co-treatment with long-acting tetracycline. Building on the ITM principle, the "Muguga"-cocktail ECF vaccine was developed in the 1970s and it remains the only commercially available-one. Although the vaccine induces cattle-protection, the vaccination approach still raises several drawbacks. Of those, the most outstanding is the vaccine-safety. This is implied because after ITM vaccination, cattle revert to T. parva pathogen reservoirs, therefore, during blood meal-acquisition, the ticks co-ingest T. parva pathogens. Ultimately, the pathogens are further transmitted transstadial; from larvae to nymph and nymph-adults and later re-transmitted to cattle during blood-meal acquisition. Consequently, the vaccine-constituting T. parva strains are introduced and (re) spread in non-endemic/ endemic areas. Precisely, rather than eradicating the disease, the ITM vaccination-approach promotes ECF endemicity. With advent of novel vaccination approaches toward vector and vector-borne disease control, ECF-control based on ITM of vaccination is considered outdated. The review highlights the need for embracing a holistic integrative vaccination approach entailing blocking Theileria pathogen-development and transmission both in the ticks and cattle, and/or the tick-population.
Collapse
Affiliation(s)
- C Ndawula
- National Agricultural Research Organization, P.O Box 295, Entebbe, Uganda; National Livestock Resources Research Institute, P.O Box 5704, Wakiso, Uganda.
| | - P Emudong
- National Agricultural Research Organization, P.O Box 295, Entebbe, Uganda; National Livestock Resources Research Institute, P.O Box 5704, Wakiso, Uganda
| | - N Muwereza
- National Agricultural Research Organization, P.O Box 295, Entebbe, Uganda; National Livestock Resources Research Institute, P.O Box 5704, Wakiso, Uganda
| | - C Currà
- Unit of Foodborne and Neglected Parasitic Diseases, Department of Infectious Diseases, ISTITUTO SUPERIORE di SANITÀ, Viale Regina Elena 299, 00161 Rome, Italy
| |
Collapse
|
8
|
Tiwari M, Gas-Pascual E, Goyal M, Popov M, Matsumoto K, Grafe M, Graf R, Haltiwanger RS, Olszewski N, Orlando R, Samuelson J, West CM. Novel antibodies detect nucleocytoplasmic O-fucose in protist pathogens, cellular slime molds, and plants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.618526. [PMID: 39464065 PMCID: PMC11507795 DOI: 10.1101/2024.10.15.618526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Cellular adaptations to change often involve post-translational modifications of nuclear and cytoplasmic proteins. An example found in protists and plants is the modification of serine and threonine residues of dozens to hundreds of nucleocytoplasmic proteins with a single fucose (O-Fuc). A nucleocytoplasmic O-fucosyltransferase (OFT) occurs in the pathogen Toxoplasma gondii, the social amoeba Dictyostelium, and higher plants, where it is called Spy because mutants have a spindly appearance. O-fucosylation, which is required for optimal proliferation of Toxoplasma and Dictyostelium, is paralogous to the O-GlcNAcylation of nucleocytoplasmic proteins of plants and animals that is involved in stress and nutritional responses. O-Fuc was first discovered in Toxoplasma using Aleuria aurantia lectin, but its broad specificity for terminal fucose residues on N- and O-linked glycans in the secretory pathway limits its use. Here we present affinity purified rabbit antisera that are selective for the detection and enrichment of proteins bearing fucose-O-Ser or fucose-O-Thr. These antibodies detect numerous nucleocytoplasmic proteins in Toxoplasma, Dictyostelium, and Arabidopsis, as well as O-Fuc occurring on secretory proteins of Dictyostelium and mammalian cells, although the latter are frequently blocked by further glycosylation. The antibodies label Toxoplasma, Acanthamoeba, and Dictyostelium in a pattern reminiscent of O-GlcNAc in animal cells including nuclear pores. The O-fucome of Dictyostelium is partially conserved with that of Toxoplasma and is highly induced during starvation-induced development. These antisera demonstrate the unique antigenicity of O-Fuc, document conservation of the O-fucome among unrelated protists, and will enable the study of the O-fucomes of other organisms possessing OFT-like genes.
Collapse
Affiliation(s)
- Megna Tiwari
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens GA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens GA
| | - Elisabet Gas-Pascual
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens GA
- Complex Carbohydrate Research Center, University of Georgia, Athens GA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens GA
| | - Manish Goyal
- Department of Molecular and Cell Biology, Boston University School of Medicine, Boston MA
| | | | - Kenjiroo Matsumoto
- Complex Carbohydrate Research Center, University of Georgia, Athens GA
- Current address: Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; U-Medico Inc., 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Marianne Grafe
- Dept. of Cell Biology, Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany
| | - Ralph Graf
- Dept. of Cell Biology, Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany
| | - Robert S. Haltiwanger
- Complex Carbohydrate Research Center, University of Georgia, Athens GA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens GA
| | - Neil Olszewski
- Department of Plant & Microbial Biology, University of Minnesota, 140 Gortner Laboratory, 1479 Gortner Avenue, St. Paul, MN 55108
| | - Ron Orlando
- Complex Carbohydrate Research Center, University of Georgia, Athens GA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens GA
- GlycoScientific LLC, Athens, GA
| | - John Samuelson
- Department of Molecular and Cell Biology, Boston University School of Medicine, Boston MA
| | - Christopher M. West
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens GA
- Complex Carbohydrate Research Center, University of Georgia, Athens GA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens GA
| |
Collapse
|
9
|
Rico-San Román L, Hänggeli KPA, Hemphill A, Horcajo P, Collantes-Fernández E, Ortega-Mora LM, Boubaker G. TaqMan-quantitative PCR assays applied in Neospora caninum knock-outs generated through CRISPR-Cas9 allow to determine the copy numbers of integrated dihydrofolate reductase-thymidylate synthase drug selectable markers. Front Cell Infect Microbiol 2024; 14:1419209. [PMID: 38975328 PMCID: PMC11224286 DOI: 10.3389/fcimb.2024.1419209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/07/2024] [Indexed: 07/09/2024] Open
Abstract
As for many other organisms, CRISPR-Cas9 mediated genetic modification has gained increasing importance for the identification of vaccine candidates and drug targets in Neospora caninum, an apicomplexan parasite causing abortion in cattle and neuromuscular disease in dogs. A widely used approach for generating knock-out (KO) strains devoid of virulence factors is the integration of a drug selectable marker such as mutated dihydrofolate reductase-thymidylate synthase (mdhfr-ts) into the target gene, thus preventing the synthesis of respective protein and mediating resistance to pyrimethamine. However, CRISPR-Cas9 mutagenesis is not free of off-target effects, which can lead to integration of multiple mdhfr-ts copies into other sites of the genome. To determine the number of integrated mdhfr-ts in N. caninum, a duplex quantitative TaqMan PCR was developed. For this purpose, primers were designed that amplifies a 106 bp fragment from wild-type (WT) parasites corresponding to the single copy wtdhfrs-ts gene, as well as the mutated mdhfrs-ts present in KO parasites that confers resistance and were used simultaneously with primers amplifying the diagnostic NC5 gene. Thus, the dhfr-ts to NC5 ratio should be approximately 1 in WT parasites, while in KO parasites with a single integrated mdhrf-ts gene this ratio is doubled, and in case of multiple integration events even higher. This approach was applied to the Neospora KO strains NcΔGRA7 and NcΔROP40. For NcΔGRA7, the number of tachyzoites determined by dhfr-ts quantification was twice the number of tachyzoites determined by NC5 quantification, thus indicating that only one mdhfr-ts copy was integrated. The results obtained with the NcΔROP40 strain, however, showed that the number of dhfr-ts copies per genome was substantially higher, indicating that at least three copies of the selectable mdhfr-ts marker were integrated into the genomic DNA during gene editing by CRISPR-Cas9. This duplex TaqMan-qPCR provides a reliable and easy-to-use tool for assessing CRISPR-Cas9 mediated mutagenesis in WT N. caninum strains.
Collapse
Affiliation(s)
- Laura Rico-San Román
- SALUVET, Animal Health Department, Complutense University of Madrid, Madrid, Spain
| | | | - Andrew Hemphill
- Institute for Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Pilar Horcajo
- SALUVET, Animal Health Department, Complutense University of Madrid, Madrid, Spain
| | | | | | - Ghalia Boubaker
- Institute for Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
10
|
Wang S, Wang J, Li D, Chen F, Luo W, Zhao J, He L. Transfection of Babesia duncani: A Genetic Toolbox of this Pathogen to Advance Babesia Biology. Bio Protoc 2024; 14:e5016. [PMID: 38948263 PMCID: PMC11211078 DOI: 10.21769/bioprotoc.5016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 07/02/2024] Open
Abstract
Human babesiosis is a tick-borne disease caused by Babesia pathogens. The disease, which presents with malaria-like symptoms, can be life-threatening, especially in individuals with weakened immune systems and the elderly. The worldwide prevalence of human babesiosis has been gradually rising, prompting alarm among public health experts. In other pathogens, genetic techniques have proven to be valuable tools for conducting functional studies to understand the importance of specific genes in development and pathogenesis as well as to validate novel cellular targets for drug discovery. Genetic manipulation methods have been established for several non-human Babesia and Theileria species and, more recently, have begun to be developed for human Babesia parasites. We have previously reported the development of a method for genetic manipulation of the human pathogen Babesia duncani. This method is based on positive selection using the hDHFR gene as a selectable marker, whose expression is regulated by the ef-1aB promoter, along with homology regions that facilitate integration into the gene of interest through homologous recombination. Herein, we provide a detailed description of the steps needed to implement this strategy in B. duncani to study gene function. It is anticipated that the implementation of this method will significantly improve our understanding of babesiosis and facilitate the development of novel and more effective therapeutic strategies for the treatment of human babesiosis. Key features This protocol provides an effective means of transfection of B. duncani, enabling genetic manipulation and editing to gain further insights into its biology and pathogenesis. The protocol outlined here for the electroporation of B. duncani represents an advancement over previous methods used for B. bovis [1]. Improvements include higher volume of culture used during the electroporation step and an enhancement in the number of electroporation pulses. These modifications likely enhance the efficiency of gene editing in B. duncani, allowing for quicker and more effective selection of transgenic parasites.
Collapse
Affiliation(s)
- Sen Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, Hubei, China
| | - Jianyu Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, Hubei, China
| | - Dongfang Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, Hubei, China
| | - Fangwei Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, Hubei, China
| | - Wanxin Luo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, Hubei, China
| | - Junlong Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, Hubei, China
| | - Lan He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, Hubei, China
| |
Collapse
|
11
|
Wang B, Zhao N, Sun L, Tan Q, Xiao Q, Chen J, Li J, Zhang X, Zhao X. A candidate virulence factor of Eimeria tenella (EtROP30) predicted by virulence enhancement of transgenic Toxoplasma gondii. Parasitol Res 2023; 123:45. [PMID: 38095706 DOI: 10.1007/s00436-023-08079-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023]
Abstract
Difficulties of in vitro culture and genetic manipulation of Eimeria tenella have hindered the screening of virulence factors in this parasite. In this study, the E. tenella rhoptry protein 30 (EtROP30) was expressed in Toxoplasma gondii (RH∆Ku80-EtROP30), and its effect on the proliferation and virulence of parasites was investigated. The results revealed that the expression of EtROP30 had no impact on the invasion and egress processes. However, the RH∆Ku80-EtROP30 strain formed larger plaques compared to the RH∆Ku80, indicating that the EtROP30 expression promotes T. gondii proliferation. Furthermore, the RH∆Ku80-EtROP30 strain exhibited greater pathogenicity, resulting in earlier mortality and shorter overall survival time compared to RH∆Ku80. These results imply that EtROP30 expression facilitates parasite intracellular proliferation and virulence in mice, suggesting that EtROP30 might be a candidate virulence factor of E. tenella.
Collapse
Affiliation(s)
- Bingxiang Wang
- Pet Disease Prevention and Control Laboratory, Shandong Vocational Animal Science and Veterinary College, Weifang, Shandong, China
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
| | - Ningning Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
| | - Lingyu Sun
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
| | - Qianqian Tan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
| | - Qianqian Xiao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
| | - Junpeng Chen
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
| | - Jinxuan Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
| | - Xiao Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China.
| | - Xiaomin Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China.
| |
Collapse
|
12
|
Cubillos EFG, Snebergerova P, Borsodi S, Reichensdorferova D, Levytska V, Asada M, Sojka D, Jalovecka M. Establishment of a stable transfection and gene targeting system in Babesia divergens. Front Cell Infect Microbiol 2023; 13:1278041. [PMID: 38156314 PMCID: PMC10753763 DOI: 10.3389/fcimb.2023.1278041] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/29/2023] [Indexed: 12/30/2023] Open
Abstract
Babesia divergens is an emerging tick-borne pathogen considered as the principal causative agent of bovine babesiosis in Europe with a notable zoonotic risk to human health. Despite its increasing impact, considerable gaps persist in our understanding of the molecular interactions between this parasite and its hosts. In this study, we address the current limitation of functional genomic tools in B. divergens and introduce a stable transfection system specific to this parasite. We define the parameters for a drug selection system hdhfr-WR99210 and evaluate different transfection protocols for highly efficient generation of transgenic parasites expressing GFP. We proved that plasmid delivery into bovine erythrocytes prior to their infection is the most optimal transfection approach for B. divergens, providing novel evidence of Babesia parasites' ability to spontaneously uptake external DNA from erythrocytes cytoplasm. Furthermore, we validated the bidirectional and symmetrical activity of ef-tgtp promoter, enabling simultaneous expression of external genes. Lastly, we generated a B. divergens knockout line by targeting a 6-cys-e gene locus. The observed dispensability of this gene in intraerythrocytic parasite development makes it a suitable recipient locus for further transgenic application. The platform for genetic manipulations presented herein serves as the initial step towards developing advanced functional genomic tools enabling the discovery of B. divergens molecules involved in host-vector-pathogen interactions.
Collapse
Affiliation(s)
- Eliana F. G. Cubillos
- Faculty of Science, University of South Bohemia in Ceske Budejovice, Ceske Budejovice, Czechia
| | - Pavla Snebergerova
- Faculty of Science, University of South Bohemia in Ceske Budejovice, Ceske Budejovice, Czechia
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czechia
| | - Sarka Borsodi
- Faculty of Science, University of South Bohemia in Ceske Budejovice, Ceske Budejovice, Czechia
| | | | - Viktoriya Levytska
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czechia
| | - Masahito Asada
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido, Obihiro, Japan
| | - Daniel Sojka
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czechia
| | - Marie Jalovecka
- Faculty of Science, University of South Bohemia in Ceske Budejovice, Ceske Budejovice, Czechia
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czechia
| |
Collapse
|
13
|
Liu Q, Liu X, Zhao X, Zhu XQ, Suo X. Live attenuated anticoccidial vaccines for chickens. Trends Parasitol 2023; 39:1087-1099. [PMID: 37770352 DOI: 10.1016/j.pt.2023.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/30/2023] [Accepted: 09/03/2023] [Indexed: 09/30/2023]
Abstract
Chicken coccidiosis, caused by infection with single or multiple Eimeria species, results in significant economic losses to the global poultry industry. Over the past decades, considerable efforts have been made to generate attenuated Eimeria strains, and the use of live attenuated anticoccidial vaccines for disease prevention has achieved tremendous success. In this review, we evaluate the advantages and limitations of the methods of attenuation as well as attenuated Eimeria strains in a historical perspective. Also, we summarize the recent exciting research advances in transient/stable transfection systems and clustered regularly interspaced short palindromic repeats (CRISPR)-based genome editing developed for Eimeria parasites, and discuss trends and challenges of developing live attenuated anticoccidial vaccines based on transgenesis and genome editing.
Collapse
Affiliation(s)
- Qing Liu
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province 030801, PR China
| | - Xianyong Liu
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology and Zoonosis of the Ministry of Agriculture and Rural Affairs, National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing 100093, PR China
| | - Xiaomin Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong Province 271018, PR China
| | - Xing-Quan Zhu
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province 030801, PR China.
| | - Xun Suo
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology and Zoonosis of the Ministry of Agriculture and Rural Affairs, National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing 100093, PR China.
| |
Collapse
|
14
|
Feix AS, Cruz-Bustos T, Ruttkowski B, Joachim A. In vitro cultivation methods for coccidian parasite research. Int J Parasitol 2023; 53:477-489. [PMID: 36400306 DOI: 10.1016/j.ijpara.2022.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/29/2022] [Accepted: 10/09/2022] [Indexed: 11/17/2022]
Abstract
The subclass Coccidia comprises a large group of protozoan parasites, including important pathogens of humans and animals such as Toxoplasma gondii, Neospora caninum, Eimeria spp., and Cystoisospora spp. Their life cycle includes a switch from asexual to sexual stages and is often restricted to a single host species. Current research on coccidian parasites focuses on cell biology and the underlying mechanisms of protein expression and trafficking in different life stages, host cell invasion and host-parasite interactions. Furthermore, novel anticoccidial drug targets are evaluated. Given the variety of research questions and the requirement to reduce and replace animal experimentation, in vitro cultivation of Coccidia needs to be further developed and refined to meet these requirements. For these purposes, established culture systems are constantly improved. In addition, new in vitro culture systems lately gained considerable importance in research on Coccidia. Well established and optimized in vitro cultures of monolayer cells can support the viability and development of parasite stages and even allow completion of the life cycle in vitro, as shown for Cystoisospora suis and Eimeria tenella. Furthermore, new three-dimensional cell culture models are used for propagation of Cryptosporidium spp. (close relatives of the coccidians), and the infection of three-dimensional organoids with T. gondii also gained popularity as the interaction between the parasite and host tissue can be studied in more detail. The latest advances in three-dimensional culture systems are organ-on-a-chip models, that to date have only been tested for T. gondii but promise to accelerate research in other coccidians. Lastly, the completion of the life cycle of C. suis and Cryptosporidium parvum was reported to continue in a host cell-free environment following the first occurrence of asexual stages. Such axenic cultures are becoming increasingly available and open new avenues for research on parasite life cycle stages and novel intervention strategies.
Collapse
Affiliation(s)
- Anna Sophia Feix
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, A-1210 Vienna, Austria.
| | - Teresa Cruz-Bustos
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, A-1210 Vienna, Austria
| | - Bärbel Ruttkowski
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, A-1210 Vienna, Austria
| | - Anja Joachim
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, A-1210 Vienna, Austria
| |
Collapse
|
15
|
Florin-Christensen M, Sojka D, Ganzinelli S, Šnebergerová P, Suarez CE, Schnittger L. Degrade to survive: the intricate world of piroplasmid proteases. Trends Parasitol 2023; 39:532-546. [PMID: 37271664 DOI: 10.1016/j.pt.2023.04.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 06/06/2023]
Abstract
Piroplasmids of the genera Babesia, Theileria, and Cytauxzoon are tick-transmitted parasites with a high impact on animals and humans. They have complex life cycles in their definitive arthropod and intermediate vertebrate hosts involving numerous processes, including invasion of, and egress from, host cells, parasite growth, transformation, and migration. Like other parasitic protozoa, piroplasmids are equipped with different types of protease to fulfill many of such essential processes. Blockade of some key proteases, using inhibitors or antibodies, hinders piroplasmid growth, highlighting their potential usefulness in drug therapies and vaccine development. A better understanding of the functional significance of these enzymes will contribute to the development of improved control measures for the devastating animal and human diseases caused by these pathogens.
Collapse
Affiliation(s)
- Monica Florin-Christensen
- Instituto de Patobiología Veterinaria, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas (CICVyA), INTA-Castelar, Los Reseros y Nicolas Repetto s/n, Hurlingham 1686, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires C1033AAJ, Argentina.
| | - Daniel Sojka
- Institute of Parasitology, Biology Centre, Academy of Sciences of the Czech Republic, Branišovská 1160/31, CZ-37005 České Budějovice, Czech Republic
| | - Sabrina Ganzinelli
- Instituto de Patobiología Veterinaria, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas (CICVyA), INTA-Castelar, Los Reseros y Nicolas Repetto s/n, Hurlingham 1686, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires C1033AAJ, Argentina
| | - Pavla Šnebergerová
- Institute of Parasitology, Biology Centre, Academy of Sciences of the Czech Republic, Branišovská 1160/31, CZ-37005 České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, CZ-370 05 České Budějovice, Czech Republic
| | - Carlos E Suarez
- Washington State University/Animal Disease Research Unit USDA, Pullman, WA, USA
| | - Leonhard Schnittger
- Instituto de Patobiología Veterinaria, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas (CICVyA), INTA-Castelar, Los Reseros y Nicolas Repetto s/n, Hurlingham 1686, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires C1033AAJ, Argentina
| |
Collapse
|
16
|
Elsworth B, Keroack C, Rezvani Y, Paul A, Barazorda K, Tennessen J, Sack S, Moreira C, Gubbels MJ, Meyers M, Zarringhalam K, Duraisingh M. Babesia divergens egress from host cells is orchestrated by essential and druggable kinases and proteases. RESEARCH SQUARE 2023:rs.3.rs-2553721. [PMID: 36909484 PMCID: PMC10002801 DOI: 10.21203/rs.3.rs-2553721/v1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Apicomplexan egress from host cells is fundamental to the spread of infection and is poorly characterized in Babesia spp., parasites of veterinary importance and emerging zoonoses. Through the use of video microscopy, transcriptomics and chemical genetics, we have implicated signaling, proteases and gliding motility as key drivers of egress by Babesia divergens. We developed reverse genetics to perform a knockdown screen of putative mediators of egress, identifying kinases and proteases involved in distinct steps of egress (ASP3, PKG and CDPK4) and invasion (ASP2, ASP3 and PKG). Inhibition of egress leads to continued intracellular replication, indicating exit from the replication cycle is uncoupled from egress. Chemical genetics validated PKG, ASP2 and ASP3 as druggable targets in Babesia spp. All taken together, egress in B. divergens more closely resembles T. gondii than the more evolutionarily-related Plasmodium spp. We have established a molecular framework for biological and translational studies of B. divergens egress.
Collapse
|
17
|
Deleting ku80 improves the efficiency of targeted gene editing in Neospora caninum. Mol Biochem Parasitol 2022; 251:111508. [PMID: 35963548 DOI: 10.1016/j.molbiopara.2022.111508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 07/16/2022] [Accepted: 08/01/2022] [Indexed: 11/24/2022]
Abstract
CRISPR/Cas9 technology has been widely used for gene editing in organisms. Gene deletion of the ku80/ku70 complex can improve the efficiency of gene replacement in Arabidopsis thaliana, Cryptococcus neoformans, and Toxoplasma gondii, which remained elusive in Neospora caninum. Here, we knock out the ku80 gene in Nc1 strain by using CRISPR/Cas9, detect the growth rate and virulence of NcΔku80. Then we compare the efficiency of gene replacements between NcΔku80 and Nc1 strains by transfected with the same HA-tagged plasmids, and the percentage of HA-tagged parasites was investigated by IFA. The results showed that gene targeting efficiency was increased in the NcΔku80 strain via double crossover at several genetic loci, but its growth rate and virulence were unaffected. In conclusion, the NcΔku80 strain can be used as an effective strain for rapid gene editing of N. caninum.
Collapse
|
18
|
Paoletta MS, Wilkowsky SE. Thrombospondin Related Anonymous Protein Superfamily in Vector-Borne Apicomplexans: The Parasite’s Toolkit for Cell Invasion. Front Cell Infect Microbiol 2022; 12:831592. [PMID: 35463644 PMCID: PMC9019593 DOI: 10.3389/fcimb.2022.831592] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/07/2022] [Indexed: 11/23/2022] Open
Abstract
Apicomplexan parasites transmitted by vectors, including Babesia spp. and Plasmodium spp., cause severe disease in both humans and animals. These parasites have a complex life cycle during which they migrate, invade, and replicate in contrasting hosts such as the mammal and the invertebrate vector. The interaction of parasites with the host cell is mediated by adhesive proteins which play a key role in the different cellular processes regarding successful progression of the life cycle. Thrombospondin related anonymous protein (TRAP) is a superfamily of adhesins that are involved in motility, invasion and egress of the parasite. These proteins are stored and released from apical organelles and have either one or two types of adhesive domains, namely thrombospondin type 1 repeat and von Willebrand factor type A, that upon secretion are located in the extracellular portion of the molecule. Proteins from the TRAP superfamily have been intensively studied in Plasmodium species and to a lesser extent in Babesia spp., where they have proven to be functionally relevant throughout the entire parasite’s journey both in the arthropod vector and in the mammalian host. In recent years new findings provided answers to the role of TRAP proteins and in some cases the function of these adhesins during the parasite’s life cycle was redefined. In this review we will discuss the current knowledge of the diverse roles of the TRAP superfamily in vector-borne parasites from Class Aconoidasida. We will focus on the varied approaches that allowed the understanding of protein function and the relevance of TRAP- superfamily throughout the entire parasite’s cell cycle.
Collapse
|
19
|
Wang S, Li D, Chen F, Jiang W, Luo W, Zhu G, Zhao J, He L. Establishment of a Transient and Stable Transfection System for Babesia duncani Using a Homologous Recombination Strategy. Front Cell Infect Microbiol 2022; 12:844498. [PMID: 35463640 PMCID: PMC9019647 DOI: 10.3389/fcimb.2022.844498] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/04/2022] [Indexed: 11/18/2022] Open
Abstract
Genetic modification provides an invaluable molecular tool to dissect the biology and pathogenesis of pathogens. However, no report is available about the genetic modification of Babesia duncani, a pathogen responsible for human babesiosis that is widespread in North America, suggesting the necessity to develop a genetic manipulation method to improve the strategies for studying and understanding the biology of protozoan pathogens. The establishment of a genetic modification method requires promoters, selectable markers, and reporter genes. Here, the double-copy gene elongation factor-1α (ef-1α) and its promoters were amplified by conventional PCR and confirmed by sequencing. We established a transient transfection system by using the ef-1αB promoter and the reporter gene mCherry and achieved stable transfection through homologous recombination to integrate the selection marker hDHFR-eGFP into the parasite genome. The potential of this genetic modification method was tested by knocking out the thioredoxin peroxidase-1 (TPX-1) gene, and under the drug pressure of 5 nM WR99210, 96.3% of the parasites were observed to express green fluorescence protein (eGFP) by flow cytometry at day 7 post-transfection. Additionally, the clone line of the TPX-1 knockout parasite was successfully obtained by the limiting dilution method. This study provided a transfection method for B. duncani, which may facilitate gene function research and vaccine development of B. duncani.
Collapse
Affiliation(s)
- Sen Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Dongfang Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fangwei Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Weijun Jiang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wanxin Luo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Guan Zhu
- Key Laboratory of Zoonosis Research of the Ministry of Education, the Institute of Zoonosis, and the College of Veterinary Medicine, Jilin University, Changchun, China
| | - Junlong Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Lan He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Lan He,
| |
Collapse
|
20
|
Genetic Disruption of Toxoplasma gondii peroxiredoxin (TgPrx) 1 and 3 Reveals the Essential Role of TgPrx3 in Protecting Mice from Fatal Consequences of Toxoplasmosis. Int J Mol Sci 2022; 23:ijms23063076. [PMID: 35328497 PMCID: PMC8951120 DOI: 10.3390/ijms23063076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/06/2022] [Accepted: 03/10/2022] [Indexed: 11/17/2022] Open
Abstract
Toxoplasma gondii is a worldwide protozoan parasite that endangers human health and causes enormous economic losses to the animal production sector. A safe and effective vaccine or treatment is needed to reduce these hazards. In this study, we revealed the cyto-nuclear and mitochondrial localization of TgPrx1 and TgPrx3 proteins, respectively. We knocked out the T. gondii peroxiredoxin (TgPrxKO) 1 and 3 genes using a parental type II Prugniaud strain lacking KU80 and HXGPRT genes (PruΔku80Δhxgprt) via CRISPR-Cas9 technology. The successful KO was confirmed using PCR, IFAT, and Western blotting in two clones of both target genes, named TgPrx1KO and TgPrx3KO. Regarding in vitro assays, no significant variations between any of the knocked-out clones in TgPrx1KO or TgPrx3KO parasite strains, or even PruΔku80Δhxgprt, were obtained in rates of infection, proliferation, or egress. Nevertheless, mice that were infected with tachyzoites of the TgPrx3KO strain showed a marked decrease in survival rate compared with TgPrx1KO- and PruΔku80Δhxgprt-infected mice. This effect was confirmed using different mouse strains (ICR and C57BL/6J mice), sexes (male and female), and immunological backgrounds (ICR and SCID mice). In addition, TgPrx1KO and TgPrx3KO induced high levels of interferon gamma (IFN-γ) in infected mice at 8 days post infection, and increased IL-6 and IL-12p40 production from murine macrophages cultivated in vitro. The results of the present study suggested that TgPrx3 can induce anti-T. gondii immune responses that protect the mice from fatal consequences of toxoplasmosis. The results of our current and previous studies represent TgPrx3 as an excellent candidate for sub-unit vaccines, suggesting it may contribute to the control of toxoplasmosis for susceptible humans and animals.
Collapse
|
21
|
Hendawy SHM, Alzan HF, Tanaka T, Mahmoud MS. Fundamental Tick Vaccinomic Approach to Evade Host Autoimmune Reaction. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2411:343-358. [PMID: 34816415 DOI: 10.1007/978-1-0716-1888-2_20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Ticks are obligate hematophagous ectoparasites that infect domestic animals, humans, and wildlife. Ticks can transmit a wide range of pathogens (viruses, rickettsia, bacteria, parasites, etc.), and some of those are of zoonotic importance. Tick-borne diseases have a negative economic impact in several tropical and subtropical countries. With climate change, tick distribution and tick-associated pathogens have increased. Currently, tick control procedures have more environmental drawbacks and there are pitfalls in vaccination process. Since vaccinations have helped to prevent several diseases and infections, several vaccination trials are ongoing to control ticks and tick-borne pathogens. However, autoimmune reactions to vaccinations are reported as an adverse reaction since vaccines were used to protect against disease in humans and animals. The antibodies against the vaccine antigen might harm similar antigen in the host. Therefore, in this chapter, we attempt to shed light on the importance of raising awareness of possible adverse events associated with vaccinations and the methods that should be used to address this problem. In silico and lab work should be performed ahead of the vaccination process to evaluate the vaccine candidates and avoid the vaccination opposing consequences.
Collapse
Affiliation(s)
- Seham H M Hendawy
- Parasitology and Animal Diseases Department, Veterinary Research Division, National Research Centre, Cairo, Egypt.,Tick and Tick-Borne Diseases Research Unit, Veterinary Research Division, National Research Centre, Cairo, Egypt
| | - Heba F Alzan
- Parasitology and Animal Diseases Department, Veterinary Research Division, National Research Centre, Cairo, Egypt.,Tick and Tick-Borne Diseases Research Unit, Veterinary Research Division, National Research Centre, Cairo, Egypt.,Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Tetsuya Tanaka
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan.
| | - Mona S Mahmoud
- Parasitology and Animal Diseases Department, Veterinary Research Division, National Research Centre, Cairo, Egypt.,Tick and Tick-Borne Diseases Research Unit, Veterinary Research Division, National Research Centre, Cairo, Egypt
| |
Collapse
|
22
|
Bastos RG, Alzan HF, Rathinasamy VA, Cooke BM, Dellagostin OA, Barletta RG, Suarez CE. Harnessing Mycobacterium bovis BCG Trained Immunity to Control Human and Bovine Babesiosis. Vaccines (Basel) 2022; 10:123. [PMID: 35062784 PMCID: PMC8781211 DOI: 10.3390/vaccines10010123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 01/02/2023] Open
Abstract
Babesiosis is a disease caused by tickborne hemoprotozoan apicomplexan parasites of the genus Babesia that negatively impacts public health and food security worldwide. Development of effective and sustainable vaccines against babesiosis is currently hindered in part by the absence of definitive host correlates of protection. Despite that, studies in Babesia microti and Babesia bovis, major causative agents of human and bovine babesiosis, respectively, suggest that early activation of innate immune responses is crucial for vertebrates to survive acute infection. Trained immunity (TI) is defined as the development of memory in vertebrate innate immune cells, allowing more efficient responses to subsequent specific and non-specific challenges. Considering that Mycobacterium bovis bacillus Calmette-Guerin (BCG), a widely used anti-tuberculosis attenuated vaccine, induces strong TI pro-inflammatory responses, we hypothesize that BCG TI may protect vertebrates against acute babesiosis. This premise is supported by early investigations demonstrating that BCG inoculation protects mice against experimental B. microti infection and recent observations that BCG vaccination decreases the severity of malaria in children infected with Plasmodium falciparum, a Babesia-related parasite. We also discuss the potential use of TI in conjunction with recombinant BCG vaccines expressing Babesia immunogens. In conclusion, by concentrating on human and bovine babesiosis, herein we intend to raise awareness of BCG TI as a strategy to efficiently control Babesia infection.
Collapse
Affiliation(s)
- Reginaldo G. Bastos
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-7040, USA;
| | - Heba F. Alzan
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-7040, USA;
- Parasitology and Animal Diseases Department, Veterinary Research Institute, National Research Center, Giza 12622, Egypt
| | - Vignesh A. Rathinasamy
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4870, Australia; (V.A.R.); (B.M.C.)
| | - Brian M. Cooke
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4870, Australia; (V.A.R.); (B.M.C.)
| | - Odir A. Dellagostin
- Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas 96010-900, Rio Grande Do Sul, Brazil;
| | - Raúl G. Barletta
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583-0905, USA;
| | - Carlos E. Suarez
- Animal Disease Research Unit, United States Department of Agriculture-Agricultural Research Service, Pullman, WA 99164-7040, USA
| |
Collapse
|
23
|
Mesa-Pineda C, Navarro-Ruíz JL, López-Osorio S, Chaparro-Gutiérrez JJ, Gómez-Osorio LM. Chicken Coccidiosis: From the Parasite Lifecycle to Control of the Disease. Front Vet Sci 2021; 8:787653. [PMID: 34993246 PMCID: PMC8724208 DOI: 10.3389/fvets.2021.787653] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/29/2021] [Indexed: 11/26/2022] Open
Abstract
The poultry industry is one of the main providers of protein for the world's population, but it faces great challenges including coccidiosis, one of the diseases with the most impact on productive performance. Coccidiosis is caused by protozoan parasites of the genus Eimeria, which are a group of monoxenous obligate intracellular parasites. Seven species of this genus can affect chickens (Gallus gallus), each with different pathogenic characteristics and targeting a specific intestinal location. Eimeria alters the function of the intestinal tract, generating deficiencies in the absorption of nutrients and lowering productive performance, leading to economic losses. The objective of this manuscript is to review basic concepts of coccidiosis, the different Eimeria species that infect chickens, their life cycle, and the most sustainable and holistic methods available to control the disease.
Collapse
Affiliation(s)
| | - Jeffer L. Navarro-Ruíz
- CIBAV Research Group, Facultad de Ciencias Agrarias, Universidad de Antioquia, Medellín, Colombia
| | - Sara López-Osorio
- CIBAV Research Group, Facultad de Ciencias Agrarias, Universidad de Antioquia, Medellín, Colombia
| | | | | |
Collapse
|
24
|
Cruz-Bustos T, Feix AS, Ruttkowski B, Joachim A. Sexual Development in Non-Human Parasitic Apicomplexa: Just Biology or Targets for Control? Animals (Basel) 2021; 11:ani11102891. [PMID: 34679913 PMCID: PMC8532714 DOI: 10.3390/ani11102891] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Cellular reproduction is a key part of the apicomplexan life cycle, and both mitotic (asexual) and meiotic (sexual) cell divisions produce new individual cells. Sexual reproduction in most eukaryotic taxa indicates that it has had considerable success during evolution, and it must confer profound benefits, considering its significant costs. The phylum Apicomplexa consists of almost exclusively parasitic single-celled eukaryotic organisms that can affect a wide host range of animals from invertebrates to mammals. Their development is characterized by complex steps in which asexual and sexual replication alternate and the fertilization of a macrogamete by a microgamete results in the formation of a zygote that undergoes meiosis, thus forming a new generation of asexual stages. In apicomplexans, sex is assumed to be induced by the (stressful) condition of having to leave the host, and either gametes or zygotes (or stages arising from it) are transmitted to a new host. Therefore, sex and meiosis are linked to parasite transmission, and consequently dissemination, which are key to the parasitic lifestyle. We hypothesize that improved knowledge of the sexual biology of the Apicomplexa will be essential to design and implement effective transmission-blocking strategies for the control of the major parasites of this group. Abstract The phylum Apicomplexa is a major group of protozoan parasites including gregarines, coccidia, haemogregarines, haemosporidia and piroplasms, with more than 6000 named species. Three of these subgroups, the coccidia, hemosporidia, and piroplasms, contain parasites that cause important diseases of humans and animals worldwide. All of them have complex life cycles involving a switch between asexual and sexual reproduction, which is key to their development. Fertilization (i.e., fusion of female and male cells) results in the formation of a zygote that undergoes meiosis, forming a new generation of asexual stages. In eukaryotes, sexual reproduction is the predominant mode of recombination and segregation of DNA. Sex is well documented in many protist groups, and together with meiosis, is frequently linked with transmission to new hosts. Apicomplexan sexual stages constitute a bottleneck in the life cycle of these parasites, as they are obligatory for the development of new transmissible stages. Consequently, the sexual stages represent attractive targets for vaccination. Detailed understanding of apicomplexan sexual biology will pave the way for the design and implementation of effective transmission-blocking strategies for parasite control. This article reviews the current knowledge on the sexual development of Apicomplexa and the progress in transmission-blocking vaccines for their control, their advantages and limitations and outstanding questions for the future.
Collapse
|
25
|
Wang X, Wang J, Liu J, Yang J, Lv Z, Liu A, Li Y, Li Y, Lan H, Liu G, Luo J, Guan G, Yin H. Establishment of a transient transfection system for Babesia sp. Xinjiang using homologous promoters. Parasitol Res 2021; 120:3625-3630. [PMID: 34414508 DOI: 10.1007/s00436-021-07250-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/13/2021] [Indexed: 01/22/2023]
Abstract
Babesia species, the agentic pathogens of human and animal babesiosis, are spread worldwide. Over the last decade, genetic manipulation approaches have been applied with many protozoan parasites, including Plasmodium falciparum, Trypanosoma cruzi, Cryptosporidium parvum, Theileria annulata, Theileria parva, Babesia bovis, Babesia bigemina, Babesia ovata, Babesia gibsoni, and Babesia ovis. For Babesia sp. Xinjiang (BspXJ), which is the causative pathogen of ovine babesiosis mainly in China, the efficiency of these techniques remains unclear. Firstly, a plasmid bearing the elongation factor-1 alpha promoter and the firefly luciferase reporter gene and rap stop region were transfected into BspXJ by electroporation and nucleoporation to determine the most suitable transfection solution. Then, six program settings were evaluated to confirm the best for BspXJ transient transfection, and a series of different amounts of plasmid DNA were transfected to generate relatively high luminescence values. Finally, the activities of four promoters derived from BspXJ were evaluated using the developed transient transfection system. After evaluating of various transfection parameters, the human T cell nucleofector solution, program V-024 and 20 μg of plasmid DNA were selected as the most favorable conditions for BspXJ transient transfection. These findings provide critical information for BspXJ genetic manipulation, an essential tool to identify virulence factors and to further elucidate the basic biology of this parasite.
Collapse
Affiliation(s)
- Xiaoxing Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, China
| | - Jinming Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, China
| | - Junlong Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, China
| | - Jifei Yang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, China
| | - Zhaoyong Lv
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, China
| | - Aihong Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, China
| | - Youquan Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, China
| | - Yubin Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, China
| | - Haiou Lan
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, China
| | - Guangyuan Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, China
| | - Jianxun Luo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, China
| | - Guiquan Guan
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, China.
| | - Hong Yin
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, China. .,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
26
|
Broichhagen J, Kilian N. Chemical Biology Tools To Investigate Malaria Parasites. Chembiochem 2021; 22:2219-2236. [PMID: 33570245 PMCID: PMC8360121 DOI: 10.1002/cbic.202000882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/10/2021] [Indexed: 02/06/2023]
Abstract
Parasitic diseases like malaria tropica have been shaping human evolution and history since the beginning of mankind. After infection, the response of the human host ranges from asymptomatic to severe and may culminate in death. Therefore, proper examination of the parasite's biology is pivotal to deciphering unique molecular, biochemical and cell biological processes, which in turn ensure the identification of treatment strategies, such as potent drug targets and vaccine candidates. However, implementing molecular biology methods for genetic manipulation proves to be difficult for many parasite model organisms. The development of fast and straightforward applicable alternatives, for instance small-molecule probes from the field of chemical biology, is essential. In this review, we will recapitulate the highlights of previous molecular and chemical biology approaches that have already created insight and understanding of the malaria parasite Plasmodium falciparum. We discuss current developments from the field of chemical biology and explore how their application could advance research into this parasite in the future. We anticipate that the described approaches will help to close knowledge gaps in the biology of P. falciparum and we hope that researchers will be inspired to use these methods to gain knowledge - with the aim of ending this devastating disease.
Collapse
Affiliation(s)
- Johannes Broichhagen
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)Robert-Roessle-Strasse 1013125BerlinGermany
| | - Nicole Kilian
- Centre for Infectious DiseasesParasitologyHeidelberg University HospitalIm Neuenheimer Feld 32469120HeidelbergGermany
| |
Collapse
|
27
|
Tuvshintulga B, Nugraha AB, Mizutani T, Liu M, Ishizaki T, Sivakumar T, Xuan X, Yokoyama N, Igarashi I. Development of a stable transgenic Theileria equi parasite expressing an enhanced green fluorescent protein/blasticidin S deaminase. Sci Rep 2021; 11:9107. [PMID: 33907262 PMCID: PMC8079379 DOI: 10.1038/s41598-021-88594-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/12/2021] [Indexed: 11/09/2022] Open
Abstract
Theileria equi, an intraerythrocytic protozoan parasite, causes equine piroplasmosis, a disease which negatively impacts the global horse industry. Genetic manipulation is one of the research tools under development as a control method for protozoan parasites, but this technique needs to be established for T. equi. Herein, we report on the first development of a stable transgenic T. equi line expressing enhanced green fluorescent protein/blasticidin S deaminase (eGFP/BSD). To express the exogenous fusion gene in T. equi, regulatory regions of the elongation factor-1 alpha (ef-1α) gene were identified in T. equi. An eGFP/BSD-expression cassette containing the ef-1α gene promoter and terminator regions was constructed and integrated into the T. equi genome. On day 9 post-transfection, blasticidin-resistant T. equi emerged. In the clonal line of T. equi obtained by limiting dilution, integration of the eGFP/BSD-expression cassette was confirmed in the designated B-locus of the ef-1α gene via PCR and Southern blot analyses. Parasitaemia dynamics between the transgenic and parental T. equi lines were comparable in vitro. The eGFP/BSD-expressing transgenic T. equi and the methodology used to generate it offer new opportunities for better understanding of T. equi biology, with the add-on possibility of discovering effective control methods against equine piroplasmosis.
Collapse
Affiliation(s)
- Bumduuren Tuvshintulga
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan.,Institute of Veterinary Medicine, Mongolian University of Life Sciences, Zaisan, Ulaanbaatar, 17024, Mongolia
| | - Arifin Budiman Nugraha
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan.,Department of Animal Infectious Diseases and Veterinary Public Health, Faculty of Veterinary Medicine, IPB University, Jl. Agatis, Kampus IPB Dramaga, Bogor, Jawa Barat, 16680, Indonesia
| | - Tomoka Mizutani
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Mingming Liu
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Takahiro Ishizaki
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, 852-8523, Japan
| | - Thillaiampalam Sivakumar
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Xuenan Xuan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Naoaki Yokoyama
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan.
| | - Ikuo Igarashi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
| |
Collapse
|
28
|
Paoletta MS, Laughery JM, Arias LSL, Ortiz JMJ, Montenegro VN, Petrigh R, Ueti MW, Suarez CE, Farber MD, Wilkowsky SE. The key to egress? Babesia bovis perforin-like protein 1 (PLP1) with hemolytic capacity is required for blood stage replication and is involved in the exit of the parasite from the host cell. Int J Parasitol 2021; 51:643-658. [PMID: 33753093 DOI: 10.1016/j.ijpara.2020.12.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 11/27/2020] [Accepted: 12/03/2020] [Indexed: 12/18/2022]
Abstract
Bovine babesiosis is a tick-borne disease caused by apicomplexan parasites of the Babesia genus that represents a major constraint to livestock production worldwide. Currently available vaccines are based on live parasites which have archetypal limitations. Our goal is to identify candidate antigens so that new and effective vaccines against Babesia may be developed. The perforin-like protein (PLP) family has been identified as a key player in cell traversal and egress in related apicomplexans and it was also identified in Babesia, but its function in this parasite remains unknown. The aim of this work was to define the PLP family in Babesia and functionally characterize PLP1, a representative member of the family in Babesia bovis. Bioinformatic analyses demonstrate a variable number of plp genes (four to eight) in the genomes of six different Babesia spp. and conservation of the family members at the secondary and tertiary structure levels. We demonstrate here that Babesia PLPs contain the critical domains present in other apicomplexan PLPs to display the lytic capacity. We then focused on the functional characterization of PLP1 of B. bovis, both in vitro and in vivo. PLP1 is expressed and exposed to the host immune system during infection and has high hemolytic capacity under a wide range of conditions in vitro. A B. bovis plp1 knockout line displayed a decreased growth rate in vitro compared with the wild type strain and a peculiar phenotype consisting of multiple parasites within a single red blood cell, although at low frequency. This phenotype suggests that the lack of PLP1 has a negative impact on the mechanism of egression of the parasite and, therefore, on its capacity to proliferate. It is possible that PLP1 is associated with other proteins in the processes of invasion and egress, which were found to have redundant mechanisms in related apicomplexans. Future work will be focused on unravelling the network of proteins involved in these essential parasite functions.
Collapse
Affiliation(s)
- Martina Soledad Paoletta
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO) INTA - CONICET, De Los Reseros y Dr. Nicolás Repetto s/n, P.O. Box 25 (B1712WAA), Castelar, Buenos Aires, Argentina
| | - Jacob Michael Laughery
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA
| | - Ludmila Sol López Arias
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO) INTA - CONICET, De Los Reseros y Dr. Nicolás Repetto s/n, P.O. Box 25 (B1712WAA), Castelar, Buenos Aires, Argentina
| | - José Manuel Jaramillo Ortiz
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO) INTA - CONICET, De Los Reseros y Dr. Nicolás Repetto s/n, P.O. Box 25 (B1712WAA), Castelar, Buenos Aires, Argentina
| | - Valeria Noely Montenegro
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO) INTA - CONICET, De Los Reseros y Dr. Nicolás Repetto s/n, P.O. Box 25 (B1712WAA), Castelar, Buenos Aires, Argentina
| | - Romina Petrigh
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO) INTA - CONICET, De Los Reseros y Dr. Nicolás Repetto s/n, P.O. Box 25 (B1712WAA), Castelar, Buenos Aires, Argentina
| | - Massaro W Ueti
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA; Animal Disease Research Unit, USDA-ARS, Washington State University, 3003 ADBF, P.O. Box 646630, Pullman, WA 99164, USA
| | - Carlos Esteban Suarez
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA; Animal Disease Research Unit, USDA-ARS, Washington State University, 3003 ADBF, P.O. Box 646630, Pullman, WA 99164, USA
| | - Marisa Diana Farber
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO) INTA - CONICET, De Los Reseros y Dr. Nicolás Repetto s/n, P.O. Box 25 (B1712WAA), Castelar, Buenos Aires, Argentina
| | - Silvina Elizabeth Wilkowsky
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO) INTA - CONICET, De Los Reseros y Dr. Nicolás Repetto s/n, P.O. Box 25 (B1712WAA), Castelar, Buenos Aires, Argentina.
| |
Collapse
|
29
|
The repertoire of serine rhomboid proteases of piroplasmids of importance to animal and human health. Int J Parasitol 2021; 51:455-462. [PMID: 33610524 DOI: 10.1016/j.ijpara.2020.10.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 10/24/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023]
Abstract
Babesia, Theileria and Cytauxzoon are tick-borne apicomplexan protozoans of the order Piroplasmida, notorious for the diseases they cause in livestock, pets and humans. Host cell invasion is their Achilles heel, allowing for the development of drug or vaccine-based therapies. In other apicomplexans, cleavage of the transmembrane domain of adhesins by the serine rhomboid proteinase ROM4 is required for successful completion of invasion. In this study, we record and classify the rhomboid repertoire encoded in the genomes of 10 piroplasmid species pertaining to the lineages Babesia sensu stricto (s.s., Clade VI), Theileria sensu stricto (Clade IV), Theileria equi (Clade IV), Cytauxzoon felis (Clade IIIb) and Babesia microti (Clade I), as defined by Schnittger et al. (2012). Fifty-six piroplasmid rhomboid-like proteins were assigned by phylogenetic analysis and bidirectional best hit to the ROM4, ROM6, ROM7 or ROM8 groups, and their crucial motifs for conformation and function were identified. Forty-four of these rhomboids had either been incorrectly classified or misannotated. Babesia s.s. encode five or three ROM4 proteinase paralogs, whereas the remaining piroplasmids encode two ROM4 paralogs. All piroplasmids encode a single ROM6, ROM7 and ROM8. Thus, an increased paralog number of ROM4 is the only feature distinguishing Babesia s.s. from other piroplasmid lineages. Piroplasmid ROM6 is related to the mammalian mitochondrial rhomboid and, accordingly, N-terminal mitochondrial targeting signal sequences was found in some cases. ROM6 is the only rhomboid encoded by piroplasmids that is ubiquitous in other organisms. ROM8 represents a pseudoproteinase that is highly conserved between studied piroplasmids, suggesting that it is important in regulatory functions. ROM4, ROM6, ROM7 and ROM8 are exclusively present in Aconoidasida, which comprises piroplasmids and Plasmodium, suggesting a relevant functional role in erythrocyte invasion. The correct classification and designation of piroplasmid rhomboids presented in this study facilitates an informed choice for future in-depth study of their functions.
Collapse
|
30
|
Florin-Christensen M, Rodriguez AE, Suárez CE, Ueti MW, Delgado FO, Echaide I, Schnittger L. N-Glycosylation in Piroplasmids: Diversity within Simplicity. Pathogens 2021; 10:50. [PMID: 33429911 PMCID: PMC7826898 DOI: 10.3390/pathogens10010050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 02/03/2023] Open
Abstract
N-glycosylation has remained mostly unexplored in Piroplasmida, an order of tick-transmitted pathogens of veterinary and medical relevance. Analysis of 11 piroplasmid genomes revealed three distinct scenarios regarding N-glycosylation: Babesia sensu stricto (s.s.) species add one or two N-acetylglucosamine (NAcGlc) molecules to proteins; Theileria equi and Cytauxzoon felis add (NAcGlc)2-mannose, while B. microti and Theileria s.s. synthesize dolichol-P-P-NAcGlc and dolichol-P-P-(NAcGlc)2 without subsequent transfer to proteins. All piroplasmids possess the gene complement needed for the synthesis of the N-glycosylation substrates, dolichol-P and sugar nucleotides. The oligosaccharyl transferase of Babesia species, T. equi and C. felis, is predicted to be composed of only two subunits, STT3 and Ost1. Occurrence of short N-glycans in B. bovis merozoites was experimentally demonstrated by fluorescence microscopy using a NAcGlc-specific lectin. In vitro growth of B. bovis was significantly impaired by tunicamycin, an inhibitor of N-glycosylation, indicating a relevant role for N-glycosylation in this pathogen. Finally, genes coding for N-glycosylation enzymes and substrate biosynthesis are transcribed in B. bovis blood and tick stages, suggesting that this pathway is biologically relevant throughout the parasite life cycle. Elucidation of the role/s exerted by N-glycans will increase our understanding of these successful parasites, for which improved control measures are needed.
Collapse
Affiliation(s)
- Monica Florin-Christensen
- Instituto de Patobiología Veterinaria (INTA-CONICET), CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham 1686, Argentina; (A.E.R.); (F.O.D.); (L.S.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires C1033AAJ, Argentina
| | - Anabel E. Rodriguez
- Instituto de Patobiología Veterinaria (INTA-CONICET), CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham 1686, Argentina; (A.E.R.); (F.O.D.); (L.S.)
| | - Carlos E. Suárez
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99163, USA; (C.E.S.); (M.W.U.)
- Animal Disease Research Unit, United States Department of Agricultural-Agricultural Research Service, Pullman, WA 99163, USA
| | - Massaro W. Ueti
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99163, USA; (C.E.S.); (M.W.U.)
- Animal Disease Research Unit, United States Department of Agricultural-Agricultural Research Service, Pullman, WA 99163, USA
| | - Fernando O. Delgado
- Instituto de Patobiología Veterinaria (INTA-CONICET), CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham 1686, Argentina; (A.E.R.); (F.O.D.); (L.S.)
| | - Ignacio Echaide
- Estación Experimental Agrícola INTA-Rafaela, Santa Fe, Provincia de Buenos Aires S2300, Argentina;
| | - Leonhard Schnittger
- Instituto de Patobiología Veterinaria (INTA-CONICET), CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham 1686, Argentina; (A.E.R.); (F.O.D.); (L.S.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires C1033AAJ, Argentina
| |
Collapse
|
31
|
Bovine Babesiosis in Turkey: Impact, Current Gaps, and Opportunities for Intervention. Pathogens 2020; 9:pathogens9121041. [PMID: 33322637 PMCID: PMC7763958 DOI: 10.3390/pathogens9121041] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 12/11/2022] Open
Abstract
Bovine babesiosis is a global tick-borne disease that causes important cattle losses and has potential zoonotic implications. The impact of bovine babesiosis in Turkey remains poorly characterized, but several Babesia spp., including B. bovis, B. bigemina, and B. divergens, among others and competent tick vectors, except Rhipicephalus microplus, have been recently identified in the country. Bovine babesiosis has been reported in all provinces but is more prevalent in central and highly humid areas in low and medium altitude regions of the country housing approximately 70% of the cattle population. Current control measures include acaricides and babesicidal drugs, but not live vaccines. Despite the perceived relevant impact of bovine babesiosis in Turkey, basic research programs focused on developing in vitro cultures of parasites, point-of-care diagnostic methods, vaccine development, “omics” analysis, and gene manipulation techniques of local Babesia strains are scarce. Additionally, no effective and coordinated control efforts managed by a central animal health authority have been established to date. Development of state-of-the-art research programs in bovine babesiosis to address current gaps in knowledge and implementation of long-term plans to control the disease will surely result in important economic, nutritional, and public health benefits for the country and the region.
Collapse
|
32
|
Vinayak S. Recent advances in genetic manipulation of Cryptosporidium. Curr Opin Microbiol 2020; 58:146-152. [PMID: 33161368 DOI: 10.1016/j.mib.2020.09.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 01/06/2023]
Abstract
Cryptosporidium is a leading cause of diarrhea-associated morbidity and mortality in young children. Currently, there is no fully effective drug to treat cryptosporidiosis and a complete lack of vaccine to prevent disease. For a long time, progress in the field of Cryptosporidium research has been hindered due to unavailability of methods to propagate the parasite, lack of efficient animal infection models and most importantly, the absence of technology to genetically manipulate the parasite. The recent advent of molecular genetics has been transformative for Cryptosporidium research, and is facilitating our fundamental understanding of parasite biology, and accelerating the pace of drug discovery. This review summarizes recent advancements in genetic manipulation and its applications for studying parasite gene function, host-parasite interactions and discovery of anti-cryptosporidial drugs.
Collapse
Affiliation(s)
- Sumiti Vinayak
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, United States.
| |
Collapse
|
33
|
Kinetic characterization of a novel cysteine peptidase from the protozoan Babesia bovis, a potential target for drug design. Biochimie 2020; 179:127-134. [PMID: 32946988 DOI: 10.1016/j.biochi.2020.09.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/12/2020] [Indexed: 11/22/2022]
Abstract
C1A cysteine peptidases have been shown to play an important role during apicomplexan invasion and egress of host red blood cells (RBCs) and therefore have been exploited as targets for drug development, in which peptidase specificity is deterministic. Babesia bovis genome is currently available and from the 17 putative cysteine peptidases annotated four belong to the C1A subfamily. In this study, we describe the biochemical characterization of a C1A cysteine peptidase, named here BbCp (B. bovis cysteine peptidase) and evaluate its possible participation in the parasite asexual cycle in host RBCs. The recombinant protein was obtained in bacterial inclusion bodies and after a refolding process, presented typical kinetic features of the cysteine peptidase family, enhanced activity in the presence of a reducing agent, optimum pH between 6.5 and 7.0 and was inhibited by cystatins from R. microplus. Moreover, rBbCp substrate specificity evaluation using a peptide phage display library showed a preference for Val > Leu > Phe. Finally, antibodies anti-rBbCp were able to interfere with B. bovis growth in vitro, which highlights the BbCp as a potential target for drug design.
Collapse
|
34
|
Bishop RP, Odongo D, Ahmed J, Mwamuye M, Fry LM, Knowles DP, Nanteza A, Lubega G, Gwakisa P, Clausen PH, Obara I. A review of recent research on Theileria parva: Implications for the infection and treatment vaccination method for control of East Coast fever. Transbound Emerg Dis 2020; 67 Suppl 1:56-67. [PMID: 32174044 DOI: 10.1111/tbed.13325] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/17/2019] [Accepted: 08/05/2019] [Indexed: 12/29/2022]
Abstract
The infection and treatment (ITM) live vaccination method for control of Theileria parva infection in cattle is increasingly being adopted, particularly in Maasai pastoralist systems. Several studies indicate positive impacts on human livelihoods. Importantly, the first detailed protocol for live vaccine production at scale has recently been published. However, quality control and delivery issues constrain vaccination sustainability and deployment. There is evidence that the distribution of T. parva is spreading from endemic areas in East Africa, North into Southern Sudan and West into Cameroon, probably as a result of anthropogenic movement of cattle. It has also recently been demonstrated that in Kenya, T. parva derived from cape buffalo can 'breakthrough' the immunity induced by ITM. However, in Tanzania, breakthrough has not been reported in areas where cattle co-graze with buffalo. It has been confirmed that buffalo in northern Uganda national parks are not infected with T. parva and R. appendiculatus appears to be absent, raising issues regarding vector distribution. Recently, there have been multiple field population genetic studies using variable number tandem repeat (VNTR) sequences and sequencing of antigen genes encoding targets of CD8+ T-cell responses. The VNTR markers generally reveal high levels of diversity. The antigen gene sequences present within the trivalent Muguga cocktail are relatively conserved among cattle transmissible T. parva populations. By contrast, greater genetic diversity is present in antigen genes from T. parva of buffalo origin. There is also evidence from several studies for transmission of components of stocks present within the Muguga cocktail, into field ticks and cattle following induction of a carrier state by immunization. In the short term, this may increase live vaccine effectiveness, through a more homogeneous challenge, but the long-term consequences are unknown.
Collapse
Affiliation(s)
- Richard P Bishop
- Department of Veterinary Microbiology & Pathology, Washington State University, Pullman, WA, USA
| | - David Odongo
- School of Biological Sciences, University of Nairobi, Nairobi, Kenya
| | - Jabbar Ahmed
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Micky Mwamuye
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Lindsay M Fry
- Department of Veterinary Microbiology & Pathology, Washington State University, Pullman, WA, USA.,Animal Disease Research Unit, Agricultural Research Service, US Department of Agriculture, Pullman, WA, USA
| | - Donald P Knowles
- Department of Veterinary Microbiology & Pathology, Washington State University, Pullman, WA, USA
| | - Anne Nanteza
- College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - George Lubega
- College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Paul Gwakisa
- Genome Science Laboratory, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Peter-Henning Clausen
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Isaiah Obara
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
35
|
Sander VA, Sánchez López EF, Mendoza Morales L, Ramos Duarte VA, Corigliano MG, Clemente M. Use of Veterinary Vaccines for Livestock as a Strategy to Control Foodborne Parasitic Diseases. Front Cell Infect Microbiol 2020; 10:288. [PMID: 32670892 PMCID: PMC7332557 DOI: 10.3389/fcimb.2020.00288] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/14/2020] [Indexed: 12/19/2022] Open
Abstract
Foodborne diseases (FBDs) are a major concern worldwide since they are associated with high mortality and morbidity in the human population. Among the causative agents of FBDs, Taenia solium, Echinococcus granulosus, Toxoplasma gondii, Cryptosporidium spp., and Trichinella spiralis are listed in the top global risk ranking of foodborne parasites. One common feature between them is that they affect domestic livestock, encompassing an enormous risk to global food production and human health from farm to fork, infecting animals, and people either directly or indirectly. Several approaches have been employed to control FBDs caused by parasites, including veterinary vaccines for livestock. Veterinary vaccines against foodborne parasites not only improve the animal health by controlling animal infections but also contribute to increase public health by controlling an important source of FBDs. In the present review, we discuss the advances in the development of veterinary vaccines for domestic livestock as a strategy to control foodborne parasitic diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Marina Clemente
- Laboratorio de Molecular Farming y Vacunas, Unidad Biotecnológica 6-UB6, INTECH, UNSAM-CONICET, Chascomús, Argentina
| |
Collapse
|
36
|
Bhowmick B, Han Q. Understanding Tick Biology and Its Implications in Anti-tick and Transmission Blocking Vaccines Against Tick-Borne Pathogens. Front Vet Sci 2020; 7:319. [PMID: 32582785 PMCID: PMC7297041 DOI: 10.3389/fvets.2020.00319] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 05/11/2020] [Indexed: 12/13/2022] Open
Abstract
Ticks are obligate blood-feeding ectoparasites that transmit a wide variety of pathogens to animals and humans in many parts of the world. Currently, tick control methods primarily rely on the application of chemical acaricides, which results in the development of resistance among tick populations and environmental contamination. Therefore, an alternative tick control method, such as vaccines have been shown to be a feasible strategy that offers a sustainable, safe, effective, and environment-friendly solution. Nevertheless, novel control methods are hindered by a lack of understanding of tick biology, tick-pathogen-host interface, and identification of effective antigens in the development of vaccines. This review highlights the current knowledge and data on some of the tick-protective antigens that have been identified for the formulation of anti-tick vaccines along with the effects of these vaccines on the control of tick-borne diseases.
Collapse
Affiliation(s)
- Biswajit Bhowmick
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, China
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Qian Han
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, China
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, China
| |
Collapse
|
37
|
Fatoba AJ, Adeleke MA. Transgenic Eimeria parasite: A potential control strategy for chicken coccidiosis. Acta Trop 2020; 205:105417. [PMID: 32105666 DOI: 10.1016/j.actatropica.2020.105417] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/22/2020] [Accepted: 02/22/2020] [Indexed: 10/24/2022]
Abstract
Poultry industry has been very instrumental in curtailing malnutrition and poverty and as such contributing to economic growth. However, production loss in poultry industry due to parasitic disease such as coccidiosis has become a global challenge. Chicken coccidiosis is an enteric disease that is associated with morbidity and mortality. The control of this parasite through anticoccidial live vaccines and drugs has been very successful though with some limitations such as the cost of production of live vaccines, and drugs resistance which is a public health concern. The discovery of Eimeria vaccine antigens such as Apical membrane antigens (AMA)-1 and Immune mapped protein (IMP)-1 have introduced the use of recombinant vaccines as alternative control measures against chicken coccidiosis. Although some protections have been reported among recombinant vaccines, improving their protective efficacy has triggered the search for a novel and efficient delivery vehicle. Transgenic Eimeria, which is constructed either through stable or transient transfection is currently being explored as novel delivery vehicle of Eimeria vaccine antigens. Due to partial protections reported in chickens vaccinated with transgenic Eimeria lines expressing different Eimeria antigens, improving protective efficacy becomes imperative. Recent trends in the design of transgenic Eimeria for potential application in the control of chicken coccidiosis are summarized in this review. We conclude that, with improved protective efficacy using multiple vaccine antigens, transgenic Eimeria parasite could fill the gap in the control of chicken coccidiosis as an efficient anticoccidial vaccine.
Collapse
|
38
|
Ganley JG, Derbyshire ER. Linking Genes to Molecules in Eukaryotic Sources: An Endeavor to Expand Our Biosynthetic Repertoire. Molecules 2020; 25:E625. [PMID: 32023950 PMCID: PMC7036892 DOI: 10.3390/molecules25030625] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 01/23/2020] [Accepted: 01/30/2020] [Indexed: 02/06/2023] Open
Abstract
The discovery of natural products continues to interest chemists and biologists for their utility in medicine as well as facilitating our understanding of signaling, pathogenesis, and evolution. Despite an attenuation in the discovery rate of new molecules, the current genomics and transcriptomics revolution has illuminated the untapped biosynthetic potential of many diverse organisms. Today, natural product discovery can be driven by biosynthetic gene cluster (BGC) analysis, which is capable of predicting enzymes that catalyze novel reactions and organisms that synthesize new chemical structures. This approach has been particularly effective in mining bacterial and fungal genomes where it has facilitated the discovery of new molecules, increased the understanding of metabolite assembly, and in some instances uncovered enzymes with intriguing synthetic utility. While relatively less is known about the biosynthetic potential of non-fungal eukaryotes, there is compelling evidence to suggest many encode biosynthetic enzymes that produce molecules with unique bioactivities. In this review, we highlight how the advances in genomics and transcriptomics have aided natural product discovery in sources from eukaryotic lineages. We summarize work that has successfully connected genes to previously identified molecules and how advancing these techniques can lead to genetics-guided discovery of novel chemical structures and reactions distributed throughout the tree of life. Ultimately, we discuss the advantage of increasing the known biosynthetic space to ease access to complex natural and non-natural small molecules.
Collapse
Affiliation(s)
- Jack G Ganley
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC 27708-0346, USA
| | - Emily R Derbyshire
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC 27708-0346, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, 213 Research Drive, Durham, NC 27710, USA
| |
Collapse
|
39
|
Gerace E, Lo Presti VDM, Biondo C. Cryptosporidium Infection: Epidemiology, Pathogenesis, and Differential Diagnosis. Eur J Microbiol Immunol (Bp) 2019; 9:119-123. [PMID: 31934363 PMCID: PMC6945992 DOI: 10.1556/1886.2019.00019] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 08/16/2019] [Indexed: 12/12/2022] Open
Abstract
Cryptosporidium is a protozoan that infects a wide variety of vertebrates, including humans, causing acute gastroenteritis. The disease manifests with abdominal pain and diarrhea similar to that of choleric infection. In the immunocompromised hosts, the parasite causes prolonged infections that can also be fatal. For this reason, cryptosporidiosis is considered one of riskiest opportunistic infections for patients with acquired immunodeficiency syndrome. The best way to control the infection in these patients is setting up sensitive and specific diagnostic tests for epidemiological surveillance and morbidity reduction. Here, we summarized the general aspects of Cryptosporidium infection focusing on available diagnostic tools used for the diagnosis of cryptosporidiosis. Molecular methods currently available for its detection and progress in the development of new diagnostics for cryptosporidiosis are also discussed.
Collapse
Affiliation(s)
| | | | - Carmelo Biondo
- Laboratory of Microbiology and Parasitology, Departments of Human Pathology, University of Messina, Messina, Italy
| |
Collapse
|
40
|
Rosa C, Asada M, Hakimi H, Domingos A, Pimentel M, Antunes S. Transient transfection of Babesia ovis using heterologous promoters. Ticks Tick Borne Dis 2019; 10:101279. [PMID: 31481343 DOI: 10.1016/j.ttbdis.2019.101279] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 08/13/2019] [Accepted: 08/23/2019] [Indexed: 01/23/2023]
Abstract
Babesia species, etiological agents of babesiosis, a recognized emerging tick-borne disease, are a significant animal and human health concern with a worldwide socio-economic impact. The development of genetic manipulation techniques, such as transfection technology, is pivotal to improve knowledge regarding the biology of these poorly studied parasites towards better disease control strategies. For Babesia ovis, responsible for ovine babesiosis, a tick-borne disease of small ruminants, these tools are not yet available. The present study was based on the existence of interchangeable cross-species functional promoters between Babesia species. Herein, we describe for the first time B. ovis transient transfection using two heterologous promoters, the ef-1α-B intergenic regions from B. bovis and B. ovata. Their ability to drive expression of a reporter luciferase in B. ovis supports their cross-species functionality. Also, the ef-1α-B promoter region from B. ovata resulted in statistically significantly higher luminescence values in comparison to the control, thus a possibly suitable promoter for stable gene expression. Evaluation of transfection efficiency using qPCR demonstrated that higher luminescence levels were due to promoter strength rather than a higher transfection efficiency. These findings represent a step forward in the development of methods for B. ovis genetic manipulation, an undoubtedly necessary tool to study this parasite basic biology, including its life cycle, the parasite interactions with host cells and virulence factors.
Collapse
Affiliation(s)
- Catarina Rosa
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisboa, Portugal; Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa (IHMT-UNL), R. da Junqueira 100, 1349-008, Lisboa, Portugal.
| | - Masahito Asada
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Sakamoto 1-12-4, Nagasaki, 852-8523, Japan
| | - Hassan Hakimi
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Sakamoto 1-12-4, Nagasaki, 852-8523, Japan
| | - Ana Domingos
- Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa (IHMT-UNL), R. da Junqueira 100, 1349-008, Lisboa, Portugal; Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa (GHTM-IHMT-UNL), Rua da Junqueira, 100, 1349-008, Portugal
| | - Madalena Pimentel
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisboa, Portugal
| | - Sandra Antunes
- Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa (IHMT-UNL), R. da Junqueira 100, 1349-008, Lisboa, Portugal; Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa (GHTM-IHMT-UNL), Rua da Junqueira, 100, 1349-008, Portugal
| |
Collapse
|
41
|
Lander N, Chiurillo MA. State-of-the-art CRISPR/Cas9 Technology for Genome Editing in Trypanosomatids. J Eukaryot Microbiol 2019; 66:981-991. [PMID: 31211904 DOI: 10.1111/jeu.12747] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/12/2019] [Accepted: 06/12/2019] [Indexed: 12/23/2022]
Abstract
CRISPR/Cas9 technology has revolutionized biology. This prokaryotic defense system against foreign DNA has been repurposed for genome editing in a broad range of cell tissues and organisms. Trypanosomatids are flagellated protozoa belonging to the order Kinetoplastida. Some of its most representative members cause important human diseases affecting millions of people worldwide, such as Chagas disease, sleeping sickness and different forms of leishmaniases. Trypanosomatid infections represent an enormous burden for public health and there are no effective treatments for most of the diseases they cause. Since the emergence of the CRISPR/Cas9 technology, the genetic manipulation of these parasites has notably improved. As a consequence, genome editing is now playing a key role in the functional study of proteins, in the characterization of metabolic pathways, in the validation of alternative targets for antiparasitic interventions, and in the study of parasite biology and pathogenesis. In this work we review the different strategies that have been used to adapt the CRISPR/Cas9 system to Trypanosoma cruzi, Trypanosoma brucei, and Leishmania spp., as well as the research progress achieved using these approaches. Thereby, we will present the state-of-the-art molecular tools available for genome editing in trypanosomatids to finally point out the future perspectives in the field.
Collapse
Affiliation(s)
- Noelia Lander
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia, 30602
| | - Miguel A Chiurillo
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia, 30602
| |
Collapse
|
42
|
Interplay between Attenuation- and Virulence-Factors of Babesia bovis and Their Contribution to the Establishment of Persistent Infections in Cattle. Pathogens 2019; 8:pathogens8030097. [PMID: 31277392 PMCID: PMC6789890 DOI: 10.3390/pathogens8030097] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/27/2019] [Accepted: 06/29/2019] [Indexed: 12/21/2022] Open
Abstract
Bovine babesiosis is an acute and persistent tick-borne global disease caused mainly by the intraerythrocytic apicomplexan parasites Babesia bovis and B. bigemina. B. bovis infected erythrocytes sequester in blood capillaries of the host (cytoadhesion), causing malaria-like neurological signs. Cytoadhesion and antigenic variation in B. bovis are linked to the expression of members of the Variant Erythrocyte Surface Antigen (VESA) gene family. Animals that survive acute B. bovis infection and those vaccinated with attenuated strains remain persistently infected, suggesting that B. bovis parasites use immune escape mechanisms. However, attenuated B. bovis parasites do not cause neurological signs in vaccinated animals, indicating that virulence or attenuation factors play roles in modulating parasite virulence phenotypes. Artificial overexpression of the SBP2t11 protein, a defined attenuation factor, was associated with reduced cytoadhesion, suggesting a role for this protein as a key modulator of virulence in the parasite. Hereby, we propose a model that might be functional in the modulation of B. bovis virulence and persistence that relies on the interplay among SBP2t, VESA proteins, cytoadhesion, and the immune responses of the host. Elucidation of mechanisms used by the parasite to establish persistent infection will likely contribute to the design of new methods for the control of bovine babesiosis.
Collapse
|
43
|
Sander VA, Corigliano MG, Clemente M. Promising Plant-Derived Adjuvants in the Development of Coccidial Vaccines. Front Vet Sci 2019; 6:20. [PMID: 30809529 PMCID: PMC6379251 DOI: 10.3389/fvets.2019.00020] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/18/2019] [Indexed: 01/15/2023] Open
Abstract
Coccidial parasites cause medical and veterinary diseases worldwide, frequently leading to severe illness and important economic losses. At present, drugs, chemotherapeutics and prophylactic vaccines are still missing for most of the coccidial infections. Moreover, the development and administration of drugs and chemotherapeutics against these diseases would not be adequate in livestock, since they may generate unacceptable residues in milk and meat that would avoid their commercialization. In this scenario, prophylactic vaccines emerge as the most suitable approach. Subunit vaccines have proven to be biologically safe and economically viable, allowing researchers to choose among the best antigens against each pathogen. However, they are generally poorly immunogenic and require the addition of adjuvant compounds to the vaccine formulation. During the last decades, research involving plant immunomodulatory compounds has become an important field of study based on their potential pharmaceutical applications. Some plant molecules such as saponins, polysaccharides, lectins and heat shock proteins are being explored as candidates for adjuvant/carriers formulations. Moreover, plant-derived immune stimulatory compounds open the possibility to attain the main goal in adjuvant research: a safe and non-toxic adjuvant capable of strongly boosting and directing immune responses that could be incorporated into different vaccine formulations, including mucosal vaccines. Here, we review the immunomodulatory properties of several plant molecules and discuss their application and future perspective as adjuvants in the development of vaccines against coccidial infections.
Collapse
Affiliation(s)
- Valeria A Sander
- Unidad de Biotecnología 6-UB6, Instituto Tecnológico Chascomús (INTECh), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Nacional de General San Martín (UNSAM), Chascomús, Argentina
| | - Mariana G Corigliano
- Unidad de Biotecnología 6-UB6, Instituto Tecnológico Chascomús (INTECh), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Nacional de General San Martín (UNSAM), Chascomús, Argentina
| | - Marina Clemente
- Unidad de Biotecnología 6-UB6, Instituto Tecnológico Chascomús (INTECh), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Nacional de General San Martín (UNSAM), Chascomús, Argentina
| |
Collapse
|
44
|
Suarez CE, Alzan HF, Silva MG, Rathinasamy V, Poole WA, Cooke BM. Unravelling the cellular and molecular pathogenesis of bovine babesiosis: is the sky the limit? Int J Parasitol 2019; 49:183-197. [PMID: 30690089 PMCID: PMC6988112 DOI: 10.1016/j.ijpara.2018.11.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/21/2018] [Accepted: 11/21/2018] [Indexed: 11/21/2022]
Abstract
The global impact of bovine babesiosis caused by the tick-borne apicomplexan parasites Babesia bovis, Babesia bigemina and Babesia divergens is vastly underappreciated. These parasites invade and multiply asexually in bovine red blood cells (RBCs), undergo sexual reproduction in their tick vectors (Rhipicephalus spp. for B. bovis and B. bigemina, and Ixodes ricinus for B. divergens) and have a trans-ovarial mode of transmission. Babesia parasites can cause acute and persistent infections to adult naïve cattle that can occur without evident clinical signs, but infections caused by B. bovis are associated with more severe disease and increased mortality, and are considered to be the most virulent agent of bovine babesiosis. In addition, babesiosis caused by B. divergens has an important zoonotic potential. The disease caused by B. bovis and B. bigemina can be controlled, at least in part, using therapeutic agents or vaccines comprising live-attenuated parasites, but these methods are limited in terms of their safety, ease of deployability and long-term efficacy, and improved control measures are urgently needed. In addition, expansion of tick habitats due to climate change and other rapidly changing environmental factors complicate efficient control of these parasites. While the ability to cause persistent infections facilitates transmission and persistence of the parasite in endemic regions, it also highlights their capacity to evade the host immune responses. Currently, the mechanisms of immune responses used by infected bovines to survive acute and chronic infections remain poorly understood, warranting further research. Similarly, molecular details on the processes leading to sexual reproduction and the development of tick-stage parasites are lacking, and such tick-specific molecules can be targets for control using alternative transmission blocking vaccines. In this review, we identify and examine key phases in the life-cycle of Babesia parasites, including dependence on a tick vector for transmission, sexual reproduction of the parasite in the midgut of the tick, parasite-dependent invasion and egression of bovine RBCs, the role of the spleen in the clearance of infected RBCs (IRBCs), and age-related disease resistance in cattle, as opportunities for developing improved control measures. The availability of integrated novel research approaches including "omics" (such as genomics, transcriptomics, and proteomics), gene modification, cytoadhesion assays, RBC invasion assays and methods for in vitro induction of sexual-stage parasites will accelerate our understanding of parasite vulnerabilities. Further, producing new knowledge on these vulnerabilities, as well as taking full advantage of existing knowledge, by filling important research gaps should result in the development of next-generation vaccines to control acute disease and parasite transmission. Creative and effective use of current and future technical and computational resources are needed, in the face of the numerous challenges imposed by these highly evolved parasites, for improving the control of this disease. Overall, bovine babesiosis is recognised as a global disease that imposes a serious burden on livestock production and human livelihood, but it largely remains a poorly controlled disease in many areas of the world. Recently, important progress has been made in our understanding of the basic biology and host-parasite interactions of Babesia parasites, yet a good deal of basic and translational research is still needed to achieve effective control of this important disease and to improve animal and human health.
Collapse
Affiliation(s)
- Carlos E Suarez
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States; Animal Disease Research Unit, Agricultural Research Service, USDA, WSU, Pullman, WA, United States.
| | - Heba F Alzan
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States; Parasitology and Animal Diseases Department, National Research Center, Dokki, Giza, Egypt
| | - Marta G Silva
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States; Animal Disease Research Unit, Agricultural Research Service, USDA, WSU, Pullman, WA, United States
| | - Vignesh Rathinasamy
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Victoria 3800, Australia
| | - William A Poole
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Victoria 3800, Australia
| | - Brian M Cooke
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Victoria 3800, Australia.
| |
Collapse
|
45
|
Berry L, Chen CT, Francia ME, Guerin A, Graindorge A, Saliou JM, Grandmougin M, Wein S, Bechara C, Morlon-Guyot J, Bordat Y, Gubbels MJ, Lebrun M, Dubremetz JF, Daher W. Toxoplasma gondii chromosomal passenger complex is essential for the organization of a functional mitotic spindle: a prerequisite for productive endodyogeny. Cell Mol Life Sci 2018; 75:4417-4443. [PMID: 30051161 PMCID: PMC6260807 DOI: 10.1007/s00018-018-2889-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/28/2018] [Accepted: 07/23/2018] [Indexed: 12/20/2022]
Abstract
The phylum Apicomplexa encompasses deadly pathogens such as malaria and Cryptosporidium. Apicomplexa cell division is mechanistically divergent from that of their mammalian host, potentially representing an attractive source of drug targets. Depending on the species, apicomplexan parasites can modulate the output of cell division, producing two to thousands of daughter cells at once. The inherent flexibility of their cell division mechanisms allows these parasites to adapt to different niches, facilitating their dissemination. Toxoplasma gondii tachyzoites divide using a unique form of cell division called endodyogeny. This process involves a single round of DNA replication, closed nuclear mitosis, and assembly of two daughter cells within a mother. In higher Eukaryotes, the four-subunit chromosomal passenger complex (CPC) (Aurora kinase B (ARKB)/INCENP/Borealin/Survivin) promotes chromosome bi-orientation by detaching incorrect kinetochore-microtubule attachments, playing an essential role in controlling cell division fidelity. Herein, we report the characterization of the Toxoplasma CPC (Aurora kinase 1 (Ark1)/INCENP1/INCENP2). We show that the CPC exhibits dynamic localization in a cell cycle-dependent manner. TgArk1 interacts with both TgINCENPs, with TgINCENP2 being essential for its translocation to the nucleus. While TgINCENP1 appears to be dispensable, interfering with TgArk1 or TgINCENP2 results in pronounced division and growth defects. Significant anti-cancer drug development efforts have focused on targeting human ARKB. Parasite treatment with low doses of hesperadin, a known inhibitor of human ARKB at higher concentrations, phenocopies the TgArk1 and TgINCENP2 mutants. Overall, our study provides new insights into the mechanisms underpinning cell cycle control in Apicomplexa, and highlights TgArk1 as potential drug target.
Collapse
Affiliation(s)
- Laurence Berry
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Chun-Ti Chen
- Department of Biology, Boston College, Chestnut Hill, MA, 02467, USA
| | - Maria E Francia
- Molecular Biology Unit, Institut Pasteur de Montevideo, Mataojo 2020, 11400, Montevideo, Uruguay
| | - Amandine Guerin
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS, INSERM, Université de Montpellier, Montpellier, France
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800, Spruce Street, Philadelphia, PA, 19104, USA
| | - Arnault Graindorge
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Jean-Michel Saliou
- CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019, UMR 8204, CIIL-Centre d'Infection et d'Immunité de Lille, University of Lille, 59000, Lille, France
| | - Maurane Grandmougin
- CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019, UMR 8204, CIIL-Centre d'Infection et d'Immunité de Lille, University of Lille, 59000, Lille, France
| | - Sharon Wein
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Chérine Bechara
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS, INSERM, Université de Montpellier, Montpellier, France
- Institut de Génomique Fonctionnelle, CNRS, UMR5230 INSERM U1191, University of Montpellier, 34094, Montpellier, France
| | - Juliette Morlon-Guyot
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Yann Bordat
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Marc-Jan Gubbels
- Department of Biology, Boston College, Chestnut Hill, MA, 02467, USA
| | - Maryse Lebrun
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Jean-François Dubremetz
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Wassim Daher
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS, INSERM, Université de Montpellier, Montpellier, France.
| |
Collapse
|
46
|
Neospora caninum Dense Granule Protein 7 Regulates the Pathogenesis of Neosporosis by Modulating Host Immune Response. Appl Environ Microbiol 2018; 84:AEM.01350-18. [PMID: 30006392 DOI: 10.1128/aem.01350-18] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 06/18/2018] [Indexed: 12/14/2022] Open
Abstract
Neospora caninum is a protozoan parasite closely related to Toxoplasma gondii Neosporosis caused by N. caninum is considered one of the main causes of abortion in cattle and nervous-system dysfunction in dogs, and identification of the virulence factors of this parasite is important for the development of control measures. Here, we used a luciferase reporter assay to screen the dense granule proteins genes of N. caninum, and we found that NcGRA6, NcGRA7, and NcGRA14 are involved in the activation of the NF-κB, calcium/calcineurin, and cAMP/PKA signals. To analyze the functions of these proteins and Neospora cyclophilin, we successfully knocked out their genes in the Nc1 strain using plasmids containing the CRISPR/Cas9 components. Among the deficient lines, the NcGRA7-deficient parasites showed reduced virulence in mice. An RNA sequencing analysis of infected macrophage cultures showed that NcGRA7 mainly regulates the host cytokine and chemokine production. The levels of gamma interferon in the ascites fluid, CXCL10 expression in the peritoneal cells, and CCL2 expression in the spleen were lower 5 days after infection with the NcGRA7-deficient parasite than after infection with the parental strain. The parasite burden and the degree of necrosis in the brains of mice infected with the NcGRA7-deficient parasite were also lower than in those of the parental strain. Collectively, our data suggest that both the NcGRA7-dependent activation of the inflammatory response and the parasite burden are important in Neospora virulence.IMPORTANCENeospora caninum invades and replicates in a broad range of host species and cells within those hosts. The effector proteins exported by Neospora induce its pathogenesis by modulating the host immunity. We show that most of the transcriptomic effects in N. caninum-infected cells depend upon the activity of NcGRA7. A deficiency in NcGRA7 reduced the virulence of the parasite in mice. This study demonstrates the importance of NcGRA7 in the pathogenesis of neosporosis.
Collapse
|
47
|
Benns HJ, Tate EW, Child MA. Activity-Based Protein Profiling for the Study of Parasite Biology. Curr Top Microbiol Immunol 2018; 420:155-174. [PMID: 30105424 DOI: 10.1007/82_2018_123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Parasites exist within most ecological niches, often transitioning through biologically and chemically complex host environments over the course of their parasitic life cycles. While the development of technologies for genetic engineering has revolutionised the field of functional genomics, parasites have historically been less amenable to such modification. In light of this, parasitologists have often been at the forefront of adopting new small-molecule technologies, repurposing drugs into biological tools and probes. Over the last decade, activity-based protein profiling (ABPP) has evolved into a powerful and versatile chemical proteomic platform for characterising the function of enzymes. Central to ABPP is the use of activity-based probes (ABPs), which covalently modify the active sites of enzyme classes ranging from serine hydrolases to glycosidases. The application of ABPP to cellular systems has contributed vastly to our knowledge on the fundamental biology of a diverse range of organisms and has facilitated the identification of potential drug targets in many pathogens. In this chapter, we provide a comprehensive review on the different forms of ABPP that have been successfully applied to parasite systems, and highlight key biological insights that have been enabled through their application.
Collapse
Affiliation(s)
- Henry J Benns
- Department of Chemistry, Imperial College London, Exhibition Road, South Kensington, London, SW7 2AZ, UK
| | - Edward W Tate
- Department of Chemistry, Imperial College London, Exhibition Road, South Kensington, London, SW7 2AZ, UK
| | - Matthew A Child
- Life Sciences, Imperial College London, Exhibition Road, South Kensington, London, SW7 2AZ, UK.
| |
Collapse
|
48
|
Liu M, Adjou Moumouni PF, Asada M, Hakimi H, Masatani T, Vudriko P, Lee SH, Kawazu SI, Yamagishi J, Xuan X. Establishment of a stable transfection system for genetic manipulation of Babesia gibsoni. Parasit Vectors 2018; 11:260. [PMID: 29685172 PMCID: PMC5914073 DOI: 10.1186/s13071-018-2853-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/16/2018] [Indexed: 01/11/2023] Open
Abstract
Background Genetic manipulation techniques, such as transfection, have been previously reported in many protozoan parasites. In Babesia, stable transfection systems have only been established for bovine Babesia parasites. We recently reported a transient transfection system and the selection of promoter candidates for Babesia gibsoni. The establishment of a stable transfection system for B. gibsoni is considered to be urgent to improve our understanding of the basic biology of canine Babesia parasites for a better control of babesiosis. Results GFP-expressing parasites were observed by fluorescence microscopy as early as two weeks after drug selection, and consistently expressed GFP for more than 3 months without drug pressure. Genome integration was confirmed by PCR, sequencing and Southern blot analysis. Conclusions We present the first successful establishment of a stable transfection system for B. gibsoni. This finding will facilitate functional analysis of Babesia genomes using genetic manipulation and will serve as a foundation for the development of tick-Babesia and host-Babesia infection models. Electronic supplementary material The online version of this article (10.1186/s13071-018-2853-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mingming Liu
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Paul Franck Adjou Moumouni
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Masahito Asada
- Department of Protozoology, Institute of Tropical Medicine, Nagasaki University, Sakamoto 1-12-4, Nagasaki, 852-8523, Japan
| | - Hassan Hakimi
- Department of Protozoology, Institute of Tropical Medicine, Nagasaki University, Sakamoto 1-12-4, Nagasaki, 852-8523, Japan
| | - Tatsunori Masatani
- Transboundary Animal Diseases Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan
| | - Patrick Vudriko
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Seung-Hun Lee
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Shin-Ichiro Kawazu
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Junya Yamagishi
- Research Center for Zoonosis Control, Hokkaido University, North 20, West 10 Kita-ku, Sapporo, Hokkaido, 001-0020, Japan.,Global Station for Zoonosis Control, GI-CoRE, Hokkaido University, North 20, West 10 Kita-ku, Sapporo, Hokkaido, 001-0020, Japan
| | - Xuenan Xuan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan.
| |
Collapse
|
49
|
Stable transformation of Babesia bigemina and Babesia bovis using a single transfection plasmid. Sci Rep 2018; 8:6096. [PMID: 29666434 PMCID: PMC5904164 DOI: 10.1038/s41598-018-23010-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/26/2018] [Indexed: 11/08/2022] Open
Abstract
Babesia bigemina and Babesia bovis, are the two major causes of bovine babesiosis, a global neglected disease in need of improved methods of control. Here, we describe a shared method for the stable transfection of these two parasites using electroporation and blasticidin/blasticidin deaminase as a selectable marker. Stably transfected B. bigemina and B. bovis were obtained using a common transfection plasmid targeting the enhanced green fluorescent protein-BSD (egfp-bsd) fusion gene into the elongation factor-1α (ef-1α) locus of B. bigemina and B. bovis under the control of the B. bigemina ef-1α promoter. Sequencing, Southern blotting, immunoblotting and immunofluorescence analysis of parasite-infected red blood cells, demonstrated that the egfp-bsd gene was expressed and stably integrated solely into the ef-1α locus of both, B. bigemina and B. bovis. Interestingly, heterologous B. bigemina ef-1α sequences were able to drive integration into the B. bovis genome by homologous recombination, and the stably integrated B. bigemina ef-1α-A promoter is fully functional in B. bovis. Collectively, the data provides a new tool for genetic analysis of these parasites, and suggests that the development of vaccine platform delivery systems based on transfected B. bovis and B. bigemina parasites using homologous and heterologous promoters is feasible.
Collapse
|
50
|
Arranz-Solís D, Regidor-Cerrillo J, Lourido S, Ortega-Mora LM, Saeij JPJ. Toxoplasma CRISPR/Cas9 constructs are functional for gene disruption in Neospora caninum. Int J Parasitol 2018; 48:597-600. [PMID: 29625127 DOI: 10.1016/j.ijpara.2018.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 01/17/2018] [Accepted: 03/05/2018] [Indexed: 01/21/2023]
Abstract
Herein we describe, to our knowledge for the first time the use of the clustered regularly interspaced short palindromic repeats/CRISPR-associated gene 9 (CRISPR/Cas9) system for genome editing of Neospora caninum, an apicomplexan parasite considered one of the main causes of abortion in cattle worldwide. By using plasmids containing the CRISPR/Cas9 components adapted to the closely related parasite Toxoplasma gondii, we successfully knocked out a green fluorescent protein (GFP) in an Nc-1 GFP-expressing strain, and efficiently disrupted the NcGRA7 gene in the Nc-Spain7 isolate by insertion of a pyrimethamine resistance cassette. The successful use of this technology in N. caninum lays the foundation for an efficient, targeted gene modification tool in this parasite.
Collapse
Affiliation(s)
- David Arranz-Solís
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, One Shields Ave., Davis 95616, CA, USA
| | - Javier Regidor-Cerrillo
- SALUVET, Animal Health Department, Veterinary Faculty, Complutense University of Madrid, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain
| | - Sebastian Lourido
- Whitehead Institute for Biomedical Research, Cambridge, MA 02140, USA
| | - Luis Miguel Ortega-Mora
- SALUVET, Animal Health Department, Veterinary Faculty, Complutense University of Madrid, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain
| | - Jeroen P J Saeij
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, One Shields Ave., Davis 95616, CA, USA.
| |
Collapse
|