1
|
Trometer N, Pecourneau J, Feng L, Navarro-Huerta JA, Lazarin-Bidóia D, de Oliveira Silva Lautenschlager S, Maes L, Fortes Francisco A, Kelly JM, Meunier B, Cal M, Mäser P, Kaiser M, Davioud-Charvet E. Synthesis and Anti-Chagas Activity Profile of a Redox-Active Lead 3-Benzylmenadione Revealed by High-Content Imaging. ACS Infect Dis 2024; 10:1808-1838. [PMID: 38606978 DOI: 10.1021/acsinfecdis.4c00137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Chagas disease, or American trypanosomiasis, is a neglected tropical disease which is a top priority target of the World Health Organization. The disease, endemic mainly in Latin America, is caused by the protozoan Trypanosoma cruzi and has spread around the globe due to human migration. There are multiple transmission routes, including vectorial, congenital, oral, and iatrogenic. Less than 1% of patients have access to treatment, relying on two old redox-active drugs that show poor pharmacokinetics and severe adverse effects. Hence, the priorities for the next steps of R&D include (i) the discovery of novel drugs/chemical classes, (ii) filling the pipeline with drug candidates that have new mechanisms of action, and (iii) the pressing need for more research and access to new chemical entities. In the present work, we first identified a hit (4a) with a potent anti-T. cruzi activity from a library of 3-benzylmenadiones. We then designed a synthetic strategy to build a library of 49 3-(4-monoamino)benzylmenadione derivatives via reductive amination to obtain diazacyclic benz(o)ylmenadiones. Among them, we identified by high content imaging an anti-amastigote "early lead" 11b (henceforth called cruzidione) revealing optimized pharmacokinetic properties and enhanced specificity. Studies in a yeast model revealed that a cruzidione metabolite, the 3-benzoylmenadione (cruzidione oxide), enters redox cycling with the NADH-dehydrogenase, generating reactive oxygen species, as hypothesized for the early hit (4a).
Collapse
Affiliation(s)
- Nathan Trometer
- UMR7042 CNRS-Unistra-UHA, Laboratoire d'Innovation Moléculaire et Applications (LIMA), Bio(in)organic & Medicinal Chemistry Team, European School of Chemistry, Polymers and Materials (ECPM), 25, rue Becquerel, F-67087 Strasbourg, France
| | - Jérémy Pecourneau
- UMR7042 CNRS-Unistra-UHA, Laboratoire d'Innovation Moléculaire et Applications (LIMA), Bio(in)organic & Medicinal Chemistry Team, European School of Chemistry, Polymers and Materials (ECPM), 25, rue Becquerel, F-67087 Strasbourg, France
| | - Liwen Feng
- UMR7042 CNRS-Unistra-UHA, Laboratoire d'Innovation Moléculaire et Applications (LIMA), Bio(in)organic & Medicinal Chemistry Team, European School of Chemistry, Polymers and Materials (ECPM), 25, rue Becquerel, F-67087 Strasbourg, France
| | - José A Navarro-Huerta
- UMR7042 CNRS-Unistra-UHA, Laboratoire d'Innovation Moléculaire et Applications (LIMA), Bio(in)organic & Medicinal Chemistry Team, European School of Chemistry, Polymers and Materials (ECPM), 25, rue Becquerel, F-67087 Strasbourg, France
| | - Danielle Lazarin-Bidóia
- Laboratório de Inovação Tecnológica no Desenvolvimento de Fármacos e Cosméticos, Departamento de Ciências Básicas da Saúde, Universidade Estadual de Maringá, CEP 87020-900 Paraná, Brazil
| | - Sueli de Oliveira Silva Lautenschlager
- Laboratório de Inovação Tecnológica no Desenvolvimento de Fármacos e Cosméticos, Departamento de Ciências Básicas da Saúde, Universidade Estadual de Maringá, CEP 87020-900 Paraná, Brazil
| | - Louis Maes
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, CDE-S7.27 Universiteitsplein 1, B-2610 Antwerp, Belgium
| | - Amanda Fortes Francisco
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - John M Kelly
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Brigitte Meunier
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, F-91198 Gif-sur-Yvette cedex, France
| | - Monica Cal
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, CH-4123 Allschwil, Switzerland
- University of Basel, Petersgraben 1, CH-4001 Basel, Switzerland
| | - Pascal Mäser
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, CH-4123 Allschwil, Switzerland
- University of Basel, Petersgraben 1, CH-4001 Basel, Switzerland
| | - Marcel Kaiser
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, CH-4123 Allschwil, Switzerland
- University of Basel, Petersgraben 1, CH-4001 Basel, Switzerland
| | - Elisabeth Davioud-Charvet
- UMR7042 CNRS-Unistra-UHA, Laboratoire d'Innovation Moléculaire et Applications (LIMA), Bio(in)organic & Medicinal Chemistry Team, European School of Chemistry, Polymers and Materials (ECPM), 25, rue Becquerel, F-67087 Strasbourg, France
| |
Collapse
|
2
|
González S, Wall RJ, Thomas J, Braillard S, Brunori G, Díaz IC, Cantizani J, Carvalho S, Castañeda Casado P, Chatelain E, Cotillo I, Fiandor JM, Francisco AF, Grimsditch D, Keenan M, Kelly JM, Kessler A, Luise C, Lyon JJ, MacLean L, Marco M, Martin JJ, Martinez MS, Paterson C, Read KD, Santos-Villarejo A, Zuccotto F, Wyllie S, Miles TJ, De Rycker M. Short-course combination treatment for experimental chronic Chagas disease. Sci Transl Med 2023; 15:eadg8105. [PMID: 38091410 PMCID: PMC7615676 DOI: 10.1126/scitranslmed.adg8105] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023]
Abstract
Chagas disease, caused by the protozoan parasite Trypanosoma cruzi, affects millions of people in the Americas and across the world, leading to considerable morbidity and mortality. Current treatment options, benznidazole (BNZ) and nifurtimox, offer limited efficacy and often lead to adverse side effects because of long treatment durations. Better treatment options are therefore urgently required. Here, we describe a pyrrolopyrimidine series, identified through phenotypic screening, that offers an opportunity to improve on current treatments. In vitro cell-based washout assays demonstrate that compounds in the series are incapable of killing all parasites; however, combining these pyrrolopyrimidines with a subefficacious dose of BNZ can clear all parasites in vitro after 5 days. These findings were replicated in a clinically predictive in vivo model of chronic Chagas disease, where 5 days of treatment with the combination was sufficient to prevent parasite relapse. Comprehensive mechanism of action studies, supported by ligand-structure modeling, show that compounds from this pyrrolopyrimidine series inhibit the Qi active site of T. cruzi cytochrome b, part of the cytochrome bc1 complex of the electron transport chain. Knowledge of the molecular target enabled a cascade of assays to be assembled to evaluate selectivity over the human cytochrome b homolog. As a result, a highly selective and efficacious lead compound was identified. The combination of our lead compound with BNZ rapidly clears T. cruzi parasites, both in vitro and in vivo, and shows great potential to overcome key issues associated with currently available treatments.
Collapse
Affiliation(s)
- Silvia González
- Global Health Medicines R&D, GSK, Tres Cantos, Madrid, Spain
| | - Richard J. Wall
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, UK
| | - John Thomas
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, UK
| | | | | | | | - Juan Cantizani
- Global Health Medicines R&D, GSK, Tres Cantos, Madrid, Spain
| | - Sandra Carvalho
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, UK
| | | | | | - Ignacio Cotillo
- Global Health Medicines R&D, GSK, Tres Cantos, Madrid, Spain
| | - Jose M. Fiandor
- Global Health Medicines R&D, GSK, Tres Cantos, Madrid, Spain
| | | | | | | | - John M. Kelly
- London School for Hygiene and Tropical Medicine, London, UK
| | - Albane Kessler
- Global Health Medicines R&D, GSK, Tres Cantos, Madrid, Spain
| | - Chiara Luise
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, UK
| | | | - Lorna MacLean
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, UK
| | - Maria Marco
- Global Health Medicines R&D, GSK, Tres Cantos, Madrid, Spain
| | - J. Julio Martin
- Global Health Medicines R&D, GSK, Tres Cantos, Madrid, Spain
| | | | - Christy Paterson
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, UK
| | - Kevin D. Read
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, UK
| | | | - Fabio Zuccotto
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, UK
| | - Susan Wyllie
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, UK
| | - Tim J. Miles
- Global Health Medicines R&D, GSK, Tres Cantos, Madrid, Spain
| | - Manu De Rycker
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, UK
| |
Collapse
|
3
|
Bosch-Navarrete C, Pérez-Moreno G, Annang F, Diaz-Gonzalez R, García-Hernández R, Rocha H, Gamarro F, Cordón-Obras C, Navarro M, Rodriguez A, Genilloud O, Reyes F, Vicente F, Ruiz-Pérez LM, González-Pacanowska D. Strasseriolides display in vitro and in vivo activity against trypanosomal parasites and cause morphological and size defects in Trypanosoma cruzi. PLoS Negl Trop Dis 2023; 17:e0011592. [PMID: 37713416 PMCID: PMC10529594 DOI: 10.1371/journal.pntd.0011592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 09/27/2023] [Accepted: 08/14/2023] [Indexed: 09/17/2023] Open
Abstract
Neglected diseases caused by kinetoplastid parasites are a health burden in tropical and subtropical countries. The need to create safe and effective medicines to improve treatment remains a priority. Microbial natural products are a source of chemical diversity that provides a valuable approach for identifying new drug candidates. We recently reported the discovery and bioassay-guided isolation of a novel family of macrolides with antiplasmodial activity. The novel family of four potent antimalarial macrolides, strasseriolides A-D, was isolated from cultures of Strasseria geniculata CF-247251, a fungal strain obtained from plant tissues. In the present study, we analyze these strasseriolides for activity against kinetoplastid protozoan parasites, namely, Trypanosoma brucei brucei, Leishmania donovani and Trypanosoma cruzi. Compounds exhibited mostly low activities against T. b. brucei, yet notable growth inhibition and selectivity were observed for strasseriolides C and D in the clinically relevant intracellular T. cruzi and L. donovani amastigotes with EC50 values in the low micromolar range. Compound C is fast-acting and active against both intracellular and trypomastigote forms of T. cruzi. While cell cycle defects were not identified, prominent morphological changes were visualized by differential interference contrast microscopy and smaller and rounded parasites were visualized upon exposure to strasseriolide C. Moreover, compound C lowers parasitaemia in vivo in acute models of infection of Chagas disease. Hence, strasseriolide C is a novel natural product active against different forms of T. cruzi in vitro and in vivo. The study provides an avenue for blocking infection of new cells, a strategy that could additionally contribute to avoid treatment failure.
Collapse
Affiliation(s)
- Cristina Bosch-Navarrete
- Instituto de Parasitología y Biomedicina "López-Neyra", Consejo Superior de Investigaciones Científicas (CSIC), Parque Tecnológico Ciencias de la Salud, Granada, Spain
| | - Guiomar Pérez-Moreno
- Instituto de Parasitología y Biomedicina "López-Neyra", Consejo Superior de Investigaciones Científicas (CSIC), Parque Tecnológico Ciencias de la Salud, Granada, Spain
| | - Frederick Annang
- Fundación MEDINA, Parque Tecnológico Ciencias de la Salud, Granada, Spain
| | - Rosario Diaz-Gonzalez
- Instituto de Parasitología y Biomedicina "López-Neyra", Consejo Superior de Investigaciones Científicas (CSIC), Parque Tecnológico Ciencias de la Salud, Granada, Spain
| | - Raquel García-Hernández
- Instituto de Parasitología y Biomedicina "López-Neyra", Consejo Superior de Investigaciones Científicas (CSIC), Parque Tecnológico Ciencias de la Salud, Granada, Spain
| | - Hedy Rocha
- Department of Microbiology, Core Anti-infectives, New York University School of Medicine, New York, New York, United States of America
| | - Francisco Gamarro
- Instituto de Parasitología y Biomedicina "López-Neyra", Consejo Superior de Investigaciones Científicas (CSIC), Parque Tecnológico Ciencias de la Salud, Granada, Spain
| | - Carlos Cordón-Obras
- Instituto de Parasitología y Biomedicina "López-Neyra", Consejo Superior de Investigaciones Científicas (CSIC), Parque Tecnológico Ciencias de la Salud, Granada, Spain
| | - Miguel Navarro
- Instituto de Parasitología y Biomedicina "López-Neyra", Consejo Superior de Investigaciones Científicas (CSIC), Parque Tecnológico Ciencias de la Salud, Granada, Spain
| | - Ana Rodriguez
- Department of Microbiology, Core Anti-infectives, New York University School of Medicine, New York, New York, United States of America
| | - Olga Genilloud
- Fundación MEDINA, Parque Tecnológico Ciencias de la Salud, Granada, Spain
| | - Fernando Reyes
- Fundación MEDINA, Parque Tecnológico Ciencias de la Salud, Granada, Spain
| | - Francisca Vicente
- Fundación MEDINA, Parque Tecnológico Ciencias de la Salud, Granada, Spain
| | - Luis M. Ruiz-Pérez
- Instituto de Parasitología y Biomedicina "López-Neyra", Consejo Superior de Investigaciones Científicas (CSIC), Parque Tecnológico Ciencias de la Salud, Granada, Spain
| | - Dolores González-Pacanowska
- Instituto de Parasitología y Biomedicina "López-Neyra", Consejo Superior de Investigaciones Científicas (CSIC), Parque Tecnológico Ciencias de la Salud, Granada, Spain
| |
Collapse
|
4
|
Rao SPS, Manjunatha UH, Mikolajczak S, Ashigbie PG, Diagana TT. Drug discovery for parasitic diseases: powered by technology, enabled by pharmacology, informed by clinical science. Trends Parasitol 2023; 39:260-271. [PMID: 36803572 DOI: 10.1016/j.pt.2023.01.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/19/2023] [Accepted: 01/25/2023] [Indexed: 02/22/2023]
Abstract
While prevention is a bedrock of public health, innovative therapeutics are needed to complement the armamentarium of interventions required to achieve disease control and elimination targets for neglected diseases. Extraordinary advances in drug discovery technologies have occurred over the past decades, along with accumulation of scientific knowledge and experience in pharmacological and clinical sciences that are transforming many aspects of drug R&D across disciplines. We reflect on how these advances have propelled drug discovery for parasitic infections, focusing on malaria, kinetoplastid diseases, and cryptosporidiosis. We also discuss challenges and research priorities to accelerate discovery and development of urgently needed novel antiparasitic drugs.
Collapse
Affiliation(s)
| | | | | | - Paul G Ashigbie
- Novartis Institute for Tropical Diseases, Emeryville, CA, USA.
| | | |
Collapse
|
5
|
Impact of Laboratory-Adapted Intracellular Trypanosoma cruzi Strains on the Activity Profiles of Compounds with Anti- T. cruzi Activity. Microorganisms 2023; 11:microorganisms11020476. [PMID: 36838441 PMCID: PMC9967867 DOI: 10.3390/microorganisms11020476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 02/16/2023] Open
Abstract
Chagas disease is caused by infection with the protozoan parasite, Trypanosoma cruzi. The disease causes ~12,000 deaths annually and is one of the world's 20 neglected tropical diseases, as defined by the World Health Organisation. The drug discovery pipeline for Chagas disease currently has few new clinical candidates, with high attrition rates an ongoing issue. To determine if the Trypanosoma cruzi strain utilised to assess in vitro compound activity impacts activity, a comparison of laboratory-adapted T. cruzi strains from differing geographical locations was undertaken for a selection of compounds with anti-T. cruzi activity. To minimise the possible effect of differences in experimental methodology, the same host cell and multiplicity of infection were utilised. To determine whether the compound exposure time influenced results, activity was determined following exposure for 48 and 72 h of incubation. To ascertain whether replication rates affected outcomes, comparative rates of replication of the T. cruzi strains were investigated, using the nucleoside analogue, 5-ethynyl-2'-deoxyuridine. Minimal differences in the in vitro activity of compounds between strains were observed following 48 h incubation, whereas significant differences were observed following 72 h incubation, in particular for the cytochrome P450 inhibitors tested and the cell cycle inhibitor, camptothecin. Thus, the use of panels of laboratory adapted strains in vitro may be dependent on the speed of action that is prioritised. For the identification of fast-acting compounds, an initial shorter duration assay using a single strain may be used. A longer incubation to identify compound activity may alternatively require profiling of compounds against multiple T. cruzi strains.
Collapse
|
6
|
Identification of Aryl Polyamines Derivatives as Anti- Trypanosoma cruzi Agents Targeting Iron Superoxide Dismutase. Pharmaceutics 2022; 15:pharmaceutics15010140. [PMID: 36678771 PMCID: PMC9863987 DOI: 10.3390/pharmaceutics15010140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/13/2022] [Accepted: 12/22/2022] [Indexed: 01/04/2023] Open
Abstract
Chagas disease (CD) is a tropical and potentially fatal infection caused by Trypanosoma cruzi. Although CD was limited to Latin America as a silent disease, CD has become widespread as a result of globalization. Currently, 6-8 million people are infected worldwide, and no effective treatment is available. Here, we identify new effective agents against T. cruzi. In short, 16 aryl polyamines were screened in vitro against different T. cruzi strains, and lead compounds were evaluated in vivo after oral administration in both the acute and chronic infections. The mode of action was also evaluated at the energetic level, and its high activity profile could be ascribed to a mitochondria-dependent bioenergetic collapse and redox stress by inhibition of the Fe-SOD enzyme. We present compound 15 as a potential compound that provides a step forward for the development of new agents to combat CD.
Collapse
|
7
|
Pandey RP, Nascimento MS, Franco CH, Bortoluci K, Silva MN, Zingales B, Gibaldi D, Castaño Barrios L, Lannes-Vieira J, Cariste LM, Vasconcelos JR, Moraes CB, Freitas-Junior LH, Kalil J, Alcântara L, Cunha-Neto E. Drug Repurposing in Chagas Disease: Chloroquine Potentiates Benznidazole Activity against Trypanosoma cruzi In Vitro and In Vivo. Antimicrob Agents Chemother 2022; 66:e0028422. [PMID: 36314800 PMCID: PMC9664849 DOI: 10.1128/aac.00284-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 09/16/2022] [Indexed: 11/20/2022] Open
Abstract
Drug combinations and drug repurposing have emerged as promising strategies to develop novel treatments for infectious diseases, including Chagas disease. In this study, we aimed to investigate whether the repurposed drugs chloroquine (CQ) and colchicine (COL), known to inhibit Trypanosoma cruzi infection in host cells, could boost the anti-T. cruzi effect of the trypanocidal drug benznidazole (BZN), increasing its therapeutic efficacy while reducing the dose needed to eradicate the parasite. The combination of BZN and COL exhibited cytotoxicity to infected cells and low antiparasitic activity. Conversely, a combination of BZN and CQ significantly reduced T. cruzi infection in vitro, with no apparent cytotoxicity. This effect seemed to be consistent across different cell lines and against both the partially BZN-resistant Y and the highly BZN-resistant Colombiana strains. In vivo experiments in an acute murine model showed that the BZN+CQ combination was eight times more effective in reducing T. cruzi infection in the acute phase than BZN monotherapy. In summary, our results demonstrate that the concomitant administration of CQ and BZN potentiates the trypanocidal activity of BZN, leading to a reduction in the dose needed to achieve an effective response. In a translational context, it could represent a higher efficacy of treatment while also mitigating the adverse effects of high doses of BZN. Our study also reinforces the relevance of drug combination and repurposing approaches in the field of Chagas disease drug discovery.
Collapse
Affiliation(s)
- Ramendra P. Pandey
- Laboratory of Immunology, Heart Institute, School of Medicine, University of São Paulo, São Paulo, Brazil
- School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Marilda Savoia Nascimento
- School of Medicine, University of São Paulo, São Paulo, Brazil
- Institute of Tropical Medicine of São Paulo, São Paulo, Brazil
| | - Caio Haddad Franco
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Karina Bortoluci
- Department of Pharmacology, Federal University of São Paulo, São Paulo, Brazil
| | - Marcelo Nunes Silva
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Bianca Zingales
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | | | | | | | - Leonardo Moro Cariste
- Recombinant Vaccines Laboratory, Department of Biosciences, Federal University of São Paulo, São Paulo, Brazil
| | - Jose Ronnie Vasconcelos
- Recombinant Vaccines Laboratory, Department of Biosciences, Federal University of São Paulo, São Paulo, Brazil
- Department of Microbiology, Immunology, and Parasitology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Carolina Borsoi Moraes
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Lucio H. Freitas-Junior
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Jorge Kalil
- Laboratory of Immunology, Heart Institute, School of Medicine, University of São Paulo, São Paulo, Brazil
- School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Laura Alcântara
- Laboratory of Immunology, Heart Institute, School of Medicine, University of São Paulo, São Paulo, Brazil
- School of Medicine, University of São Paulo, São Paulo, Brazil
- Institute of Tropical Medicine of São Paulo, São Paulo, Brazil
| | - Edecio Cunha-Neto
- Laboratory of Immunology, Heart Institute, School of Medicine, University of São Paulo, São Paulo, Brazil
- School of Medicine, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
8
|
Temporal and Wash-Out Studies Identify Medicines for Malaria Venture Pathogen Box Compounds with Fast-Acting Activity against Both Trypanosoma cruzi and Trypanosoma brucei. Microorganisms 2022; 10:microorganisms10071287. [PMID: 35889006 PMCID: PMC9317670 DOI: 10.3390/microorganisms10071287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/16/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022] Open
Abstract
Chagas disease caused by the protozoan Trypanosoma cruzi is endemic to 21 countries in the Americas, effects approximately 6 million people and on average results in 12,000 deaths annually. Human African Trypanosomiasis (HAT) is caused by the Trypanosoma brucei sub-species, endemic to 36 countries within sub-Saharan Africa. Treatment regimens for these parasitic diseases are complicated and not effective against all disease stages; thus, there is a need to find improved treatments. To identify new molecules for the drug discovery pipelines for these diseases, we have utilised in vitro assays to identify compounds with selective activity against both T. cruzi and T.b. brucei from the Medicines for Malaria Venture (MMV) Pathogen Box compound collection. To prioritise these molecules for further investigation, temporal and wash off assays were utilised to identify the speed of action and cidality of compounds. For translational relevance, compounds were tested against clinically relevant T.b. brucei subspecies. Compounds with activity against T. cruzi cytochrome P450 (TcCYP51) have not previously been successful in clinical trials for chronic Chagas disease; thus, to deprioritise compounds with this activity, they were tested against recombinant TcCYP51. Compounds with biological profiles warranting progression offer important tools for drug and target development against kinetoplastids.
Collapse
|
9
|
Kratz JM, Gonçalves KR, Romera LM, Moraes CB, Bittencourt-Cunha P, Schenkman S, Chatelain E, Sosa-Estani S. The translational challenge in Chagas disease drug development. Mem Inst Oswaldo Cruz 2022; 117:e200501. [PMID: 35613156 PMCID: PMC9128742 DOI: 10.1590/0074-02760200501] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 01/13/2021] [Indexed: 12/20/2022] Open
Abstract
Chagas disease is a neglected tropical disease caused by the protozoan parasite Trypanosoma cruzi. There is an urgent need for safe, effective, and accessible new treatments since the currently approved drugs have serious limitations. Drug development for Chagas disease has historically been hampered by the complexity of the disease, critical knowledge gaps, and lack of coordinated R&D efforts. This review covers some of the translational challenges associated with the progression of new chemical entities from preclinical to clinical phases of development, and discusses how recent technological advances might allow the research community to answer key questions relevant to the disease and to overcome hurdles in R&D for Chagas disease.
Collapse
Affiliation(s)
- Jadel M Kratz
- Drugs for Neglected Diseases initiative, Geneva, Switzerland
| | - Karolina R Gonçalves
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brasil
| | - Lavínia Md Romera
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brasil
| | - Carolina Borsoi Moraes
- Universidade Federal de São Paulo, Departamento de Ciências Farmacêuticas, Diadema, SP, Brasil
| | - Paula Bittencourt-Cunha
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brasil.,Universidade Federal de São Paulo, Departamento de Microbiologia, Imunologia e Parasitologia, São Paulo, SP, Brasil
| | - Sergio Schenkman
- Universidade Federal de São Paulo, Departamento de Microbiologia, Imunologia e Parasitologia, São Paulo, SP, Brasil
| | - Eric Chatelain
- Drugs for Neglected Diseases initiative, Geneva, Switzerland
| | - Sergio Sosa-Estani
- Drugs for Neglected Diseases initiative, Geneva, Switzerland.,Epidemiology and Public Health Research Centre, CIESP-CONICET, Buenos Aires, Argentina
| |
Collapse
|
10
|
Soeiro MDNC. Perspectives for a new drug candidate for Chagas disease therapy. Mem Inst Oswaldo Cruz 2022; 117:e220004. [PMID: 35293439 PMCID: PMC8923671 DOI: 10.1590/0074-02760220004] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 01/17/2022] [Indexed: 12/21/2022] Open
Abstract
Chagas disease (CD), a neglected tropical illness caused by the protozoan Trypanosoma cruzi, affects more than 6 million people mostly in poor areas of Latin America. CD has two phases: an acute, short phase mainly oligosymptomatic followed to the chronic phase, a long-lasting stage that may trigger cardiac and/or digestive disorders and death. Only two old drugs are available and both present low efficacy in the chronic stage, display side effects and are inactive against parasite strains naturally resistant to these nitroderivatives. These shortcomings justify the search for novel therapeutic options considering the target product profile for CD that will be presently reviewed besides briefly revisiting the data on phosphodiesterase inhibitors upon T. cruzi.
Collapse
|
11
|
Cardoso-Santos C, Ferreira de Almeida Fiuza L, França da Silva C, Mazzeti AL, Donola Girão R, Melo de Oliveira G, da Gama Jaen Batista D, Cruz Moreira O, Lins da Silva Gomes N, Maes L, Caljon G, Hulpia F, Calenbergh SV, Correia Soeiro MDN. 7-Aryl-7-deazapurine 3'-deoxyribonucleoside derivative as a novel lead for Chagas' disease therapy: in vitro and in vivo pharmacology. JAC Antimicrob Resist 2021; 3:dlab168. [PMID: 34806007 PMCID: PMC8599808 DOI: 10.1093/jacamr/dlab168] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/11/2021] [Indexed: 11/17/2022] Open
Abstract
Background The protozoan Trypanosoma cruzi is auxotrophic for purines and causes Chagas’ disease (CD), a neglected illness affecting >6 million people. Combining the 3-deoxyribofuranose part of cordycepin with the modified purine ring of a nucleoside ‘hit’ led to the discovery of 4-amino-5-(4-chlorophenyl)-N7-(3′-deoxy-β-d-ribofuranosyl)-pyrrolo[2,3-d]pyrimidine (Cpd1), revealing promising anti-T. cruzi activity. Objectives To further evaluate Cpd1 in vitro and in vivo to fully assess its therapeutic potential against CD, covering cell culture sterilization through washout assays, drug combination with benznidazole and long-term administration in T. cruzi-infected mice. Results Although less susceptible to Cpd1 than amastigotes, trypomastigotes present an impaired capacity to successfully establish intracellular infection of cardiac cultures. Combination of benznidazole with Cpd1 indicated no interaction (additive effect) (FIC index = 0.72) while administration to mice at one-tenth of the optimal dose (2.5 mg/kg and 10 mg/kg for Cpd1 and benznidazole, respectively) suppressed parasitaemia but failed to avoid mortality. Long-term treatment (60 days) gave a rapid drop of the parasitaemia (>98% decline) and 100% mice survival but only 16% cure. In vitro washout experiments demonstrated that although parasite release into the supernatant of infected cardiac cultures was reduced by >94%, parasite recrudescence did occur after treatment. Conclusions Parasite recrudescence did occur after treatment corroborating the hypothesis of therapeutic failure due to subpopulations of dormant forms and/or genetic factors in persister parasites involved in natural drug resistance.
Collapse
Affiliation(s)
- Camila Cardoso-Santos
- Laboratory of Cellular Biology (LBC), Oswaldo Cruz Institute (IOC/FIOCRUZ), 21040-360 Rio de Janeiro, RJ, Brazil.,Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, 2610 Wilrijk, Antwerp, Belgium
| | | | - Cristiane França da Silva
- Laboratory of Cellular Biology (LBC), Oswaldo Cruz Institute (IOC/FIOCRUZ), 21040-360 Rio de Janeiro, RJ, Brazil
| | - Ana Lia Mazzeti
- Laboratory of Cellular Biology (LBC), Oswaldo Cruz Institute (IOC/FIOCRUZ), 21040-360 Rio de Janeiro, RJ, Brazil
| | - Roberson Donola Girão
- Laboratory of Cellular Biology (LBC), Oswaldo Cruz Institute (IOC/FIOCRUZ), 21040-360 Rio de Janeiro, RJ, Brazil
| | - Gabriel Melo de Oliveira
- Laboratory of Cellular Biology (LBC), Oswaldo Cruz Institute (IOC/FIOCRUZ), 21040-360 Rio de Janeiro, RJ, Brazil
| | - Denise da Gama Jaen Batista
- Laboratory of Cellular Biology (LBC), Oswaldo Cruz Institute (IOC/FIOCRUZ), 21040-360 Rio de Janeiro, RJ, Brazil
| | - Otacilio Cruz Moreira
- Real Time PCR Platform RPT09A, Laboratory of Molecular Biology and Endemic Diseases, Oswaldo Cruz Institute (IOC/FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Natália Lins da Silva Gomes
- Real Time PCR Platform RPT09A, Laboratory of Molecular Biology and Endemic Diseases, Oswaldo Cruz Institute (IOC/FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Louis Maes
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, 2610 Wilrijk, Antwerp, Belgium
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, 2610 Wilrijk, Antwerp, Belgium
| | - Fabian Hulpia
- Laboratory for Medicinal Chemistry (Campus Heymans), Ghent University, Ottergemsesteenweg 460, 9000 Gent, Belgium
| | - Serge V Calenbergh
- Laboratory for Medicinal Chemistry (Campus Heymans), Ghent University, Ottergemsesteenweg 460, 9000 Gent, Belgium
| | | |
Collapse
|
12
|
Cantizani J, Gamallo P, Cotillo I, Alvarez-Velilla R, Martin J. Rate-of-Kill (RoK) assays to triage large compound sets for Chagas disease drug discovery: Application to GSK Chagas Box. PLoS Negl Trop Dis 2021; 15:e0009602. [PMID: 34270544 PMCID: PMC8318231 DOI: 10.1371/journal.pntd.0009602] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/28/2021] [Accepted: 06/28/2021] [Indexed: 11/18/2022] Open
Abstract
Chagas disease (CD) is a human disease caused by Trypanosoma cruzi. Whilst endemic in Latin America, the disease is spread around the world due to migration flows, being estimated that 8 million people are infected worldwide and over 10,000 people die yearly of complications linked to CD. Current chemotherapeutics is restricted to only two drugs, i.e. benznidazole (BNZ) and nifurtimox (NIF), both being nitroaromatic compounds sharing mechanism of action and exerting suboptimal efficacy and serious adverse effects. Recent clinical trials conducted to reposition antifungal azoles have turned out disappointing due to poor efficacy outcomes despite their promising preclinical profile. This apparent lack of translation from bench models to the clinic raises the question of whether we are using the right in vitro tools for compound selection. We propose that speed of action and cidality, rather than potency, are properties that can differentiate those compounds with better prospect of success to show efficacy in animal models of CD. Here we investigate the use of in vitro assays looking at the kinetics of parasite kill as a valuable surrogate to tell apart slow- (i.e. azoles targeting CYP51) and fast-acting (i.e. nitroaromatic) compounds. Data analysis and experimental design have been optimised to make it amenable for high-throughput compound profiling. Automated data reduction of experimental kinetic points to tabulated curve descriptors in conjunction with PCA, k-means and hierarchical clustering provide drug discoverers with a roadmap to guide navigation from hit qualification of a screening campaign to compound optimisation programs and assessment of combo therapy potential. As an example, we have studied compounds belonging to the GSK Chagas Box stemmed from the HTS campaign run against the full GSK 1.8 million compounds collection [1]. One of the challenges in early drug discovery of small molecules is the improvement of the poor success rate in the translation from in vitro biological profile into efficacy in disease models, and ultimately in the clinic. Reductionist in vitro models on the bench may not properly recapitulate disease biology, thus overlooking critical properties of candidate compounds. Chagas Disease is a neglected tropical disease caused by Trypanosoma cruzi, a protozoan parasite with a complex life cycle. Despite the promising prospect based on in vitro and in vivo preclinical studies, efforts to reposition antifungal azoles turned out to be disappointing in clinical trials, with treatment failure in Chagas patients. This raises the question of whether we are using the right preclinical tools for decision-making about moving compounds forward for the treatment of this disease. We hypothesise that in vitro potency and efficacy values alone might be distorting the translational power of preclinical compounds, and we propose the use of rate-of-kill (RoK) assays in high-throughput mode. Herewith we disclose a simple, systematic, and automated methodology of analysis of the otherwise complex kinetic patterns, which provides drug discoverers with a navigation guide along a compound optimisation program or prioritisation of best exemplars across different chemical series.
Collapse
Affiliation(s)
- Juan Cantizani
- Kinetoplastid DPU, Global Health R&D, GSK, Tres Cantos, Madrid, Spain
| | - Pablo Gamallo
- Kinetoplastid DPU, Global Health R&D, GSK, Tres Cantos, Madrid, Spain
| | - Ignacio Cotillo
- Kinetoplastid DPU, Global Health R&D, GSK, Tres Cantos, Madrid, Spain
| | | | - Julio Martin
- Kinetoplastid DPU, Global Health R&D, GSK, Tres Cantos, Madrid, Spain
- * E-mail:
| |
Collapse
|
13
|
Quintero WL, Moreno EM, Pinto SML, Sanabria SM, Stashenko E, García LT. Immunomodulatory, trypanocide, and antioxidant properties of essential oil fractions of Lippia alba (Verbenaceae). BMC Complement Med Ther 2021; 21:187. [PMID: 34215249 PMCID: PMC8254251 DOI: 10.1186/s12906-021-03347-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/07/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Parasite persistence, exacerbated and sustained immune response, and continuous oxidative stress have been described to contribute to the development of the cardiac manifestations in Chronic Chagas Disease. Nevertheless, there are no efficient therapies to resolve the Trypanosoma cruzi infection and prevent the disease progression. Interestingly, trypanocide, antioxidant, and immunodulatory properties have been reported separately for some major terpenes, as citral (neral plus geranial), limonene, and caryophyllene oxide, presents in essential oils (EO) extracted from two chemotypes (Citral and Carvone) of Lippia alba. The aim of this study was to obtain L. alba essential oil fractions enriched with the aforementioned bioactive terpenes and to evaluate the impact of these therapies on trypanocide, oxidative stress, mitochondrial bioenergetics, genotoxicity, and inflammatory markers on T. cruzi-infected macrophages. METHODS T. cruzi-infected J774A.1 macrophage were treated with limonene-enriched (ACT1) and citral/caryophyllene oxide-enriched (ACT2) essential oils fractions derived from Carvone and Citral-L. alba chemotypes, respectively. RESULTS ACT1 (IC50 = 45 ± 1.7 μg/mL) and ACT2 (IC50 = 80 ± 1.9 μg/mL) exhibit similar trypanocidal effects to Benznidazole (BZN) (IC50 = 48 ± 2.5 μg/mL), against amastigotes. Synergistic antiparasitic activity was observed when ACT1 was combined with BZN (∑FIC = 0.52 ± 0.13 μg/mL) or ACT2 (∑FIC = 0.46 ± 1.7 μg/mL). ACT1 also decreased the oxidative stress, mitochondrial metabolism, and genotoxicity of the therapies. The ACT1 + ACT2 and ACT1 + BZN experimental treatments reduced the pro-inflammatory cytokines (IFN-γ, IL-2, and TNF-α) and increased the anti-inflammatory cytokines (IL-4 and IL-10). CONCLUSION Due to its highly trypanocidal and immunomodulatory properties, ACT1 (whether alone or in combination with BZN or ACT2) represents a promising L. alba essential oil fraction for further studies in drug development towards the Chagas disease control.
Collapse
Affiliation(s)
- Wendy Lorena Quintero
- Infectious Disease Research Program, Universidad de Santander, Bucaramanga, Santander Colombia 680006
| | - Erika Marcela Moreno
- Infectious Disease Research Program, Universidad de Santander, Bucaramanga, Santander Colombia 680006
| | - Sandra Milena Leal Pinto
- Infectious Disease Research Program, Universidad de Santander, Bucaramanga, Santander Colombia 680006
| | | | - Elena Stashenko
- National Research Center for the Agroindustrialization of Aromatic and Medicinal Tropical Species (CENIVAM), Universidad Industrial de Santander, Bucaramanga, Colombia 680002
| | - Liliana Torcoroma García
- Infectious Disease Research Program, Universidad de Santander, Bucaramanga, Santander Colombia 680006
| |
Collapse
|
14
|
Beltran-Hortelano I, Atherton RL, Rubio-Hernández M, Sanz-Serrano J, Alcolea V, Kelly JM, Pérez-Silanes S, Olmo F. Design and synthesis of Mannich base-type derivatives containing imidazole and benzimidazole as lead compounds for drug discovery in Chagas Disease. Eur J Med Chem 2021; 223:113646. [PMID: 34182359 DOI: 10.1016/j.ejmech.2021.113646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 10/21/2022]
Abstract
The protozoan parasite Trypanosoma cruzi is the causative agent of Chagas disease, the most important parasitic infection in Latin America. The only treatments currently available are nitro-derivative drugs that are characterised by high toxicity and limited efficacy. Therefore, there is an urgent need for more effective, less toxic therapeutic agents. We have previously identified the potential for Mannich base derivatives as novel inhibitors of this parasite. To further explore this family of compounds, we synthesised a panel of 69 new analogues, based on multi-parametric structure-activity relationships, which allowed optimization of both anti-parasitic activity, physicochemical parameters and ADME properties. Additionally, we optimized our in vitro screening approaches against all three developmental forms of the parasite, allowing us to discard the least effective and trypanostatic derivatives at an early stage. We ultimately identified derivative 3c, which demonstrated excellent trypanocidal properties, and a synergistic mode of action against trypomastigotes in combination with the reference drug benznidazole. Both its druggability and low-cost production make this derivative a promising candidate for the preclinical, in vivo assays of the Chagas disease drug-discovery pipeline.
Collapse
Affiliation(s)
- Iván Beltran-Hortelano
- Universidad de Navarra, ISTUN Instituto de Salud Tropical, Irunlarrea 1, 31008, Pamplona, Spain; Universidad de Navarra, Pharmacy and Nutrition Faculty, Department of Pharmaceutical Technology and Chemistry, Campus Universitario, 31080, Pamplona, Spain
| | - Richard L Atherton
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, WC1 7HT, United Kingdom
| | - Mercedes Rubio-Hernández
- Universidad de Navarra, ISTUN Instituto de Salud Tropical, Irunlarrea 1, 31008, Pamplona, Spain; Universidad de Navarra, Pharmacy and Nutrition Faculty, Department of Pharmaceutical Technology and Chemistry, Campus Universitario, 31080, Pamplona, Spain
| | - Julen Sanz-Serrano
- Universidad de Navarra, Pharmacy and Nutrition Faculty, Department of Pharmacology and Toxicology, Irunlarrea 1, 31008, Pamplona, Spain
| | - Verónica Alcolea
- Universidad de Navarra, ISTUN Instituto de Salud Tropical, Irunlarrea 1, 31008, Pamplona, Spain; Universidad de Navarra, Pharmacy and Nutrition Faculty, Department of Pharmaceutical Technology and Chemistry, Campus Universitario, 31080, Pamplona, Spain
| | - John M Kelly
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, WC1 7HT, United Kingdom
| | - Silvia Pérez-Silanes
- Universidad de Navarra, ISTUN Instituto de Salud Tropical, Irunlarrea 1, 31008, Pamplona, Spain; Universidad de Navarra, Pharmacy and Nutrition Faculty, Department of Pharmaceutical Technology and Chemistry, Campus Universitario, 31080, Pamplona, Spain.
| | - Francisco Olmo
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, WC1 7HT, United Kingdom.
| |
Collapse
|
15
|
Fesser A, Kaiser M, Mäser P. Neue Parameter für die Wirkstofftestung gegen Trypanosoma cruzi. ACTA ACUST UNITED AC 2021; 27:168-170. [PMID: 33776218 PMCID: PMC7985589 DOI: 10.1007/s12268-021-1554-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Affiliation(s)
- Anna Fesser
- Universität Basel Schweizerisches Tropen- und Public Health-Institut (Swiss TPH), Socinstraße 57, CH-4051 Basel, Schweiz
| | - Marcel Kaiser
- Universität Basel Schweizerisches Tropen- und Public Health-Institut (Swiss TPH), Socinstraße 57, CH-4051 Basel, Schweiz
| | - Pascal Mäser
- Universität Basel Schweizerisches Tropen- und Public Health-Institut (Swiss TPH), Socinstraße 57, CH-4051 Basel, Schweiz
| |
Collapse
|
16
|
Rocha-Hasler M, de Oliveira GM, da Gama AN, Fiuza LFDA, Fesser AF, Cal M, Rocchetti R, Peres RB, Guan XL, Kaiser M, Soeiro MDNC, Mäser P. Combination With Tomatidine Improves the Potency of Posaconazole Against Trypanosoma cruzi. Front Cell Infect Microbiol 2021; 11:617917. [PMID: 33747979 PMCID: PMC7970121 DOI: 10.3389/fcimb.2021.617917] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/15/2021] [Indexed: 11/23/2022] Open
Abstract
Azoles such as posaconazole (Posa) are highly potent against Trypanosoma cruzi. However, when tested in chronic Chagas disease patients, a high rate of relapse after Posa treatment was observed. It appears that inhibition of T. cruzi cytochrome CYP51, the target of azoles, does not deliver sterile cure in monotherapy. Looking for suitable combination partners of azoles, we have selected a set of inhibitors of sterol and sphingolipid biosynthetic enzymes. A small-scale phenotypic screening was conducted in vitro against the proliferative forms of T. cruzi, extracellular epimastigotes and intracellular amastigotes. Against the intracellular, clinically relevant forms, four out of 15 tested compounds presented higher or equal activity as benznidazole (Bz), with EC50 values ≤2.2 μM. Ro48-8071, an inhibitor of lanosterol synthase (ERG7), and the steroidal alkaloid tomatidine (TH), an inhibitor of C-24 sterol methyltransferase (ERG6), exhibited the highest potency and selectivity indices (SI = 12 and 115, respectively). Both were directed to combinatory assays using fixed-ratio protocols with Posa, Bz, and fexinidazole. The combination of TH with Posa displayed a synergistic profile against amastigotes, with a mean ΣFICI value of 0.2. In vivo assays using an acute mouse model of T. cruzi infection demonstrated lack of antiparasitic activity of TH alone in doses ranging from 0.5 to 5 mg/kg. As observed in vitro, the best combo proportion in vivo was the ratio 3 TH:1 Posa. The combination of Posa at 1.25 mpk plus TH at 3.75 mpk displayed suppression of peak parasitemia of 80% and a survival rate of 60% in the acute infection model, as compared to 20% survival for Posa at 1.25 mpk alone and 40% for Posa at 10 mpk alone. These initial results indicate a potential for the combination of posaconazole with tomatidine against T. cruzi.
Collapse
Affiliation(s)
- Marianne Rocha-Hasler
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz (IOC/Fiocruz), Pavilhão Cardoso Fontes, Rio de Janeiro, Brazil.,Parasite Chemotherapy Unit, Swiss Tropical and Public Health Institute, Medical Parasitology and Infection Biology, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Gabriel Melo de Oliveira
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz (IOC/Fiocruz), Pavilhão Cardoso Fontes, Rio de Janeiro, Brazil
| | - Aline Nefertiti da Gama
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz (IOC/Fiocruz), Pavilhão Cardoso Fontes, Rio de Janeiro, Brazil
| | | | - Anna Frieda Fesser
- Parasite Chemotherapy Unit, Swiss Tropical and Public Health Institute, Medical Parasitology and Infection Biology, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Monica Cal
- Parasite Chemotherapy Unit, Swiss Tropical and Public Health Institute, Medical Parasitology and Infection Biology, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Romina Rocchetti
- Parasite Chemotherapy Unit, Swiss Tropical and Public Health Institute, Medical Parasitology and Infection Biology, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Raiza Brandão Peres
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz (IOC/Fiocruz), Pavilhão Cardoso Fontes, Rio de Janeiro, Brazil
| | - Xue Li Guan
- Systems Biology of Lipid Metabolism in Human Health and Diseases Laboratory, Lee Kong Chian School of Medicine, Singapore, Singapore
| | - Marcel Kaiser
- Parasite Chemotherapy Unit, Swiss Tropical and Public Health Institute, Medical Parasitology and Infection Biology, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | | | - Pascal Mäser
- Parasite Chemotherapy Unit, Swiss Tropical and Public Health Institute, Medical Parasitology and Infection Biology, Basel, Switzerland.,University of Basel, Basel, Switzerland
| |
Collapse
|
17
|
The ubiquinone synthesis pathway is a promising drug target for Chagas disease. PLoS One 2021; 16:e0243855. [PMID: 33539347 PMCID: PMC7861437 DOI: 10.1371/journal.pone.0243855] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 11/27/2020] [Indexed: 12/16/2022] Open
Abstract
Chagas disease is caused by infection with the protozoan parasite Trypanosoma cruzi (T. cruzi). It was originally a Latin American endemic health problem, but now is expanding worldwide as a result of increasing migration. The currently available drugs for Chagas disease, benznidazole and nifurtimox, provoke severe adverse effects, and thus the development of new drugs is urgently required. Ubiquinone (UQ) is essential for respiratory chain and redox balance in trypanosomatid protozoans, therefore we aimed to provide evidence that inhibitors of the UQ biosynthesis have trypanocidal activities. In this study, inhibitors of the human COQ7, a key enzyme of the UQ synthesis, were tested for their trypanocidal activities because they were expected to cross-react and inhibit trypanosomal COQ7 due to their genetic homology. We show the trypanocidal activity of a newly found human COQ7 inhibitor, an oxazinoquinoline derivative. The structurally similar compounds were selected from the commercially available compounds by 2D and 3D ligand-based similarity searches. Among 38 compounds selected, 12 compounds with the oxazinoquinoline structure inhibited significantly the growth of epimastigotes of T. cruzi. The most effective 3 compounds also showed the significant antitrypanosomal activity against the mammalian stage of T. cruzi at lower concentrations than benznidazole, a commonly used drug today. We found that epimastigotes treated with the inhibitor contained reduced levels of UQ9. Further, the growth of epimastigotes treated with the inhibitors was partially rescued by UQ10 supplementation to the culture medium. These results suggest that the antitrypanosomal mechanism of the oxazinoquinoline derivatives results from inhibition of the trypanosomal UQ synthesis leading to a shortage of the UQ pool. Our data indicate that the UQ synthesis pathway of T. cruzi is a promising drug target for Chagas disease.
Collapse
|
18
|
Sensibilidad in vitro a benznidazol, nifurtimox y posaconazol de cepas de Trypanosoma cruzi de Paraguay. BIOMÉDICA 2020; 40:749-763. [PMID: 33275352 PMCID: PMC7808768 DOI: 10.7705/biomedica.5187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Indexed: 11/21/2022]
Abstract
Introducción. Trypanosoma cruzi, agente causal de la enfermedad de Chagas, exhibe una sustancial heterogeneidad fenotípica y genotípica que puede influir en las variaciones epidemiológicas y clínicas de la enfermedad, así como en la sensibilidad a los fármacos utilizados en el tratamiento. Objetivo. Evaluar la sensibilidad in vitro al benznidazol, el nifurtimox y el posaconazol de 40 cepas clonadas de T. cruzi de Paraguay, con distintos genotipos, huéspedes y localidades de origen. Materiales y métodos. En su estado epimastigote, los parásitos se incubaron en medio de cultivo LIT (Liver Infusion Tryptose) con diferentes concentraciones de cada fármaco en ensayos por triplicado. El grado de sensibilidad se estimó a partir de las concentraciones inhibitorias del 50 y el 90% (IC50 e IC90) y se obtuvieron los valores promedio y la desviación estándar de cada cepa y fármaco. La significación estadística entre grupos se determinó mediante análisis de varianzas con el test no paramétrico de Wilcoxon/Kruskal-Wallis y valores de p<0,05. Resultados. Se observó un amplio rango de respuesta a los fármacos. Se identificaron dos grupos de parásitos (A y B) con diferencias significativas en la sensibilidad al benznidazol (p<0,0001), y tres grupos (A, B, C) en cuanto a la sensibilidad al nifurtimox y el posaconazol (p<0,0001). Conclusiones. En general, las cepas fueron más sensibles al nifurtimox que al benznidazol y el posaconazol. Estas diferencias evidencian la heterogeneidad de las poblaciones de T cruzi que circulan en Paraguay, lo que debe considerarse en el tratamiento y el seguimiento de las personas afectadas.
Collapse
|
19
|
In Vitro and In Vivo Evaluation of an Adamantyl-Based Phenyl Sulfonyl Acetamide against Cutaneous Leishmaniasis Models of Leishmania amazonensis. Antimicrob Agents Chemother 2020; 64:AAC.01188-20. [PMID: 32928731 DOI: 10.1128/aac.01188-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/03/2020] [Indexed: 11/20/2022] Open
Abstract
Phenotypic assay against Leishmania amazonensis in vitro and in vivo led to identification of an adamantyl-based phenyl sulfonyl acetamide (compound 1) as a promising antileishmanial agent. Compound 1 inhibited the growth of intracellular forms of L. amazonensis (50% inhibitory concentration [IC50] = 4 μM) and exhibited low toxicity to host cells, with a selectivity index (SI) of >125. However, in a cutaneous leishmaniasis (CL) mouse model, compound 1 did not reduce lesions and parasite load when administered as monotherapy or when given simultaneously with a suboptimal dose of miltefosine.
Collapse
|
20
|
Martín-Escolano J, Medina-Carmona E, Martín-Escolano R. Chagas Disease: Current View of an Ancient and Global Chemotherapy Challenge. ACS Infect Dis 2020; 6:2830-2843. [PMID: 33034192 DOI: 10.1021/acsinfecdis.0c00353] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Chagas disease is a neglected tropical disease and a global public health issue. In terms of treatment, no progress has been made since the 1960s, when benznidazole and nifurtimox, two obsolete drugs still prescribed, were used to treat this disease. Hence, currently, there are no effective treatments available to tackle Chagas disease. Over the past 20 years, there has been an increasing interest in the disease. However, parasite genetic diversity, drug resistance, tropism, and complex life cycle, along with the limited understanding of the disease and inadequate methodologies and strategies, have resulted in the absence of new insights in drugs development and disappointing outcomes in clinical trials so far. In summary, new drugs are urgently needed. This Review considers the relevant aspects related to the lack of drugs for Chagas disease, resumes the advances in tools for drug discovery, and discusses the main features to be taken into account to develop new effective drugs.
Collapse
Affiliation(s)
- Javier Martín-Escolano
- Department of Parasitology, Instituto de Investigación Biosanitaria (ibs.Granada), Hospitales Universitarios De Granada/University of Granada, Severo Ochoa s/n, 18071 Granada, Spain
| | | | - Rubén Martín-Escolano
- Department of Parasitology, Instituto de Investigación Biosanitaria (ibs.Granada), Hospitales Universitarios De Granada/University of Granada, Severo Ochoa s/n, 18071 Granada, Spain
| |
Collapse
|
21
|
Gulin JEN, Eagleson MA, López-Muñoz RA, Solana ME, Altcheh J, García-Bournissen F. In vitro and in vivo activity of voriconazole and benznidazole combination on trypanosoma cruzi infection models. Acta Trop 2020; 211:105606. [PMID: 32598923 DOI: 10.1016/j.actatropica.2020.105606] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 01/09/2023]
Abstract
Combination therapy has been proposed as an ideal strategy to reduce drug toxicity and improve treatment efficacy in Chagas disease. Previously, we demonstrated potent in vivo anti-Trypanosoma cruzi activity of voriconazole. In this work, we aimed to study the synergistic effect of voriconazole (VCZ) and benznidazole (BZ) both in vitro and in vivo models of T. cruzi infection using the Tulahuen strain. Combining VCZ and BZ at fixed concentrations, the inhibitory concentration 50% (IC50) on amastigotes was lower than the obtained IC50 for BZ alone and the Fractional Inhibitory Concentration Index (∑FIC) suggested an in vitro additive effect on T. cruzi amastigotes inhibition at concentrations devoid of cytotoxic effects. Treatment response in the in vivo model was evaluated by comparing behavior and physical aspects, parasitemia and mortality of mice infected with Tulahuen strain. VCZ and BZ treatments alone or in combination were well tolerated. All treated animals displayed significantly lower mean peak parasitemia and mortality compared to infected non-treated controls (p< 0.05). However, VCZ + BZ combination elicited no additional benefits over BZ monotherapy. VCZ efficacy was not enhanced by combination therapy with BZ at the doses studied, requiring further and astringent non-clinical studies to establish the VCZ efficacy and eventually moving forward to clinical trials.
Collapse
|
22
|
Thompson AM, O'Connor PD, Marshall AJ, Francisco AF, Kelly JM, Riley J, Read KD, Perez CJ, Cornwall S, Thompson RCA, Keenan M, White KL, Charman SA, Zulfiqar B, Sykes ML, Avery VM, Chatelain E, Denny WA. Re-evaluating pretomanid analogues for Chagas disease: Hit-to-lead studies reveal both in vitro and in vivo trypanocidal efficacy. Eur J Med Chem 2020; 207:112849. [PMID: 33007723 DOI: 10.1016/j.ejmech.2020.112849] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 09/08/2020] [Accepted: 09/12/2020] [Indexed: 01/08/2023]
Abstract
Phenotypic screening of a 900 compound library of antitubercular nitroimidazole derivatives related to pretomanid against the protozoan parasite Trypanosoma cruzi (the causative agent for Chagas disease) identified several structurally diverse hits with an unknown mode of action. Following initial profiling, a first proof-of-concept in vivo study was undertaken, in which once daily oral dosing of a 7-substituted 2-nitroimidazooxazine analogue suppressed blood parasitemia to low or undetectable levels, although sterile cure was not achieved. Limited hit expansion studies alongside counter-screening of new compounds targeted at visceral leishmaniasis laid the foundation for a more in-depth assessment of the best leads, focusing on both drug-like attributes (solubility, metabolic stability and safety) and maximal killing of the parasite in a shorter timeframe. Comparative appraisal of one preferred lead (58) in a chronic infection mouse model, monitored by highly sensitive bioluminescence imaging, provided the first definitive evidence of (partial) curative efficacy with this promising nitroimidazooxazine class.
Collapse
Affiliation(s)
- Andrew M Thompson
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.
| | - Patrick D O'Connor
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Andrew J Marshall
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Amanda F Francisco
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, United Kingdom
| | - John M Kelly
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, United Kingdom
| | - Jennifer Riley
- Drug Discovery Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, United Kingdom
| | - Kevin D Read
- Drug Discovery Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, United Kingdom
| | - Catherine J Perez
- Department of Parasitology & Veterinary Sciences, Murdoch University, South Street, Murdoch, Western Australia, 6150, Australia
| | - Scott Cornwall
- Department of Parasitology & Veterinary Sciences, Murdoch University, South Street, Murdoch, Western Australia, 6150, Australia
| | - R C Andrew Thompson
- Department of Parasitology & Veterinary Sciences, Murdoch University, South Street, Murdoch, Western Australia, 6150, Australia
| | - Martine Keenan
- Epichem Pty Ltd, Suite 5, 3 Brodie-Hall Drive, Technology Park, Bentley, Western Australia, 6102, Australia
| | - Karen L White
- Centre for Drug Candidate Optimisation, Monash University, 381 Royal Parade, Parkville, Victoria, 3052, Australia
| | - Susan A Charman
- Centre for Drug Candidate Optimisation, Monash University, 381 Royal Parade, Parkville, Victoria, 3052, Australia
| | - Bilal Zulfiqar
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Don Young Road, Nathan, Queensland, 4111, Australia
| | - Melissa L Sykes
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Don Young Road, Nathan, Queensland, 4111, Australia
| | - Vicky M Avery
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Don Young Road, Nathan, Queensland, 4111, Australia
| | - Eric Chatelain
- Drugs for Neglected Diseases initiative, 15 Chemin Louis Dunant, 1202, Geneva, Switzerland
| | - William A Denny
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| |
Collapse
|
23
|
de Araújo JS, França da Silva C, Batista DDGJ, Nefertiti A, Fiuza LFDA, Fonseca-Berzal CR, Bernardino da Silva P, Batista MM, Sijm M, Kalejaiye TD, de Koning HP, Maes L, Sterk GJ, Leurs R, Soeiro MDNC. Efficacy of Novel Pyrazolone Phosphodiesterase Inhibitors in Experimental Mouse Models of Trypanosoma cruzi. Antimicrob Agents Chemother 2020; 64:e00414-20. [PMID: 32601163 PMCID: PMC7449165 DOI: 10.1128/aac.00414-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/20/2020] [Indexed: 11/20/2022] Open
Abstract
Pyrazolones are heterocyclic compounds with interesting biological properties. Some derivatives inhibit phosphodiesterases (PDEs) and thereby increase the cellular concentration of cyclic AMP (cAMP), which plays a vital role in the control of metabolism in eukaryotic cells, including the protozoan Trypanosoma cruzi, the etiological agent of Chagas disease (CD), a major neglected tropical disease. In vitro phenotypic screening identified a 4-bromophenyl-dihydropyrazole dimer as an anti-T. cruzi hit and 17 novel pyrazolone analogues with variations on the phenyl ring were investigated in a panel of phenotypic laboratory models. Potent activity against the intracellular forms (Tulahuen and Y strains) was obtained with 50% effective concentration (EC50) values within the 0.17 to 3.3 μM range. Although most were not active against bloodstream trypomastigotes, an altered morphology and loss of infectivity were observed. Pretreatment of the mammalian host cells with pyrazolones did not interfere with infection and proliferation, showing that the drug activity was not the result of changes to host cell metabolism. The pyrazolone NPD-227 increased the intracellular cAMP levels and was able to sterilize T. cruzi-infected cell cultures. Thus, due to its high potency and selectivity in vitro, and its additive interaction with benznidazole (Bz), NPD-227 was next assessed in the acute mouse model. Oral dosing for 5 days of NPD-227 at 10 mg/kg + Bz at 10 mg/kg not only reduced parasitemia (>87%) but also protected against mortality (>83% survival), hence demonstrating superiority to the monotherapy schemes. These data support these pyrazolone molecules as potential novel therapeutic alternatives for Chagas disease.
Collapse
Affiliation(s)
- Julianna Siciliano de Araújo
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cristiane França da Silva
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Denise da Gama Jaén Batista
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Aline Nefertiti
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Cristina Rosa Fonseca-Berzal
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
- Departamento de Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Patrícia Bernardino da Silva
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcos Meuser Batista
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maarten Sijm
- Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecules, Medicines and Systems, VU University Amsterdam, Amsterdam, The Netherlands
| | - Titilola D Kalejaiye
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Harry P de Koning
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Louis Maes
- Laboratory for Microbiology, Parasitology and Hygiene, University of Antwerp, Antwerp, Belgium
| | - Geert Jan Sterk
- Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecules, Medicines and Systems, VU University Amsterdam, Amsterdam, The Netherlands
| | - Rob Leurs
- Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecules, Medicines and Systems, VU University Amsterdam, Amsterdam, The Netherlands
| | | |
Collapse
|
24
|
Fesser AF, Braissant O, Olmo F, Kelly JM, Mäser P, Kaiser M. Non-invasive monitoring of drug action: A new live in vitro assay design for Chagas' disease drug discovery. PLoS Negl Trop Dis 2020; 14:e0008487. [PMID: 32716934 PMCID: PMC7419005 DOI: 10.1371/journal.pntd.0008487] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 08/11/2020] [Accepted: 06/15/2020] [Indexed: 02/06/2023] Open
Abstract
New assay designs are needed to improve the predictive value of the Trypanosoma cruzi in vitro tests used as part of the Chagas' disease drug development pipeline. Here, we employed a green fluorescent protein (eGFP)-expressing parasite line and live high-content imaging to monitor the growth of T. cruzi amastigotes in mouse embryonic fibroblasts. A novel assay design allowed us to follow parasite numbers over 6 days, in four-hour intervals, while occupying the microscope for only 24 hours per biological replicate. Dose-response curves were calculated for each time point after addition of test compounds, revealing how EC50 values first decreased over the time of drug exposure, and then leveled off. However, we observed that parasite numbers could vary, even in the untreated controls, and at different sites in the same well, which caused variability in the EC50 values. To overcome this, we established that fold change in parasite number per hour is a more robust and informative measure of drug activity. This was calculated based on an exponential growth model for every biological sample. The net fold change per hour is the result of parasite replication, differentiation, and death. The calculation of this fold change enabled us to determine the tipping point of drug action, i.e. the time point when the death rate of the parasites exceeded the growth rate and the fold change dropped below 1, depending on the drug concentration and exposure time. This revealed specific pharmacodynamic profiles of the benchmark drugs benznidazole and posaconazole. Chagas' disease, caused by Trypanosoma cruzi, is a chronic debilitating infection occurring mostly in Latin America. There is an urgent need for new, well tolerated drugs. However, the latest therapeutic candidates have yielded disappointing outcomes in clinical trials, despite promising preclinical results. This demands new and more predictive in vitro assays. To address this, we have developed an assay design that enables the growth of T. cruzi intracellular forms to be monitored in real time, under drug pressure, for 6 days post-infection. This allowed us to establish the tipping point of drug action, when the death rate of the parasites exceeded the growth rate. The resulting pharmacodynamics profiles can provide robust and informative details on anti-chagasic candidates, as demonstrated for the benchmark drugs benznidazole and posaconazole.
Collapse
Affiliation(s)
- Anna F. Fesser
- Medical Parasitology and Infection Biology, Swiss Tropical & Public Health Institute, Switzerland
- University of Basel, Basel, Switzerland
| | - Olivier Braissant
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Francisco Olmo
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - John M. Kelly
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Pascal Mäser
- Medical Parasitology and Infection Biology, Swiss Tropical & Public Health Institute, Switzerland
- University of Basel, Basel, Switzerland
- * E-mail:
| | - Marcel Kaiser
- Medical Parasitology and Infection Biology, Swiss Tropical & Public Health Institute, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
25
|
Sykes ML, Hilko DH, Kung LI, Poulsen SA, Avery VM. Investigation of pyrimidine nucleoside analogues as chemical probes to assess compound effects on the proliferation of Trypanosoma cruzi intracellular parasites. PLoS Negl Trop Dis 2020; 14:e0008068. [PMID: 32163414 PMCID: PMC7112222 DOI: 10.1371/journal.pntd.0008068] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 04/01/2020] [Accepted: 01/15/2020] [Indexed: 02/05/2023] Open
Abstract
Trypanosoma cruzi parasites utilise de novo pyrimidine biosynthesis to produce DNA and survive within mammalian host cells. This pathway can be hijacked to assess the replication of intracellular parasites with the exogenous addition of a DNA specific probe. To identify suitable probe compounds for this application, a collection of pyrimidine nucleoside analogues was assessed for incorporation into T. cruzi intracellular amastigote DNA using image-based technology and script-based analysis. Associated mammalian cell toxicity of these compounds was also determined against both the parasite host cells (3T3 cells) and HEK293 cells. Incorporation of 5-ethynyl-2′-deoxyuridine (EdU) into parasite DNA was the most effective of the probes tested, with minimal growth inhibition observed following either two or four hours EdU exposure. EdU was subsequently utilised as a DNA probe, followed by visualisation with click chemistry to a fluorescent azide, to assess the impact of drugs and compounds with previously demonstrated activity against T. cruzi parasites, on parasite replication. The inhibitory profiles of these molecules highlight the benefit of this approach for identifying surviving parasites post-treatment in vitro and classifying compounds as either fast or slow-acting. F-ara-EdU resulted in <50% activity observed against T. cruzi amastigotes following 48 hours incubation, at 73 μM. Collectively, this supports the further development of pyrimidine nucleosides as chemical probes to investigate replication of the parasite T. cruzi. Chagas disease occurs within 21 countries in the Americas, causes over 10, 000 deaths per year and a further 25 million people are at risk of being infected. The cause of Chagas disease is Trypanosoma cruzi, a single celled protozoan parasite, which enters the bloodstream of a host by the bite of a “kissing bug”. In advanced disease stages, the parasite hides in heart and gut tissue and is difficult to treat. Identifying the replicative ability of these parasites is important to understanding Chagas disease progression and the effectiveness of compounds and drugs for treatment. By testing a panel of nucleoside analogues that may incorporate into DNA during synthesis, we developed an image-based method with a fluorescently-labelled DNA probe to identify replicating parasites. This method has effectively shown that drugs used to treat the parasite are able to clear intracellular infection, whilst a compound that was not efficacious in clinical trials leaves replicating T. cruzi behind. This methodology can be used to understand the action of further compounds and supports the identification of new, less toxic probes to assess intracellular parasite replication.
Collapse
Affiliation(s)
- Melissa Louise Sykes
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, Australia
| | - David Hugh Hilko
- Chemical Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, Australia
| | - Livia Isabella Kung
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, Australia.,Institute of Molecular Health Sciences, ETH Zurich, Switzerland
| | - Sally-Ann Poulsen
- Chemical Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, Australia
| | - Vicky Marie Avery
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, Australia
| |
Collapse
|
26
|
Drug discovery for chagas disease: A viewpoint. Acta Trop 2019; 198:105107. [PMID: 31351074 DOI: 10.1016/j.actatropica.2019.105107] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/09/2019] [Accepted: 07/22/2019] [Indexed: 12/11/2022]
Abstract
Chagas disease is a neglected tropical disease caused by the protozoan parasite Trypanosoma cruzi. It is a significant public health problem, affecting millions of people worldwide. And although it was described 110 years ago, only two old nitroheterocyclic drugs, benznidazole and nifurtimox, are currently available for the treatment of Chagas disease and both have several limitations. Besides the clear unmet medical need, many challenges preclude the development of new treatments, some of them related to a lack of understanding of the pathophysiology of the disease and parasite-host interactions. New knowledge and tools are becoming available, but the number of new chemical entities progressing through the preclinical pipeline is inadequate. Therefore, it is still uncertain whether safe, effective and accessible new drugs will be available in the near future. The Chagas disease research community must commit to even greater collaboration to ensure that patients eventually benefit from better treatments.
Collapse
|
27
|
Guedes-da-Silva FH, Batista DDGJ, Da Silva CF, Pavão BP, Batista MM, Moreira OC, Souza LRQ, Britto C, Rachakonda G, Villalta F, Lepesheva GI, Soeiro MDNC. Successful Aspects of the Coadministration of Sterol 14α-Demethylase Inhibitor VFV and Benznidazole in Experimental Mouse Models of Chagas Disease Caused by the Drug-Resistant Strain of Trypanosoma cruzi. ACS Infect Dis 2019; 5:365-371. [PMID: 30625275 DOI: 10.1021/acsinfecdis.8b00253] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Up to now, no vaccines are available for Chagas disease, and the current therapy is largely unsatisfactory. Novel imidazole-based scaffolds of protozoan sterol 14α-demethylase (CYP51) inhibitors have demonstrated potent antiparasitic activity with no acute toxicity. Presently our aim was to investigate the effectiveness of the experimental 14α-demethylase inhibitor VFV in the mouse models of Trypanosoma cruzi infection using a naturally drug-resistant Colombiana strain, under monotherapy and in association with the reference drug, benznidazole (Bz). The treatment with VFV resulted in complete parasitemia suppression and 100% animal survival when administered orally (given in 10% DMSO plus 5% Arabic gum) at 25 mg/kg (bid) for 60 days. However, as parasite relapse was found using VFV alone under this treatment scheme, the coadministration of VFV with Bz was assayed giving simultaneously (for 60 days, bid) by oral route, under two different drug vehicles (10% DMSO plus 5% Gum Arabic with or without 3% Tween 80). All tested mice groups resulted in >99.9% of parasitemia decrease and 100% animal survival. qPCR analysis performed on cyclophosphamide immunosuppressed mice revealed that, although presenting lack of cure, VFV given as monotherapy was 14-fold more active than Bz, and the coadministration of Bz plus VFV (given simultaneously, using 10% DMSO plus 5% Gum Arabic as vehicle) resulted in 106-fold lower blood parasitism as compared to the monotherapy of Bz. Another interesting finding was the parasitological cure in 70% of the animals treated with Bz and VFV when the coadministration was given using the VFV suspension in 10% DMSO + Arabic gum + Tween 80 (a formulation that we have found to provide a better pharmacokinetics), even after immunosuppression using cyclophosphamide cycles, supporting the promising aspect of the drug coadministration in improving the efficacy of therapeutic arsenal against T. cruzi.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Girish Rachakonda
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, 1005 Dr. DB Todd Jr. Blvd., Nashville, Tennessee 37208, United States,
| | - Fernando Villalta
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, 1005 Dr. DB Todd Jr. Blvd., Nashville, Tennessee 37208, United States,
| | - Galina I. Lepesheva
- Department of Biochemistry School of Medicine, Institute for Global Health, Vanderbilt University, 622A RRB, 2200 Pierce Avenue, Nashville, Tennessee 37232, United States
| | | |
Collapse
|
28
|
MacLean LM, Thomas J, Lewis MD, Cotillo I, Gray DW, De Rycker M. Development of Trypanosoma cruzi in vitro assays to identify compounds suitable for progression in Chagas' disease drug discovery. PLoS Negl Trop Dis 2018; 12:e0006612. [PMID: 30001347 PMCID: PMC6057682 DOI: 10.1371/journal.pntd.0006612] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 07/24/2018] [Accepted: 06/14/2018] [Indexed: 01/08/2023] Open
Abstract
Chagas' disease is responsible for significant mortality and morbidity in Latin America. Current treatments display variable efficacy and have adverse side effects, hence more effective, better tolerated drugs are needed. However, recent efforts have proved unsuccessful with failure of the ergosterol biosynthesis inhibitor posaconazole in phase II clinical trials despite promising in vitro and in vivo studies. The lack of translation between laboratory experiments and clinical outcome is a major issue for further drug discovery efforts. Our goal was to identify cell-based assays that could differentiate current nitro-aromatic drugs nifurtimox and benznidazole from posaconazole. Using a panel of T. cruzi strains including the six major lineages (TcI-VI), we found that strain PAH179 (TcV) was markedly less susceptible to posaconazole in vitro. Determination of parasite doubling and cycling times as well as EdU labelling experiments all indicate that this lack of sensitivity is due to the slow doubling and cycling time of strain PAH179. This is in accordance with ergosterol biosynthesis inhibition by posaconazole leading to critically low ergosterol levels only after multiple rounds of division, and is further supported by the lack of effect of posaconazole on the non-replicative trypomastigote form. A washout experiment with prolonged posaconazole treatment showed that, even for more rapidly replicating strains, this compound cannot clear all parasites, indicative of a heterogeneous parasite population in vitro and potentially the presence of quiescent parasites. Benznidazole in contrast was able to kill all parasites. The work presented here shows clear differentiation between the nitro-aromatic drugs and posaconazole in several assays, and suggests that in vitro there may be clinically relevant heterogeneity in the parasite population that can be revealed in long-term washout experiments. Based on these findings we have adjusted our in vitro screening cascade so that only the most promising compounds are progressed to in vivo experiments.
Collapse
Affiliation(s)
- Lorna M. MacLean
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
- * E-mail: (LML); (DWG)
| | - John Thomas
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Michael D. Lewis
- London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Ignacio Cotillo
- GlaxoSmithKline, Diseases of the Developing World, Tres Cantos, Madrid, Spain
| | - David W. Gray
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
- * E-mail: (LML); (DWG)
| | - Manu De Rycker
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
29
|
Outcome of E1224-Benznidazole Combination Treatment for Infection with a Multidrug-Resistant Trypanosoma cruzi Strain in Mice. Antimicrob Agents Chemother 2018; 62:AAC.00401-18. [PMID: 29555633 PMCID: PMC5971593 DOI: 10.1128/aac.00401-18] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 03/01/2018] [Indexed: 12/17/2022] Open
Abstract
Combination therapy has been proposed as an alternative therapeutic approach for the treatment of Chagas disease. In this study, we evaluated the effect of treatment with benznidazole combined with E1224 (ravuconazole prodrug) in an experimental murine model of acute infection. The first set of experiments assessed the range of E1224 doses required to induce parasitological cure using Trypanosoma cruzi strains with different susceptibilities to benznidazole (Y and Colombian). All E1224 doses were effective in suppressing the parasitemia and preventing death; however, parasitological cure was observed only in mice infected with Y strain. Considering these results, we evaluated the effect of combined treatment against Colombian, a multidrug-resistant T. cruzi strain. After exclusion of antagonistic effects using in vitro assays, infected mice were treated with E1224 and benznidazole in monotherapy or in combination at day 4 or 10 postinoculation. All treatments were well tolerated and effective in suppressing parasitemia; however, parasitological and PCR assays indicated no cure among mice treated with monotherapies. Intriguingly, the outcome of combination therapy was dependent on treatment onset. Early treatment using optimal doses of E1224-benznidazole induced a 100% cure rate, but this association could not eliminate a well-established infection. The beneficial effect of combination therapy was evidenced by further reductions of the patent parasitemia period in the group receiving combined therapy compared with monotherapies. Our results demonstrated a positive interaction between E1224 and benznidazole against murine T. cruzi infection using a multidrug-resistant strain and highlighted the importance of a stringent experimental model in the evaluation of new therapies.
Collapse
|
30
|
Gysin M, Braissant O, Gillingwater K, Brun R, Mäser P, Wenzler T. Isothermal microcalorimetry - A quantitative method to monitor Trypanosoma congolense growth and growth inhibition by trypanocidal drugs in real time. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2018; 8:159-164. [PMID: 29587237 PMCID: PMC6039311 DOI: 10.1016/j.ijpddr.2018.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 02/14/2018] [Accepted: 03/13/2018] [Indexed: 11/18/2022]
Abstract
Trypanosoma congolense is a protozoan parasite that is transmitted by tsetse flies, causing African Animal Trypanosomiasis, also known as Nagana, in sub-Saharan Africa. Nagana is a fatal disease of livestock that causes severe economic losses. Two drugs are available, diminazene and isometamidium, yet successful treatment is jeopardized by drug resistant T. congolense. Isothermal microcalorimetry is a highly sensitive tool that can be used to study growth of the extracellular T. congolense parasites or to study parasite growth inhibition after the addition of antitrypanosomal drugs. Time of drug action and time to kill can be quantified in a simple way by real time heat flow measurements. We established a robust protocol for the microcalorimetric studies of T. congolense and developed mathematical computations in R to calculate different parameters related to growth and the kinetics of drug action. We demonstrate the feasibility and benefit of the method exemplary with the two standard drugs, diminazene aceturate and isometamidium chloride. The method and the mathematical approach can be translated to study other pathogenic or non-pathogenic cells if they are metabolically active and grow under axenic conditions. Isothermal microcalorimetry enables heat flow measurement of T. congolense in real-time. Heat flow measurements correlate with number of viable cells. Growth and drug-induced growth inhibition can be deducted from heat flow curves. Pharmacodynamic drug action parameters can be computed from heat flow curves. This method is a valuable tool in the drug discovery process against T. congolense.
Collapse
Affiliation(s)
- M Gysin
- Medical Parasitology & Infection Biology, Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051, Basel, Switzerland; University of Basel, Petersplatz 1, 4001, Basel, Switzerland
| | - O Braissant
- Center of Biomechanics & Biocalorimetry, University of Basel, Gewerbestrasse 14, Allschwil, 4123, Switzerland
| | - K Gillingwater
- Medical Parasitology & Infection Biology, Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051, Basel, Switzerland; University of Basel, Petersplatz 1, 4001, Basel, Switzerland
| | - R Brun
- Medical Parasitology & Infection Biology, Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051, Basel, Switzerland; University of Basel, Petersplatz 1, 4001, Basel, Switzerland
| | - P Mäser
- Medical Parasitology & Infection Biology, Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051, Basel, Switzerland; University of Basel, Petersplatz 1, 4001, Basel, Switzerland
| | - T Wenzler
- Medical Parasitology & Infection Biology, Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051, Basel, Switzerland; University of Basel, Petersplatz 1, 4001, Basel, Switzerland.
| |
Collapse
|
31
|
In Vitro, In Silico, and In Vivo Analyses of Novel Aromatic Amidines against Trypanosoma cruzi. Antimicrob Agents Chemother 2018; 62:AAC.02205-17. [PMID: 29203486 DOI: 10.1128/aac.02205-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 11/20/2017] [Indexed: 12/16/2022] Open
Abstract
Five bis-arylimidamides were assayed as anti-Trypanosoma cruzi agents by in vitro, in silico, and in vivo approaches. None were considered to be pan-assay interference compounds. They had a favorable pharmacokinetic landscape and were active against trypomastigotes and intracellular forms, and in combination with benznidazole, they gave no interaction. The most selective agent (28SMB032) tested in vivo led to a 40% reduction in parasitemia (0.1 mg/kg of body weight/5 days intraperitoneally) but without mortality protection. In silico target fishing suggested DNA as the main target, but ultrastructural data did not match.
Collapse
|
32
|
Chatelain E, Ioset JR. Phenotypic screening approaches for Chagas disease drug discovery. Expert Opin Drug Discov 2017; 13:141-153. [PMID: 29235363 DOI: 10.1080/17460441.2018.1417380] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Chagas disease, caused by the parasite Trypanosoma cruzi, is a global public health issue. Current treatments targeting the parasite are limited to two old nitroheterocyclic drugs with serious side effects. The need for new and safer drugs has prompted numerous drug discovery efforts to identify compounds suitable for parasitological cure in the last decade. Areas covered: Target-based drug discovery has been limited by the small number of well-validated targets - the latest example being the failure of azoles, T. cruzi CYP51 inhibitors, in proof-of-concept clinical trials; instead phenotypic-based drug discovery has become the main pillar of Chagas R&D. Rather than focusing on the technical features of these screening assays, the authors describe the different assays developed and available in the field, and provide a critical view on their values and limitations in the screening cascade for Chagas drug development. Expert opinion: The application of technological advances to the field of Chagas disease has led to a variety of phenotypic assays that have not only changed the disease discovery landscape but have also helped us to gain a better understanding of parasite/host interactions. Recent examples of target resolution from phenotypic hits will uncover new opportunities for drug discovery for Chagas disease.
Collapse
Affiliation(s)
- Eric Chatelain
- a Drugs for Neglected Diseases initiative (DNDi), R&D Department , Geneva , Switzerland
| | - Jean-Robert Ioset
- a Drugs for Neglected Diseases initiative (DNDi), R&D Department , Geneva , Switzerland
| |
Collapse
|
33
|
Vinuesa T, Herráez R, Oliver L, Elizondo E, Acarregui A, Esquisabel A, Pedraz JL, Ventosa N, Veciana J, Viñas M. Benznidazole Nanoformulates: A Chance to Improve Therapeutics for Chagas Disease. Am J Trop Med Hyg 2017; 97:1469-1476. [PMID: 29016287 DOI: 10.4269/ajtmh.17-0044] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
This article describes the characterization of various encapsulated formulations of benznidazole, the current first-line drug for the treatment of Chagas disease. Given the adverse effects of benznidazole, safer formulations of this drug have a great interest. In fact, treatment of Chagas disease with benznidazole has to be discontinued in as much as 20% of cases due to side effects. Furthermore, modification of delivery and formulations could have potential effects on the emergence of drug resistance. The trypanocidal activity of new nanostructured formulations of benznidazole to eliminate Trypanosoma cruzi was studied in vitro as well as their toxicity in two cultured mammalian cell lines (HepG2 and Fibroblasts). Nanoparticles tested included nanostructured lipid carriers, solid lipid nanoparticles, liposomes, quatsomes, and cyclodextrins. The in vitro cytotoxicity of cyclodextrins-benznidazole complexes was significantly lower than that of free benznidazole, whereas their trypanocidal activity was not hampered. These results suggest that nanostructured particles may offer improved therapeutics for Chagas disease.
Collapse
Affiliation(s)
- Teresa Vinuesa
- Department of Pathology and Experimental Therapeutics, Medical School, University of Barcelona, Barcelona, Spain
| | - Rocio Herráez
- Department of Pathology and Experimental Therapeutics, Medical School, University of Barcelona, Barcelona, Spain
| | - Laura Oliver
- Department of Pathology and Experimental Therapeutics, Medical School, University of Barcelona, Barcelona, Spain
| | - Elisa Elizondo
- Ciber-BBN (Nanomol), Department of Molecular Nanoscience and Organic Materials, Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Cerdanyola del Vallès, Spain
| | - Argia Acarregui
- Ciber-BBN (NanoBioCel), Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria, Spain
| | - Amaia Esquisabel
- Ciber-BBN (NanoBioCel), Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria, Spain
| | - Jose Luis Pedraz
- Ciber-BBN (NanoBioCel), Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria, Spain
| | - Nora Ventosa
- Ciber-BBN (Nanomol), Department of Molecular Nanoscience and Organic Materials, Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Cerdanyola del Vallès, Spain
| | - Jaume Veciana
- Ciber-BBN (Nanomol), Department of Molecular Nanoscience and Organic Materials, Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Cerdanyola del Vallès, Spain
| | - Miguel Viñas
- Department of Pathology and Experimental Therapeutics, Medical School, University of Barcelona, Barcelona, Spain
| |
Collapse
|