1
|
Chaúque BJM, da Silva TCB, Rott EB, Rott FB, Leite APMC, Benitez GB, Neuana NF, Goldim JR, Rott MB, Zanette RA. Effectiveness of phytoproducts against pathogenic free-living amoebae - A scoping and critical review paving the way toward plant-based pharmaceuticals. Fitoterapia 2025; 182:106404. [PMID: 39922391 DOI: 10.1016/j.fitote.2025.106404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 01/10/2025] [Accepted: 02/01/2025] [Indexed: 02/10/2025]
Abstract
Infections caused by free-living amoebae (FLA) have increased worldwide and are expected to worsen. The lack of drugs that are effective (especially against cysts), affordable, and safe to treat these infections exacerbates the concern. Plants present a promising source of bioactive compounds for developing effective drugs; however, the scientific literature on this topic has yet to be adequately synthesized. This work provides a critical scoping review summarizing the amoebicidal performance of plant-derived products and their potential for developing effective drugs to treat FLA infections. Out of 5889 articles retrieved from multiple databases, 119 articles were selected, from which data on 180 plant species belonging to 127 genera and 62 families were extracted. The extracts, essential oils, and compounds from these plants exhibited a diverse range of potency against cysts and trophozoites. Among the compounds studied, periglaucine A, kolavenic acid, and (+)-elatol are promising cysticidal drug candidates due to their high potency, as well as their known low toxicity to non-target cells. Tovophillin A, gartinin, 8-deoxygartinin, garcinone E, 9-hydroxycalabaxanthone, γ-mangostin, and borneol also exhibit high cysticidal potency, but their selectivity profile is unknown. Resveratrol, rosmarinic acid, β-amyrin, and vanillic acid stand out for their high potency against trophozoites and low toxicity to mammalian cells. Another group of compounds with similarly high trophocidal potency includes (-)-epicatechin, (-)-epigallocatechin, apigenin, costunolide, demethoxycurcumin, kaempferol, methyl-β-orcinolcarboxylate, sakuraetin, (+)-elatol, debromolaurinterol, luteolin, (-)-rogiolol, cystomexicone B, epigallocatechin gallate, quercetin, and α-bisabolol. These compounds are priority candidates for further studies on in vivo efficacy, safety, pharmacokinetics, and pharmacodynamics.
Collapse
Affiliation(s)
- Beni Jequicene Mussengue Chaúque
- Postgraduate Program in Biological Sciences, Pharmacology and Therapeutics, UFRGS, Rio Grande do Sul, Brazil; Postdoctoral fellow at Master's Program in Clinical Research (MPPC) at the Hospital de Clínicas de Porto Alegre (HCPA) (CAPES Pilot Program), Rio Grande do Sul, Brazil; Center of Studies in Science and Technology (NECET), Biology Course, Universidade Rovuma, Niassa Branch, Lichinga, Mozambique.
| | - Thaisla Cristiane Borella da Silva
- Protozoology Laboratory, Microbiology Immunology and Parasitology Department, Basic Health Sciences Institute, Federal University of Rio Grande do Sul, Ramiro Barcelos Street, N 2600, 90035-002 Porto Alegre, Rio Grande do Sul, Brazil
| | | | - Felipe Brittes Rott
- Faculty of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Brazil
| | | | - Guilherme Brittes Benitez
- Industrial and Systems Engineering Graduate Program, Polytechnic School, Pontifical Catholic University of Parana (PUCPR), Brazil
| | - Neuana Fernando Neuana
- Center of Studies in Science and Technology (NECET), Biology Course, Universidade Rovuma, Niassa Branch, Lichinga, Mozambique; Department of Mechanical and Materials Engineering, Federal University of Santa Catarina, Florianópolis, SC 88040900, Brazil
| | - José Roberto Goldim
- Postdoctoral fellow at Master's Program in Clinical Research (MPPC) at the Hospital de Clínicas de Porto Alegre (HCPA) (CAPES Pilot Program), Rio Grande do Sul, Brazil.
| | - Marilise Brittes Rott
- Protozoology Laboratory, Microbiology Immunology and Parasitology Department, Basic Health Sciences Institute, Federal University of Rio Grande do Sul, Ramiro Barcelos Street, N 2600, 90035-002 Porto Alegre, Rio Grande do Sul, Brazil.
| | - Régis Adriel Zanette
- Postgraduate Program in Biological Sciences, Pharmacology and Therapeutics, UFRGS, Rio Grande do Sul, Brazil.
| |
Collapse
|
2
|
Fakae LB, Zhong J, Chan KLA, Mekapothula S, Cave GWV, Zhu XQ, Stevenson CW, Elsheikha HM. Morphological and Chemical Changes in the Trophozoites and Cysts of Acanthamoeba Castellanii Induced by Camellia Sinensis Extracts. Acta Parasitol 2025; 70:63. [PMID: 40032667 DOI: 10.1007/s11686-024-00941-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 10/21/2024] [Indexed: 03/05/2025]
Abstract
PURPOSE Acanthamoeba castellanii is an important opportunistic human protozoal pathogen that can cause both skin, ocular and brain infections. Recent studies have established that brews and solvent extract (SE) of green tea (Camellia sinensis) can inhibit the growth and encystation of A. castellanii. Here we characterized those growth and encystation inhibitions. METHODS Herein, we characterize of the morphological and chemical changes that occur in the trophozoites and the encysting stage of A. castellanii after exposure to C. sinensis SE and brew using Transmission electron microscopy (TEM), Fourier-transform infrared (FTIR) microspectroscopy and fluorescence-based assays. RESULTS TEM showed ultrastructural changes in both A. castellanii stages. FTIR microspectroscopy revealed modifications of amide I and II band peaks in the C. sinensis-treated trophozoites, suggesting an inhibition of protein synthesis. Assessment of the nucleus integrity of trophozoites exposed to SE and brew revealed disruption of the nuclear membrane integrity, nuclear fragmentation, and chromatin degradation, and reduction in the quantity of DNA and RNA, indicating trophozoite death. These results are consistent with C. sinensis acting as a membrane-active anti-acanthamoebic, exhibiting amoebicidal activity against growing and encysting A. castellanii. This work underlines the importance of characterizing the effect of C. sinensis constituents, individually or in combinations, to clarify which ones are the primary components responsible for its action and the observed alterations in the structure and function of A. castellanii. CONCLUSION These results demonstrated that exposure to C. sinensis SE or brew alters the synthesis of protein, DNA, RNA and disrupts the cell wall integrity.
Collapse
Affiliation(s)
- Lenu B Fakae
- School of Veterinary Medicine and Science, University of Nottingham, Loughborough, LE12 5RD, UK.
- School of Biosciences, University of Nottingham, Loughborough, LE12 5RD, UK.
- Department of Animal Science, Faculty of Agriculture, Rivers State University, Nkpolu-Oroworukwo P.M.B. 5080, Port Harcourt, 500101, Rivers State, Nigeria.
| | - Jizhou Zhong
- Institute of Pharmaceutical Science, King's College London, London, SE1 9NH, UK
| | - Ka Lung Andrew Chan
- Institute of Pharmaceutical Science, King's College London, London, SE1 9NH, UK
| | | | - Gareth W V Cave
- School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Xing-Quan Zhu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Carl W Stevenson
- School of Biosciences, University of Nottingham, Loughborough, LE12 5RD, UK
| | - Hany M Elsheikha
- School of Veterinary Medicine and Science, University of Nottingham, Loughborough, LE12 5RD, UK.
| |
Collapse
|
3
|
Verdú-Expósito C, Martín-Pérez T, Pérez-Serrano J, Sanchez-Nieves J, de la Mata FJ, Heredero-Bermejo I. Amoebicidal and cysticidal in vitro activity of cationic dendritic molecules against Acanthamoeba polyphaga and Acanthamoeba griffini. Parasitol Res 2024; 123:401. [PMID: 39614890 DOI: 10.1007/s00436-024-08413-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 11/11/2024] [Indexed: 01/11/2025]
Abstract
Acanthamoeba species are responsible for serious human infections, including Acanthamoeba keratitis (AK) and granulomatous amoebic encephalitis (GAE). These pathogens have a simple life cycle consisting of an infective trophozoite stage and a resistant cyst stage, with cysts posing significant treatment challenges due to their resilience against harsh conditions and chemical agents. Current treatments for AK often involve combining diamines, such as propamidine, and biguanides, such as chlorhexidine (CLX), which exhibit limited efficacy and significant toxicity. Thus, the effect of new therapeutic molecules, such as multifunctional systems (e.g., carbosilane dendritic molecules), should be studied as potential alternatives due to their biocidal properties and lower toxicity. This study evaluates various dendritic compounds against trophozoites and cysts of two Acanthamoeba clinical isolates, both alone and in combination with CLX, and assesses their cytotoxicity on HeLa cells. The results indicated that certain dendritic compounds, especially BDSQ024, were effective against both trophozoites and cysts. Additionally, combinations of dendritic molecules and CLX showed enhanced efficacy in eliminating trophozoites and cysts, suggesting potential for synergistic treatments. The study underscores the promise of dendritic molecules in developing more effective and less toxic therapies for Acanthamoeba infections.
Collapse
Affiliation(s)
| | - Tania Martín-Pérez
- University of Alcala, Department of Biomedicine and Biotechnology, 28805, Madrid, Spain
| | - Jorge Pérez-Serrano
- University of Alcala, Department of Biomedicine and Biotechnology, 28805, Madrid, Spain
| | - Javier Sanchez-Nieves
- University of Alcala, Department of Organic and Inorganic Chemistry, and Research Institute in Chemistry "Andrés M. del Río" (IQAR), 28805, Madrid, Spain
- Institute for Health Research Ramon y Cajal (IRYCIS), 28034, Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029, Madrid, Spain
| | - Francisco Javier de la Mata
- University of Alcala, Department of Organic and Inorganic Chemistry, and Research Institute in Chemistry "Andrés M. del Río" (IQAR), 28805, Madrid, Spain
- Institute for Health Research Ramon y Cajal (IRYCIS), 28034, Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029, Madrid, Spain
| | | |
Collapse
|
4
|
Lê HG, Hwang BS, Choi JS, Jeong YT, Kang JM, Võ TC, Oh YT, Na BK. Iris setosa Pall. ex Link Extract Reveals Amoebicidal Activity against Acanthamoeba castellanii and Acanthamoeba polyphaga with Low Toxicity to Human Corneal Cells. Microorganisms 2024; 12:1658. [PMID: 39203500 PMCID: PMC11356916 DOI: 10.3390/microorganisms12081658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 09/03/2024] Open
Abstract
Acanthamoeba keratitis (AK) is a sight-threatening and difficult-to-treat ocular infection. The significant side effects of current AK treatments highlight the urgent need to develop a safe and effective AK medication. In this study, the amoebicidal activity of Iris setosa Pall. ex Link extract (ISE) against Acanthamoeba was examined and its specific amoebicidal mechanism was explored. ISE induced significant morphological changes in Acanthamoeba trophozoites and exhibited amoebicidal activity against A. castellanii and A. polyphaga. ISE was further fractionated into five subfractions by sequential extraction with n-hexane, chloroform, ethyl acetate, n-butanol, and water, and their amoebicidal activities and underlying amoebicidal mechanisms were investigated. The n-butanol subfraction of ISE (ISE-BuOH) displayed selective amoebicidal activity against the Acanthamoeba species with minimal cytotoxicity in human corneal cells (HCE-2). ISE-BuOH triggered apoptosis-like programmed cell death (PCD) in amoebae, characterized by DNA fragmentation, increased ROS production, and caspase-3 activity elevation. ISE-BuOH also demonstrated a partial cysticidal effect against the amoeba species. ISE-BuOH could be a promising candidate in the development of therapeutic drugs for AK.
Collapse
Affiliation(s)
- Hương Giang Lê
- Department of Parasitology and Tropical Medicine, and Institute of Health Science, Gyeongsang National University College of Medicine, Jinju 52727, Republic of Korea; (H.G.L.); (J.-M.K.); (T.C.V.)
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Buyng Su Hwang
- Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea; (B.S.H.); (J.-S.C.); (Y.T.J.)
| | - Ji-Su Choi
- Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea; (B.S.H.); (J.-S.C.); (Y.T.J.)
| | - Yong Tae Jeong
- Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea; (B.S.H.); (J.-S.C.); (Y.T.J.)
| | - Jung-Mi Kang
- Department of Parasitology and Tropical Medicine, and Institute of Health Science, Gyeongsang National University College of Medicine, Jinju 52727, Republic of Korea; (H.G.L.); (J.-M.K.); (T.C.V.)
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Tuấn Cường Võ
- Department of Parasitology and Tropical Medicine, and Institute of Health Science, Gyeongsang National University College of Medicine, Jinju 52727, Republic of Korea; (H.G.L.); (J.-M.K.); (T.C.V.)
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Young Taek Oh
- Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea; (B.S.H.); (J.-S.C.); (Y.T.J.)
| | - Byoung-Kuk Na
- Department of Parasitology and Tropical Medicine, and Institute of Health Science, Gyeongsang National University College of Medicine, Jinju 52727, Republic of Korea; (H.G.L.); (J.-M.K.); (T.C.V.)
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea
| |
Collapse
|
5
|
Rahimi B, Malekifard F, Esmaeilnejad B. In vitro anti-Trichomonas gallinae effects of Ziziphus vulgaris L. and Camellia sinensis (L.) Kuntze extracts. Vet Med Sci 2024; 10:e1432. [PMID: 38527006 PMCID: PMC10962798 DOI: 10.1002/vms3.1432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 02/17/2024] [Accepted: 03/10/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND Trichomonas gallinae is a parasite that causes canker and severe loss and death, especially in young pigeons. Metronidazole (MTZ) is the recommended drug for treating avian trichomoniasis. Due to drug resistance, non-chemical alternatives, such as medicinal plant extracts, are also considered possible therapies for this disease. OBJECTIVES This study compares the antitrichomonal effects of MTZ with extracts of Camellia sinensis and Ziziphus vulgaris on T. gallinae in vitro. METHODS Samples of T. gallinae were taken from infected pigeons. Multi-well plates with different concentrations (5, 10, 25, 50 and 100 µg/mL) of plant extracts were used for the in vitro study. RESULTS The minimum inhibitory concentration (MIC) of C. sinensis extract was 25 µg/mL over 24 h, compared to 50 µg/mL for MTZ. The MIC value of the Z. vulgaris extracts was 50 µg/mL. CONCLUSIONS The results suggest that the extracts of Z. vulgaris and C. sinensis, as potential natural agents, could have anti-avian trichomoniasis properties. This study also shows that MTZ, C. sinensis and Z. vulgaris are equally effective in preventing the growth of T. gallinae trophozoites in the culture.
Collapse
Affiliation(s)
- Behnam Rahimi
- DVM graduateFaculty of Veterinary MedicineUrmia UniversityUrmiaIran
| | - Farnaz Malekifard
- Department of PathobiologyFaculty of Veterinary MedicineUrmia UniversityUrmiaIran
| | - Bijan Esmaeilnejad
- Department of PathobiologyFaculty of Veterinary MedicineUrmia UniversityUrmiaIran
| |
Collapse
|
6
|
Alzain AA, Mukhtar RM, Abdelmoniem N, Elbadwi FA, Hussien A, Garelnabi EAE, Osman W, Sherif AE, Khedr AIM, Ghazawi KF, Samman WA, Ibrahim SRM, Mohamed GA, Ashour A. Computational Insights into Natural Antischistosomal Metabolites as SmHDAC8 Inhibitors: Molecular Docking, ADMET Profiling, and Molecular Dynamics Simulation. Metabolites 2023; 13:metabo13050658. [PMID: 37233699 DOI: 10.3390/metabo13050658] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 05/27/2023] Open
Abstract
Schistosomiasis is a neglected tropical disease with a significant socioeconomic impact. It is caused by several species of blood trematodes from the genus Schistosoma, with S. mansoni being the most prevalent. Praziquantel (PZQ) is the only drug available for treatment, but it is vulnerable to drug resistance and ineffective in the juvenile stage. Therefore, identifying new treatments is crucial. SmHDAC8 is a promising therapeutic target, and a new allosteric site was discovered, providing the opportunity for the identification of a new class of inhibitors. In this study, molecular docking was used to screen 13,257 phytochemicals from 80 Saudi medicinal plants for inhibitory activity on the SmHDAC8 allosteric site. Nine compounds with better docking scores than the reference were identified, and four of them (LTS0233470, LTS0020703, LTS0033093, and LTS0028823) exhibited promising results in ADMET analysis and molecular dynamics simulation. These compounds should be further explored experimentally as potential allosteric inhibitors of SmHDAC8.
Collapse
Affiliation(s)
- Abdulrahim A Alzain
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Wad Madani 21111, Sudan
| | - Rua M Mukhtar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Wad Madani 21111, Sudan
| | - Nihal Abdelmoniem
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Wad Madani 21111, Sudan
| | - Fatima A Elbadwi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Wad Madani 21111, Sudan
| | - Amira Hussien
- Department of Pharmacology, Faculty of Pharmacy, University of Gezira, Wad Madani 21111, Sudan
| | - Elrashied A E Garelnabi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Khartoum, Al-Qasr Ave, Khartoum 11111, Sudan
| | - Wadah Osman
- Department of Pharmacognosy, Faculty of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, University of Khartoum, Al-Qasr Ave, Khartoum 11111, Sudan
| | - Asmaa E Sherif
- Department of Pharmacognosy, Faculty of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Amgad I M Khedr
- Department of Pharmacognosy, Faculty of Pharmacy, Port Said University, Port Said 42526, Egypt
| | - Kholoud F Ghazawi
- Clinical Pharmacy Department, College of Pharmacy, Umm Al-Qura University, Makkah 24382, Saudi Arabia
| | - Waad A Samman
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawwarah 30078, Saudi Arabia
| | - Sabrin R M Ibrahim
- Preparatory Year Program, Department of Chemistry, Batterjee Medical College, Jeddah 21442, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Gamal A Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ahmed Ashour
- Department of Pharmacognosy, Faculty of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
7
|
Fakae LB, Harun MS, Ting DSJ, Dua HS, Cave GW, Zhu XQ, Stevenson CW, Elsheikha HM. Camellia sinensis solvent extract, epigallocatechin gallate and caffeine confer trophocidal and cysticidal effects against Acanthamoeba castellanii. Acta Trop 2023; 237:106729. [DOI: 10.1016/j.actatropica.2022.106729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/19/2022] [Accepted: 10/19/2022] [Indexed: 11/19/2022]
|
8
|
Lê HG, Choi JS, Hwang BS, Jeong YT, Kang JM, Võ TC, Cho PY, Lee YK, Yoo WG, Hong Y, Oh YT, Na BK. Phragmites australis (Cav.) Trin. ex Steud. Extract Induces Apoptosis-like Programmed Cell Death in Acanthamoeba castellanii Trophozoites. PLANTS (BASEL, SWITZERLAND) 2022; 11:3459. [PMID: 36559571 PMCID: PMC9783201 DOI: 10.3390/plants11243459] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/23/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Acanthamoeba keratitis (AK) is an infectious ocular disease which is difficult to diagnose correctly and cure. Development of an effective and safe therapeutic drug for AK is needed. Our preliminary screening of more than 200 extracts from wild plants collected in Korea suggested the potential amoebicidal activity of Phragmites australis (Cav.) Trin. ex Steud. extract (PAE) against Acanthamoeba species. Here, we aimed to analyze the amoebicidal activity of PAE on Acanthamoeba and its underlying amoebicidal mechanism. PAE induced amoebicidal activity against both A. castellanii and A. polyphaga trophozoites, while it showed low cytotoxicity in human corneal epithelial cells (HCE-2) and human retinal pigment epithelial cells (ARPE-19). Transmission electron microscopy analysis showed subcellular morphological changes, such as increased granules, abnormal mitochondria, and atypical cyst wall formation, in the PAE-treated A. castellanii. Fluorometric apoptosis assay and TUNEL assay revealed apoptosis-like programmed cell death (PCD) in the PAE-treated A. castellanii. The PAE treatment increased reactive oxygen species production and reduced mitochondrial membrane potential in the amoeba. The enhanced expression of autophagy-associated genes was also detected. These results suggested that PAE exerted a promising amoebicidal effect on A. castellanii trophozoites via the PCD pathway. PAE could be a potential candidate for developing a therapeutic drug for AK.
Collapse
Affiliation(s)
- Hương-Giang Lê
- Department of Parasitology and Tropical Medicine, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Ji-Su Choi
- Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea
| | - Buyng-Su Hwang
- Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea
| | - Yong-Tae Jeong
- Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea
| | - Jung-Mi Kang
- Department of Parasitology and Tropical Medicine, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Tuấn-Cường Võ
- Department of Parasitology and Tropical Medicine, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Pyo-Yun Cho
- Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea
| | - Young-Kyung Lee
- Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea
| | - Won-Gi Yoo
- Department of Parasitology and Tropical Medicine, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Yeonchul Hong
- Department of Parasitology and Tropical Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Young-Taek Oh
- Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea
| | - Byoung-Kuk Na
- Department of Parasitology and Tropical Medicine, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea
| |
Collapse
|
9
|
Chuprom J, Sangkanu S, Mitsuwan W, Boonhok R, Mahabusarakam W, Singh LR, Dumkliang E, Jitrangsri K, Paul AK, Surinkaew S, Wilairatana P, Pereira MDL, Rahmatullah M, Wiart C, Oliveira SMR, Nissapatorn V. Anti- Acanthamoeba activity of a semi-synthetic mangostin derivative and its ability in removal of Acanthamoeba triangularis WU19001 on contact lens. PeerJ 2022; 10:e14468. [PMID: 36523474 PMCID: PMC9745913 DOI: 10.7717/peerj.14468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 11/06/2022] [Indexed: 12/13/2022] Open
Abstract
Garcinia mangostana L., also known as the mangosteen tree, is a native medicinal plant in Southeast Asia having a wide variety of pharmacologically active compounds, including xanthonoid mangostin. In this study, we examined the pharmacological activities of the selected semi-synthetic mangostin derivative, namely, amoebicidal activity, encystation inhibition, excystation activity, and removal capacity of adhesive Acanthamoeba from the surface of contact lens (CL). Among the three derivatives, C1 exhibited promising anti-Acanthamoeba activity against Acanthamoeba triangularis WU19001 trophozoites and cysts. SEM images displayed morphological changes in Acanthamoeba trophozoites, including the loss of acanthopodia, pore formation in the cell membrane, and membrane damage. In addition, the treated cyst was shrunken and adopted an irregular flat cyst shape. Under a fluorescence microscope, acridine orange and propidium iodide (AO/PI) staining revealed C1 induced condensation of cytoplasm and chromatin with the loss of cell volume in the treated trophozoites, while calcofluor white staining demonstrated the leakage of cell wall in treated cysts, leading to cell death. Interestingly, at the concentration ranges in which C1 showed the anti-Acanthamoeba effects (IC50 values ranging from 0.035-0.056 mg/mL), they were not toxic to Vero cells. C1 displayed the highest inhibitory effect on A. triangularis encystation at 1/16×MIC value (0.004 mg/mL). While C1 demonstrated the excystation activity at 1/128×MIC value with a high rate of 89.47%. Furthermore, C1 exhibited the removal capacity of adhesive Acanthamoeba from the surface of CL comparable with commercial multipurpose solutions (MPSs). Based on the results obtained, C1 may be a promising lead agent to develop a therapeutic for the treatment of Acanthamoeba infections and disinfectant solutions for CL.
Collapse
Affiliation(s)
- Julalak Chuprom
- School of Allied Health Sciences, Southeast Asia Water Team (SEA Water Team) and World Union for Herbal Drug Discovery (WUHeDD), Walailak University, Nakhon Si Thammarat, Thailand,School of Languages and General Education (SOLGEN), Walailak University, Nakhon Si Thammarat, Thailand
| | - Suthinee Sangkanu
- School of Allied Health Sciences, Southeast Asia Water Team (SEA Water Team) and World Union for Herbal Drug Discovery (WUHeDD), Walailak University, Nakhon Si Thammarat, Thailand
| | - Watcharapong Mitsuwan
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat, Thailand
| | - Rachasak Boonhok
- Department of Medical Technology, School of Allied Health Sciences, Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Nakhon Si Thammarat, Thailand
| | - Wilawan Mahabusarakam
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | - L. Ravithej Singh
- Fluoro-Agrochemicals Division, CSIR–Indian Institute of Chemical Technology, Tarnaka, Hyderabad, India,Chemical Sciences Division, Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Ekachai Dumkliang
- Faculty of Pharmacy, Silpakorn University, Pharmaceutical Development of Green Innovations Group (PDGIG), Nakhon Pathom, Thailand
| | - Kritamorn Jitrangsri
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand
| | - Alok K. Paul
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, Australia
| | - Sirirat Surinkaew
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Maria de Lourdes Pereira
- CICECO-Aveiro Institute of Materials & Department of Medical Sciences, University of Aveiro, Aveiro, Portugal,Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Mohammed Rahmatullah
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Lalmatia, Dhaka, Bangladesh
| | - Christophe Wiart
- The Institute for Tropical Biology and Conservation, University Malaysia Sabah, Kota Kin-abalu, Sabah, Malaysia
| | - Sonia Marlene Rodrigues Oliveira
- CICECO-Aveiro Institute of Materials & Department of Medical Sciences, University of Aveiro, Aveiro, Portugal,Hunter Medical Research Institute, New Lambton, Australia
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences, Southeast Asia Water Team (SEA Water Team) and World Union for Herbal Drug Discovery (WUHeDD), Walailak University, Nakhon Si Thammarat, Thailand
| |
Collapse
|
10
|
Efficacy of Whey Protein Film Incorporated with Portuguese Green Tea (Camellia sinensis L.) Extract for the Preservation of Latin-Style Fresh Cheese. Foods 2022; 11:foods11081158. [PMID: 35454745 PMCID: PMC9032714 DOI: 10.3390/foods11081158] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/13/2022] [Indexed: 11/30/2022] Open
Abstract
Fresh cheese composition favors the growth of microorganisms and lipid oxidation, leading to a short shelf life. Whey protein concentrates can be used to produce active films in which green tea (Camellia sinensis L.) extract, rich in bioactive compounds, namely catechins, can be incorporated. Thus, the main objective of this study was to evaluate the efficacy of an edible active film, incorporated with green tea extract, to preserve goat and mixture (goat and sheep) fresh cheeses. Our results demonstrated that Portuguese green teas (antioxidant activity coefficient—AAC = 746.7) had superior antioxidant capacity to that of the evaluated Asian green tea (AAC = 650). Furthermore, green tea produced from the leaves of the new Portuguese Chá Camélia tea plantation had the highest potential to retain the antioxidant capacity (97.3%). Additionally, solid–liquid extractions led to extracts with higher antioxidant activity (AAC = 1500), but Soxhlet extractions presented higher yield (43%). Furthermore, the active film incorporated with Portuguese green tea extract exhibited a high antioxidant capacity (AAC ≈ 595.4). In addition, the active film effectively delayed the lipid oxidation of the evaluated fresh cheeses (3.2 mg MDA Eq/kg) when compared with the control (4.2 mg MDA Eq/kg). Moreover, the active films effectively inhibited the growth of microorganisms, especially E. coli (1.5 × 10 CFU/g), when compared with the blank (2.2 × 102 CFU/g). This study suggests that the new whey protein film incorporated with Portuguese green tea extract has the potential to be used to extend fresh cheese shelf life.
Collapse
|
11
|
Morais DO, Pancotti A, de Souza GS, Saivish MV, Braoios A, Moreli ML, Souza MVDB, da Costa VG, Wang J. Synthesis, characterization, and evaluation of antibacterial activity of transition metal oxyde nanoparticles. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:101. [PMID: 34406528 PMCID: PMC8373752 DOI: 10.1007/s10856-021-06578-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/14/2021] [Indexed: 05/13/2023]
Abstract
Nanoparticles (NPs) have a wide range of applications in various areas. For health application, cytotoxicity tests are used to ensure its efficiency and safety. In this paper, ZnFe2O4, CoFe2O4, Zn0.5Co0.5Fe2O4 NPs were synthesized, characterized and their antibacterial properties were evaluated. The Sol-Gel method was used to synthesize the NPs. Their electronic and crystallographic structures were characterized by Fourier Transform Infrared Spectroscopy Analysis (FTIR), X-ray fluorescence (XRF), X-Ray Diffraction (XRD), and Transmission Electron Microscopy (TEM). To perform the antibacterial evaluation, ferrites were dispersed through nanoemulsion to prevent the crystals from accumulating together. Then the evaluation was performed through microdilution in a 96-well plate and diffusion in agar disc in contact with 3 different strains of Staphylococcus aureus and Escherichia coli. It demonstrated that the Sol-Gel method was efficient to synthesize NPs with suitable sizes for health application. All synthesized NPs showed the inhibition of bacterias with different concentrations used.
Collapse
Affiliation(s)
- Dielly Oliveira Morais
- Universidade Federal de Jataí, Unidade Acadêmica Especial de Ciências Exatas, Rod. Br 364, km 168, Jataí, GO, Brazil
| | - Alexandre Pancotti
- Universidade Federal de Jataí, Unidade Acadêmica Especial de Ciências Exatas, Rod. Br 364, km 168, Jataí, GO, Brazil.
| | - Guilherme Sastre de Souza
- Universidade Federal de Jataí, Unidade Acadêmica Especial de Ciências Exatas, Rod. Br 364, km 168, Jataí, GO, Brazil
| | - Marielena Vogel Saivish
- Universidade Federal de Jataí, Unidade Acadêmica Especial de Ciências Exatas, Rod. Br 364, km 168, Jataí, GO, Brazil
| | - Alexandre Braoios
- Universidade Federal de Jataí, Unidade Acadêmica Especial de Ciências Exatas, Rod. Br 364, km 168, Jataí, GO, Brazil
| | - Marcos Lázaro Moreli
- Universidade Federal de Jataí, Unidade Acadêmica Especial de Ciências Exatas, Rod. Br 364, km 168, Jataí, GO, Brazil
| | - Mauro Vinícius de B Souza
- Universidade Federal de Jataí, Unidade Acadêmica Especial de Ciências Exatas, Rod. Br 364, km 168, Jataí, GO, Brazil
| | - Vivaldo G da Costa
- Universidade Federal de Jataí, Unidade Acadêmica Especial de Ciências Exatas, Rod. Br 364, km 168, Jataí, GO, Brazil
| | - Jiale Wang
- College of Science, Donghua University, Shanghai, 201620, China.
| |
Collapse
|
12
|
Sangkanu S, Mitsuwan W, Mahabusarakam W, Jimoh TO, Wilairatana P, Girol AP, Verma AK, de Lourdes Pereira M, Rahmatullah M, Wiart C, Siyadatpanah A, Norouzi R, Mutombo PN, Nissapatorn V. Anti-Acanthamoeba synergistic effect of chlorhexidine and Garcinia mangostana extract or α-mangostin against Acanthamoeba triangularis trophozoite and cyst forms. Sci Rep 2021; 11:8053. [PMID: 33850179 PMCID: PMC8044166 DOI: 10.1038/s41598-021-87381-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 03/25/2021] [Indexed: 12/15/2022] Open
Abstract
Acanthamoeba spp. can cause amoebic keratitis (AK). Chlorhexidine is effective for AK treatment as monotherapy, but with a relative failure on drug bioavailability in the deep corneal stroma. The combination of chlorhexidine and propamidine isethionate is recommended in the current AK treatment. However, the effectiveness of treatment depends on the parasite and virulence strains. This study aims to determine the potential of Garcinia mangostana pericarp extract and α-mangostin against Acanthamoeba triangularis, as well as the combination with chlorhexidine in the treatment of Acanthamoeba infection. The minimal inhibitory concentrations (MICs) of the extract and α-mangostin were assessed in trophozoites with 0.25 and 0.5 mg/mL, for cysts with 4 and 1 mg/mL, respectively. The MIC of the extract and α-mangostin inhibited the growth of A. triangularis trophozoites and cysts for up to 72 h. The extract and α-mangostin combined with chlorhexidine demonstrated good synergism, resulting in a reduction of 1/4-1/16 of the MIC. The SEM results showed that Acanthamoeba cells treated with a single drug and its combination caused damage to the cell membrane and irregular cell shapes. A good combination displayed by the extract or α-mangostin and chlorhexidine, described for the first time. Therefore, this approach is promising as an alternative method for the management of Acanthamoeba infection in the future.
Collapse
Affiliation(s)
- Suthinee Sangkanu
- School of Allied Health Sciences, Southeast Asia Water Team (SEA Water Team), World Union for Herbal Drug Discovery (WUHeDD), and Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Nakhon Si Thammarat, Thailand
| | - Watcharapong Mitsuwan
- School of Allied Health Sciences, Southeast Asia Water Team (SEA Water Team), World Union for Herbal Drug Discovery (WUHeDD), and Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Nakhon Si Thammarat, Thailand
- Akkhraratchakumari Veterinary College and Research Center of Excellence in Innovation of Essential Oil, Walailak University, Nakhon Si Thammarat, Thailand
| | - Wilawan Mahabusarakam
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | - Tajudeen O Jimoh
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Department of Biochemistry, Habib Medical School, Islamic University in Uganda, Kampala, Uganda
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| | - Ana Paula Girol
- Department of Biology, Faculty of Sciences, São Paulo State University, São Paulo, Brazil
| | - Ajoy K Verma
- Department of Microbiology, National Institute of Tuberculosis & Respiratory Diseases (NITRD), New Delhi, India
| | - Maria de Lourdes Pereira
- Department of Medical Sciences, CICECO-Aveiro Institute of Materials &, University of Aveiro, Aveiro, Portugal
| | - Mohammed Rahmatullah
- Department of Biotechnology & Genetic Engineering, University of Development Alternative Lalmatia, Dhaka, Bangladesh
| | - Christophe Wiart
- School of Pharmacy, University of Nottingham Malaysia Campus, Selangor, Malaysia
| | - Abolghasem Siyadatpanah
- Ferdows School of Paramedical and Health, Birjand University of Medical Sciences, Birjand, Iran
| | - Roghayeh Norouzi
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Polydor Ngoy Mutombo
- School of Public Health and Community Medicine, UNSW Medicine, UNSW, Sydney, NSW, Australia
- Centre for Biomedical Research, Burnet Institute, Melbourne, VIC, Australia
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences, Southeast Asia Water Team (SEA Water Team), World Union for Herbal Drug Discovery (WUHeDD), and Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Nakhon Si Thammarat, Thailand.
| |
Collapse
|
13
|
Dickson A, Cooper E, Fakae LB, Wang B, Chan KLA, Elsheikha HM. In Vitro Growth- and Encystation-Inhibitory Efficacies of Matcha Green Tea and Epigallocatechin Gallate Against Acanthameoba Castellanii. Pathogens 2020; 9:pathogens9090763. [PMID: 32957663 PMCID: PMC7558711 DOI: 10.3390/pathogens9090763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 08/31/2020] [Accepted: 09/09/2020] [Indexed: 11/25/2022] Open
Abstract
We examined the inhibitory effect of matcha green tea (Camellia sinensis) and epigallocatechin gallate (EGCg; the most abundant catechin in tea) on the vegetative growth and encystation of Acanthamoeba castellanii T4 genotype. The sulforhodamine B (SRB) stain-based colorimetric assay and hemocytometer counting were used to determine the reduction in A. castellanii trophozoite proliferation and encystation, in response to treatment with C. sinensis or EGCg. Fourier transform infrared (FTIR) microscopy was used to analyze chemical changes in the trophozoites and cysts due to C. sinensis treatment. Hot brewed and cold brewed matcha inhibited the growth of trophozoites by >40% at a 100 % concentration. EGCg at concentrations of 50 to 500 µM significantly inhibited the trophozoite growth compared to control. Hot brewed matcha (100% concentration) also showed an 87% reduction in the rate of encystation compared to untreated control. Although 500 µM of EGCg increased the rate of encystation by 36.3%, 1000 µM reduced it by 27.7%. Both percentages were not significant compared to control. C. sinensis induced more cytotoxicity to Madin Darby canine kidney cells compared to EGCg. FTIR chemical fingerprinting analysis showed that treatment with brewed matcha significantly increased the levels of glycogen and carbohydrate in trophozoites and cysts.
Collapse
Affiliation(s)
- Ameliya Dickson
- School of Veterinary Medicine and Science, Faculty of Medicine and Health Sciences, University of Nottingham, Loughborough LE12 5RD, UK; (A.D.); (E.C.); (L.B.F.)
| | - Elise Cooper
- School of Veterinary Medicine and Science, Faculty of Medicine and Health Sciences, University of Nottingham, Loughborough LE12 5RD, UK; (A.D.); (E.C.); (L.B.F.)
| | - Lenu B. Fakae
- School of Veterinary Medicine and Science, Faculty of Medicine and Health Sciences, University of Nottingham, Loughborough LE12 5RD, UK; (A.D.); (E.C.); (L.B.F.)
| | - Bo Wang
- School of Mathematics and Actuarial Science, University of Leicester, Leicester LE1 7RH, UK;
| | - Ka Lung Andrew Chan
- Institute of Pharmaceutical Science, King’s College London, London SE1 9NH, UK;
| | - Hany M. Elsheikha
- School of Veterinary Medicine and Science, Faculty of Medicine and Health Sciences, University of Nottingham, Loughborough LE12 5RD, UK; (A.D.); (E.C.); (L.B.F.)
- Correspondence: ; Tel.: +44-0115-951-6445
| |
Collapse
|