1
|
Liu J, Zhang M, Wu C, Pan X, Huang Z. TPGS/soluplus® blended micelles: an effective strategy for improving loading capacity of ferroptosis inducer erastin. J DISPER SCI TECHNOL 2025; 46:523-535. [DOI: 10.1080/01932691.2023.2295024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/09/2023] [Indexed: 06/25/2024]
Affiliation(s)
| | | | | | - Xin Pan
- College of Pharmacy, Sun Yat-Sen University
| | | |
Collapse
|
2
|
Desai DD, Manikkath J, Lad H, Kulkarni M, Manikkath A, Radhakrishnan R. Nanotechnology-based mucoadhesive and mucus-penetrating drug-delivery systems for transbuccal drug delivery. Nanomedicine (Lond) 2023; 18:1495-1514. [PMID: 37830424 DOI: 10.2217/nnm-2023-0180] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023] Open
Abstract
Buccal drug-delivery systems present a promising approach for the drug delivery to the buccal mucosa, addressing oral cavity-specific problems, enabling systemic delivery and minimizing adverse effects on biological systems. Numerous strategies have been proposed to load drug-containing nanoparticles (NPs) to the buccal mucosa for local and systemic applications. There has been considerable interest in the development of mucoadhesive buccal formulations, particularly hydrogel composites utilizing mucoadhesive films incorporating NPs. Drug permeability and controlled drug release through buccal drug delivery continues to pose a challenge despite the availability of various remedies. This review highlights the need for, mechanisms and latest advances in NP-based transbuccal drug delivery with a focus on various pathological disorders and examples and limitations of the different methods.
Collapse
Affiliation(s)
- Digvijay Dattatray Desai
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka State, 576104, India
| | - Jyothsna Manikkath
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka State, 576104, India
| | - Hitesh Lad
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka State, 576104, India
| | - Mugdha Kulkarni
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka State, 576104, India
| | - Aparna Manikkath
- Arthur A Dugoni School of Dentistry, University of the Pacific, San Francisco, CA 94103, USA
| | - Raghu Radhakrishnan
- Department of Oral Pathology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, Karnataka State, 576104, India
- Academic Unit of Oral and Maxillofacial Medicine and Pathology, School of Clinical Dentistry, University of Sheffield, Sheffield, S102TA, United Kingdom
| |
Collapse
|
3
|
Fazal T, Murtaza BN, Shah M, Iqbal S, Rehman MU, Jaber F, Dera AA, Awwad NS, Ibrahium HA. Recent developments in natural biopolymer based drug delivery systems. RSC Adv 2023; 13:23087-23121. [PMID: 37529365 PMCID: PMC10388836 DOI: 10.1039/d3ra03369d] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/24/2023] [Indexed: 08/03/2023] Open
Abstract
Targeted delivery of drug molecules to diseased sites is a great challenge in pharmaceutical and biomedical sciences. Fabrication of drug delivery systems (DDS) to target and/or diagnose sick cells is an effective means to achieve good therapeutic results along with a minimal toxicological impact on healthy cells. Biopolymers are becoming an important class of materials owing to their biodegradability, good compatibility, non-toxicity, non-immunogenicity, and long blood circulation time and high drug loading ratio for both macros as well as micro-sized drug molecules. This review summarizes the recent trends in biopolymer-based DDS, forecasting their broad future clinical applications. Cellulose chitosan, starch, silk fibroins, collagen, albumin, gelatin, alginate, agar, proteins and peptides have shown potential applications in DDS. A range of synthetic techniques have been reported to design the DDS and are discussed in the current study which is being successfully employed in ocular, dental, transdermal and intranasal delivery systems. Different formulations of DDS are also overviewed in this review article along with synthesis techniques employed for designing the DDS. The possibility of these biopolymer applications points to a new route for creating unique DDS with enhanced therapeutic qualities for scaling up creative formulations up to the clinical level.
Collapse
Affiliation(s)
- Tanzeela Fazal
- Department of Chemistry, Abbottabad University of Science and Technology Pakistan
| | - Bibi Nazia Murtaza
- Department of Zoology, Abbottabad University of Science and Technology Pakistan
| | - Mazloom Shah
- Department of Chemistry, Faculty of Science, Grand Asian University Sialkot Pakistan
| | - Shahid Iqbal
- Department of Chemistry, School of Natural Sciences (SNS), National University of Science and Technology (NUST) H-12 Islamabad 46000 Pakistan
| | - Mujaddad-Ur Rehman
- Department of Microbiology, Abbottabad University of Science & Technology Pakistan
| | - Fadi Jaber
- Department of Biomedical Engineering, Ajman University Ajman UAE
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University Ajman UAE
| | - Ayed A Dera
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University Abha Saudi Arabia
| | - Nasser S Awwad
- Chemistry Department, Faculty of Science, King Khalid University P.O. Box 9004 Abha 61413 Saudi Arabia
| | - Hala A Ibrahium
- Biology Department, Faculty of Science, King Khalid University P.O. Box 9004 Abha 61413 Saudi Arabia
| |
Collapse
|
4
|
Bashir S, Fitaihi R, Abdelhakim HE. Advances in formulation and manufacturing strategies for the delivery of therapeutic proteins and peptides in orally disintegrating dosage forms. Eur J Pharm Sci 2023; 182:106374. [PMID: 36623699 DOI: 10.1016/j.ejps.2023.106374] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/05/2023] [Accepted: 01/05/2023] [Indexed: 01/08/2023]
Abstract
Therapeutic proteins and peptides (TPPs) are increasingly favoured above small drug molecules due to their high specificity to the site of action and reduced adverse effects resulting in increased use of these agents for medical treatments and therapies. Consequently, there is a need to formulate TPPs in dosage forms that are accessible and suitable for a wide range of patient groups as the use of TPPs becomes increasingly prevalent in healthcare settings worldwide. Orally disintegrating dosage forms (ODDF) are formulations that can ensure easy-to-administer medication to a wider patient population including paediatrics, geriatrics and people in low-resource countries. There are many challenges involved in developing suitable pharmaceutical strategies to protect TPPs during formulation and manufacturing, as well as storage, and maintenance of a cold-chain during transportation. This review will discuss advances being made in the research and development of pharmaceutical and manufacturing strategies used to incorporate various TPPs into ODDF systems.
Collapse
Affiliation(s)
- Shazia Bashir
- School of Cancer and Pharmaceutical Sciences, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| | - Rawan Fitaihi
- Department of Pharmaceutics, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK; Department of Pharmaceutics, College of pharmacy, King Saud University, Riyadh, KSA
| | - Hend E Abdelhakim
- Department of Pharmaceutics, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK.
| |
Collapse
|
5
|
Elsayed A, Al-Remawi M, Jaber N, Abu-Salah KM. Advances in buccal and oral delivery of insulin. Int J Pharm 2023; 633:122623. [PMID: 36681204 DOI: 10.1016/j.ijpharm.2023.122623] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/30/2022] [Accepted: 01/15/2023] [Indexed: 01/20/2023]
Abstract
Diabetes mellitus is a metabolic endocrine disease characterized by chronic hyperglycemia with disturbances in metabolic processes, such as those related to carbohydrates, fat, and protein. There are two main types of this disease: type 1 diabetes (T1D) and type 2 diabetes (T2D). Insulin therapy is pivotal to the management of diabetes. Over the last two decades, many routes of administration, including nasal, pulmonary, rectal, transdermal, buccal, and ocular, have been investigated. Nevertheless, subcutaneous parenteral administration is still the most common route for insulin therapy. To overcome poor bioavailability and the barriers to oral insulin absorption, novel approaches in the field of oral drug delivery and administration have been brought about by the coalescence of different branches of nanoscience and nanotechnology, such as nanomedicine, nano-biochemistry, and nano-pharmacy. Novel drug delivery systems, including nanoparticles, nano-platforms, and nanocarriers, have been suggested. The objective of this review is to provide an update on the various promising approaches that have been explored and evaluated for the safe and efficient oral and buccal administration of insulin.
Collapse
Affiliation(s)
- Amani Elsayed
- College of Pharmacy, Taif University, Taif 21944, Saudi Arabia
| | - Mayyas Al-Remawi
- Faculty of Pharmacy and Medical Sciences, University of Petra, Amman 11196, Jordan
| | - Nisrein Jaber
- Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Khalid M Abu-Salah
- King Saud bin Abdulaziz University for Health Sciences/ King Abdullah International Medical Research Center, Department of Nanomedicine, Riyadh, Saudi Arabia.
| |
Collapse
|
6
|
Rawas-Qalaji M, Thu HE, Hussain Z. Oromucosal delivery of macromolecules: Challenges and recent developments to improve bioavailability. J Control Release 2022; 352:726-746. [PMID: 36334858 DOI: 10.1016/j.jconrel.2022.10.059] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/11/2022]
Abstract
Owing to their biological diversity, high potency, good tolerability, low immunogenicity, site-specific activity, and great efficacy, macromolecular drugs (i.e., proteins and peptides, antibodies, hormones, nucleic acids, vaccines, etc.) are extensively used as diagnostics, prophylactics, and therapeutics in various diseases. To overcome drawbacks associated with parenteral (invasive) delivery of macromolecules as well as to preserve their therapeutic integrity, oromucosal route (sublingual and buccal) has been proven efficient alternate port of delivery. This review aims to summarize challenges associated with oromucosal route and overtime developments in conventional delivery systems with special emphasis on most recent delivery strategies. Over the past few decades, significant efforts have been made for improving the oromucosal absorption of macromolecules by employing chemical penetration enhancers (CPE), enzyme inhibitors, chemical modification of drug structure (i.e., lipidation, PEGylation, etc.), and mucoadhesive materials in the form of buccal tablets, films (or patches), sprays, fast disintegrating tablets, and microneedles. Adaptation of adjunct strategies (e.g., iontophoresis in conjunction with CPE) has shown significant improvement in oromucosal absorption of macromolecules; however, these approaches were also associated with many drawbacks. To overcome these shortcomings and to further improve therapeutic outcomes, specialized delivery devices called "hybrid nanosystems" have been designed in recent times. This newer intervention showed promising potential for promoting oromucosal absorption and absolute bioavailability of macromolecules along with improved thermostability (cold chain free storage), enabling self-administration, site-specific activity, improving therapeutic efficacy and patient compliance. We anticipate that tailoring of hybrid nanosystems to clinical trials as well as establishing their short- and long-term safety profile would substantiate their therapeutic value as pharmaceutical devices for oromucosal delivery of macromolecules.
Collapse
Affiliation(s)
- Mutasem Rawas-Qalaji
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33326, USA.
| | - Hnin Ei Thu
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Zahid Hussain
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
7
|
Watchorn J, Clasky AJ, Prakash G, Johnston IAE, Chen PZ, Gu FX. Untangling Mucosal Drug Delivery: Engineering, Designing, and Testing Nanoparticles to Overcome the Mucus Barrier. ACS Biomater Sci Eng 2022; 8:1396-1426. [PMID: 35294187 DOI: 10.1021/acsbiomaterials.2c00047] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mucus is a complex viscoelastic gel and acts as a barrier covering much of the soft tissue in the human body. High vascularization and accessibility have motivated drug delivery to various mucosal surfaces; however, these benefits are hindered by the mucus layer. To overcome the mucus barrier, many nanomedicines have been developed, with the goal of improving the efficacy and bioavailability of drug payloads. Two major nanoparticle-based strategies have emerged to facilitate mucosal drug delivery, namely, mucoadhesion and mucopenetration. Generally, mucoadhesive nanoparticles promote interactions with mucus for immobilization and sustained drug release, whereas mucopenetrating nanoparticles diffuse through the mucus and enhance drug uptake. The choice of strategy depends on many factors pertaining to the structural and compositional characteristics of the target mucus and mucosa. While there have been promising results in preclinical studies, mucus-nanoparticle interactions remain poorly understood, thus limiting effective clinical translation. This article reviews nanomedicines designed with mucoadhesive or mucopenetrating properties for mucosal delivery, explores the influence of site-dependent physiological variation among mucosal surfaces on efficacy, transport, and bioavailability, and discusses the techniques and models used to investigate mucus-nanoparticle interactions. The effects of non-homeostatic perturbations on protein corona formation, mucus composition, and nanoparticle performance are discussed in the context of mucosal delivery. The complexity of the mucosal barrier necessitates consideration of the interplay between nanoparticle design, tissue-specific differences in mucus structure and composition, and homeostatic or disease-related changes to the mucus barrier to develop effective nanomedicines for mucosal delivery.
Collapse
Affiliation(s)
- Jeffrey Watchorn
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Aaron J Clasky
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Gayatri Prakash
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Ian A E Johnston
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Paul Z Chen
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Frank X Gu
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada.,Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
| |
Collapse
|
8
|
Al-Domi D, Bozeya A, Al-Fandi M. Development of an Insulin Nano-Delivery System through Buccal Administration. Curr Drug Deliv 2022; 19:889-901. [PMID: 35023456 DOI: 10.2174/1567201819666220112121115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/12/2021] [Accepted: 12/13/2021] [Indexed: 11/22/2022]
Abstract
AIM To develop a new nano-delivery system for insulin buccal administration. BACKGROUND Biodegradable polymeric nanoparticles (PNPs) had viewed countless breakthroughs in drug delivery systems. The main objective of PNPs application in delivering and carrying different promising drugs is to make sure that the drugs being delivered to their action sites. As a result maximizing the desired effect and overcoming their limitations and drawbacks. OBJECTIVES The main goals of this study were to produce an insulin consumable nano-delivery system for buccal administration and enhance the mucoadhesive effect in sustaining insulin release. METHODS Water in oil in water (W-O-W) microemulsion solvent evaporation technique was used for the preparation of nanoparticles consisting from positively charged poly (D, L-lactide-co-glycolide) coated with chitosan and loaded with insulin. Later, a consumable buccal film was prepared by the spin coating method and loaded with the previously prepared nanoparticles. RESULTS The newly prepared nanoparticle was assessed in terms of size, charge and surface morphology using a Scanning Electron Microscope (SEM), zeta potential, Atomic Force Microscope (AFM), and Fourier Transform Infra-red (FTIR) spectroscopy. An in-vitro investigation of the insulin release, from nanoparticles and buccal film, demonstrated controlled as well as sustained delivery over 6 hrs. The cumulative insulin release decreased to about (28.9%) with buccal film in comparing with the nanoparticle (50 %). CONCLUSION The buccal film added another barrier for insulin release. Therefore, the release was sustained.
Collapse
Affiliation(s)
- Diaa Al-Domi
- Institute of Nanotechnology, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Ayat Bozeya
- Institute of Nanotechnology, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Mohamed Al-Fandi
- Institute of Nanotechnology, Jordan University of Science and Technology, Irbid, 22110, Jordan
| |
Collapse
|
9
|
Abdel-Rashid RS, El-leithy ES, Abdel-monem R. Formulation and Evaluation of Topical Biodegradable Films Loaded with Levofloxacin Lipid Nanocarriers. AAPS PharmSciTech 2021; 23:34. [PMID: 34950989 DOI: 10.1208/s12249-021-02189-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/29/2021] [Indexed: 11/30/2022] Open
Abstract
Skin ulcers have increased sharply due to rise in the incidence of obesity and diabetes. This study investigated lipid nanocarriers as a strategy to improve the efficacy of levofloxacin (LV) in penetrating skin. Two surfactant types and different lipid mixtures were used in preparation of lipid nanocarriers. Mean particle size, percentage entrapment efficiency (%EE), in vitro release, and antimicrobial activity were examined. The selected formula was incorporated into a chitosan (CS) film that was subjected to physic-chemical characterization and ex vivo permeation study. The selected formula showed particle size, PDI, and ZP: 80.3 nm, -0.21, and -26 mV, respectively, synchronized with 82.12 %EE. In vitro release study showed slow biphasic release of LV from lipid nanocarriers. The antimicrobial effect illustrated statistically significant effect of lipid nanocarriers on decreasing the minimum effective concentration (MIC) of LV, particularly against E. coli. The optimized nanocarriers' formula loaded into CS film was clear, colorless, translucent, and smooth in texture. Based on the release profiles, it could be speculated that the CS film loaded with LV nanocarriers can maintain the antibacterial activity for 4 consecutive days. Thus, the local delivery of the drug in a sustained release manner could be predicted to enhance the therapeutic effect. Further clinical studies are strongly recommended. Graphical Abstract.
Collapse
|
10
|
Oh JW, Shin J, Chun S, Muthu M, Gopal J. Evaluating the Anticarcinogenic Activity of Surface Modified/Functionalized Nanochitosan: The Emerging Trends and Endeavors. Polymers (Basel) 2021; 13:3138. [PMID: 34578039 PMCID: PMC8471611 DOI: 10.3390/polym13183138] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/09/2021] [Accepted: 09/15/2021] [Indexed: 11/16/2022] Open
Abstract
Chitosan begins its humble journey from marine food shell wastes and ends up as a versatile nutraceutical. This review focuses on briefly discussing the antioxidant activity of chitosan and retrospecting the accomplishments of chitosan nanoparticles as an anticarcinogen. The various modified/functionalized/encapsulated chitosan nanoparticles and nanoforms have been listed and their biomedical deliverables presented. The anticancer accomplishments of chitosan and its modified composites have been reviewed and presented. The future of surface modified chitosan and the lacunae in the current research focus have been discussed as future perspective. This review puts forth the urge to expand the scientific curiosity towards attempting a variety of functionalization and surface modifications to chitosan. There are few well known modifications and functionalization that benefit biomedical applications that have been proven for other systems. Being a biodegradable, biocompatible polymer, chitosan-based nanomaterials are an attractive option for medical applications. Therefore, maximizing expansion of its bioactive properties are explored. The need for applying the ideal functionalization that will significantly promote the anticancer contributions of chitosan nanomaterials has also been stressed.
Collapse
Affiliation(s)
- Jae-Wook Oh
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 143-701, Korea; (J.-W.O.); (J.S.)
| | - Juhyun Shin
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 143-701, Korea; (J.-W.O.); (J.S.)
| | - Sechul Chun
- Department of Environmental Health Science, Konkuk University, Seoul 143-701, Korea; (S.C.); (M.M.)
| | - Manikandan Muthu
- Department of Environmental Health Science, Konkuk University, Seoul 143-701, Korea; (S.C.); (M.M.)
| | - Judy Gopal
- Department of Environmental Health Science, Konkuk University, Seoul 143-701, Korea; (S.C.); (M.M.)
| |
Collapse
|
11
|
Jacob S, Nair AB, Boddu SHS, Gorain B, Sreeharsha N, Shah J. An Updated Overview of the Emerging Role of Patch and Film-Based Buccal Delivery Systems. Pharmaceutics 2021; 13:1206. [PMID: 34452167 PMCID: PMC8399227 DOI: 10.3390/pharmaceutics13081206] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/28/2021] [Accepted: 08/03/2021] [Indexed: 12/17/2022] Open
Abstract
Buccal mucosal membrane offers an attractive drug-delivery route to enhance both systemic and local therapy. This review discusses the benefits and drawbacks of buccal drug delivery, anatomical and physiological aspects of oral mucosa, and various in vitro techniques frequently used for examining buccal drug-delivery systems. The role of mucoadhesive polymers, penetration enhancers, and enzyme inhibitors to circumvent the formulation challenges particularly due to salivary renovation cycle, masticatory effect, and limited absorption area are summarized. Biocompatible mucoadhesive films and patches are favored dosage forms for buccal administration because of flexibility, comfort, lightness, acceptability, capacity to withstand mechanical stress, and customized size. Preparation methods, scale-up process and manufacturing of buccal films are briefed. Ongoing and completed clinical trials of buccal film formulations designed for systemic delivery are tabulated. Polymeric or lipid nanocarriers incorporated in buccal film to resolve potential formulation and drug-delivery issues are reviewed. Vaccine-enabled buccal films have the potential ability to produce both antibodies mediated and cell mediated immunity. Advent of novel 3D printing technologies with built-in flexibility would allow multiple drug combinations as well as compartmentalization to separate incompatible drugs. Exploring new functional excipients with potential capacity for permeation enhancement of particularly large-molecular-weight hydrophilic drugs and unstable proteins, oligonucleotides are the need of the hour for rapid advancement in the exciting field of buccal drug delivery.
Collapse
Affiliation(s)
- Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (A.B.N.); (N.S.)
| | - Sai H. S. Boddu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman 346, United Arab Emirates;
| | - Bapi Gorain
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya 47500, Selangor, Malaysia;
- Centre for Drug Delivery and Molecular Pharmacology, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya 47500, Selangor, Malaysia
| | - Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (A.B.N.); (N.S.)
- Department of Pharmaceutics, Vidya Siri College of Pharmacy, Off Sarjapura Road, Bangalore 560035, India
| | - Jigar Shah
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, India;
| |
Collapse
|
12
|
Sivanesan I, Gopal J, Muthu M, Shin J, Mari S, Oh J. Green Synthesized Chitosan/Chitosan Nanoforms/Nanocomposites for Drug Delivery Applications. Polymers (Basel) 2021; 13:2256. [PMID: 34301013 PMCID: PMC8309384 DOI: 10.3390/polym13142256] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 11/16/2022] Open
Abstract
Chitosan has become a highlighted polymer, gaining paramount importance and research attention. The fact that this valuable polymer can be extracted from food industry-generated shell waste gives it immense value. Chitosan, owing to its biological and physicochemical properties, has become an attractive option for biomedical applications. This review briefly runs through the various methods involved in the preparation of chitosan and chitosan nanoforms. For the first time, we consolidate the available scattered reports on the various attempts towards greens synthesis of chitosan, chitosan nanomaterials, and chitosan nanocomposites. The drug delivery applications of chitosan and its nanoforms have been reviewed. This review points to the lack of systematic research in the area of green synthesis of chitosan. Researchers have been concentrating more on recovering chitosan from marine shell waste through chemical and synthetic processes that generate toxic wastes, rather than working on eco-friendly green processes-this is projected in this review. This review draws the attention of researchers to turn to novel and innovative green processes. More so, there are scarce reports on the application of green synthesized chitosan nanoforms and nanocomposites towards drug delivery applications. This is another area that deserves research focus. These have been speculated and highlighted as future perspectives in this review.
Collapse
Affiliation(s)
- Iyyakkannu Sivanesan
- Department of Bioresources and Food Science, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 05029, Korea
| | - Judy Gopal
- Laboratory of Neo Natural Farming, Chunnampet, Tamil Nadu 603 401, India
| | - Manikandan Muthu
- Laboratory of Neo Natural Farming, Chunnampet, Tamil Nadu 603 401, India
| | - Juhyun Shin
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 143-701, Korea
| | - Selvaraj Mari
- Department of Chemistry, Guru Nanak College, Chennai 600 042, India
| | - Jaewook Oh
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 143-701, Korea
| |
Collapse
|
13
|
Nguyen OOT, Tran KD, Ha NT, Doan SM, Dinh TTH, Tran TH. Oral cavity: An open horizon for nanopharmaceuticals. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2021. [DOI: 10.1007/s40005-021-00530-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
14
|
Kizaloglu A, Kilicay E, Karahaliloglu Z, Hazer B, Denkbas EB. The preparation of chitosan membrane improved with nanoparticles based on unsaturated fatty acid for using in cancer-related infections. J BIOACT COMPAT POL 2020. [DOI: 10.1177/0883911520943222] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This study includes the design of a chitosan membrane decorated with unsaturated fatty acid–based carrier system for cancer treatment and antibacterial application. For this, polystyrene-graft-polyoleic acid-graft-polyethylene glycol was prepared by free radical polymerization and characterized. Nanoparticles and caffeic acid–loaded nanoparticles were prepared by solvent evaporation technique and optimized. The short-term stability of nanoparticles was investigated at 4°C. Drug encapsulation and loading efficiency were evaluated. The chitosan membrane and caffeic acid–loaded nanoparticles embedded into chitosan membrane were fabricated. The caffeic acid loaded nanoparticles embedded into chitosan membrane showed controlled release. The mechanical properties of all samples were investigated. The caffeic acid–loaded nanoparticles embedded into chitosan membranes indicated excellent antibacterial properties against the Escherichia coli and Staphylococcus aureus. The anticancer activity of all the samples was evaluated against SaOS-2 human primary osteogenic sarcoma and MC3T3-E1 pre-osteoblast cell lines by 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide assay, the flow cytometry and double staining methods. As a result, the designed carrier system showed great potential to cancer-associated infections treatment in bone cancer cases.
Collapse
Affiliation(s)
- Abdullah Kizaloglu
- Institute of Science, Nanotechnology Engineering Department, Zonguldak Bülent Ecevit University, Zonguldak, Turkey
| | - Ebru Kilicay
- Eldivan Vocational School of Health Services, Department of Medical Services and Techniques, Çankırı Karatekin University, Çankırı, Turkey
| | | | - Baki Hazer
- Kapadokya University, Department of Aircraft Airframe Engine Maintenance, Urgup, Nevşehir, Turkey
- Zonguldak Bulent Ecevit University, Chemistry Department, Zonguldak, Turkey
| | - Emir Baki Denkbas
- Institute of Pure and Applied Sciences, Bioengineering Division, Hacettepe University, Ankara, Turkey
- Faculty of Engineering, Department of Biomedical Engineering, Başkent University, Ankara, Turkey
| |
Collapse
|
15
|
Xu Y, Zhang X, Wang N, Pei X, Guo Y, Wang J, Barth S, Yu F, Lee SJ, He H, Yang VC. Cell-penetrating peptide enhanced insulin buccal absorption. Int J Pharm 2020; 584:119469. [PMID: 32470482 DOI: 10.1016/j.ijpharm.2020.119469] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/27/2020] [Accepted: 05/21/2020] [Indexed: 11/18/2022]
Abstract
Non-injectable delivery of peptides and proteins is not feasible due to the limitations of large molecular mass, high hydrophilic properties, and gastrointestinal degradation. Therefore, proposing a new method to solve this problem is a burning issue. The objective of this study was to propose a novel protein delivery strategy to overcome the poor efficacy and irritation of buccal insulin delivery. In this study, we applied a conjugate of cell-penetrating peptides (LMWP) and insulin (INS-PEG-LMWP) for buccal delivery. INS-PEG-LMWP was prepared using insulin solution and mixture as references. The transport behaviour, in vivo bioactivity, hypoglycaemic effect, and safety of INS-PEG-LMWP were systematically characterised. An in vitro study demonstrated that the uptake and transportation of INS-PEG-LMWP across buccal mucosal multilayers significantly increased. By comparing the effects of different endocytic inhibitors on INS-PEG-LMWP uptake, the conjugate might be delivered via an energy independent, electrostatically adsorbed pathway. INS-PEG-LMWP's relative pharmacological bioavailability was high and its relative bioavailability was up to 26.86%, demonstrating no visible mucosal irritation. Cell-penetrating peptides are likely to become a reliable and safe tool for overcoming insulin's low permeability through the epithelial multilayers, the major barrier to buccal delivery.
Collapse
Affiliation(s)
- You Xu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xiaojuan Zhang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Nana Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Xing Pei
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Yiyue Guo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jianxin Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Stefan Barth
- South African Research Chair in Cancer Biotechnology, Institute of Infectious Disease and Molecular Medicine (IDM), Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa
| | - Fei Yu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Seung Jin Lee
- Department of Pharmacy, Ewha Womans University, Seodaemun-gu, Seoul 120-750, Republic of Korea
| | - Huining He
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China.
| | - Victor C Yang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China; Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109-1065, USA
| |
Collapse
|
16
|
Novel and revisited approaches in nanoparticle systems for buccal drug delivery. J Control Release 2020; 320:125-141. [DOI: 10.1016/j.jconrel.2020.01.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/02/2020] [Accepted: 01/04/2020] [Indexed: 12/15/2022]
|
17
|
Thongtham N, Chai‐in P, Unger O, Boonrungsiman S, Suwantong O. Fabrication of chitosan/collagen/hydroxyapatite scaffolds with encapsulatedCissus quadrangularisextract. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.4879] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
| | - Poowadon Chai‐in
- National Nanotechnology CenterNational Science and Technology Development Agency Pathum Thani Thailand
| | - Onuma Unger
- National Nanotechnology CenterNational Science and Technology Development Agency Pathum Thani Thailand
| | - Suwimon Boonrungsiman
- National Nanotechnology CenterNational Science and Technology Development Agency Pathum Thani Thailand
| | - Orawan Suwantong
- School of ScienceMae Fah Luang University Chiang Rai Thailand
- Center of Chemical Innovation for Sustainability (CIS)Mae Fah Luang University Chiang Rai Thailand
| |
Collapse
|
18
|
Zhang H, Liu X, Xu T, Xu K, Du B, Li Y. Biodegradable reduction and pH dual-sensitive polymer micelles based on poly(2-ethyl-2-oxazoline) for efficient delivery of curcumin. RSC Adv 2020; 10:25435-25445. [PMID: 35518633 PMCID: PMC9055264 DOI: 10.1039/d0ra02779k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/26/2020] [Indexed: 12/13/2022] Open
Abstract
A series of disulfide-linked amphiphilic polymers polyoxaline-SS-poly(lactide) (PEtOx-SS-PLA) were prepared and self-assembled into nano-micelles in water.
Collapse
Affiliation(s)
- Hena Zhang
- School of Chemistry & Materials Science
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- Jiangsu Normal University
- Xuzhou 221116
- China
| | - Xiaojun Liu
- School of Chemistry & Materials Science
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- Jiangsu Normal University
- Xuzhou 221116
- China
| | - Ting Xu
- School of Chemistry & Materials Science
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- Jiangsu Normal University
- Xuzhou 221116
- China
| | - Kang Xu
- School of Chemistry & Materials Science
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- Jiangsu Normal University
- Xuzhou 221116
- China
| | - Baixiang Du
- School of Chemistry & Materials Science
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- Jiangsu Normal University
- Xuzhou 221116
- China
| | - Yuling Li
- School of Chemistry & Materials Science
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- Jiangsu Normal University
- Xuzhou 221116
- China
| |
Collapse
|
19
|
Gonçalves MM, Carneiro J, Justus B, Espinoza JT, Budel JM, Farago PV, Paula JPD. Preparation and characterization of a novel antimicrobial film dressing for wound healing application. BRAZ J PHARM SCI 2020. [DOI: 10.1590/s2175-97902020000118784] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
20
|
Rençber S, Aydın Köse F, Karavana SY. Dexamethasone loaded PLGA nanoparticles for potential local treatment of oral precancerous lesions. Pharm Dev Technol 2019; 25:149-158. [DOI: 10.1080/10837450.2019.1673407] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Seda Rençber
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Ege University, Izmir, Turkey
| | - Fadime Aydın Köse
- Faculty of Pharmacy, Department of Biochemistry, Ege University, Izmir, Turkey
| | - Sinem Yaprak Karavana
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Ege University, Izmir, Turkey
| |
Collapse
|
21
|
Exploring optimized methoxy poly(ethylene glycol)-block-poly(ε-caprolactone) crystalline cored micelles in anti-glaucoma pharmacotherapy. Int J Pharm 2019; 566:573-584. [DOI: 10.1016/j.ijpharm.2019.06.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 01/01/2023]
|
22
|
Al-Nemrawi NK, Alsharif SSM, Alzoubi KH, Alkhatib RQ. Preparation and characterization of insulin chitosan-nanoparticles loaded in buccal films. Pharm Dev Technol 2019; 24:967-974. [PMID: 31092092 DOI: 10.1080/10837450.2019.1619183] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Chitosan nanoparticles loaded with insulin (IN-CS-NPs) were prepared using ionic gelation method using sodium tripolyphophate as a crosslinker. Later the nanoparticles (NPs) were dispersed in buccal films. The physicochemical properties and the morphology of the nanoparticles were characterized. The stability and release of insulin from the NPs were investigated. Buccal films were prepared separately and their properties such as the weight, thickness, pH, and mucoadhesiveness were investigated. The best film was used to disperse IN-CS-NPs and the loaded film was characterized. The nanoparticles size, polydispersity index, zeta potential, entrapment efficacy, and the loading capacity were 325.07 ± 1.32 nm, 0.38 ± 0.03 and 8.41 ± 0.80 mV, and 73.27 and 18.03%, respectively. The weight and thickness of the loaded film with IN-CS-NPs were 23.0 ± 3.0 mg and 0.32 ± 0.04 mm, respectively and the mucoadhesive force was 2.3 ± 0.2 N. The drug was stable in the NPs and in the films for three months, and its release was controlled by the film and the nanoparticles. Finally, the films loaded with IN-CS-NPs were studied in vivo and were compared to the commercially available insulin. The films prepared in this work were found to decrease glucose level significantly in diabetic rats.
Collapse
Affiliation(s)
- Nusaiba K Al-Nemrawi
- a Department of Pharmaceutical Technology, Faculty of Pharmacy , Jordan University of Science and Technology , Irbid , Jordan
| | - Sara S M Alsharif
- b Department of Applied Biological Sciences, Faculty of Scienceand Art , Jordan University of Science and Technology , Irbid , Jordan
| | - Karem H Alzoubi
- c Department of Clinical Pharmacy, Facultyof Pharmacy , Jordan University of Science and Technology , Irbid , Jordan
| | - Rami Q Alkhatib
- b Department of Applied Biological Sciences, Faculty of Scienceand Art , Jordan University of Science and Technology , Irbid , Jordan
| |
Collapse
|
23
|
Batista P, Castro P, Madureira AR, Sarmento B, Pintado M. Development and Characterization of Chitosan Microparticles-in-Films for Buccal Delivery of Bioactive Peptides. Pharmaceuticals (Basel) 2019; 12:ph12010032. [PMID: 30791572 PMCID: PMC6469171 DOI: 10.3390/ph12010032] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/05/2019] [Accepted: 02/11/2019] [Indexed: 12/23/2022] Open
Abstract
Nowadays, bioactive peptides are used for therapeutic applications and the selection of a carrier to deliver them is very important to increase the efficiency, absorption, release, bioavailability and consumer acceptance. The aim of this study was to develop and characterize chitosan-based films loaded with chitosan microparticles containing a bioactive peptide (sequence: KGYGGVSLPEW) with antihypertensive properties. Films were prepared by the solvent casting method, while the microparticles were prepared by ionic gelation. The final optimized chitosan microparticles exhibited a mean diameter of 2.5 µm, a polydispersity index of 0.46, a zeta potential of +61 mV and a peptide association efficiency of 76%. Chitosan films were optimized achieving the final formulation of 0.79% (w/v) of chitosan, 6.74% (w/v) of sorbitol and 0.82% (w/v) of citric acid. These thin (±0.100 mm) and transparent films demonstrated good performance in terms of mechanical and biological properties. The oral films developed were flexible, elastic, easy to handle and exhibited rapid disintegration (30 s) and an erosion behavior of 20% when they came into contact with saliva solution. The cell viability (75–99%) was proved by methylthiazolydiphenyl-tetrazolium bromide (MTT) assay with TR146 cells. The chitosan mucoadhesive films loaded with peptide–chitosan microparticles resulted in an innovative approach to perform administration across the buccal mucosa, because these films present a larger surface area, leading to the rapid disintegration and release of the antihypertensive peptide under controlled conditions in the buccal cavity, thus promoting bioavailability.
Collapse
Affiliation(s)
- Patrícia Batista
- Escola Superior de Biotecnologia, Centro de Biotecnologia e Química Fina, Rua Arquiteto Lobão Vital, 172, 4200-374 Porto, Portugal.
| | - Pedro Castro
- Escola Superior de Biotecnologia, Centro de Biotecnologia e Química Fina, Rua Arquiteto Lobão Vital, 172, 4200-374 Porto, Portugal.
| | - Ana Raquel Madureira
- Escola Superior de Biotecnologia, Centro de Biotecnologia e Química Fina, Rua Arquiteto Lobão Vital, 172, 4200-374 Porto, Portugal.
| | - Bruno Sarmento
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra 1317, 4585-116 Gandra-PRD, Portugal.
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-393 Porto, Portugal.
- INEB-Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-393 Porto, Portugal.
| | - Manuela Pintado
- Escola Superior de Biotecnologia, Centro de Biotecnologia e Química Fina, Rua Arquiteto Lobão Vital, 172, 4200-374 Porto, Portugal.
| |
Collapse
|
24
|
Abstract
The objective of this article is to propose a re-visiting of the paradigms of nano-carriers based drug routeing from an industrial viewpoint. The accumulation of drugs in specific body compartments after intravenous administration and the improvement of the oral bioavailability of peptides were taken as examples to propose an update of the translational framework preceding industrialisation. In addition to the recent advances on the biopharmacy of nano-carriers, the evolution of adjacent disciplines such as the biology of diseases, the chemistry of polymers, lipids and conjugates, the physico-chemistry of colloids and the assembling of materials at the nanoscale (referred to as microfluidics) are taken into account to consider new avenues in the applications of drug nano-carriers. The deeper integration of the properties of the drug and of the nano-carrier, in the specific context of the disease, advocates for product oriented programmes. At the same time, the advent of powerful collaborative digital tools makes possible the extension of the expertise spectrum. In this open-innovation framework, the Technology Readiness Levels (TRLs) of nano-carriers are proposed as a roadmap for the translational process from the Research stage to the Proof-of-Concept in human.
Collapse
Affiliation(s)
- Harivardhan Reddy Lakkireddy
- a Pre-Development Sciences, Pharmaceutical Development Platform , Sanofi Research & Development , Paris , France
| | - Didier V Bazile
- b Integrated CMC External Innovation , Sanofi Research & Development , Paris , France
| |
Collapse
|
25
|
Baghban Taraghdari Z, Imani R, Mohabatpour F. A Review on Bioengineering Approaches to Insulin Delivery: A Pharmaceutical and Engineering Perspective. Macromol Biosci 2019; 19:e1800458. [DOI: 10.1002/mabi.201800458] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Zahra Baghban Taraghdari
- Z. Baghban Taraghdari, Dr. R. Imani, F. MohabatpourDepartment of Biomedical EngineeringAmirkabir University of Technology Tehran 15875/4413 Iran
| | - Rana Imani
- Z. Baghban Taraghdari, Dr. R. Imani, F. MohabatpourDepartment of Biomedical EngineeringAmirkabir University of Technology Tehran 15875/4413 Iran
| | - Fatemeh Mohabatpour
- Z. Baghban Taraghdari, Dr. R. Imani, F. MohabatpourDepartment of Biomedical EngineeringAmirkabir University of Technology Tehran 15875/4413 Iran
- Division of Biomedical EngineeringUniversity of Saskatchewan Saskatoon S7N5A9 Canada
| |
Collapse
|
26
|
Ji N, Hong Y, Gu Z, Cheng L, Li Z, Li C. Preparation and Characterization of Insulin-Loaded Zein/Carboxymethylated Short-Chain Amylose Complex Nanoparticles. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:9335-9343. [PMID: 30111091 DOI: 10.1021/acs.jafc.8b02630] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this work, we use antisolvent precipitation to prepare zein/carboxymethylated short-chain amylose (CSA) complex nanoparticles for insulin encapsulation, showing that insulin-loaded zein/CSA complex nanoparticles are homogeneous, generally exhibiting sizes of <200 nm with a narrow distribution (polydispersity index < 0.100), spherical shape, and strong negative charge (-40 mV). Fourier transform infrared spectroscopy analysis reveals that the formation of the above nanoparticles is mainly driven by hydrophobic, hydrogen-bonding, and electrostatic interactions between CSA, insulin, and zein. In comparison to zein nanoparticles, zein/CSA complex nanoparticles feature much higher insulin encapsulation efficiency (45.8 versus 90.5%, respectively) and are essentially nontoxic to Caco-2 cells. Thus, this work provides new insights into the design of drug delivery systems and is expected to inspire their further development.
Collapse
|
27
|
Combination of PLGA nanoparticles with mucoadhesive guar-gum films for buccal delivery of antihypertensive peptide. Int J Pharm 2018; 547:593-601. [DOI: 10.1016/j.ijpharm.2018.05.051] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 05/14/2018] [Accepted: 05/21/2018] [Indexed: 01/19/2023]
|
28
|
Gatti THH, Eloy JO, Ferreira LMB, Silva ICD, Pavan FR, Gremião MPD, Chorilli M. Insulin-loaded polymeric mucoadhesive nanoparticles: development, characterization and cytotoxicity evaluation. BRAZ J PHARM SCI 2018. [DOI: 10.1590/s2175-97902018000117314] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
29
|
Ali A, Ahmed S. A review on chitosan and its nanocomposites in drug delivery. Int J Biol Macromol 2018; 109:273-286. [DOI: 10.1016/j.ijbiomac.2017.12.078] [Citation(s) in RCA: 454] [Impact Index Per Article: 64.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 12/10/2017] [Accepted: 12/12/2017] [Indexed: 02/07/2023]
|
30
|
Batista P, Castro PM, Madureira AR, Sarmento B, Pintado M. Recent insights in the use of nanocarriers for the oral delivery of bioactive proteins and peptides. Peptides 2018; 101:112-123. [PMID: 29329977 DOI: 10.1016/j.peptides.2018.01.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/19/2017] [Accepted: 01/08/2018] [Indexed: 12/12/2022]
Abstract
Bioactive proteins and peptides have been used with either prophylactic or therapeutic purposes, presenting inherent advantages as high specificity and biocompatibility. Nanocarriers play an important role in the stabilization of proteins and peptides, offering enhanced buccal permeation and protection while crossing the gastrointestinal tract. Moreover, preparation of nanoparticles as oral delivery systems for proteins/peptides may include tailored formulation along with functionalization aiming bioavailability enhancement of carried proteins or peptides. Oral delivery systems, namely buccal delivery systems, represent an interesting alternative route to parenteric delivery systems to carry proteins and peptides, resulting in higher comfort of administration and, therefore, compliance to treatment. This paper outlines an extensive overview of the existing publications on proteins/peptides oral nanocarriers delivery systems, with special focus on buccal route. Manufacturing aspects of most commonly used nanoparticles for oral delivery (e.g. polymeric nanoparticles using synthetic or natural polymers and lipid nanoparticles) advantages and limitations and potential applications of nanoparticles as proteins/peptides delivery systems will also be thoroughly addressed.
Collapse
Affiliation(s)
- Patrícia Batista
- CBQF, Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital, 172, 4200-374 Porto, Portugal; INEB, Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-393 Porto, Portugal
| | - Pedro M Castro
- CBQF, Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital, 172, 4200-374 Porto, Portugal; CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra 1317, 4585-116 Gandra-PRD, Portugal; INEB, Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-393 Porto, Portugal
| | - Ana Raquel Madureira
- CBQF, Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital, 172, 4200-374 Porto, Portugal; INEB, Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-393 Porto, Portugal
| | - Bruno Sarmento
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra 1317, 4585-116 Gandra-PRD, Portugal; i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-393 Porto, Portugal; INEB, Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-393 Porto, Portugal
| | - Manuela Pintado
- CBQF, Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital, 172, 4200-374 Porto, Portugal; INEB, Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-393 Porto, Portugal.
| |
Collapse
|
31
|
Preparation and characterization of hydroxyapatite nanoparticles carrying insulin and gallic acid for insulin oral delivery. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:353-364. [DOI: 10.1016/j.nano.2017.11.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 10/26/2017] [Accepted: 11/10/2017] [Indexed: 12/14/2022]
|
32
|
Zhang L, Qin H, Li J, Qiu JN, Huang JM, Li MC, Guan YQ. Preparation and characterization of layer-by-layer hypoglycemic nanoparticles with pH-sensitivity for oral insulin delivery. J Mater Chem B 2018; 6:7451-7461. [DOI: 10.1039/c8tb02113a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We developed an insulin oral delivery system with the combination of pH-sensitive material and structure to avoid intestinal degradation.
Collapse
Affiliation(s)
- Li Zhang
- School of Life Science, South China Normal University
- Guangzhou 510631
- China
- National Engineering Research Center for Healthcare Devices, Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Guangdong Institute of Medical Instruments
- Guangzhou 510500
| | - Han Qin
- School of Life Science, South China Normal University
- Guangzhou 510631
- China
- Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials South China Academy of Advanced Optoelectronics, South China Normal University
- Guangzhou 510006
| | - Jian Li
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University
- Guangzhou 510631
- China
| | - Jia-Ni Qiu
- School of Life Science, South China Normal University
- Guangzhou 510631
- China
- Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials South China Academy of Advanced Optoelectronics, South China Normal University
- Guangzhou 510006
| | - Jing-Min Huang
- School of Life Science, South China Normal University
- Guangzhou 510631
- China
- Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials South China Academy of Advanced Optoelectronics, South China Normal University
- Guangzhou 510006
| | - Ming-Chao Li
- School of Life Science, South China Normal University
- Guangzhou 510631
- China
- Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials South China Academy of Advanced Optoelectronics, South China Normal University
- Guangzhou 510006
| | - Yan-Qing Guan
- School of Life Science, South China Normal University
- Guangzhou 510631
- China
- Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials South China Academy of Advanced Optoelectronics, South China Normal University
- Guangzhou 510006
| |
Collapse
|
33
|
Kraisit P, Limmatvapirat S, Luangtana-Anan M, Sriamornsak P. Buccal administration of mucoadhesive blend films saturated with propranolol loaded nanoparticles. Asian J Pharm Sci 2018; 13:34-43. [PMID: 32104376 PMCID: PMC7032168 DOI: 10.1016/j.ajps.2017.07.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/04/2017] [Accepted: 07/20/2017] [Indexed: 11/06/2022] Open
Abstract
The aims of this study were to prepare and characterize hydroxypropyl methylcellulose (HPMC)/polycarbophil (PC) mucoadhesive blend films saturated with propranolol hydrochloride (PNL)-loaded nanoparticles to improve permeability of drugs that undergo first-pass metabolism. An ionic cross-linking method and film casting technique was used to prepare nanoparticles and mucoadhesive blend films, respectively. Increasing concentrations of PNL (70, 80, 90 mg/film) in HPMC/PC blend films containing PNL-loaded nanoparticles (PN-films) and HPMC/PC blend films containing PNL (80 mg/film) without nanoparticles (PP-films) were prepared to test swelling, mucoadhesiveness, release, permeation and physicochemical properties. Scanning electron microscope (SEM) images showed a partially smooth surface with a wrinkled occurrence and spherically shaped, well-dispersed nanoparticles on the surface of PN-films containing PNL 80 mg/film (PN-films-80). The size of the nanoparticles on the surface of PN-films-80 was around 100 nm, which was similar to the nanoparticle size observed using light scattering technique. The swelling index (SI) of all PN-films and PP-films increased greatly in the first period time (10-20 min) and reached swelling equilibrium at 20 min and 30 min, respectively. For the PN-films, the concentration of PNL influenced the mucoadhesive properties and tended to be higher when the amount of PNL increased. Immediate release of all blend film formulations was found in early time points (10-30 min). After 120 min, the release of PN-films-70 was lower than the other PN-films. Permeation studies using porcine buccal mucosa showed that inclusion of nanoparticles in the films increased the permeability of PNL compared to PP-films. Therefore, buccal administration of mucoadhesive blend films containing PNL-loaded nanoparticles could be a promising approach for drugs that undergo first-pass metabolism.
Collapse
Affiliation(s)
- Pakorn Kraisit
- Division of Pharmaceutical Sciences, Faculty of Pharmacy, Thammasat University, Pathumthani 12120, Thailand
- Pharmaceutical Biopolymer Group (PBiG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Sontaya Limmatvapirat
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Pharmaceutical Biopolymer Group (PBiG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Manee Luangtana-Anan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Pharmaceutical Biopolymer Group (PBiG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Pornsak Sriamornsak
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Pharmaceutical Biopolymer Group (PBiG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| |
Collapse
|
34
|
Santalices I, Gonella A, Torres D, Alonso MJ. Advances on the formulation of proteins using nanotechnologies. J Drug Deliv Sci Technol 2017. [DOI: 10.1016/j.jddst.2017.06.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
35
|
Mohammed MA, Syeda JTM, Wasan KM, Wasan EK. An Overview of Chitosan Nanoparticles and Its Application in Non-Parenteral Drug Delivery. Pharmaceutics 2017; 9:E53. [PMID: 29156634 PMCID: PMC5750659 DOI: 10.3390/pharmaceutics9040053] [Citation(s) in RCA: 703] [Impact Index Per Article: 87.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 11/14/2017] [Accepted: 11/16/2017] [Indexed: 12/11/2022] Open
Abstract
The focus of this review is to provide an overview of the chitosan based nanoparticles for various non-parenteral applications and also to put a spotlight on current research including sustained release and mucoadhesive chitosan dosage forms. Chitosan is a biodegradable, biocompatible polymer regarded as safe for human dietary use and approved for wound dressing applications. Chitosan has been used as a carrier in polymeric nanoparticles for drug delivery through various routes of administration. Chitosan has chemical functional groups that can be modified to achieve specific goals, making it a polymer with a tremendous range of potential applications. Nanoparticles (NP) prepared with chitosan and chitosan derivatives typically possess a positive surface charge and mucoadhesive properties such that can adhere to mucus membranes and release the drug payload in a sustained release manner. Chitosan-based NP have various applications in non-parenteral drug delivery for the treatment of cancer, gastrointestinal diseases, pulmonary diseases, drug delivery to the brain and ocular infections which will be exemplified in this review. Chitosan shows low toxicity both in vitro and some in vivo models. This review explores recent research on chitosan based NP for non-parenteral drug delivery, chitosan properties, modification, toxicity, pharmacokinetics and preclinical studies.
Collapse
Affiliation(s)
- Munawar A Mohammed
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 2Z4, Canada.
| | - Jaweria T M Syeda
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 2Z4, Canada.
| | - Kishor M Wasan
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 2Z4, Canada.
| | - Ellen K Wasan
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 2Z4, Canada.
| |
Collapse
|
36
|
Drug Delivery Innovations to Address Global Health Challenges for Pediatric and Geriatric Populations (Through Improvements in Patient Compliance). J Pharm Sci 2017; 106:3188-3198. [DOI: 10.1016/j.xphs.2017.07.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/09/2017] [Accepted: 07/13/2017] [Indexed: 11/21/2022]
|
37
|
Santos TCD, Rescignano N, Boff L, Reginatto FH, Simões CMO, de Campos AM, Mijangos CU. Manufacture and characterization of chitosan/PLGA nanoparticles nanocomposite buccal films. Carbohydr Polym 2017; 173:638-644. [DOI: 10.1016/j.carbpol.2017.06.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 05/09/2017] [Accepted: 06/04/2017] [Indexed: 12/20/2022]
|
38
|
Martínez-Muñoz A, Bello M, Romero-Castro A, Rodríguez-Fonseca RA, Rodrigues J, Sánchez-Espinosa VA, Correa-Basurto J. Binding free energy calculations using MMPB/GBSA approaches for PAMAM-G4-drug complexes at neutral, basic and acid pH conditions. J Mol Graph Model 2017; 76:330-341. [PMID: 28759825 DOI: 10.1016/j.jmgm.2017.07.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/16/2017] [Accepted: 07/17/2017] [Indexed: 02/08/2023]
Abstract
Dendrimers are synthetic macromolecules with a highly-branched structure and high concentration of surface groups. Among dendrimers, Poly(amidoamine) (PAMAM) has received substantial attention as a novel drug carrier and delivery system. Depending on the generation and type of terminal groups, dendrimer toxicity could change and include cytotoxicity. Although PAMAM is water soluble, molecular modeling of the dendrimer-drug complex is considered challenging for exploring the conformational mobility of dendrimers and atomic specific interactions during the dendrimer-drug association. However, conventional protocols for predicting binding affinities have been designed for small protein molecules or protein-protein complexes that can be applied to study the dendrimer-drug association. In this work, we performed docking calculations for a set of 94 previously reported compounds on PAMAM of fourth generation (G4-PAMAM) to select six compounds, cromoglicic acid (CRO) - a mast cell stabilizer, Fusidic acid (FUS) - a bacteriostatic antibiotic, and Methotrexate (MTX) - a chemotherapy agent and immune system suppressant, which have the highest affinities for G4-PAMAM, and Lidocaine (LDC) - used to numb tissue in a specific area and for ventricular tachycardia treatment, Metoprolol (MET) - a β1 receptor blocker, and Pindolol (PIN) - a β blocker, which have the lowest affinities for the G4-PAMAM dendrimer, to perform MD simulations combined with the molecular mechanics generalized/Poisson-Boltzmann surface area MMGBSA/MMPBSA approach to investigate the interactions of generating 4 charge-neutral, charge-basic and charge-acid G4-PAMAM dendrimers. In addition, to validate these theoretical G4-PAMAM-drug complexes, the complexes were experimentally conjugated to determine their stability in aqueous solubility studies immediately and over one year. Our results show that among the different commercial drugs, both charged and neutral PAMAM have the most favorable binding free energies for CRO, MTX, and FUS, which appears to be due to a complex counterbalance of electrostatics and van der Waals interactions. These theoretical and aqueous solubility studies supported the high affinity of methotrexate for the G4-PAMAM-drug due to its carboxyl and aryl moieties that favor its accommodation by noncovalent interactions.
Collapse
Affiliation(s)
- Alberto Martínez-Muñoz
- Laboratorio de Modelado Molecular y Bioinformática de la Escuela Superior de Medicina, Instituto Politécnico Nacional, México, Plan de San Luis Y Diaz Mirón S/N, Col. Casco de Santo Tomas, Ciudad de México, CP: 11340, Mexico
| | - Martiniano Bello
- Laboratorio de Modelado Molecular y Bioinformática de la Escuela Superior de Medicina, Instituto Politécnico Nacional, México, Plan de San Luis Y Diaz Mirón S/N, Col. Casco de Santo Tomas, Ciudad de México, CP: 11340, Mexico.
| | - Aurelio Romero-Castro
- Laboratorio de Modelado Molecular y Bioinformática de la Escuela Superior de Medicina, Instituto Politécnico Nacional, México, Plan de San Luis Y Diaz Mirón S/N, Col. Casco de Santo Tomas, Ciudad de México, CP: 11340, Mexico
| | - Rolando Alberto Rodríguez-Fonseca
- Laboratorio de Modelado Molecular y Bioinformática de la Escuela Superior de Medicina, Instituto Politécnico Nacional, México, Plan de San Luis Y Diaz Mirón S/N, Col. Casco de Santo Tomas, Ciudad de México, CP: 11340, Mexico
| | - João Rodrigues
- CQM-Centro de Quimica da Madeira, MMRG, Universidade da Madeira, Campus da Penteada 9020-105, Funchal, Portugal
| | - Víctor Armando Sánchez-Espinosa
- Laboratorio de Modelado Molecular y Bioinformática de la Escuela Superior de Medicina, Instituto Politécnico Nacional, México, Plan de San Luis Y Diaz Mirón S/N, Col. Casco de Santo Tomas, Ciudad de México, CP: 11340, Mexico
| | - José Correa-Basurto
- Laboratorio de Modelado Molecular y Bioinformática de la Escuela Superior de Medicina, Instituto Politécnico Nacional, México, Plan de San Luis Y Diaz Mirón S/N, Col. Casco de Santo Tomas, Ciudad de México, CP: 11340, Mexico.
| |
Collapse
|
39
|
Bai X, Kong M, Xia G, Bi S, Zhou Z, Feng C, Cheng X, Chen X. Systematic investigation of fabrication conditions of nanocarrier based on carboxymethyl chitosan for sustained release of insulin. Int J Biol Macromol 2017; 102:468-474. [DOI: 10.1016/j.ijbiomac.2017.03.181] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 02/22/2017] [Accepted: 03/29/2017] [Indexed: 10/19/2022]
|
40
|
Development of double emulsion nanoparticles for the encapsulation of bovine serum albumin. Colloids Surf B Biointerfaces 2017; 158:190-196. [PMID: 28692874 DOI: 10.1016/j.colsurfb.2017.06.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 06/07/2017] [Accepted: 06/21/2017] [Indexed: 11/23/2022]
Abstract
In the present work, a double emulsion was developed for the encapsulation of Bovine Serum Albumin (BSA) as a model protein for the future encapsulation of viral proteins. The first emulsion polydispersity index (PDI) was studied with increasing concentrations of poly (ε-caprolactone) (PCL) as stabilizer (from 16% w/v to 5% w/v) and polyvinyl alcohol (PVA) as the surfactant in the second emulsion at 1.5% w/v. Results suggest that at decreasing concentrations of PCL the PDI of the emulsion also decrease, indicating that viscosity of the emulsion is crucial in the homogeneity of the resultant size distribution of the nanoparticles. When PVA concentration in the second emulsion was increased from 1.5% w/v to 2.5% w/v the PDI also increased. To study the relationship between the structure of the surfactant in the second emulsion and the resultant BSA encapsulation, emulsions were prepared with Pluronic F68 and PVA both at 1.5% w/v and PCL in the first emulsion at 5% w/v. Results indicated that Pluronic F68 was a better stabilizer because at the same experimental conditions encapsulation of BSA was 1.5 higher than PVA. FTIR studies confirmed the presence of BSA in the nanoparticles. SEM and TEM microscopies showed a size distribution of 300nm-500nm size of nanoparticles. Circular dichroism studies demonstrated that the secondary structure of the protein was conserved after the encapsulation into the nanoparticles.
Collapse
|
41
|
Morsi N, Ghorab D, Refai H, Teba H. Nanodispersion-loaded mucoadhesive polymeric inserts for prolonged treatment of post-operative ocular inflammation. J Microencapsul 2017; 34:280-292. [DOI: 10.1080/02652048.2017.1321048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Nadia Morsi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Dalia Ghorab
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Hanan Refai
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Misr University for Science and Technology, Egypt
| | - Hoda Teba
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Misr University for Science and Technology, Egypt
| |
Collapse
|
42
|
Jiang WZ, Cai Y, Li HY. Chitosan-based spray-dried mucoadhesive microspheres for sustained oromucosal drug delivery. POWDER TECHNOL 2017. [DOI: 10.1016/j.powtec.2017.02.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
43
|
Becerra J, Sudre G, Royaud I, Montserret R, Verrier B, Rochas C, Delair T, David L. Tuning the Hydrophilic/Hydrophobic Balance to Control the Structure of Chitosan Films and Their Protein Release Behavior. AAPS PharmSciTech 2017; 18:1070-1083. [PMID: 27975192 DOI: 10.1208/s12249-016-0678-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 11/22/2016] [Indexed: 11/30/2022] Open
Abstract
The control over the crystallinity of chitosan and chitosan/ovalbumin films can be achieved via an appropriate balance of the hydrophilic/hydrophobic interactions during the film formation process, which then controls the release kinetics of ovalbumin. Chitosan films were prepared by solvent casting. The presence of the anhydrous allomorph can be viewed as a probe of the hydrophobic conditions at the neutralization step. The semicrystalline structure, the swelling behavior of the films, the protein/chitosan interactions, and the release behavior of the films were impacted by the DA and the film processing parameters. At low DAs, the chitosan films neutralized in the solid state corresponded to the most hydrophobic environment, inducing the crystallization of the anhydrous allomorph with and without protein. The most hydrophilic conditions, leading to the hydrated allomorph, corresponded to non-neutralized films for the highest DAs. For the non-neutralized chitosan acetate (amorphous) films, the swelling increased when the DA decreased, whereas for the neutralized chitosan films, the swelling decreased. The in vitro release of ovalbumin (model protein) from chitosan films was controlled by their swelling behavior. For fast swelling films (DA = 45%), a burst effect was observed. On the contrary, a lag time was evidenced for DA = 2.5% with a limited release of the protein. Furthermore, by blending chitosans (DA = 2.5% and 45%), the release behavior was improved by reducing the burst effect and the lag time. The secondary structure of ovalbumin was partially maintained in the solid state, and the ovalbumin was released under its native form.
Collapse
|
44
|
Surwase SS, Munot NM, Idage BB, Idage SB. Tailoring the properties of mPEG-PLLA nanoparticles for better encapsulation and tuned release of the hydrophilic anticancer drug. Drug Deliv Transl Res 2017; 7:416-427. [DOI: 10.1007/s13346-017-0372-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
45
|
Morales JO, Fathe KR, Brunaugh A, Ferrati S, Li S, Montenegro-Nicolini M, Mousavikhamene Z, McConville JT, Prausnitz MR, Smyth HDC. Challenges and Future Prospects for the Delivery of Biologics: Oral Mucosal, Pulmonary, and Transdermal Routes. AAPS JOURNAL 2017; 19:652-668. [DOI: 10.1208/s12248-017-0054-z] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 02/01/2017] [Indexed: 12/25/2022]
|
46
|
Montero-Padilla S, Velaga S, Morales JO. Buccal Dosage Forms: General Considerations for Pediatric Patients. AAPS PharmSciTech 2017; 18:273-282. [PMID: 27301872 DOI: 10.1208/s12249-016-0567-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 06/03/2016] [Indexed: 01/08/2023] Open
Abstract
The development of an appropriate dosage form for pediatric patients needs to take into account several aspects, since adult drug biodistribution differs from that of pediatrics. In recent years, buccal administration has become an attractive route, having different dosage forms under development including tablets, lozenges, films, and solutions among others. Furthermore, the buccal epithelium can allow quick access to systemic circulation, which could be used for a rapid onset of action. For pediatric patients, dosage forms to be placed in the oral cavity have higher requirements for palatability to increase acceptance and therapy compliance. Therefore, an understanding of the excipients required and their functions and properties needs to be particularly addressed. This review is focused on the differences and requirements relevant to buccal administration for pediatric patients (compared to adults) and how novel dosage forms can be less invasive and more acceptable alternatives.
Collapse
|
47
|
Abo Enin HA, El Nabarawy NA, Elmonem RAA. Treatment of Radiation-Induced Oral Mucositis Using a Novel Accepted Taste of Prolonged Release Mucoadhesive Bi-medicated Double-Layer Buccal Films. AAPS PharmSciTech 2017; 18:563-575. [PMID: 27138037 DOI: 10.1208/s12249-016-0533-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 04/12/2016] [Indexed: 12/22/2022] Open
Abstract
The aim of this study was to develop a novel double-layer bi-medicated prolonged release mucoadhesive buccal film (MBF) containing lidocaine hydrochloride (LC) and diclofenac potassium (DK). The ultimate goal of the prepared system is the treatment of radiation-induced oral mucositis pain with improved patient acceptance. MBFs were prepared using 3 × 22 randomized full factorial design for film optimization. Nanoemulsion system (NES) was used to mask DK bitter taste. The prepared films were characterized, viz thickness, mass uniformity, surface pH, folding endurance, swelling studies, ex vivo bioadhesive strength, in vitro drug release, and ex vivo permeation. The in vivo evaluation was carried out by testing the anti-inflammatory and analgesic activities on rats followed by a clinical study on patients to prove their acceptance. The optimized MBF composed of 10% w/w HPMC-4KM, 50 mg LC, and 50 mg DK-NES was selected due to prolonged in vitro drug release pattern and ex vivo permeability (95.24 ± 2.14 and 93.48 ± 3.24% in 6 h, respectively). MBF exposed a strong anti-inflammatory effect from 61 to 87% inhibition with a strong analgesic effect when compared to DK® and LC®, respectively. The clinical study revealed that films were accepted by the patients, and the presence of LC on the outer side helped in pain feeling reduction while DK-NES in the inner side facilitated in rapidly relieving the inflammation effect.
Collapse
|
48
|
Morantes SJ, Buitrago DM, Ibla JF, García YM, Lafaurie GI, Parraga JE. Composites of hydrogels and nanoparticles. BIOPOLYMER-BASED COMPOSITES 2017:107-138. [DOI: 10.1016/b978-0-08-101914-6.00005-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
49
|
Montenegro-Nicolini M, Morales JO. Overview and Future Potential of Buccal Mucoadhesive Films as Drug Delivery Systems for Biologics. AAPS PharmSciTech 2017; 18:3-14. [PMID: 27084567 DOI: 10.1208/s12249-016-0525-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 03/29/2016] [Indexed: 12/13/2022] Open
Abstract
The main route of administration for drug products is the oral route, yet biologics are initially developed as injectables due to their limited stability through the gastrointestinal tract and solubility issues. In order to avoid injections, a myriad of investigations on alternative administration routes that can bypass enzymatic degradation and the first-pass effect are found in the literature. As an alternative site for biologics absorption, the buccal route presents with a number of advantages. The buccal mucosa is a barrier, providing protection to underlying tissue, but is more permeable than other alternative routes such as the skin. Buccal films are polymeric matrices designed to be mucoadhesive properties and usually formulated with permeability enhancers to improve bioavailability. Conventionally, buccal films for biologics are manufactured by solvent casting, yet recent developments have shown the potential of hot melt extrusion, and most recently ink jet printing as promising strategies. This review aims at depicting the field of biologics-loaded mucoadhesive films as buccal drug delivery systems. In light of the literature available, the buccal epithelium is a promising route for biologics administration, which is reflected in clinical trials currently in progress, looking forward to register and commercialize the first biologic product formulated as a buccal film.
Collapse
|
50
|
Kraisit P, Limmatvapirat S, Nunthanid J, Sriamornsak P, Luangtana-Anan M. Preparation and Characterization of Hydroxypropyl Methylcellulose/Polycarbophil Mucoadhesive Blend Films Using a Mixture Design Approach. Chem Pharm Bull (Tokyo) 2016; 65:284-294. [PMID: 27980251 DOI: 10.1248/cpb.c16-00849] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The objectives of this study were to prepare the hydroxypropyl methylcellulose (HPMC)/polycarbophil (PC) mucoadhesive blend film and to investigate the main and interaction effect of HPMC and PC mixtures on the physicochemical and mechanical properties of blend films using a simplex lattice mixture design approach. The cubic and quadratic models were selected to analyze mucoadhesive properties in terms of work of adhesion and maximum detachment force, respectively. It was shown that HPMC/PC blend film had higher mucoadhesive properties than pure HPMC film. The suitable models for analyzing swelling index of blend films at various times were assessed. The puncture strength, % elongation and hydrophilicity of films were also examined. The pure HPMC film displayed more homogeneous and smoother structures compared with the blend film, as observed by scanning electron microscope and atomic force microscopy. Intermolecular hydrogen bonding between HPMC and PC was detected using Fourier transform infrared and X-ray diffraction. Therefore, the blend film shows high potential for use as a buccal delivery system.
Collapse
Affiliation(s)
- Pakorn Kraisit
- Division of Pharmaceutical Sciences, Faculty of Pharmacy, Thammasat University
| | | | | | | | | |
Collapse
|