1
|
Hjalte J, Börjesdotter AM, Diehl C, Ulvenlund S, Wahlgren M, Sjögren H. Excipient effect on phenol-induced precipitation of human growth hormone and bovine serum albumin. Int J Pharm 2025; 676:125624. [PMID: 40268209 DOI: 10.1016/j.ijpharm.2025.125624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Revised: 04/10/2025] [Accepted: 04/18/2025] [Indexed: 04/25/2025]
Abstract
The aim of this study was to investigate the impact of phenol on the precipitation of bovine serum albumin (BSA) and human growth hormone (hGH), in the presence of other excipients frequently used in biological drugs for parenteral delivery. The focus of the study lieson incompatibilities observed in multidose formulations containing non-ionic surfactants and preservatives. Previous research has shown that above a critical concentration, phenol reduces the cloud point of polysorbate surfactants to room temperature or lower. Here, it is demonstrated that for BSA-polysorbate solutions, phenol-induced incompatibility is primarily controlled by this depression of the surfactant cloud point, resulting in turbidity and/or precipitation. However, for formulations with human growth hormone (hGH) in isotonic salt solutions, the precipitation mechanism is instead driven by protein-phenol interactions. The precipitation is affected by the concentration of sodium chloride and at low salt concentrations the incompatibility is again controlled by depression of the surfactant cloud point. The concentration of salt needed for protein induced precipitation seems to follow the Hofmeister series, with sodium chloride and sodium sulphate inducing precipitation at a lower salt concentration than sodium nitrate. Notably, non-ionic tonicity agents, such as glucose and mannitol, which are known to impact the surfactant cloud point depression of phenol, do not induce precipitation of hGH in the presence of phenol. In the system containing polysorbate, phenol and hGH, salt-triggered protein precipitation occurs at slightly higher sodium chloride concentrations than in solutions without polysorbate. This indicates a stabilizing effect of polysorbate on hGH below the cloud point. However, the stabilising effect is surfactant dependent, and in the presence of dodecyl maltoside, hGH precipitation occurs at much lower sodium chloride concentrations than for solutions with polysorbates. This illustrates the complexity of the interplay of excipients with each other and with the active ingredient (the protein) in the development of multidose pharmaceutics.
Collapse
Affiliation(s)
- Johanna Hjalte
- Department of Process and Life Science Engineering, Division of Food and Pharma, PoBox 124 221 00 Lund, Sweden
| | - Anna-Maria Börjesdotter
- Department of Process and Life Science Engineering, Division of Food and Pharma, PoBox 124 221 00 Lund, Sweden
| | - Carl Diehl
- SARomics Biostructures AB, Medicon Village, Scheelevägen 1, Lund 223 81, Sweden
| | - Stefan Ulvenlund
- Department of Process and Life Science Engineering, Division of Food and Pharma, PoBox 124 221 00 Lund, Sweden
| | - Marie Wahlgren
- Department of Process and Life Science Engineering, Division of Food and Pharma, PoBox 124 221 00 Lund, Sweden.
| | - Helen Sjögren
- Ferring Pharmaceuticals A/S, Amager Strandvej 405, Kastrup 2770, Denmark
| |
Collapse
|
2
|
Gottschalk P, Schlossbauer P, Schleicher L, Lindner K, Presser I, Wittmann M. Interaction of preservatives with contact materials during filling and storage of parenteral liquid formulations. Eur J Pharm Sci 2025; 204:106971. [PMID: 39603430 DOI: 10.1016/j.ejps.2024.106971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024]
Abstract
Silicone tubing is a frequently used material in pharmaceutical filling processes for parenteral formulations, as its characteristics like flexibility, chemical resistance and easy handling make it particularly suitable for these purposes. This study investigated the time-dependent interaction of phenol and m-cresol with silicone tubing and other broadly applied contact materials used during the filling and transport processes of parenteral formulations. Phenol losses could be observed after incubation in silicone tubing, depending on the inner diameter (ID). This has been demonstrated for process interruptions of up to 120 min. A loss of 40 % could be observed for a small ID of 3.2 mm which can be found close to filling needles, and up to 12 % for larger tubes with an ID of 9.5 mm commonly used for sterile filtration and transport processes. Analysis of tubes with varying ID revealed a linear relationship between the decrease of phenol and the surface-to-volume ratio. m-cresol showed an even more pronounced loss in silicone tubing. Fluorinated polymers and thermoplastic elastomers were also analyzed, and no loss of phenol and m-cresol was observed. Pumping tests revealed that shear forces in peristaltic pumps led to strong particle formation in selected tubing. A strong increase in particle concentration was observed in thermoplastic elastomers, particularly in PharMed® BPT tubing. In contrast, the C-Flex® tubing demonstrated minimal particle formation. Fluorinated polymers are not compatible with peristaltic pumps, which is why they were not analyzed regarding pumpability. Although silicone tubes are not impervious to preservatives such as phenol, they did not generate particles when pumped.
Collapse
Affiliation(s)
- Paul Gottschalk
- Pharmaceutical Development, Boehringer Ingelheim Pharma GmbH & Co. KG 88400 Biberach, Germany
| | - Patrick Schlossbauer
- Pharmaceutical Development, Boehringer Ingelheim Pharma GmbH & Co. KG 88400 Biberach, Germany.
| | - Lucas Schleicher
- Pharmaceutical Development, Boehringer Ingelheim Pharma GmbH & Co. KG 88400 Biberach, Germany
| | - Katrin Lindner
- Pharmaceutical Development, Boehringer Ingelheim Pharma GmbH & Co. KG 88400 Biberach, Germany
| | - Ingo Presser
- Pharmaceutical Development, Boehringer Ingelheim Pharma GmbH & Co. KG 88400 Biberach, Germany
| | - Maximilian Wittmann
- Pharmaceutical Development, Boehringer Ingelheim Pharma GmbH & Co. KG 88400 Biberach, Germany
| |
Collapse
|
3
|
Selaya SD, Abrigo N, Jones C, Korang-Yeboah M, Faustino PJ, Shakleya D. Development and Validation of a Headspace GC-MS Method for Simultaneous Quantification of Antimicrobial Preservatives in Biopharmaceutical Peptide Formulations. Biomed Chromatogr 2024:e6045. [PMID: 39562523 DOI: 10.1002/bmc.6045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/16/2024] [Accepted: 10/23/2024] [Indexed: 11/21/2024]
Abstract
The four most used antimicrobial preservatives in biopharmaceutical parenteral formulations are phenol, meta-cresol, chlorobutanol, and benzyl alcohol. Preservatives are included in various combinations in biopharmaceuticals highlighting the importance of an analytical method to quantify the four preservatives simultaneously. A headspace GC-MS method was developed to quantify phenol, chlorobutanol, meta-cresol, and benzyl alcohol. The method was validated according to USP <1225>. System suitability was conducted daily for retention time (%RSD < 2.0%), peak area (%RSD < 5.0%), USP tailing factor (< 2.0 and %RSD < 10.0%), and peak resolution (> 2.0). Analytical ranges were 1.5-90 μg/mL for phenol and meta-cresol, 30-240 μg/mL for benzyl alcohol, and 30-300 μg/mL for chlorobutanol. Method accuracy ranged from 94% to 108% and precision from 4% to 15 %RSD for all the tested preservatives. The method was applied to three marketed teriparatide drug products selected as a model. Preservative concentrations of the biopharmaceutical marketed products were determined and were found to be comparable with the labeled concentrations, except for an expired product with 2.5% of the label claim. The developed headspace GC-MS method can be used to evaluate the drug quality of the parenteral formulations and to support the assessment of biopharmaceutical peptide drug products.
Collapse
Affiliation(s)
- Susan Daniela Selaya
- Center for Drug Evaluation and Research, Office of Pharmaceutical Quality, Office of Pharmaceutical Quality Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Nicolas Abrigo
- Center for Drug Evaluation and Research, Office of Pharmaceutical Quality, Office of Pharmaceutical Quality Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Clark Jones
- Center for Drug Evaluation and Research, Office of Pharmaceutical Quality, Office of Pharmaceutical Quality Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Maxwell Korang-Yeboah
- Center for Drug Evaluation and Research, Office of Pharmaceutical Quality, Office of Pharmaceutical Quality Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Patrick J Faustino
- Center for Drug Evaluation and Research, Office of Pharmaceutical Quality, Office of Pharmaceutical Quality Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Diaa Shakleya
- Center for Drug Evaluation and Research, Office of Pharmaceutical Quality, Office of Pharmaceutical Quality Research, Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
4
|
Velankar KY, Gawalt ES, Wen Y, Meng WS. Pharmaceutical proteins at the interfaces and the role of albumin. Biotechnol Prog 2024; 40:e3474. [PMID: 38647437 DOI: 10.1002/btpr.3474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 01/15/2024] [Accepted: 04/09/2024] [Indexed: 04/25/2024]
Abstract
A critical measure of the quality of pharmaceutical proteins is the preservation of native conformations of the active pharmaceutical ingredients. Denaturation of the active proteins in any step before administration into patients could lead to loss of potency and/or aggregation, which is associated with an increased risk of immunogenicity of the products. Interfacial stress enhances protein instability as their adsorption to the air-liquid and liquid-solid interfaces are implicated in the formation of denatured proteins and aggregates. While excipients in protein formulations have been employed to reduce the risk of aggregation, the roles of albumin as a stabilizer have not been reviewed from practical and theoretical standpoints. The amphiphilic nature of albumin makes it accumulate at the interfaces. In this review, we aim to bridge the knowledge gap between interfacial instability and the influence of albumin as a surface-active excipient in the context of reducing the immunogenicity risk of protein formulations.
Collapse
Affiliation(s)
- Ketki Y Velankar
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - Ellen S Gawalt
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yi Wen
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Wilson S Meng
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
5
|
Song X, Qian S, Li H, Shen Y, Bian D, Shan K, Shi J. Study on the evaluation method of cigarette astringency in the simulated oral environment. J Texture Stud 2024; 55:e12837. [PMID: 38702991 DOI: 10.1111/jtxs.12837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/02/2024] [Accepted: 04/10/2024] [Indexed: 05/06/2024]
Abstract
Cigarettes with pronounced astringency can diminish consumers' enjoyment. However, due to the complex composition of cigarettes, quantifying astringency intensity accurately has been challenging. To address this, research was conducted to develop a method for assessing astringency intensity in a simulated oral environment. The astringency intensity of four cigarette brands was determined using the standard sensory evaluation method. The mainstream smoke absorbing solution (MS) was prepared by simulating the cigarette smoking process, and its physicochemical properties (such as total phenol content and pH levels) were analyzed. The lubrication properties of the five solutions were tested using the MFT-5000 wear tester, and factors influencing cigarette astringency were examined. The findings showed that total phenol content and pH of MS were positively and negatively correlated with astringency intensity, respectively. Particularly, the lubrication properties of MS were significantly correlated with astringency intensity, and the correlation coefficient was affected by load and speed during testing. The study concluded that coefficient of friction was a more reliable measure for assessing the extent of astringency in cigarettes than the total phenol content and pH of MS, offering new insights into astringency evaluation and development of high-grade cigarettes.
Collapse
Affiliation(s)
- Xiaofei Song
- School of Mechanical Engineering, Jiangnan University, Wuxi, China
| | - Shanhua Qian
- School of Mechanical Engineering, Jiangnan University, Wuxi, China
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, Wuxi, China
| | - Hui Li
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Yujun Shen
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Da Bian
- School of Mechanical Engineering, Jiangnan University, Wuxi, China
| | - Kai Shan
- Hongta Liaoning Tobacco Co., Ltd, Shenyang, China
| | - Jingquan Shi
- Hongta Liaoning Tobacco Co., Ltd, Shenyang, China
| |
Collapse
|
6
|
Antimicrobial Preservatives for Protein and Peptide Formulations: An Overview. Pharmaceutics 2023; 15:pharmaceutics15020563. [PMID: 36839885 DOI: 10.3390/pharmaceutics15020563] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 02/10/2023] Open
Abstract
Biological drugs intended for multi-dose application require the presence of antimicrobial preservatives to avoid microbial growth. As the presence of certain preservatives has been reported to increase protein and peptide particle formation, it is essential to choose a preservative compatible with the active pharmaceutical ingredient in addition to its preservation function. Thus, this review describes the current status of the use of antimicrobial preservatives in biologic formulations considering (i) appropriate preservatives for protein and peptide formulations, (ii) their physico-chemical properties, (iii) their in-/compatibilities with other excipients or packaging material, and (iv) their interactions with the biological compound. Further, (v) we present an overview of licensed protein and peptide formulations.
Collapse
|
7
|
Multi-Dose Formulation Development for a Quadrivalent Human Papillomavirus Virus-Like Particle-Based Vaccine: Part I - Screening of Preservative Combinations. J Pharm Sci 2023; 112:446-457. [PMID: 36096284 DOI: 10.1016/j.xphs.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/03/2022] [Accepted: 09/03/2022] [Indexed: 01/18/2023]
Abstract
The development of multi-dose, subunit vaccine formulations can be challenging since antimicrobial preservatives (APs) often destabilize protein antigens. In this work, we evaluated Human Papillomavirus (HPV) Virus-Like Particles (VLPs) to determine if combining different APs used in approved parenteral products, each at lower concentrations than used alone, would maintain both antimicrobial effectiveness and antigen stability. To identify promising AP combinations, two different screening strategies were utilized: (1) empirical one-factor-at-a-time (OFAT) and (2) statistical design-of-experiments (DOE). Seven different APs were employed to screen for two- and three-AP combinations using high-throughput methods for antimicrobial effectiveness (i.e., microbial growth inhibition assay and a modified European Pharmacopeia method) and antigen stability (i.e., serotype-specific mAb binding to conformational epitopes of HPV6, 11, 16 VLPs by ELISA). The OFAT and DOE approaches were complementary, such that initial OFAT results (and associated lessons learned) were subsequently employed to optimize the combinations using DOE. Additional validation experiments confirmed the final selection of top AP-combinations predicted by DOE modeling. Overall, 20 candidate multi-dose formulations containing two- or three-AP combinations were down-selected. As described in Part 2 (companion paper), long-term storage stability profiles of aluminum-adjuvanted, quadrivalent HPV VLP formulations containing these lead candidate AP combinations are compared to single APs.
Collapse
|
8
|
Ghosh I, Gutka H, Krause ME, Clemens R, Kashi RS. A systematic review of commercial high concentration antibody drug products approved in the US: formulation composition, dosage form design and primary packaging considerations. MAbs 2023; 15:2205540. [PMID: 37243580 DOI: 10.1080/19420862.2023.2205540] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 05/29/2023] Open
Abstract
Three critical aspects that define high concentration antibody products (HCAPs) are as follows: 1) formulation composition, 2) dosage form, and 3) primary packaging configuration. HCAPs have become successful in the therapeutic sector due to their unique advantage of allowing subcutaneous self-administration. Technical challenges, such as physical and chemical instability, viscosity, delivery volume limitations, and product immunogenicity, can hinder successful development and commercialization of HCAPs. Such challenges can be overcome by robust formulation and process development strategies, as well as rational selection of excipients and packaging components. We compiled and analyzed data from US Food and Drug Administration-approved and marketed HCAPs that are ≥100 mg/mL to identify trends in formulation composition and quality target product profile. This review presents our findings and discusses novel formulation and processing technologies that enable the development of improved HCAPs at ≥200 mg/mL. The observed trends can be used as a guide for further advancements in the development of HCAPs as more complex antibody-based modalities enter biologics product development.
Collapse
Affiliation(s)
- Indrajit Ghosh
- Sterile Product Development, Bristol Myers Squibb, New Brunswick, NJ, USA
| | - Hiten Gutka
- Sterile Product Development, Bristol Myers Squibb, New Brunswick, NJ, USA
| | - Mary E Krause
- Sterile Product Development, Bristol Myers Squibb, New Brunswick, NJ, USA
| | - Ryan Clemens
- College of Pharmacy, University of Illinois at Chicago, Chicago, USA
| | - Ramesh S Kashi
- Sterile Product Development, Bristol Myers Squibb, Summit, NJ, USA
| |
Collapse
|
9
|
Jerajani K, Wan Y, Hickey JM, Kumru OS, Sharma N, Pullagurla SR, Ogun O, Mapari S, Whitaker N, Brendle S, Christensen ND, Batwal S, Mahedvi M, Rao H, Dogar V, Chandrasekharan R, Shaligram U, Joshi SB, Volkin DB. Analytical and Preformulation Characterization Studies of Human Papillomavirus Virus-Like Particles to Enable Quadrivalent Multi-Dose Vaccine Formulation Development. J Pharm Sci 2022; 111:2983-2997. [PMID: 35914546 DOI: 10.1016/j.xphs.2022.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 12/14/2022]
Abstract
Introducing multi-dose formulations of Human Papillomavirus (HPV) vaccines will reduce costs and enable improved global vaccine coverage, especially in low- and middle-income countries. This work describes the development of key analytical methods later utilized for HPV vaccine multi-dose formulation development. First, down-selection of physicochemical methods suitable for multi-dose formulation development of four HPV (6, 11, 16, and 18) Virus-Like Particles (VLPs) adsorbed to an aluminum adjuvant (Alhydrogel®, AH) was performed. The four monovalent AH-adsorbed HPV VLPs were then characterized using these down-selected methods. Second, stability-indicating competitive ELISA assays were developed using HPV serotype-specific neutralizing mAbs, to monitor relative antibody binding profiles of the four AH-adsorbed VLPs during storage. Third, concentration-dependent preservative-induced destabilization of HPV16 VLPs was demonstrated by addition of eight preservatives found in parenterally administered pharmaceuticals and vaccines, as measured by ELISA, dynamic light scattering, and differential scanning calorimetry. Finally, preservative stability and effectiveness in the presence of vaccine components were evaluated using a combination of RP-UHPLC, a microbial growth inhibition assay, and a modified version of the European Pharmacopoeia assay (Ph. Eur. 5.1.3). Results are discussed in terms of analytical challenges encountered to identify and develop high-throughput methods that facilitate multi-dose formulation development of aluminum-adjuvanted protein-based vaccine candidates.
Collapse
Affiliation(s)
- Kaushal Jerajani
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, USA
| | - Ying Wan
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, USA
| | - John M Hickey
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, USA
| | - Ozan S Kumru
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, USA
| | - Nitya Sharma
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, USA
| | - Swathi R Pullagurla
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, USA
| | - Oluwadara Ogun
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, USA
| | - Shweta Mapari
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, USA
| | - Neal Whitaker
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, USA
| | - Sarah Brendle
- Department of Pathology, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Neil D Christensen
- Department of Pathology, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | | | | | - Harish Rao
- Serum Institute of India Pvt. Ltd., Pune, India
| | - Vikas Dogar
- Serum Institute of India Pvt. Ltd., Pune, India
| | | | | | - Sangeeta B Joshi
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, USA
| | - David B Volkin
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, USA.
| |
Collapse
|
10
|
Li M, Falk BT, Lu X, Schroder R, Mccoy M, Xu W, Yin DH, Gindy ME, D'Addio SM, Su Y. Molecular Mechanism of Antimicrobial Excipient-Induced Aggregation in Parenteral Formulations of Peptide Therapeutics. Mol Pharm 2022; 19:3267-3278. [PMID: 35917158 DOI: 10.1021/acs.molpharmaceut.2c00449] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Antimicrobial preservatives are used as functional excipients in multidose formulations of biological therapeutics to destroy or inhibit the growth of microbial contaminants, which may be introduced by repeatedly administering doses. Antimicrobial agents can also induce the biophysical instability of proteins and peptides, which presents a challenge in optimizing the drug product formulation. Elucidating the structural basis for aggregation aids in understanding the underlying mechanism and can offer valuable knowledge and rationale for designing drug substances and drug products; however, this remains largely unexplored due to the lack of high-resolution characterization. In this work, we utilize solution nuclear magnetic resonance (NMR) as an advanced biophysical tool to study an acylated 31-residue peptide, acyl-peptide A, and its interaction with commonly used antimicrobial agents, benzyl alcohol and m-cresol. Our results suggest that acyl-peptide A forms soluble octamers in the aqueous solution, which tumble slowly due to an increased molecular weight as measured by diffusion ordered spectroscopy and 1H relaxation measurement. The addition of benzyl alcohol does not induce aggregation of acyl-peptide A and has no chemical shift perturbation in 1H-1H NOESY spectra, suggesting no detectable interaction with the peptide. In contrast, the addition of 1% (w/v) m-cresol results in insoluble aggregates composed of 25% (w/w) peptides after a 24-hour incubation at room temperature as quantified by 1H NMR. Interestingly, 1H-13C heteronuclear single-quantum coherence and 1H-1H total correlation experiment spectroscopy have identified m-cresol and peptide interactions at specific residues, including Met, Lys, Glu, and Gln, suggesting that there may be a combination of hydrophobic, hydrogen bonding, and electrostatic interactions with m-cresol driving this phenomenon. These site-specific interactions have promoted the formation of higher-order oligomerization such as dimers and trimers of octamers, eventually resulting in insoluble aggregates. Our study has elucidated a structural basis of m-cresol-induced self-association that can inform the optimized design of drug substances and products. Moreover, it has demonstrated solution NMR as a high-resolution tool to investigate the structure and dynamics of biological drug products and provide an understanding of excipient-induced peptide and protein aggregation.
Collapse
Affiliation(s)
- Mingyue Li
- Analytical Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Bradley T Falk
- Computational and Structural Chemistry, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Xingyu Lu
- Analytical Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Ryan Schroder
- Analytical Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Mark Mccoy
- Computational and Structural Chemistry, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Wei Xu
- Analytical Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Daniel H Yin
- Pharmaceutical Sciences, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Marian E Gindy
- Small Molecule Science and Technology, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Suzanne M D'Addio
- Pharmaceutical Sciences, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Yongchao Su
- Analytical Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| |
Collapse
|
11
|
Antimicrobial adhesive films by plasma-enabled polymerisation of m-cresol. Sci Rep 2022; 12:7560. [PMID: 35534598 PMCID: PMC9085887 DOI: 10.1038/s41598-022-11400-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/18/2022] [Indexed: 12/30/2022] Open
Abstract
This work reveals a versatile new method to produce films with antimicrobial properties that can also bond materials together with robust tensile adhesive strength. Specifically, we demonstrate the formation of coatings by using a dielectric barrier discharge (DBD) plasma to convert a liquid small-molecule precursor, m-cresol, to a solid film via plasma-assisted on-surface polymerisation. The films are quite appealing from a sustainability perspective: they are produced using a low-energy process and from a molecule produced in abundance as a by-product of coal tar processing. This process consumes only 1.5 Wh of electricity to create a 1 cm2 film, which is much lower than other methods commonly used for film deposition, such as chemical vapour deposition (CVD). Plasma treatments were performed in plain air without the need for any carrier or precursor gas, with a variety of exposure durations. By varying the plasma parameters, it is possible to modify both the adhesive property of the film, which is at a maximum at a 1 min plasma exposure, and the antimicrobial property of the film against Escherichia coli, which is at a maximum at a 30 s exposure.
Collapse
|
12
|
Miao C, Ma X, Fan J, Shi L, Wei J. Methylparaben as a preservative in the development of a multi-dose HPV-2 vaccine. Hum Vaccin Immunother 2022; 18:2067421. [PMID: 35471842 PMCID: PMC9302532 DOI: 10.1080/21645515.2022.2067421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The human papillomavirus (HPV) vaccine is the simplest, most economical, convenient, and effective method of preventing cervical cancer. However, the current HPV vaccine is supplied as a single-dose vial with a relatively high cost per dose, which hinders its supply to low- and middle-income countries (LMICs), where the demand for HPV vaccine is highest. Therefore, it is necessary to develop a multi-dose HPV vaccine to promote large-scale affordable vaccination in LMICs. Moreover, the addition of preservatives is required to reduce the risk of microbial contamination in multi-dose vaccines within a single vial. In this study, we investigated the effects of six preservatives on HPV 16L1 and 18L1 virus-like particles in solution, as well as the aluminum adsorption status, under normal and high-temperature conditions. Multiple methods were employed, including dynamic light scattering, differential scanning calorimetry, an in vitro relative potency assay, and an in vivo potency assay in mice. Based on the above results, four types of selected preservatives were further studied, and an antimicrobial effectiveness test was performed on the HPV-2 vaccine, which was employed as a model HPV vaccine. Finally, three preservatives were selected based on their performance to evaluate the long-term stability of the HPV-2 vaccine. The results indicated that 0.12% methylparaben is the most suitable preservative for the multi-dose HPV-2 vaccine, guaranteeing the shelf life for at least three years and meeting “B” standards for antimicrobial effectiveness. The formula developed in this study can contribute toward combating cervical cancer in LMICs.
Collapse
Affiliation(s)
- Chenyang Miao
- Department of Formulation Development, Shanghai Zerun Biotechnology Co., Ltd., Shanghai, China
| | - Xinxing Ma
- Department of Formulation Development, Shanghai Zerun Biotechnology Co., Ltd., Shanghai, China
| | - Jiang Fan
- Department of Formulation Development, Shanghai Zerun Biotechnology Co., Ltd., Shanghai, China
| | - Li Shi
- Department of Formulation Development, Shanghai Zerun Biotechnology Co., Ltd., Shanghai, China
| | - Jian Wei
- Department of Formulation Development, Shanghai Zerun Biotechnology Co., Ltd., Shanghai, China
| |
Collapse
|
13
|
Groёl S, Menzen T, Winter G. Calorimetric Investigation of the Relaxation Phenomena in Amorphous Lyophilized Solids. Pharmaceutics 2021; 13:1735. [PMID: 34684028 PMCID: PMC8538343 DOI: 10.3390/pharmaceutics13101735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/15/2021] [Accepted: 10/15/2021] [Indexed: 11/16/2022] Open
Abstract
Studying the thermal history and relaxation of solid amorphous drug product matrices by calorimetry is a well-known approach, particularly in the context of correlating the matrix parameters with the long-term stability of freeze-dried protein drug products. Such calorimetric investigations are even more relevant today, as the application of new process techniques in freeze-drying (which strongly influence the thermal history of the products) has recently gained more interest. To revive the application of calorimetric methods, the widely scattered knowledge on this matter is condensed into a review and completed with new experimental data. The calorimetric methods are applied to recent techniques in lyophilization, such as controlled nucleation and aggressive/collapse drying. Phenomena such as pre-Tg events in differential scanning calorimetry and aging shoulders in isothermal microcalorimetry are critically reviewed and supplemented with data of freeze-dried products that have not been characterized with these methods before.
Collapse
Affiliation(s)
- Sebastian Groёl
- Department of Pharmacy, Ludwig-Maximilians University Munich, 81377 Munich, Germany
| | - Tim Menzen
- Coriolis Pharma Research GmbH, 82152 Munich, Germany;
| | - Gerhard Winter
- Department of Pharmacy, Ludwig-Maximilians University Munich, 81377 Munich, Germany
| |
Collapse
|
14
|
Dauer K, Kamm W, Wagner KG, Pfeiffer-Marek S. High-Throughput Screening for Colloidal Stability of Peptide Formulations Using Dynamic and Static Light Scattering. Mol Pharm 2021; 18:1939-1955. [PMID: 33789055 DOI: 10.1021/acs.molpharmaceut.0c01028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Selection of an appropriate formulation to stabilize therapeutic proteins against aggregation is one of the most challenging tasks in early-stage drug product development. The amount of aggregates is more difficult to quantify in the case of peptides due to their small molecular size. Here, we investigated the suitability of diffusion self-interaction parameters (kD) and osmotic second virial coefficients (B22) for high-throughput (HT) screening of peptide formulations regarding their aggregation risk. These parameters were compared to the effect of thermal stress on colloidal stability. The formulation matrix comprised six buffering systems at two selected pH values, four tonicity agents, and a common preservative. The results revealed that electrostatic interactions are the main driver to control colloidal stability. Preferred formulations consisted of acetate and succinate buffer at pH 4.5 combined with glycerol or mannitol and optional m-cresol. kD proved to be a suitable surrogate for B22 as an indicator of high colloidal stability in the case of peptides as was previously described for globular proteins and antibodies. Formulation assessment solely based on kD obtained by HT methods offers important insights into the optimization of colloidal stability during the early development of peptide-based liquid formulations and can be performed with a limited amount of peptide (∼360 mg).
Collapse
Affiliation(s)
- Katharina Dauer
- Department of Pharmaceutical Technology and Biopharmaceutics, Institute of Pharmacy, University of Bonn, Gerhard-Domagk-Str. 3, 53121 Bonn, Germany.,Pharmaceutical Development Platform, Tides Drug Product Pre-Development Sciences, Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Walter Kamm
- Pharmaceutical Development Platform, Tides Drug Product Pre-Development Sciences, Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Karl Gerhard Wagner
- Department of Pharmaceutical Technology and Biopharmaceutics, Institute of Pharmacy, University of Bonn, Gerhard-Domagk-Str. 3, 53121 Bonn, Germany
| | - Stefania Pfeiffer-Marek
- Pharmaceutical Development Platform, Tides Drug Product Pre-Development Sciences, Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| |
Collapse
|
15
|
Swinney MR, Cox AL, Hawkins ED, Xue J, Garhyan P, Stanley JRL, Sule SV, Adragni K, Michael MD. Insulin, Not the Preservative m-cresol, Instigates Loss of Infusion Site Patency Over Extended Durations of CSII in Diabetic Swine. J Pharm Sci 2020; 110:1418-1426. [PMID: 33321138 DOI: 10.1016/j.xphs.2020.12.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/03/2020] [Accepted: 12/03/2020] [Indexed: 12/26/2022]
Abstract
Insulin infusion sets worn for more than 4-5 days have been associated with a greater risk of unexplained hyperglycemia, a phenomenon that has been hypothesized to be caused by an inflammatory response to preservatives such as m-cresol and phenol. In this cross-over study in diabetic swine, we examined the role of the preservative m-cresol in inflammation and changes in infusion site patency. Insulin pharmacokinetics (PK) and glucose pharmacodynamics (PD) were measured on delivery of a bolus of regular human insulin U-100 (U-100R), formulated with or without 2.5 mg/mL m-cresol, to fasted swine following 0, 3, 5, 7, and 10 days of continuous subcutaneous insulin infusion (CSII). In a subsequent study with the same animals, biopsies were evaluated from swine wearing infusion sets infusing nothing, saline, or U-100R either with or without 2.5 mg/mL m-cresol, following 3, 7, and 10 days of CSII. Exposure to m-cresol did not impact any PK or PD endpoints. PK and PD responses dropped markedly from Days 7-10, regardless of the presence of m-cresol. Histopathology results suggest an additive inflammatory response to both the infusion set and the insulin protein itself, peaking at Day 7 and remaining stable beyond.
Collapse
Affiliation(s)
| | - Amy L Cox
- Eli Lilly and Company, Indianapolis, IN
| | | | - Jie Xue
- Eli Lilly and Company, Indianapolis, IN
| | | | | | | | | | | |
Collapse
|
16
|
Antimicrobial Excipient-Induced Reversible Association of Therapeutic Peptides in Parenteral Formulations. J Pharm Sci 2020; 110:850-859. [PMID: 32980392 DOI: 10.1016/j.xphs.2020.09.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 08/28/2020] [Accepted: 09/21/2020] [Indexed: 02/07/2023]
Abstract
New classes of therapeutic peptides are being developed to prosecute biological targets which have been inaccessible to other modalities. Higher potency and longer half-life peptides have given rise to multiuse injectable formulations that enable convenient, low volume, and self-administered dosing; however, inclusion of antimicrobial preservatives to meet bactericidal requirements can impact other attributes of peptide formulations. Peptide-preservative interactions influencing solution-phase self-association of a non-insulin, linear, palmitoylated 31 amino acid peptide and two structurally similar peptides were assessed via turbidity, intrinsic fluorescence shifts and quenching, isothermal titration calorimetry, and 1H NMR. Meta-cresol and phenol specifically interact with the peptide, result in increased hydrophobicity near the tryptophan residue, and induce conformational changes, while benzyl alcohol does not impact tryptophan fluorescence, demonstrate any interaction enthalpy, or induce conformational changes. These same trends did not hold true for the other palmitoylated peptides evaluated, reinforcing the impacts of unique peptide sequences. Importantly, the presence of benzyl alcohol does increase the physical stability and solubility of the linear, 31 amino acid peptide under salt stress. We report new insights into the physical interactions of peptides with antimicrobial excipients, demonstrating a reversible association phenomenon and highlighting practical implications for formulation design and excipient selection.
Collapse
|
17
|
Effect of Aluminum Adjuvant and Preservatives on Structural Integrity and Physicochemical Stability Profiles of Three Recombinant Subunit Rotavirus Vaccine Antigens. J Pharm Sci 2019; 109:476-487. [PMID: 31589875 PMCID: PMC6941222 DOI: 10.1016/j.xphs.2019.10.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/24/2019] [Accepted: 10/01/2019] [Indexed: 02/06/2023]
Abstract
A nonreplicating rotavirus vaccine (NRRV) containing 3 recombinant fusion proteins adsorbed to aluminum adjuvant (Alhydrogel [AH]) is currently in clinical trials. The compatibility and stability of monovalent NRRV antigen with key components of a multidose vaccine formulation were examined using physicochemical and immunochemical methods. The extent and strength of antigen-adjuvant binding were diminished by increasing phosphate concentration, and acceptable levels were identified along with alternate buffering agents. Addition of the preservative thimerosal destabilized AH-adsorbed P2-VP8-P[8] as measured by differential scanning calorimetry. Over 3 months at 4°C, AH-adsorbed P2-VP8-P[8] was stable, whereas at 25°C and 37°C, instability was observed which was greatly accelerated by thimerosal addition. Loss of antibody binding (enzyme-linked immunosorbent assay) correlated with loss of structural integrity (differential scanning calorimetry, fluorescence spectroscopy) with concomitant nonnative disulfide bond formation (sodium dodecyl sulfate-polyacrylamide gel electrophoresis) and Asn deamidation (liquid chromatography -mass spectrometry peptide mapping). An alternative preservative (2-phenoxyethanol) showed similar antigen destabilization. Due to limited availability, only key assays were performed with monovalent P2-VP8-P[4] and P2-VP8-P[6] AH-adsorbed antigens, and varying levels of preservative incompatibility were observed. In summary, monovalent AH-adsorbed NRRV antigens stored at 4°C showed good stability without preservatives; however, future formulation development efforts are required to prepare a stable, preservative-containing, multidose NRRV formulation.
Collapse
|
18
|
Klijn ME, Hubbuch J. Redesigning food protein formulations with empirical phase diagrams: A case study on glycerol-poor and glycerol-free formulations. Food Res Int 2019; 125:108609. [PMID: 31554045 DOI: 10.1016/j.foodres.2019.108609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/19/2019] [Accepted: 08/06/2019] [Indexed: 10/26/2022]
Abstract
Redesigning existing food protein formulations is necessary in situations where food authorities propose dose adjustments or removal of currently employed additives. Redesigning formulations involves evaluating substitute additives to obtain similar long-term physical stability as the original formulation. Such formulation screening experiments benefit from comprehensive data visualization, understanding the effects of substitute additives on long-term physical stability, and identification of short-term optimization targets. This work employs empirical phase diagrams to reach these benefits by combining multidimensional long-term protein physical stability data with short-term empirical protein properties. A case study was performed where multidimensional protein phase diagrams (1152 formulations) allowed for identification of stabilizing effects as a result of pH, methionine, sugars, salt, and minimized glycerol content. Corresponding empirical protein property diagrams (144 formulations) resulted in the identification of normalized surface tension as a short-term empirical protein property to reach long-term physical stability presumably similar to the original product, namely via preferential hydration. Additionally, changes in pH and salt were identified as environmental optimization targets to reach stability via repulsive electrostatic forces. This case study shows the applicability of the empirical phase diagram method to rationally perform formulation redesign screenings, while simultaneously expanding knowledge on protein long-term physical stability.
Collapse
Affiliation(s)
- Marieke E Klijn
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Jürgen Hubbuch
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany.
| |
Collapse
|
19
|
Evers A, Pfeiffer-Marek S, Bossart M, Heubel C, Stock U, Tiwari G, Gebauer B, Elshorst B, Pfenninger A, Lukasczyk U, Hessler G, Kamm W, Wagner M. Peptide Optimization at the Drug Discovery-Development Interface: Tailoring of Physicochemical Properties Toward Specific Formulation Requirements. J Pharm Sci 2019; 108:1404-1414. [DOI: 10.1016/j.xphs.2018.11.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 11/27/2018] [Indexed: 12/31/2022]
|
20
|
Wang W, Roberts CJ. Protein aggregation – Mechanisms, detection, and control. Int J Pharm 2018; 550:251-268. [DOI: 10.1016/j.ijpharm.2018.08.043] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/18/2018] [Accepted: 08/20/2018] [Indexed: 12/19/2022]
|
21
|
Khan MV, Zakariya SM, Khan RH. Protein folding, misfolding and aggregation: A tale of constructive to destructive assembly. Int J Biol Macromol 2018; 112:217-229. [DOI: 10.1016/j.ijbiomac.2018.01.099] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/04/2018] [Accepted: 01/14/2018] [Indexed: 12/20/2022]
|
22
|
Vasilescu A, Ye R, Boulahneche S, Lamraoui S, Jijie R, Medjram MS, Gáspár S, Singh SK, Kurungot S, Melinte S, Boukherroub R, Szunerits S. Porous reduced graphene oxide modified electrodes for the analysis of protein aggregation. Part 2: Application to the analysis of calcitonin containing pharmaceutical formulation. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.02.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
23
|
Yoshizawa S, Oki S, Arakawa T, Shiraki K. Trimethylamine N-oxide (TMAO) is a counteracting solute of benzyl alcohol for multi-dose formulation of immunoglobulin. Int J Biol Macromol 2018; 107:984-989. [DOI: 10.1016/j.ijbiomac.2017.09.072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 09/15/2017] [Accepted: 09/18/2017] [Indexed: 11/28/2022]
|
24
|
Correlating the Effects of Antimicrobial Preservatives on Conformational Stability, Aggregation Propensity, and Backbone Flexibility of an IgG1 mAb. J Pharm Sci 2017; 106:1508-1518. [DOI: 10.1016/j.xphs.2017.02.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 02/02/2017] [Accepted: 02/06/2017] [Indexed: 11/23/2022]
|
25
|
Interactions Between Peptide and Preservatives: Effects on Peptide Self-Interactions and Antimicrobial Efficiency In Aqueous Multi-Dose Formulations. Pharm Res 2015; 32:3201-12. [DOI: 10.1007/s11095-015-1697-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 04/13/2015] [Indexed: 10/23/2022]
|