1
|
Mouhram NA, Mosallam S, Hassan M, El-Gazar AA, El-Nabarawi MA, Fayez SM. Tailoring moxifloxacin hydrochloride loaded oleic acid liposomes for the topical management of Methicillin-Resistant Staphylococcus aureus (MRSA)- Induced skin infection: In-vitro characterization and in-vivo assessment. Int J Pharm 2025; 670:125115. [PMID: 39710307 DOI: 10.1016/j.ijpharm.2024.125115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/15/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
Oleic acid liposomes (OALs) are novel vesicular carriers ofunsaturated fatty acids and their corresponding ionized species, arranged within an enclosed lipid bilayer. This study aimed to encapsulate moxifloxacin HCl (MOX), a broad-spectrum antibacterial drug into OALs for effective treatment of Methicillin-resistant Staphylococcus aureus (MRSA) infection through topical application. Various OALs were formulatedby combining varied quantities of phosphatidylcholine (PC), oleic acid (OA), and cholesterol (CH) with 50 mg of MOX. The OALs were produced utilizing varying sonication durations. MOX-loaded OALs were formulated using the thin film hydration method by applying (24) a full factorial design utilizing the Design-Expert® software. The formula for MOX-loaded OALs was OAL13, which consisted of 200 mg of PC and 20 mg of OA. The mixture was sonicated for 5 min. The OAL13 exhibited spherical vesicles with a small diameter and a smooth outer surface. Additionally, the entrapment efficiency was measured to be 75.00 ± 1.41 %, the particle size was 234.65 ± 4.74 nm, the polydispersity index was 0.53 ± 0.01, and the zeta potential was -38.50 ± 0.42 mV. The OAL13 formula exhibited an extended release profile. Moreover, the antibiofilm activity of OAL13 gel and MOX-loaded liposomes gel against MRSA infection demonstrates greater activity than the MOX gel at the maximum concentration used (MIC/2). Furthermore, the in-vivo study showed that OAL13 improved MOX's antimicrobial and immunomodulatory effects against MRSA infection by increasing TLR-2 and IL-1β, as well as their downstream molecules NF-κB and TNF-α. Moreover, the histopathological examination conducted by a skin irritation test has verified the safety of OAL13. Overall, the results demonstrated the significant efficacy of MOX-loaded OALs in the treatment of MRSA infected wounds when applied topically.
Collapse
Affiliation(s)
- Nadein Abdelsalam Mouhram
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, Giza, Egypt
| | - Shaimaa Mosallam
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, Giza, Egypt.
| | - Mariam Hassan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt; Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, New Galala City, Suez, Egypt
| | - Amira A El-Gazar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October 6 University, Giza, Egypt
| | - Mohamed A El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Egypt
| | - Sahar M Fayez
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, Giza, Egypt
| |
Collapse
|
2
|
Bamanna A, Rajora A, Nagpal K. Enhancing Microemulsion-Based Therapeutic Drug Delivery: Exploring Surfactants, Co-Surfactants, and Quality-by-Design Strategies within Pseudoternary Phase Diagrams. Crit Rev Ther Drug Carrier Syst 2025; 42:35-71. [PMID: 39819463 DOI: 10.1615/critrevtherdrugcarriersyst.2024053427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Microemulsions (MEs) are homogeneous, isotropic, transparent, and thermodynamically stable mixtures of water, oil, and surfactants. Their unique properties have garnered increasing interest across various fields, including chemistry, pharmacology, biotechnology, and biology. This review aims to provide a comprehensive overview of ME compositions, their macroscopic appearances, and the roles of their essential components - oil, water, surfactant, and co-surfactant - in controlling the nature and stability of MEs. The review highlights the significance of MEs in drug delivery and other applications, highlighting their potential to enhance the solubility, stability, and bioavailability of active pharmaceutical ingredients (APIs). Key factors influencing ME formation, such as the types of surfactants, oils, water, temperature, and various additives, are thoroughly explored. The physicochemical properties of MEs, including small droplet size, large interfacial area, and solubilization capabilities for both hydrophilic and hydrophobic compounds, are discussed about their impact on biological behavior. The present work is an effort to discuss theories and phase diagrams crucial for ME formation, and the strategy of choosing appropriate surfactants and co-surfactants. and the advancements in the preparation and characterization techniques like the shift from visual inspection to advanced spectroscopic phase behavior studies. The work also describes the potential of MEs in drug delivery showcasing the most commonly used ME-based drug candidates as well as excipients highlighting how different excipients influence the release of active pharmaceutical ingredients and the way and quality-by-design approach has been utilized to optimize MEs, providing insights into the systematic design and development to achieve desired characteristics of ME formulations.
Collapse
Affiliation(s)
- Abhishek Bamanna
- Amity Institute of Pharmacy, Amity University, Uttar Pradesh, Noida U.P. 201303, India
| | - Anjali Rajora
- Amity Institute of Pharmacy, Amity University, Uttar Pradesh, Noida, AUUP India 201303
| | - Kalpana Nagpal
- Associate Professor of Pharmaceutics, Faculty of Health and Allied Sciences, Amity University Noida India, Pharmaceutics Domain, Uttar Pradesh, India; Member, Indian National Young Academy of Sciences (INYAS), INSA, New Delhi, India
| |
Collapse
|
3
|
Aratwar A, Maji I, Chilvery S, Mahajan S, Aalhate M, Gupta U, Godugu C, Singh PK. Contemplating Novel W/O Emulsion Based Gel for Anti-Psoriatic Activity of Tofacitinib in Imiquimod-Induced Balb/C Mice Model. AAPS PharmSciTech 2024; 26:12. [PMID: 39668265 DOI: 10.1208/s12249-024-03003-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/17/2024] [Indexed: 12/14/2024] Open
Abstract
Tyrosine kinase inhibitors like tofacitinib (TCB), are excellent examples of small molecular compounds that have demonstrated success in treating psoriasis. The current study aims to improve the efficacy of TCB and reduce its systemic adverse effects by developing a topical w/o emulgel formulation that will ameliorate the anti-psoriatic activity in a model of Imiquimod-induced BALB/c mice. In order to create w/o emulgel, the TCB was incorporated into the w/o emulsion using Peppermint oil, Transcutol P®, and PEG-200 followed by converted into a gel by adding Carbopol 940. The final formulation was optimized by applying a 3-level, 3-factor Box-Behnken Design (BBD). The optimized formulation showed a viscosity of 560606.6 ± 80.8 cps (560 Pa.S), and firmness of 356 ± 48 g, and that was within the acceptable range with respect to the marketed emulgel preparation available for topical application. The developed TCB-emulgel also exhibited a controlled release profile, with 68.26 ± 8.33% release of TCB over 24 h and a 5-fold greater skin permeation as compared to normal TCB-gel. Apart from that, the application of TCB-emulgel on the diseased model results in a 3.3-times reduction in the PASI (Psoriasis Area Severity Index) scoring. Lastly, the epidermal reduction in histopathological evaluation, along with the reduction in TNF-α and Ki-67 levels observed in immunostaining, ensures the enhanced anti-psoriatic effect of the developed TCB-emulgel in comparison to the marketed product. To put it briefly, the findings of the study and the therapeutic effectiveness of the developed TCB-emulgel provide a strong basis for the clinical management of psoriasis in the future.
Collapse
Affiliation(s)
- Ashwini Aratwar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Indrani Maji
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Shrilekha Chilvery
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Srushti Mahajan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Mayur Aalhate
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Ujala Gupta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Chandraiah Godugu
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India.
| |
Collapse
|
4
|
Chen Y, Xu J, Li P, Shi L, Zhang S, Guo Q, Yang Y. Advances in the use of local anesthetic extended-release systems in pain management. Drug Deliv 2024; 31:2296349. [PMID: 38130151 PMCID: PMC10763865 DOI: 10.1080/10717544.2023.2296349] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/15/2023] [Indexed: 12/23/2023] Open
Abstract
Pain management remains among the most common and largely unmet clinical problems today. Local anesthetics play an indispensable role in pain management. The main limitation of traditional local anesthetics is the limited duration of a single injection. To address this problem, catheters are often placed or combined with other drugs in clinical practice to increase the time that local anesthetics act. However, this method does not meet the needs of clinical analgesics. Therefore, many researchers have worked to develop local anesthetic extended-release types that can be administered in a single dose. In recent years, drug extended-release systems have emerged dramatically due to their long duration and efficacy, providing more possibilities for the application of local anesthetics. This paper summarizes the types of local anesthetic drug delivery systems and their clinical applications, discusses them in the context of relevant studies on local anesthetics, and provides a summary and outlook on the development of local anesthetic extended-release agents.
Collapse
Affiliation(s)
- Yulu Chen
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Jingmei Xu
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Ping Li
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Obstetrics, Xiangya Hospital, Central South University, Changsha, China
| | - Liyang Shi
- College of Biology, Hunan University, Changsha, China
| | - Sha Zhang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Qulian Guo
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yong Yang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
5
|
Yasir Siddique M, Ashraf AR, Khan SU, Saleem MA, Ashfaq M, Alam K, Ibrahim AA, Nazar MF. Formulation of Microemulsion-Based Gels for Enhanced Topical Administration of Nonsteroidal Anti-Inflammatory Drugs. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:24174-24184. [PMID: 39475592 DOI: 10.1021/acs.langmuir.4c03749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2024]
Abstract
Nonsteroidal anti-inflammatory drugs are commonly administered orally to manage pain and inflammation, but they can have negative gastrointestinal side effects. Topical delivery is an alternative, and microemulsions (μEs) have been shown to be effective in facilitating, but they suffer from a liquid nature and low long-term retention on the skin. Hence, microemulsified gels (μEGs) have been developed, and in this study, we explored certain μEGs with diclofenac sodium (DF-Na) and naproxen sodium (NP-Na) with the hypothesis to ensure a slower and more sustained delivery of NSAIDs through the skin. The μEGs comprised castor oil (∼8%), water (∼12%), Tween-20 (∼72%), Span-20 (∼8%), poloxamer 407, and DF-Na or NP-Na. Optical microscopy was used to study the microstructures in the μEs and μEGs, and phase transitions from water-in-oil (w/o) to oil-in-water (o/w) with continuous networks were observed. Based on studies with dynamic light scattering and analyses of electron micrographs, it was observed that the μEs and μEGs loaded with DF-Na and NP-Na comprised monomodal nanodroplets. The average sizes of the droplets were (∼35 nm) and (∼60 nm) for the μEGs, without and with drugs. Fluorescence spectroscopy was used to ensure that the drugs were more likely to be present in the hydrophobic microenvironment of the formulations. Moreover, ex vivo permeation studies were conducted at pH values of 5.5 and 7.4 across rabbit skin. The release rates of DF-Na (>99 ± 1.5%, P < 0.07) and NP-Na (>89 ± 1.1%, P < 0.01) were slower for the μEGs within 8-10 h than for the μEs at the low pH, which is of relevance to the optimal pH of the skin. It was observed that μEGs with high viscosities are effective and may have potential for use in topical drug delivery applications.
Collapse
Affiliation(s)
| | - Ahmad Raza Ashraf
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore 54770, Pakistan
| | - Salah Uddin Khan
- College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | | | - Muhammad Ashfaq
- Department of Chemistry, Government College Women University Sialkot, Sialkot 51310, Pakistan
| | - Kamran Alam
- Separation and Conversion Technology Unit, Flemish institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium
| | - Ahmed Ahmed Ibrahim
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Muhammad Faizan Nazar
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore 54770, Pakistan
| |
Collapse
|
6
|
Li H, Tan X, Qin L, Gatasheh MK, Zhang L, Lin W, Hu F, Yan R, Alshammri MK, Shen Y, Abbasi AM, Qi J. Preparation, process optimisation, stability and bacteriostatic assessment of composite nanoemulsion containing corosolic acid. Heliyon 2024; 10:e38283. [PMID: 39386795 PMCID: PMC11462487 DOI: 10.1016/j.heliyon.2024.e38283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/12/2024] Open
Abstract
Corosolic acid (CA), a pentacyclic triterpenoid, exhibits remarkably low hydrophilicity, restricting its application in aqueous systems. To enhance its hydrophilicity, we optimised nanoemulsion preparation conditions, resulting in a stable corosolic acid nanoemulsion system. By screening the oil phase, surfactant, and cosurfactant, along with investigating the mass ratio of surfactant and cosurfactant and the preparation temperature, we achieved an optimal corosolic acid nanoemulsion. We measured the particle size, polydispersity coefficient, and Zeta potential of the optimised formulation. The nanoemulsion's sustained-release effect, stability, and antibacterial activity were subsequently examined. The optimised formulation comprised ethyl oleate, cremophor EL, and Tween 80 (1.5:1), combined with ethanol in a ratio of 1:9:2.25 (w/w/w), and was prepared at 30 °C. This optimised corosolic acid nanoemulsion exhibited uniform particle size distribution, favourable dispersion, and notable slow-release capabilities. Importantly, the nanoemulsion demonstrated exceptional stability. In comparison to the positive control's bacteriostatic zone diameter, it was evident that the CA nanoemulsion (1.06 ± 0.11 mm) and blank nanoemulsion (1.03 ± 0.05 mm) both displayed notable inhibitory activity against S. aureus. Our findings established a solid foundation for the potential application of CA nanoemulsion in the food, cosmetics, and pharmaceutical industries. However, the application of CA nanoemulsion in real food or drug systems has not been explored yet.
Collapse
Affiliation(s)
- Haimei Li
- School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Xinjia Tan
- Longping Branch, College of Biology, Hunan University, Changsha, 410125, China
| | - Liyan Qin
- School of Pharmacy, Guangxi University of Chinese Medicine, Guangxi, 530200, China
| | - Mansour K. Gatasheh
- Department of Biochemistry, College of Science, King Saud University, 2455, Riyadh, 11451, Saudi Arabia
| | - Lei Zhang
- College of Forestry and Landscape Architecture, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Wenmin Lin
- School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Feng Hu
- Guangdong Chubang Food Co., Ltd, Yangjiang, 529500, China
| | - Rian Yan
- Department of Food Science and Engineering, Jinan University, Guangzhou, 510632, China
| | - Mariam K. Alshammri
- Department of Biochemistry, College of Science, King Saud University, 2455, Riyadh, 11451, Saudi Arabia
| | - Yingbin Shen
- School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Arshad Mehmood Abbasi
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, 22060, Abbottabad, Pakistan
- University of Gastronomic Sciences of Pollenzo, Piazza V. Emanuele II, I-12042, Bra/Pollenzo, Italy
| | - Jing Qi
- School of Pharmacy, Guangxi University of Chinese Medicine, Guangxi, 530200, China
| |
Collapse
|
7
|
Song Y, Chen W, Yin Y, Li J, Wang M, Liu Y, Ren X. Advancements in the Transdermal Drug Delivery Systems Utilizing Microemulsion-based Gels. Curr Pharm Des 2024; 30:2753-2764. [PMID: 39092731 DOI: 10.2174/0113816128305190240718112945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 08/04/2024]
Abstract
Microemulsion gel, as a promising transdermal nanoparticle delivery system, addresses the limitations of microemulsions and enhances their performance in drug delivery and release. This article aims to discuss the advantages of microemulsion gel, including improved drug bioavailability, reduced drug irritation, enhanced drug penetration and skin adhesion, and increased antimicrobial properties. It explores the methods for selecting microemulsion formulations and the general processes of microemulsion preparation, as well as commonly used oil phases, surfactants, and co-surfactants. Additionally, the biomedical applications of microemulsion gel in treating conditions, such as acne and psoriasis, are also discussed. Overall, this article elucidates the significant potential of microemulsion gel in topical drug delivery, providing insights into future development and clinical applications.
Collapse
Affiliation(s)
- Yongjian Song
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Wei Chen
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yu Yin
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jiunian Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Meng Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yi Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaoliang Ren
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
8
|
Wang Y, Chen Q, Huang X, Yan X. Acacetin-loaded microemulsion for transdermal delivery: preparation, optimization and evaluation. PHARMACEUTICAL BIOLOGY 2023; 61:790-798. [PMID: 37161881 PMCID: PMC10173800 DOI: 10.1080/13880209.2023.2207597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
CONTEXT Acacetin is reported as a potential drug candidate for the treatment of atrial fibrillation. However, clinical applications are limited by poor water solubility, limited ethanol solubility, and extremely low oral bioavailability. OBJECTIVE The present study prepared and evaluated acacetin-loaded microemulsion (ME) to achieve efficient pharmacokinetics together with no or minimal invasiveness for transdermal delivery. MATERIALS AND METHODS The formulation of ME was determined by the water titration method based on solubility results. The optimized formulation was achieved by the simplex lattice experiment design. The optimized ME formulations FA, FB and FC (FA with 10% and 50% DMSO as enhancers, respectively) were evaluated by ex vivo permeation with Franz diffusion cell and excised mice skin. In vivo pharmacokinetic studies were also performed at 8 mg/kg in rats within 6 h by transdermal administration. RESULTS The optimal ME (FA) was comprised of 12.2% caprylic acid decanoate monoditriglyceride (MCF-NF), 39.8% Smix (RH40: Trans = 2:1 w/w) and 48% water, respectively. Acacetin-loaded FA with particle size 36.0 ± 3.6 nm and drug solubility 803.7 ± 32.1 mg/g was prepared. FB had significantly higher cumulative amounts and higher AUC0-∞ (196.6 ± 11.0 min × μg/mL, p < 0.05) than that FA alone (121.4 ± 33.1 min × μg/mL). DISCUSSION AND CONCLUSIONS The formulation of ME combined with the penetration enhancer can effectively improve the solubility and percutaneous absorption efficiency of acacetin, providing a new option for the non-invasive delivery of acacetin.
Collapse
Affiliation(s)
- Yajing Wang
- Department of Pharmacy, Changzhou University, Changzhou, PR China
| | - Qian Chen
- Department of Pharmacy, Changzhou University, Changzhou, PR China
| | - Xianfeng Huang
- Department of Pharmacy, Changzhou University, Changzhou, PR China
| | - Xiaojing Yan
- Changzhou Key Laboratory of Human Use Experience Research & Transformation of Menghe Medical School, Changzhou Hospital affiliated to Nanjing University of Chinese Medicine, Changzhou, PR China
| |
Collapse
|
9
|
AbouSamra MM, Farouk F, Abdelhamed FM, Emam KAF, Abdeltawab NF, Salama AH. Synergistic approach for acne vulgaris treatment using glycerosomes loaded with lincomycin and lauric acid: Formulation, in silico, in vitro, LC-MS/MS skin deposition assay and in vivo evaluation. Int J Pharm 2023; 646:123487. [PMID: 37805147 DOI: 10.1016/j.ijpharm.2023.123487] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/23/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
This study aims to develop a pharmaceutical formulation that combines the potent antibacterial effect of lincomycin and lauric acid against Cutibacterium acnes (C. acnes), a bacterium implicated in acne. The selection of lauric acid was based on an in silico study, which suggested that its interaction with specific protein targets of C. acnes may contribute to its synergistic antibacterial and anti-inflammatory effects. To achieve our aim, glycerosomes were fabricated with the incorporation of lauric acid as a main constituent of glycerosomes vesicular membrane along with cholesterol and phospholipon 90H, while lincomycin was entrapped within the aqueous cavities. Glycerol is expected to enhance the cutaneous absorption of the active moieties via hydrating the skin. Optimization of lincomycin-loaded glycerosomes (LM-GSs) was conducted using a mixed factorial experimental design. The optimized formulation; LM-GS4 composed of equal ratios of cholesterol:phospholipon90H:Lauric acid, demonstrated a size of 490 ± 17.5 nm, entrapment efficiency-values of 90 ± 1.4 % for lincomycin, and97 ± 0.2 % for lauric acid, and a surface charge of -30.2 ± 0.5mV. To facilitate its application on the skin, the optimized formulation was incorporated into a carbopol hydrogel. The formed hydrogel exhibited a pH value of 5.95 ± 0.03 characteristic of pH-balanced skincare and a shear-thinning non-Newtonian pseudoplastic flow. Skin deposition of lincomycin was assessed using an in-house developed and validated LC-MS/MS method employing gradient elution and electrospray ionization detection. Results revealed that LM-GS4 hydrogel exhibited a two-fold increase in skin deposition of lincomycin compared to lincomycin hydrogel, indicating improved skin penetration and sustained release. The synergistic healing effect of LM-GS4 was evidenced by a reduction in inflammation, bacterial load, and improved histopathological changes in an acne mouse model. In conclusion, the proposed formulation demonstrated promising potential as a topical treatment for acne. It effectively enhanced the cutaneous absorption of lincomycin, exhibited favorable physical properties, and synergistic antibacterial and healing effects. This study provides valuable insights for the development of an effective therapeutic approach for acne management.
Collapse
Affiliation(s)
- Mona M AbouSamra
- Pharmaceutical Technology Department, National Research Centre, Dokki, Cairo 12622, Egypt.
| | - Faten Farouk
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ahram Canadian University, 6(th) of October City, Cairo, Egypt
| | - Farah M Abdelhamed
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Khloud A F Emam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Nourtan F Abdeltawab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Alaa H Salama
- Pharmaceutical Technology Department, National Research Centre, Dokki, Cairo 12622, Egypt; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ahram Canadian University, 6(th) of October City, Cairo, Egypt.
| |
Collapse
|
10
|
Niu J, Yuan M, Gao P, Wang L, Qi Y, Chen J, Bai K, Fan Y, Liu X. Microemulsion-Based Keratin-Chitosan Gel for Improvement of Skin Permeation/Retention and Activity of Curcumin. Gels 2023; 9:587. [PMID: 37504466 PMCID: PMC10379975 DOI: 10.3390/gels9070587] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023] Open
Abstract
Curcumin (Cur) is a kind of polyphenol with a variety of topical pharmacological properties including antioxidant, analgesic and anti-inflammatory activities. However, its low water solubility and poor skin bioavailability limit its effectiveness. In the current study, we aimed to develop microemulsion-based keratin-chitosan gel for the improvement of the topical activity of Cur. The curcumin-loaded microemulsion (CME) was formulated and then loaded into the keratin-chitosan (KCS) gel to form the CME-KCS gel. The formulated CME-KCS gel was evaluated for its characterization, in vitro release, in vitro skin permeation and in vivo activity. The results showed that the developed CME-KCS gel had an orange-yellow and gel-like appearance. The particle size and zeta potential of the CME-KCS gel were 186.45 ± 0.75 nm and 9.42 ± 0.86 mV, respectively. The CME-KCS gel showed desirable viscoelasticity, spreadability, bioadhesion and controlled drug release, which was suitable for topical application. The in vitro skin permeation and retention study showed that the CME-KCS gel had better in vitro skin penetration than the Cur solution and achieved maximum skin drug retention (3.75 ± 0.24 μg/cm2). In vivo experimental results confirmed that the CME-KCS gel was more effective than curcumin-loaded microemulsion (Cur-ME) in analgesic and anti-inflammatory activities. In addition, the CME-KCS gel did not cause any erythema or edema based on a mice skin irritation test. These findings indicated that the developed CME-KCS gel could improve the skin penetration and retention of Cur and could become a promising formulation for topical delivery to treat local diseases.
Collapse
Affiliation(s)
- Jiangxiu Niu
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, China
| | - Ming Yuan
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, China
| | - Panpan Gao
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, China
| | - Liye Wang
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, China
| | - Yueheng Qi
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, China
| | - Jingjing Chen
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, China
| | - Kaiyue Bai
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, China
| | - Yanli Fan
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, China
| | - Xianming Liu
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, China
| |
Collapse
|
11
|
Ait-Touchente Z, Zine N, Jaffrezic-Renault N, Errachid A, Lebaz N, Fessi H, Elaissari A. Exploring the Versatility of Microemulsions in Cutaneous Drug Delivery: Opportunities and Challenges. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13101688. [PMID: 37242104 DOI: 10.3390/nano13101688] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/19/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023]
Abstract
Microemulsions are novel drug delivery systems that have garnered significant attention in the pharmaceutical research field. These systems possess several desirable characteristics, such as transparency and thermodynamic stability, which make them suitable for delivering both hydrophilic and hydrophobic drugs. In this comprehensive review, we aim to explore different aspects related to the formulation, characterization, and applications of microemulsions, with a particular emphasis on their potential for cutaneous drug delivery. Microemulsions have shown great promise in overcoming bioavailability concerns and enabling sustained drug delivery. Thus, it is crucial to have a thorough understanding of their formulation and characterization in order to optimize their effectiveness and safety. This review will delve into the different types of microemulsions, their composition, and the factors that affect their stability. Furthermore, the potential of microemulsions as drug delivery systems for skin applications will be discussed. Overall, this review will provide valuable insights into the advantages of microemulsions as drug delivery systems and their potential for improving cutaneous drug delivery.
Collapse
Affiliation(s)
- Zouhair Ait-Touchente
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, 69100 Villeurbanne, France
| | - Nadia Zine
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, 69100 Villeurbanne, France
| | | | - Abdelhamid Errachid
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, 69100 Villeurbanne, France
| | - Noureddine Lebaz
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS, LAGEPP UMR 5007, 69100 Villeurbanne, France
| | - Hatem Fessi
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS, LAGEPP UMR 5007, 69100 Villeurbanne, France
| | - Abdelhamid Elaissari
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, 69100 Villeurbanne, France
| |
Collapse
|
12
|
Khan MS, Mohapatra S, Gupta V, Ali A, Naseef PP, Kurunian MS, Alshadidi AAF, Alam MS, Mirza MA, Iqbal Z. Potential of Lipid-Based Nanocarriers against Two Major Barriers to Drug Delivery-Skin and Blood-Brain Barrier. MEMBRANES 2023; 13:343. [PMID: 36984730 PMCID: PMC10058721 DOI: 10.3390/membranes13030343] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/22/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Over the past few years, pharmaceutical and biomedical areas have made the most astounding accomplishments in the field of medicine, diagnostics and drug delivery. Nanotechnology-based tools have played a major role in this. The implementation of this multifaceted nanotechnology concept encourages the advancement of innovative strategies and materials for improving patient compliance. The plausible usage of nanotechnology in drug delivery prompts an extension of lipid-based nanocarriers with a special reference to barriers such as the skin and blood-brain barrier (BBB) that have been discussed in the given manuscript. The limited permeability of these two intriguing biological barriers restricts the penetration of active moieties through the skin and brain, resulting in futile outcomes in several related ailments. Lipid-based nanocarriers provide a possible solution to this problem by facilitating the penetration of drugs across these obstacles, which leads to improvements in their effectiveness. A special emphasis in this review is placed on the composition, mechanism of penetration and recent applications of these carriers. It also includes recent research and the latest findings in the form of patents and clinical trials in this field. The presented data demonstrate the capability of these carriers as potential drug delivery systems across the skin (referred to as topical, dermal and transdermal delivery) as well as to the brain, which can be exploited further for the development of safe and efficacious products.
Collapse
Affiliation(s)
- Mohammad Sameer Khan
- School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi 110062, India
| | - Sradhanjali Mohapatra
- Nanotechnology Lab, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi 110062, India
| | - Vaibhav Gupta
- Nanotechnology Lab, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi 110062, India
| | - Ahsan Ali
- Nanotechnology Lab, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi 110062, India
| | | | - Mohamed Saheer Kurunian
- Department of Dental Technology, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
| | - Abdulkhaliq Ali F. Alshadidi
- Department of Dental Technology, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
| | - Md Shamsher Alam
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan P.O. Box 114, Saudi Arabia
| | - Mohd. Aamir Mirza
- Nanotechnology Lab, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi 110062, India
| | - Zeenat Iqbal
- Nanotechnology Lab, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi 110062, India
| |
Collapse
|
13
|
Science of, and insights into, thermodynamic principles for dermal formulations. Drug Discov Today 2023; 28:103521. [PMID: 36754143 DOI: 10.1016/j.drudis.2023.103521] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/24/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023]
Abstract
Studies have demonstrated the significant role of the thermodynamic activity of drugs in skin drug delivery. This thermodynamic activity works as a driving force for increasing/improving the absorption of drugs by the skin. It can be changed according to the physicochemical parameters (e.g., solubility, partition coefficient, and water activity) of the drug in the vehicle. Thermodynamic principles have been used for the development of novel topical and transdermal delivery systems, demonstrating the importance of thermodynamic activity in enhancing drug permeation through the skin. In this review, we provide insights into thermodynamic principles and their roles in optimizing topical and transdermal drug delivery systems.
Collapse
|
14
|
Sanaei Oskouei S, Araman AO, Erginer YO. Preparation, optimization, and In vitro drug release study of microemulsions of posaconazole. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2022.104090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
15
|
Daryab M, Faizi M, Mahboubi A, Aboofazeli R. Preparation and Characterization of Lidocaine-Loaded, Microemulsion-Based Topical Gels. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2022; 21:e123787. [PMID: 35765506 PMCID: PMC9191217 DOI: 10.5812/ijpr.123787] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/07/2021] [Accepted: 06/07/2021] [Indexed: 01/26/2023]
Abstract
Microemulsion-based gels (MBGs) were prepared for transdermal delivery of lidocaine and evaluated for their potential for local anesthesia. Lidocaine solubility was measured in various oils, and phase diagrams were constructed to map the concentration range of oil, surfactant, cosurfactant, and water for oil-in-water (o/w) microemulsion (ME) domains, employing the water titration method at different surfactant/cosurfactant weight ratios. Refractive index, electrical conductivity, droplet size, zeta potential, pH, viscosity, and stability of fluid o/w MEs were evaluated. Carbomer® 940 was incorporated into the fluid drug-loaded MEs as a gelling agent. Microemulsion-based gels were characterized for spreadability, pH, viscosity, and in-vitro drug release measurements, and based on the results obtained, the best MBGs were selected and subsequently subjected to ex-vivo rat skin permeation anesthetic effect and irritation studies. Data indicated the formation of nano-sized droplets of MEs ranging from 20 - 52 nm with a polydispersity of less than 0.5. In-vitro release and ex-vivo permeation studies on MBGs showed significantly higher drug release and permeation in comparison to the marketed topical gel. Developed MBG formulations demonstrated greater potential for transdermal delivery of lidocaine and advantage over the commercially available gel product, and therefore, they may be considered as potential vehicles for the topical delivery of lidocaine.
Collapse
Affiliation(s)
- Mahshid Daryab
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrdad Faizi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arash Mahboubi
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Food Safety Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Corresponding Author: Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Reza Aboofazeli
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Corresponding Author: Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Xu Y, Cai Y, Meng Y, Wu L, Chen J, Cao W, Chu X. Liposome and microemulsion loaded with ibuprofen: from preparation to mechanism of drug transport. J Microencapsul 2022; 39:539-551. [PMID: 36190415 DOI: 10.1080/02652048.2022.2131920] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
To compare the difference between liposome (LP) and microemulsion (ME) in delivering ibuprofen (IBU) transdermally and explore relative mechanism. IBU-LP and IBU-ME were prepared by ethanol injection and spontaneous emulsification, respectively. The percutaneous delivery was evaluated using Franz diffusion cells. Fourier transform infra-red spectroscopy (FTIR), differential scanning calorimetry (DSC), activation energy (Ea), and confocal laser scanning microscopy (CLSM) were used to investigate the transdermal mechanism. The particle size and encapsulation efficiency were 228.00 ± 8.60 nm, 86.68 ± 1.43%(w/w) for IBU-LP, and 56.74 ± 7.11 nm, 91.08 ± 3.27%(w/w) for IBU-ME. Percutaneous study showed that formulations enhanced permeation and drug retention in the skin. FTIR and DSC showed that the permeation occurred due to the interaction of the formulations with the lipid bilayer and the protein. The decrease in Ea (1.506 and 0.939 kcal/mol) revealed that the stratum corneum (SC) lipid bilayers were significantly disrupted and this destructive effect of IBU-LP was stronger. IBU-LP was superior to IBU-ME in the aspects of transdermal delivery of IBU.
Collapse
Affiliation(s)
- Yuhang Xu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, PR China
| | - Ye Cai
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, PR China
| | - Yun Meng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, PR China
| | - Long Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, PR China
| | - Jingbao Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, PR China
| | - Wenxuan Cao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, PR China
| | - Xiaoqin Chu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, PR China.,Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, PR China.,Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, PR China
| |
Collapse
|
17
|
Dong B, Chen J, Cai Y, Wu W, Chu X. In vitro and in vivo evaluation of cinnamaldehyde Microemulsion-Mucus interaction. J Food Biochem 2022; 46:e14307. [PMID: 35780300 DOI: 10.1111/jfbc.14307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 12/22/2022]
Abstract
The current investigation explores the possible mechanism of the microemulsion drug delivery system to improve the oral bioavailability of cinnamaldehyde (CA), an important food spice, from the perspective of the microemulsion-mucus system. The cinnamaldehyde microemulsion (CA-ME) was prepared by the water titration method combined with the pseudo-ternary phase diagram. The dynamic analysis was applied to detect the drug release in vitro. An intestinal mucosal injury test was conducted to evaluate the safety of CA-ME and drug absorption across the intestinal tract of rats was investigated through an Ussing chamber system. The rheology of blank mucus and drug-loaded mucus was investigated using a rheometer. The bioavailability of CA-ME in rats was evaluated through pharmacokinetic characteristics. The ratio of optimal prescription was Tween 80: 1,2-propanediol: vitamin E oil: CA: water = 24.3:4.8:5:7.5:58.4. The droplets were uniform in size and evenly dispersed. Rheological studies showed that the microemulsion-mucus system all exhibit pseudoplastic fluid behavior, and CA-ME increased the viscosity of the mucus to a certain extent. Compared with CA solution, CA-ME promoted the absorption of CA in various intestinal segments, especially the ileum. Pharmacokinetic experiments showed that the relative bioavailability of CA-ME was enhanced 2.5-fold higher than that of CA solution. ME as a carrier for lipophobic substances, may increase the viscosity of the intestine mucus system to obtain longer residue time and better absorption. PRACTICAL APPLICATIONS: In this study, in vitro absorption Ussing model was combined with rheological and pharmacokinetic analysis to systematically analyze the intestinal mucus mechanism of microemulsion to improve the oral bioavailability of cinnamic aldehyde. It laid the foundation for exploring the absorption and transport of drugs in the intestinal mucus barrier.
Collapse
Affiliation(s)
- Baoqi Dong
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Jingbao Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Ye Cai
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Wenqing Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Xiaoqin Chu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, Anhui, China.,Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, Anhui, China
| |
Collapse
|
18
|
Almawash S, Quadir SS, Al Saqr A, Sharma G, Raza K. Dual Delivery of Fluticasone Propionate and Levocetirizine Dihydrochloride for the Management of Atopic Dermatitis Using a Microemulsion-Based Topical Gel. ACS OMEGA 2022; 7:7696-7705. [PMID: 35284709 PMCID: PMC8908482 DOI: 10.1021/acsomega.1c06393] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/26/2022] [Indexed: 06/13/2023]
Abstract
The current study investigates the potential for topical delivery of a fluticasone propionate (FP) and levocetirizine dihydrochloride (CTZ)-loaded microemulsion (ME) for the management of atopic dermatitis. Various microemulsion components were chosen based on their solubility and emulsification capabilities, and the ternary phase diagram was constructed. A total of 12 microemulsion formulations were screened for various attributes like vesicle size, polydispersity index, ζ-potential, percent transmittance, density, and pH. The average globule size and ζ-potential of FP and levocetirizine-containing ME were 52.12 nm and -2.98 ζ-potential, respectively. Transmission electron microscopy confirmed the spherical nature of the globules. The developed system not only controlled the release of both drugs but also enhanced the efficacy of the drugs on a rodent model. Histopathological studies confirmed the safety of the developed system. The present findings provide evidence for a scalable and simpler approach for the management of atopic dermatitis.
Collapse
Affiliation(s)
- Saud Almawash
- Department
of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Sheikh Shahnawaz Quadir
- Department
of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer 305817, Rajasthan, India
| | - Ahmed Al Saqr
- Department
of Pharmaceutics, College of Pharmacy, Prince
Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia
| | - Gajanand Sharma
- University
Institute of Pharmaceutical Sciences, Panjab
University, Chandigarh 160014, India
| | - Kaisar Raza
- Department
of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer 305817, Rajasthan, India
| |
Collapse
|
19
|
Szumała P, Macierzanka A. Topical delivery of pharmaceutical and cosmetic macromolecules using microemulsion systems. Int J Pharm 2022; 615:121488. [DOI: 10.1016/j.ijpharm.2022.121488] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/04/2022] [Accepted: 01/13/2022] [Indexed: 01/29/2023]
|
20
|
Abdulla NA, Balata GF, El-ghamry HA, Gomaa E. Intranasal delivery of Clozapine using nanoemulsion-based in-situ gels: An approach for bioavailability enhancement. Saudi Pharm J 2022; 29:1466-1485. [PMID: 35002385 PMCID: PMC8720818 DOI: 10.1016/j.jsps.2021.11.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/10/2021] [Indexed: 12/18/2022] Open
Abstract
Limited solubility and hepatic first-pass metabolism are the main causes of low bioavailability of anti-schizophrenic drug, Clozapine (CZP). The objective of the study was to develop and validate nanoemulsion (NE) based in-situ gel of CZP for intranasal administration as an approach for bioavailability enhancement. Solubility of CZP was initially investigated in different oils, surfactants and co-surfactants, then pseudoternary phase diagrams were constructed to select the optimized ratio of oil, surfactant and co-surfactant. Clear and transparent NE formulations were characterized in terms of droplet size, viscosity, solubilization capacity, transmission electron microscopy, in-vitro drug release and compatibility studies. Selected NEs were incorporated into different in-situ gel bases using combination of two thermosensitive polymers; Pluronic® F-127 (PF127) and F-68 (PF68). NE-based gels (NG) were investigated for gelation temperature, viscosity, gel strength, spreadability and stability. Moreover, selected NGs were evaluated for ex-vivo permeation, mucoadhesive strength and nasal ciliotoxicity. Peppermint oil, tween 80 and transcutol P were chosen for NE preparation owing to their maximum CZP solubilization. Clear NE points extrapolated from tween 80:transcutol P (1:1) phase diagram and passed dispersibility and stability tests, demonstrated globule size of 67.99 to 354.96 nm and zeta potential of −12.4 to −3.11 mV with enhanced in-vitro CZP release (>90% in some formulations). After incorporation of the selected N3 and N9 formulations of oil:Smix of 1:7 and 2:7, respectively to a mixture of PF127 and PF68 (20:2% w/w), the resultant NG formulations exhibited optimum gelation temperature and viscosity with enhanced CZP permeation and retention through sheep nasal mucosa. Ciliotoxicity examinations of the optimum NGs displayed no inflammation or damage of the lining epithelium and the underlying cells of the nasal mucosa. In conclusion, NE-based gels may be a promising dosage form of CZP for schizophrenia treatment.
Collapse
Affiliation(s)
- Nourhan A. Abdulla
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
- Corresponding author.
| | - Gehan F. Balata
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
- Department of Pharmacy Practice, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | - Hanaa A. El-ghamry
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Eman Gomaa
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| |
Collapse
|
21
|
Yasir Siddique M, Nazar MF, Mahmood M, Saleem MA, Alwadai N, Almuslem AS, Alshammari FH, Haider S, Akhtar MS, Hussain SZ, Safdar M, Akhlaq M. Microemulsified Gel Formulations for Topical Delivery of Clotrimazole: Structural and In Vitro Evaluation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:13767-13777. [PMID: 34753286 DOI: 10.1021/acs.langmuir.1c02590] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Microemulsified gels (μEGs) with fascinating functions have become indispensable as topical drug delivery systems due to their structural flexibility, high stability, and facile manufacturing process. Topical administration is an attractive alternative to traditional methods because of advantages such as noninvasive administration, bypassing first-pass metabolism, and improving patient compliance. In this article, we report on the new formulations of microemulsion-based gels suitable for topical pharmaceutical applications using biocompatible and ecological ingredients. For this, two biocompatible μE formulations comprising clove oil/Brij-35/water/ethanol (formulation A) and clove oil/Brij-35/water/1-propanol (formulation B) were developed to encapsulate and improve the load of an antimycotic drug, Clotrimazole (CTZ), and further gelatinized to control the release of CTZ through skin barriers. By delimiting the pseudo-ternary phase diagram, optimum μE formulations with clove oil (∼15%) and Brij-35 (∼30%) were developed, keeping constant surfactant/co-surfactant ratio (1:1), to upheld 2.0 wt % CTZ. The as-developed formulations were further converted into smart gels by adding 2.0 wt % carboxymethyl cellulose (CMC) as a cross-linker to adhere to the controlled release of CTZ through complex skin barriers. Electron micrographs show a fine, monodispersed collection of CTZ-μE nanodroplets (∼60 nm), which did not coalesce even after gelation, forming spherical CTZ-μEG (∼90 nm). However, the maturity of CTZ nanodroplets observed by dynamic light scattering suggests the affinity of CTZ for the nonpolar microenvironment, which was further supported by the peak-to-peak correlation of Fourier transform infrared (FTIR) analysis and fluorescence measurement. In addition, HPLC analysis showed that the in vitro permeation release of CTZ-μEG from rabbit skin in the ethanolic phosphate buffer (pH = 7.4) was significantly increased by >98% within 6.0 h. This indicates the sustained release of CTZ in μEBG and the improvement in transdermal therapeutic efficacy of CTZ over its traditional topical formulations.
Collapse
Affiliation(s)
| | - Muhammad Faizan Nazar
- Department of Chemistry, University of Education Lahore, Multan Campus 60700, Pakistan
| | - Marryam Mahmood
- Department of Chemistry, University of Gujrat, Gujrat 50700, Pakistan
| | | | - Norah Alwadai
- Department of Physics, College of Sciences, Princess Nourah bint Abdulrahman University (PNU), Riyadh 11671, Saudi Arabia
| | - Amani Saleh Almuslem
- Department of Physics, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Fwzah H Alshammari
- Department of Physics, University Colleges at Nairiyah, University of Hafr Al Batin (UHB), Nairiyah 31981 Saudi Arabia
| | - Sajjad Haider
- Chemical Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | - Muhammad Saeed Akhtar
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Syed Zajif Hussain
- Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science and Engineering (SBASSE), Lahore University of Management Sciences (LUMS), Lahore 54792, Pakistan
| | - Muhammad Safdar
- Department of Pharmaceutics, Faculty of Pharmacy, Gomal University, Dera Ismail Khan, KPK 29220, Pakistan
| | - Muhammad Akhlaq
- Department of Pharmaceutics, Faculty of Pharmacy, Gomal University, Dera Ismail Khan, KPK 29220, Pakistan
| |
Collapse
|
22
|
Park C, Zuo J, Somayaji V, Lee BJ, Löbenberg R. Development of a novel cannabinoid-loaded microemulsion towards an improved stability and transdermal delivery. Int J Pharm 2021; 604:120766. [PMID: 34087415 DOI: 10.1016/j.ijpharm.2021.120766] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/20/2021] [Accepted: 05/30/2021] [Indexed: 02/07/2023]
Abstract
The aim of this study was to develop a stable microemulsion (ME) for transdermal delivery of tetrahydrocannabinolic acid (THCA) and cannabidiolic acid (CBDA). The lipid-based vehicles were selected by screening cannabinoid solubility and the emulsifying ability of surfactants. Pseudo-ternary phase diagrams were constructed by formulation of cannabinoids with Capryol® 90 as oil phase, Tween® 80, Solutol® HS15, Procetyl® AWS, and Cremophor® RH40 as surfactants, ethanol as cosurfactant, and distilled water as the aqueous phase. A significant improvement in transmembrane flux (Jss), permeability coefficient (Kp), and enhancement ratio (ER) was found in one system compared to other formulations. This ME consisted of 1.0% (w/w) of cannabinoids, 5% (w/w) of Capryol® 90, 44% (w/w) Smix (2:1, Procetyl® AWS and Ethanol) and 50.0% (w/w) of distilled water. Additionally, the effects of pH on the permeation of the cannabinoids were investigated. Based on the pH value THCA and CBDA-loaded ME exhibited the highest permeation at pH 5.17 and pH 5.25. After storing the pH-adjusted P2 ME and the optimized P2 ME for 180 days at 4℃ and 25℃, the content of cannabinoids was over 95%. Consequently, the cannabinoid-loaded ME system is a promising option for solubilizing and stabilizing lipophilic drugs like cannabinoids and utilize them for transdermal delivery.
Collapse
Affiliation(s)
- Chulhun Park
- Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton AB T6G 2E1, Canada; College of Pharmacy and Institute of Pharmaceutical Science and Technology, Ajou University, Suwon 16499, Republic of Korea.
| | - Jieyu Zuo
- Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton AB T6G 2E1, Canada.
| | - Vijay Somayaji
- Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton AB T6G 2E1, Canada.
| | - Beom-Jin Lee
- College of Pharmacy, Ajou University, Suwon 16499, South Korea; College of Pharmacy and Institute of Pharmaceutical Science and Technology, Ajou University, Suwon 16499, Republic of Korea.
| | - Raimar Löbenberg
- Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton AB T6G 2E1, Canada.
| |
Collapse
|
23
|
Froelich A, Osmałek T, Jadach B, Puri V, Michniak-Kohn B. Microemulsion-Based Media in Nose-to-Brain Drug Delivery. Pharmaceutics 2021; 13:201. [PMID: 33540856 PMCID: PMC7912993 DOI: 10.3390/pharmaceutics13020201] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/22/2021] [Accepted: 01/28/2021] [Indexed: 12/12/2022] Open
Abstract
Nose-to-brain drug delivery has recently attracted enormous attention as an alternative to other delivery routes, including the most popular oral one. Due to the unique anatomical features of the nasal cavity, drugs administered intranasally can be delivered directly to the central nervous system. The most important advantage of this approach is the ability to avoid the blood-brain barrier surrounding the brain and blocking the entry of exogenous substances to the central nervous system. Moreover, selective brain targeting could possibly avoid peripheral side effects of pharmacotherapy. The challenges associated with nose-to-brain drug delivery are mostly due to the small volume of the nasal cavity and insufficient drug absorption from nasal mucosa. These issues could be minimized by using a properly designed drug carrier. Microemulsions as potential drug delivery systems offer good solubilizing properties and the ability to enhance drug permeation through biological membranes. The aim of this review is to summarize the current status of the research focused on microemulsion-based systems for nose-to-brain delivery with special attention to the most extensively investigated neurological and psychiatric conditions, such as neurodegenerative diseases, epilepsy, and schizophrenia.
Collapse
Affiliation(s)
- Anna Froelich
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 6 Grunwaldzka Street, 60-780 Poznań, Poland; (T.O.); (B.J.)
| | - Tomasz Osmałek
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 6 Grunwaldzka Street, 60-780 Poznań, Poland; (T.O.); (B.J.)
| | - Barbara Jadach
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 6 Grunwaldzka Street, 60-780 Poznań, Poland; (T.O.); (B.J.)
| | - Vinam Puri
- Center for Dermal Research and Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (V.P.); (B.M.-K.)
| | - Bozena Michniak-Kohn
- Center for Dermal Research and Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (V.P.); (B.M.-K.)
| |
Collapse
|
24
|
Indrati O, Martien R, Rohman A, Nugroho AK. Development of Nanoemulsion-based Hydrogel Containing Andrographolide: Physical Properties and Stability Evaluation. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2020; 12:S816-S820. [PMID: 33828382 PMCID: PMC8021068 DOI: 10.4103/jpbs.jpbs_174_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/10/2020] [Accepted: 06/11/2020] [Indexed: 12/01/2022] Open
Abstract
Introduction: Andrographolide is a compound that shows various pharmacological activities, which can be applied topically or orally. Nanoemulsion can improve drug solubility and stability, but has limitations for topical application. Incorporation of nanoemulsion into hydrogel can increase the viscosity of the system which can prolong the drug residence time. The aim of this study was to develop andrographolide nanoemulsion-based hydrogel for topical application. Method: Andrographolide nanoemulsion was prepared using Capryol 90 as the oil, Kolliphor RH 40 as the surfactant, and propylene glycol as the cosurfactant. Droplet size and polydispersity index of the nanoemulsions were evaluated using particle size analyzer. D-optimal mixture design was employed to generate the total number of runs (formulation), and obtain the optimum formulation. Fourteen formulations of nanoemulsion-based hydrogel were prepared by incorporating nanoemulsion into the hydrogel base (1:1). Carbopol was employed as the gelling agent, whereas other excipients including propylene glycol, oleic acid, triethanolamine, methylparaben, and propylparaben were also added to produce hydrogel base. Nanoemulsion-based hydrogel was evaluated for its pH, viscosity, and physical appearance (after 8 weeks of storage). Results: The result revealed that nanoemulsion-based hydrogel containing 34.65% of carbopol, 1.35% of triethanolamine, and 9% of propylene glycol was selected as an optimum formulation which shows acceptable pH, viscosity, and physical appearance. This optimum nanoemulsion-based hydrogel has pH of 6.50 ± 0.02, and 2492.33 ± 36.91 cP of viscosity with milky white color, and smooth homogeneous texture. Conclusion: This study suggested that andrographolide can be successfully formulated into an acceptable nanoemulsion-based hydrogel.
Collapse
Affiliation(s)
- Oktavia Indrati
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Islam Indonesia, Sleman, Yogyakarta, Indonesia.,Department of Pharmaceutics, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta, Indonesia
| | - Ronny Martien
- Department of Pharmaceutics, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta, Indonesia
| | - Abdul Rohman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta, Indonesia
| | - Akhmad Kharis Nugroho
- Department of Pharmaceutics, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta, Indonesia
| |
Collapse
|
25
|
AbouSamra MM, Salama AH, Awad GEA, Mansy SS. Formulation and Evaluation of Novel Hybridized Nanovesicles for Enhancing Buccal Delivery of Ciclopirox Olamine. AAPS PharmSciTech 2020; 21:283. [PMID: 33051708 DOI: 10.1208/s12249-020-01823-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 09/15/2020] [Indexed: 11/30/2022] Open
Abstract
Ciclopirox olamine (CPO) is a topical wide-spectrum antimycotic agent that possesses antifungal, antibacterial and anti-inflammatory activities. Loading CPO into a hybridized vesicular system is expected to enhance its buccal permeation and hence, therapeutic activity, whereas the frequent administration and side effects are reduced. Vesicular systems with high penetration ability were prepared based on cholesterol, Lipoid S45 or Phospholipon 90H, with span 60 while incorporating a penetration enhancer (Labrafac or labrasol) followed by full assessment of their size, entrapment efficiency, and drug release profiles. The optimum formulation, composed of Lipoid S45 and Labrafac, possessed the smallest vesicle size (346.1 nm), highest entrapment efficiency (94.4%), and sustained CPO release pattern, and was characterized for its morphology and thermal properties. This powerful mixture of the penetration enhancers (Lipoid S45 and Labrafac) in the designed hybridized vesicles was thoroughly investigated for their characteristics after being incorporated in bioadhesive gel. Moreover, enhanced antifungal activity was demonstrated either upon testing the designed formulation on agar plates or in vivo upon treating infected rabbits with the proposed formulation. Results suggest that the presented bioadhesive gel incorporating the CPO-loaded vesicles can be a promising delivery system that can offer a prolonged localized antifungal treatment with enhanced therapeutic effect.
Collapse
|
26
|
Wu JY, Cai JX, Li YJ, Hu XB, Liu XY, Wang JM, Tang TT, Xiang DX. 3,5,4'-Trimethoxy-trans-stilbene loaded microemulsion for cutaneous melanoma therapy by transdermal drug delivery. Drug Deliv Transl Res 2020; 11:169-181. [PMID: 32297167 DOI: 10.1007/s13346-020-00757-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
For therapy of skin cancer, transdermal administration has been a potential way to enhance chemotherapy. However, the drug delivery efficacy remained unsatisfactory because of the physiological barriers from the skin to the tumor, which hindered the effect of 3,5,4'-trimethoxy-trans-stilbene (BTM), a drug that has toxicity to cancer. Herein, we prepared an oil-in-water (O/W) microemulsion to load BTM (BTM-ME) for transdermal therapy of melanoma. BTM-ME was characterized by size, zeta potential, and polymer disperse index (PDI). B16F10 melanoma cell line was used for cell experiments and animal models. And cell uptake, viability assay, and flow cytometry were to test the cell internalization and the ability of BTM-ME to induce cancer cell apoptosis. Skin penetration testing was to detect its penetration efficiency to the skin. And tumor-bearing mice were used to prove the improvement of anti-cancer efficacy of BTM-ME with the combination of Taxol. BTM was successfully loaded in O/W microemulsion, with a drug loading capacity of 24.82 mg/mL. BTM-ME can penetrate the skin and increase the retention of BTM in the epidermis. And the combination of Taxol and BTM-ME effectively suppressed tumor growth and has lower toxicity to normal organs. BTM-ME provides adjuvant therapy to cutaneous melanoma and the combination of Taxol and BTM-ME has the clinical potential for skin cancer therapy. Graphical abstract.
Collapse
Affiliation(s)
- Jun-Yong Wu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, Hunan, People's Republic of China
- Hunan Provincial Engineering Research Center of Translational Medicine and Innovative Drug, Changsha, Hunan, People's Republic of China
| | - Jia-Xin Cai
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, Hunan, People's Republic of China
- Hunan Provincial Engineering Research Center of Translational Medicine and Innovative Drug, Changsha, Hunan, People's Republic of China
| | - Yong-Jiang Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, Hunan, People's Republic of China
- Hunan Provincial Engineering Research Center of Translational Medicine and Innovative Drug, Changsha, Hunan, People's Republic of China
| | - Xiong-Bin Hu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, Hunan, People's Republic of China
- Hunan Provincial Engineering Research Center of Translational Medicine and Innovative Drug, Changsha, Hunan, People's Republic of China
| | - Xin-Yi Liu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, Hunan, People's Republic of China
- Hunan Provincial Engineering Research Center of Translational Medicine and Innovative Drug, Changsha, Hunan, People's Republic of China
| | - Jie-Min Wang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, Hunan, People's Republic of China
- Hunan Provincial Engineering Research Center of Translational Medicine and Innovative Drug, Changsha, Hunan, People's Republic of China
| | - Tian-Tian Tang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, Hunan, People's Republic of China
- Hunan Provincial Engineering Research Center of Translational Medicine and Innovative Drug, Changsha, Hunan, People's Republic of China
| | - Da-Xiong Xiang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China.
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, Hunan, People's Republic of China.
- Hunan Provincial Engineering Research Center of Translational Medicine and Innovative Drug, Changsha, Hunan, People's Republic of China.
| |
Collapse
|
27
|
Golwala P, Rathod S, Patil R, Joshi A, Ray D, Aswal VK, Bahadur P, Tiwari S. Effect of cosurfactant addition on phase behavior and microstructure of a water dilutable microemulsion. Colloids Surf B Biointerfaces 2020; 186:110736. [DOI: 10.1016/j.colsurfb.2019.110736] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 10/19/2019] [Accepted: 12/15/2019] [Indexed: 01/25/2023]
|
28
|
Wang Y, Xu M. Comparison of ropivacaine combined with sufentanil for epidural anesthesia and spinal-epidural anesthesia in labor analgesia. BMC Anesthesiol 2020; 20:1. [PMID: 31898488 PMCID: PMC6939327 DOI: 10.1186/s12871-019-0855-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 09/24/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To compare the application and efficacy of ropivacaine combined with sufentanil for continuous epidural anesthesia (CEA) and combined spinal-epidural anesthesia (CSEA) in labor analgesia. METHODS Three hundred sixty pregnant women requesting labor analgesia from October 2017 to August 2018 were selected retrospectively. According to the anesthetic method, subjects were divided into CSEA group and CEA group. Ropivacaine combined with sufentanil were used in all subjects. The labor time, visual analogue scale (VAS), Apgar score of newborn, adverse pregnancy outcomes and adverse drug reactions were observed. RESULTS There was no significant difference in pre-analgesia (T0) VAS scores between the two groups (P > 0.05). VAS scores of first stage of labor (T1), second stage of labor (T2) and third stage of labor (T3) in CSEA group were significantly lower than CEA group (P < 0.01). The onset time, T1 and total labor time in CSEA group were significantly shorter than CEA group (P < 0.01). There were no significant differences between T2 and T3 (P > 0.05). There were no significant differences in adverse pregnancy outcomes and Apgar scores at 1, 5 and 10 min after birth between the two groups (P > 0.05). The incidence of adverse drug outcomes in CSEA group was significantly lower than CEA group (P < 0.01). Maternal satisfaction in CSEA group was significantly higher than CEA group (P < 0.01). CONCLUSION Considering ropivacaine combined with sufentanil for CSEA achieved a shorter onset time and labor period, significant analgesic effect, lower adverse drug reactions rates and higher subject satisfaction than CEA, it may be worthy of clinical promotion and application.
Collapse
Affiliation(s)
- Yanshuang Wang
- Department of Anesthesiology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100029, China
| | - Mingjun Xu
- Department of Anesthesiology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100029, China.
| |
Collapse
|
29
|
You J, Meng S, Ning YK, Yang LQ, Zhang XW, Wang HN, Li JJ, Yin FM, Liu J, Zhai ZY, Li B, Fan JC, Chen ZX. Development and application of an osthole microemulsion hydrogel for external drug evaluation. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101331] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
30
|
Zhang M, Zhang T, Zou Y, Han P, Liu K. Self-microemulsifying oral fast dissolving films of vitamin D3 for infants: Preparation and characterization. Food Sci Nutr 2019; 7:2577-2583. [PMID: 31428345 PMCID: PMC6694412 DOI: 10.1002/fsn3.1108] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 05/09/2019] [Indexed: 12/19/2022] Open
Abstract
Combining the advantages of self-microemulsifying technology and oral fast dissolving technology, a self-microemulsifying oral fast dissolving films (SMEOFDF) of vitamin D3 was developed in this study. The pseudoternary phase diagram of microemulsion was constructed using water titration method, and the formulation of films was optimized by orthogonal experimental design. The prepared SMEOFDF of vitamin D3 was a thin film, in which the liquid drops of self-microemulsion were embedded. It had good mechanical properties (thickness 166.7 ± 3.30 µm, tensile strength 38.45 ± 3.72 MPa, elongation 23.38 ± 4.23%, and folding endurance >200 times), and its disintegration time was about 18 ± 1.23 s. After being redissolved in water, microemulsion could form spontaneously, with particle size of 181.2 nm and zeta potential of 16.1 mV. The release profile of vitamin D from SMEOFDF could be well described by first-order equation.
Collapse
Affiliation(s)
- Min Zhang
- College of Food Science and TechnologyShanghai Ocean UniversityShanghaiChina
| | - Tingrui Zhang
- College of Food Science and TechnologyShanghai Ocean UniversityShanghaiChina
| | - Ying Zou
- College of Food Science and TechnologyShanghai Ocean UniversityShanghaiChina
| | - Ping Han
- College of Food Science and TechnologyShanghai Ocean UniversityShanghaiChina
| | - Kehai Liu
- College of Food Science and TechnologyShanghai Ocean UniversityShanghaiChina
- National Experimental Teaching Demonstration Center for Food Science and EngineeringShanghai Ocean UniversityShanghaiChina
| |
Collapse
|
31
|
de Araújo DR, Ribeiro LNDM, de Paula E. Lipid-based carriers for the delivery of local anesthetics. Expert Opin Drug Deliv 2019; 16:701-714. [PMID: 31172838 DOI: 10.1080/17425247.2019.1629415] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
INTRODUCTION There is a clinical need for pharmaceutical dosage forms devised to prolong the acting time of local anesthetic (LA) agents or to reduce their toxicity. Encapsulation of LA in drug delivery systems (DDSs) can provide long-term anesthesia for inpatients (e.g. in immediate postsurgical pain control, avoiding the side effects from systemic analgesia) and diminished systemic toxicity for outpatients (in ambulatory/dentistry procedures). The lipid-based formulations described here, such as liposomes, microemulsions, and lipid nanoparticles, have provided several nanotechnological advances and therapeutic alternatives despite some inherent limitations associated with the fabrication processes, costs, and preclinical evaluation models. AREAS COVERED A description of the currently promising lipid-based carriers, including liposomes, microemulsions, and nanostructured lipid carriers, followed by a systematic review of the existing lipid-based formulations proposed for LA. Trends in the research of these LA-in-DDS are then exposed, from the point of view of administration route and alternatives for non-traditionally administered LA molecules. EXPERT OPINION Considering the current state and potential future developments in the field, we discuss the reasons for why dozens of formulations published every year fail to reach clinical trials; only one lipid-based formulation for the delivery of local anesthetic (Exparel®) has been approved so far.
Collapse
Affiliation(s)
| | - Lígia Nunes de Morais Ribeiro
- b Department of Biochemistry and Tissue Biology , Institute of Biology, University of Campinas - UNICAMP , Campinas, São Paulo , Brazil
| | - Eneida de Paula
- b Department of Biochemistry and Tissue Biology , Institute of Biology, University of Campinas - UNICAMP , Campinas, São Paulo , Brazil
| |
Collapse
|
32
|
Topical delivery of 3,5,4'-trimethoxy-trans-stilbene-loaded microemulsion-based hydrogel for the treatment of osteoarthritis in a rabbit model. Drug Deliv Transl Res 2019; 9:357-365. [PMID: 30430453 DOI: 10.1007/s13346-018-00604-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The aim of this study was to develop a microemulsion-based hydrogel (MBH) formulation of 3,5,4'-trimethoxy-trans-stilbene (BTM) as topical delivery system for the treatment of osteoarthritis (OA). The pseudo-ternary phase diagrams were constructed to optimize the microemulsion (ME) formulation. The ME formulation containing 18.8% Cremopher EL35 (surfactant), 9.4% Transcutol HP (co-surfactant), 3.1% LABRAFIL M 1944 CS (oil), and 68.7% water was selected. The obtained BTM-loaded ME (BTM-ME) had a spherical morphology (17.5 ± 1.4 nm), with polydispersity index (PDI) value of 0.068 ± 0.016 and zeta potential of - 11.8 ± 0.5 mV, and was converted into BTM-loaded MBH (BTM-MBH) using Carbopol 940. Ex vivo skin permeation study showed that both ME and MBH formulations significantly enhanced the amount of BTM permeated. The cumulative amount of BTM permeated after 12 h (Q12) for ME, and MBH formulations were 3.25- and 1.96-fold higher than that for emulsion gel (EG). Pharmacokinetic study showed that the AUC of BTM suspension (oral) was three times higher than that of BTM-MBH (topical). Topical delivery of BTM-MBH demonstrated remarkable anti-OA effect in a rabbit model of OA induced by papain, with decreased levels of pro-inflammatory cytokines. The developed MBH formulation might be a promising strategy for topical delivery of BTM for treatment of OA.
Collapse
|
33
|
Ha ES, Lee SK, Choi DH, Jeong SH, Hwang SJ, Kim MS. Application of diethylene glycol monoethyl ether in solubilization of poorly water-soluble drugs. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2019. [DOI: 10.1007/s40005-019-00454-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
34
|
Mojeiko G, de Brito M, Salata GC, Lopes LB. Combination of microneedles and microemulsions to increase celecoxib topical delivery for potential application in chemoprevention of breast cancer. Int J Pharm 2019; 560:365-376. [DOI: 10.1016/j.ijpharm.2019.02.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 01/23/2019] [Accepted: 02/06/2019] [Indexed: 12/16/2022]
|
35
|
Froelich A, Osmałek T, Kunstman P, Jadach B, Brzostowska M, Białas W. Design and study of poloxamer-based microemulsion gels with naproxen. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2018.11.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
36
|
A promising nystatin nanocapsular hydrogel as an antifungal polymeric carrier for the treatment of topical candidiasis. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2018.12.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
37
|
Gu Y, Tang X, Yang M, Yang D, Liu J. Transdermal drug delivery of triptolide-loaded nanostructured lipid carriers: Preparation, pharmacokinetic, and evaluation for rheumatoid arthritis. Int J Pharm 2019; 554:235-244. [DOI: 10.1016/j.ijpharm.2018.11.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/27/2018] [Accepted: 11/09/2018] [Indexed: 12/18/2022]
|
38
|
Development and evaluation of ibuprofen loaded mixed micelles preparations for topical delivery. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.10.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
39
|
Gu Y, Yang M, Tang X, Wang T, Yang D, Zhai G, Liu J. Lipid nanoparticles loading triptolide for transdermal delivery: mechanisms of penetration enhancement and transport properties. J Nanobiotechnology 2018; 16:68. [PMID: 30217198 PMCID: PMC6138933 DOI: 10.1186/s12951-018-0389-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 08/19/2018] [Indexed: 12/02/2022] Open
Abstract
Background In recent years, nanoparticles (NPs) including nanostructured lipid carries (NLC) and solid lipid nanoparticles (SLN) captured an increasing amount of attention in the field of transdermal drug delivery system. However, the mechanisms of penetration enhancement and transdermal transport properties of NPs are not fully understood. Therefore, this work applied different platforms to evaluate the interactions between skin and NPs loading triptolide (TPL, TPL-NLC and TPL-SLN). Besides, NPs labeled with fluorescence probe were tracked after administration to investigate the dynamic penetration process in skin and skin cells. In addition, ELISA assay was applied to verify the in vitro anti-inflammatory effect of TPL-NPs. Results Compared with the control group, TPL-NPs could disorder skin structure, increase keratin enthalpy and reduce the SC infrared absorption peak area. Besides, the work found that NPs labeled with fluorescence probe accumulated in hair follicles and distributed throughout the skin after 1 h of administration and were taken into HaCaT cells cytoplasm by transcytosis. Additionally, TPL-NLC could effectively inhibit the expression of IL-4, IL-6, IL-8, IFN-γ, and MCP-1 in HaCaT cells, while TPL-SLN and TPL solution can only inhibit the expression of IL-6. Conclusions TPL-NLC and TPL-SLN could penetrate into skin in a time-dependent manner and the penetration is done by changing the structure, thermodynamic properties and components of the SC. Furthermore, the significant anti-inflammatory effect of TPL-NPs indicated that nanoparticles containing NLC and SLN could serve as safe prospective agents for transdermal drug delivery system.
Collapse
Affiliation(s)
- Yongwei Gu
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
| | - Meng Yang
- Department of Pharmacy, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China.,Department of Pharmacy, Shanghai Ninth People Hosipital, Shanghai Jiao Tong University, Shanghai, 200011, China
| | - Xiaomeng Tang
- Department of Pharmacy, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Ting Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
| | - Dishun Yang
- Department of Pharmacy, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Guangxi Zhai
- Department of Pharmaceutics, College of Pharmacy, Shandong University, Jinan, 250012, Shandong, China.
| | - Jiyong Liu
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China. .,Department of Pharmacy, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China.
| |
Collapse
|
40
|
Benigni M, Pescina S, Grimaudo MA, Padula C, Santi P, Nicoli S. Development of microemulsions of suitable viscosity for cyclosporine skin delivery. Int J Pharm 2018; 545:197-205. [PMID: 29698819 DOI: 10.1016/j.ijpharm.2018.04.049] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/20/2018] [Accepted: 04/21/2018] [Indexed: 12/20/2022]
Abstract
Psoriasis is a widespread chronic disease affecting 2-4% of the population in Western countries. Its mild-to-moderate form, representing approximately 80% of the total cases, is treated by topical application, with corticosteroid being the standard treatment. However, in case of psoriasis, no single treatment works for every patient and optimizing topical therapy is a key aspect. A possible alternative is represented by cyclosporine, an immunosuppressant cyclic peptide administered orally in the treatment of the severe form. Its topical application could avoid the problems related to systemic immunosuppression, but the unfavourable physico-chemical properties (MW: 1202 Da; LogP ≈ 3) hinder its permeation across the stratum corneum. The aim of the paper was the preparation, characterization and ex-vivo evaluation of cyclosporine loaded microemulsions using oleic acid as oil phase, either Tween®80 or a soluble derivative of vitamin E (TPGS) as surfactants and either Transcutol®, propylene glycol or 1,3 propanediol as co-surfactants. The issue of formulation viscosity was also addressed 1) by evaluating the thickening of Tween®80-based microemulsions by direct addition of different rheological modifiers, 2) by building pseudo-ternary phase diagrams using TPGS, to identify the water/oil/surfactants proportions resulting in viscous self-gelifying systems. Nine formulations (five Tween®80-based and four TPGS-based) were selected, characterized in terms of droplets size (low viscosity systems) or rheological properties (high viscosity systems), loaded with 6 mg/g cyclosporine and applied ex-vivo on porcine skin for 22 h. A relevant skin accumulation was obtained either with a low-viscosity Tween®80-based microemulsion (9.78 ± 3.86 µg/cm2), or with a high viscosity TPGS-based microemulsion (18.3 ± 5.69 µg/cm2), with an increase of about 3 and 6 times respectively for comparison with a control cyclosporine solution in propylene glycol. The role of water content, surfactant, co-surfactant and viscosity was also addressed and discussed. The kinetic of skin uptake from the best performing formulation was finally evaluated, highlighting a relatively quick skin uptake and the achievement, after 2 h of contact, of potentially therapeutic cyclosporine skin concentrations.
Collapse
Affiliation(s)
- Marta Benigni
- Food and Drug Department, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Silvia Pescina
- Food and Drug Department, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | | | - Cristina Padula
- Food and Drug Department, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Patrizia Santi
- Food and Drug Department, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Sara Nicoli
- Food and Drug Department, Parco Area delle Scienze 27/A, 43124 Parma, Italy.
| |
Collapse
|
41
|
Shinde UA, Modani SH, Singh KH. Design and Development of Repaglinide Microemulsion Gel for Transdermal Delivery. AAPS PharmSciTech 2018; 19:315-325. [PMID: 28717973 DOI: 10.1208/s12249-017-0811-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 05/15/2017] [Indexed: 11/30/2022] Open
Abstract
Microemulsion formulation of repaglinide, a BCS class II hypoglycemic agent with limited oral bioavailability, was developed considering its solubility in various oils, surfactants, and cosurfactants. The pseudo-ternary phase diagrams for microemulsion regions were constructed by water titration method at K m 1:1 and characterized for optical birefringence, percentage transmittance, pH, refractive index, globule size, zeta potential, viscosity, drug content, and thermodynamic stability. To enhance the drug permeation and residence time, the optimized microemulsions having mean globule size of 36.15 ± 9.89 nm was gelled with xanthan gum. The developed microemulsion-based gel was characterized for globule size, zeta potential, pH, and drug content. All evaluation parameters upon gelling were found to be satisfactory. Ex vivo permeability study across rat skin demonstrated higher steady-state flux (P < 0.05) for microemulsion of repaglinide in comparison to the repaglinide microemulsion gel. At the end of 24 h, the cumulative drug permeation from microemulsion and microemulsion gel was found to be 229.19 ± 24.34 and 180.84 ± 17.40 μg/cm2, respectively. The microemulsion formulation showed 12.30-fold increase in flux as compared to drug suspension with highest enhancement ratio (E r ) of 12.36. Whereas microemulsion gel exhibited 10.97-fold increase in flux (with highest E r , 11.78) as compared to repaglinide (RPG) suspension. In vivo efficacy study was performed in normal Sprague-Dawley rats by using oral glucose tolerance test. Results of RPG transdermal microemulsion gel demonstrated remarkable advantage over orally administered RPG by reducing the glucose level in controlled manner. Hence, it could be a new, alternative dosage form for effective therapy of type 2 diabetes mellitus.
Collapse
|
42
|
Investigation of microemulsion and microemulsion gel formulations for dermal delivery of clotrimazole. Int J Pharm 2018; 536:345-352. [DOI: 10.1016/j.ijpharm.2017.11.041] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/28/2017] [Accepted: 11/19/2017] [Indexed: 11/22/2022]
|
43
|
|
44
|
Design, Development, and Optimization of Dexibuprofen Microemulsion Based Transdermal Reservoir Patches for Controlled Drug Delivery. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4654958. [PMID: 29090219 PMCID: PMC5635477 DOI: 10.1155/2017/4654958] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 06/25/2017] [Accepted: 07/04/2017] [Indexed: 11/24/2022]
Abstract
The aim of the study was to develop a reservoir-type transdermal patch for a controlled delivery of dexibuprofen and to evaluate its in vivo anti-inflammatory activity in Albino Wistar rats. In order to develop these patches, six formulations of dexibuprofen microemulsion comprising ethyl oleate, Tween 80: PG (2 : 1), and water were prepared by simplex lattice design and characterized. The reservoir compartment was filled with these microemulsions and in vitro release and skin permeation were assessed. The optimized patch was obtained on the basis of the responses: Q24 and flux. The impact of drug loading, surface area, membrane thickness, adhesive, and agitation speed on drug release and permeation was also studied. The skin sensitivity reaction and in vivo anti-inflammatory activity of optimized patch were evaluated. Stability study at three different temperatures for three months was carried out. The result suggests that a membrane based patch with zero-order release rate, Q24 of 79.13 ± 3.08%, and maximum flux of 331.17 µg/cm2h can be obtained exhibiting suitable anti-inflammatory activity with no visible skin sensitivity reaction. The outcomes of stability study recommend storage of patches at 4°C having shelf-life of 6.14 months. The study demonstrates that the reservoir-type transdermal patch of dexibuprofen microemulsion has a potential of delivering drug across skin in controlled manner with required anti-inflammatory activity.
Collapse
|
45
|
Telò I, Favero ED, Cantù L, Frattini N, Pescina S, Padula C, Santi P, Sonvico F, Nicoli S. Gel-like TPGS-Based Microemulsions for Imiquimod Dermal Delivery: Role of Mesostructure on the Uptake and Distribution into the Skin. Mol Pharm 2017; 14:3281-3289. [DOI: 10.1021/acs.molpharmaceut.7b00348] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Isabella Telò
- Food
and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Elena Del Favero
- Department
of Medical Biotechnologies and Translational Medicine, LITA, University of Milan, Via F.lli Cervi, 93, 20090 Segrate, Italy
| | - Laura Cantù
- Department
of Medical Biotechnologies and Translational Medicine, LITA, University of Milan, Via F.lli Cervi, 93, 20090 Segrate, Italy
| | - Noemi Frattini
- Food
and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Silvia Pescina
- Food
and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Cristina Padula
- Food
and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Patrizia Santi
- Food
and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Fabio Sonvico
- Food
and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Sara Nicoli
- Food
and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| |
Collapse
|
46
|
Carvalho VF, de Lemos DP, Vieira CS, Migotto A, Lopes LB. Potential of Non-aqueous Microemulsions to Improve the Delivery of Lipophilic Drugs to the Skin. AAPS PharmSciTech 2017; 18:1739-1749. [PMID: 27757922 DOI: 10.1208/s12249-016-0643-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 09/22/2016] [Indexed: 11/30/2022] Open
Abstract
In this study, non-aqueous microemulsions were developed because of the challenges associated with finding pharmaceutically acceptable solvents for topical delivery of drugs sparingly soluble in water. The formulation irritation potential and ability to modulate the penetration of lipophilic compounds (progesterone, α-tocopherol, and lycopene) of interest for topical treatment/prevention of skin disorders were evaluated and compared to solutions and aqueous microemulsions of similar composition. The microemulsions (ME) were developed with BRIJ, vitamin E-TPGS, and ethanol as surfactant-co-surfactant blend and tributyrin, isopropyl myristate, and oleic acid as oil phase. As polar phase, propylene glycol (MEPG) or water (MEW) was used (26% w/w). The microemulsions were isotropic and based on viscosity and conductivity assessment, bicontinuous. Compared to drug solutions in lipophilic vehicles, MEPG improved drug delivery into viable skin layers by 2.5-38-fold; the magnitude of penetration enhancement mediated by MEPG into viable skin increased with drug lipophilicity, even though the absolute amount of drug delivered decreased. Delivery of progesterone and tocopherol, but not lycopene (the most lipophilic compound), increased up to 2.5-fold with MEW, and higher amounts of these two drugs were released from MEW (2-2.5-fold). Both microemulsions were considered safe for topical application, but MEPG-mediated decrease in the viability of reconstructed epidermis was more pronounced, suggesting its higher potential for irritation. We conclude that MEPG is a safe and suitable nanocarrier to deliver a variety of lipophilic drugs into viable skin layers, but the use of MEW might be more advantageous for drugs in the lower range of lipophilicity.
Collapse
|
47
|
Elmowafy M, Samy A, Abdelaziz AE, Shalaby K, Salama A, Raslan MA, Abdelgawad MA. Polymeric nanoparticles based topical gel of poorly soluble drug: Formulation, ex-vivo and in vivo evaluation. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2017. [DOI: 10.1016/j.bjbas.2017.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
48
|
Ahad A, Al-Saleh AA, Al-Mohizea AM, Al-Jenoobi FI, Raish M, Yassin AEB, Alam MA. Pharmacodynamic study of eprosartan mesylate-loaded transfersomes Carbopol ® gel under Dermaroller ® on rats with methyl prednisolone acetate-induced hypertension. Biomed Pharmacother 2017; 89:177-184. [DOI: 10.1016/j.biopha.2017.01.164] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 01/29/2017] [Accepted: 01/29/2017] [Indexed: 12/01/2022] Open
|
49
|
Exploring unsaturated fatty acid cholesteryl esters as transdermal permeation enhancers. Drug Deliv Transl Res 2017; 7:333-345. [DOI: 10.1007/s13346-017-0360-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
50
|
Yang J, Xu H, Wu S, Ju B, Zhu D, Yan Y, Wang M, Hu J. Preparation and evaluation of microemulsion‑based transdermal delivery of Cistanche tubulosa phenylethanoid glycosides. Mol Med Rep 2017; 15:1109-1116. [PMID: 28138704 PMCID: PMC5367374 DOI: 10.3892/mmr.2017.6147] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 11/29/2016] [Indexed: 11/29/2022] Open
Abstract
The primary aim of the present study was to develop a novel microemulsion (ME) formulation to deliver phenylethanoid glycoside (PG) for use in skin lighteners and sunscreens. The oil phase was selected on the basis of drug solubility, while the surfactant and cosurfactant were screened and selected on the basis of their solubilizing capacity and the efficiency with which they formed MEs. Pseudoternary phase diagrams were constructed to evaluate ME regions and five formulations of oil-in-water MEs were selected as vehicles. In vitro skin permeation experiments were performed to optimize the ME formulation and to evaluate its permeability in comparison to that of saline solution. The physicochemical properties of the optimized ME and the permeating ability of PG delivered by this ME were also investigated. The optimized ME formulation was composed of isopropyl myristate (7%, w/w), Cremorphor EL (21%, w/w), propylene glycol (7%, w/w) and water (65%, w/w). The cumulative amount of PG that permeated through excised mouse skin when carried by ME was ~1.68 times that when PG was carried by saline solution only. The cumulative amount of PG in the microemulsion (4149.650±37.3 µg·cm−2) was significantly greater than that of PG in the saline solution (2288.63±20.9 µg·cm−2). Furthermore, the permeability coefficient indicated that optimized microemulsion was a more efficient carrier for transdermal delivery of PG than the control solution (8.87±0.49 cm/hx10−3 vs. 5.41±0.12 cm/hx10−3). Taken together, the permeating ability of ME-carried PG was significantly increased compared with saline solution.
Collapse
Affiliation(s)
- Jianhua Yang
- Department of Pharmacy, The First Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Huanhuan Xu
- Department of Pharmacy, The First Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Shanshan Wu
- Department of Natural Medicines, College of Pharmacy, Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Bowei Ju
- Department of Natural Medicines, College of Pharmacy, Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Dandan Zhu
- Department of Natural Medicines, College of Pharmacy, Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Yao Yan
- Department of Pharmacy, The First Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Mei Wang
- Department of Natural Medicines, College of Pharmacy, Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Junping Hu
- Department of Natural Medicines, College of Pharmacy, Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| |
Collapse
|