1
|
Soliman L, Party P, Nagy A, Farkas Á, Paróczai D, Burián K, Ambrus R. Enhanced pulmonary delivery of spray-dried theophylline: investigation of the trehalose and amino acid combinations as innovative fine carriers. Eur J Pharm Sci 2025; 209:107109. [PMID: 40280283 DOI: 10.1016/j.ejps.2025.107109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 04/21/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
The emergence of novel carrier systems for dry powder inhalers is an attractive research subject. Additionally, the site-specific pulmonary delivery of theophylline (THN) remains challenging. Therefore, the present research aims to assess the potential enhancement of THN local delivery to the deep lung via powder inhalation for asthma treatment by developing appropriate fine carriers utilizing the well-established spray-drying technique. The preliminary study aimed to develop novel trehalose-based carrier systems combined with amino acids leucine, glycine, and arginine. Aqueous feedstock solutions were spray-dried, and the obtained microparticulate carriers were assessed. Subsequently, therapeutic powders were produced by spray drying ethanol 10 % solutions of THN combined with candidate-developed carriers. Following each sample preparation, it was subjected to structural, thermal, morphological, rheological, aerodynamic, and particle size distribution characterization. Furthermore, THN solubility was determined. In vitro drug release and diffusion, in vitro and in silico simulated lung deposition, and aerodynamic particle count were analyzed by applying samples equivalent to 10 mg of THN. To summarize the outcomes, carriers composed of trehalose with either leucine or a leucine-glycine combination demonstrated superior respirable properties and were considered candidates for further development. THN co-spray-dried samples showed less crystalline structure and particle size of 4-5 µm, leading to profound solubility enhancement (⁓20 fold) and rapid drug release compared to the pure THN (⁓100 % in 5 min). The in vitro and in silico aerodynamic measurements demonstrated that the THN-trehalose-leucine combination had a significantly enhanced fine particle fraction (43 %), leading to higher deep lung deposition (36 %), and the aerodynamic counter confirmed the development of fine particles (mean=3.61 µm). Moreover, the in vitro experiments on the A549 cells demonstrated that the optimized formulation has a low cytotoxicity profile. In conclusion, the acquired characteristics suggest that inhalable co-spray-dried THN with the trehalose-leucine fine carrier may be a practical approach for local asthma therapy.
Collapse
Affiliation(s)
- Lomass Soliman
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, Eötvös utca 6, 6720 Hungary
| | - Petra Party
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, Eötvös utca 6, 6720 Hungary
| | - Attila Nagy
- Department of Applied and Nonlinear Optics, HUN-REN Wigner Research Centre for Physics, Konkoly-Thege Miklós St. 29-33, 1121 Budapest, Hungary
| | - Árpád Farkas
- Environmental Physics Department, HUN-REN Centre for Energy Research, Konkoly-Thege Miklós Street 29-33, Budapest 1121, Hungary
| | - Dóra Paróczai
- Department of Medical Microbiology and Immunobiology, University of Szeged, Dóm Square 10, H-6720 Sze-ged, Hungary; Department of Pulmonology, Albert Szent-Györgyi Medical School, University of Szeged, Tisza Lajos krt 107, H-6720 Szeged, Hungary
| | - Katalin Burián
- Department of Medical Microbiology and Immunobiology, University of Szeged, Dóm Square 10, H-6720 Sze-ged, Hungary
| | - Rita Ambrus
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, Eötvös utca 6, 6720 Hungary.
| |
Collapse
|
2
|
Sharma DK. Current advancements in nanoparticles for vaccines and drug delivery for the treatment of tuberculosis. J Microbiol Methods 2025; 232-234:107138. [PMID: 40280241 DOI: 10.1016/j.mimet.2025.107138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 04/05/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Since the early centuries until the present, tuberculosis has been a global illness with no cure. However, the sickness remains dormant in the afflicted individuals in certain circumstances. Due to the thick lipid mycobacterial wall and the challenging medication delivery into the bacterial cell, treatment is complex at this point. Over the past utics., there has been a growth in the function of nanomaterials in tuberculosis (TB) management, especially in the domains of early diagnosis, vaccine, and therapy. It has been demonstrated that nanomaterials are effective in quickly and accurately identifying tuberculosis germs. Additionally, novel nanocarriers have shown great promise for improved medication delivery and immunization, possibly increasing drug concentrations in target organs while lowering the frequency of treatments. Furthermore, the engineering of antigen carriers is a promising area of tuberculosis research that may lead to the successful creation of a novel class of potent TB vaccines. This article addresses tuberculosis infection diagnosis, pathophysiology, immunology, and advanced nanoparticles to deliver TB vaccines and anti-TB drugs. The challenges and prospects for the future in creating secure and functional nanoparticles for tuberculosis treatment and diagnosis for the good health and well-being of the patient are also discussed.
Collapse
Affiliation(s)
- Dinesh Kumar Sharma
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India.
| |
Collapse
|
3
|
Party P, Soliman L, Nagy A, Farkas Á, Ambrus R. Optimization, In Vitro, and In Silico Characterization of Theophylline Inhalable Powder Using Raffinose-Amino Acid Combination as Fine Co-Spray-Dried Carriers. Pharmaceutics 2025; 17:466. [PMID: 40284461 PMCID: PMC12030175 DOI: 10.3390/pharmaceutics17040466] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 03/30/2025] [Accepted: 03/31/2025] [Indexed: 04/29/2025] Open
Abstract
Background/Objectives: Dry powder inhalation is an attractive research area for development. Therefore, this work aimed to develop inhalable co-spray-dried theophylline (TN) microparticles, utilizing raffinose-amino acid fine carriers intended for asthma therapy. The study addressed enhancing TN's physicochemical and aerodynamic properties to ensure efficient lung deposition. Methods: The process involves spray-drying each formulation's solution using a mini spray drier. A rigorous assessment was conducted on particle size distribution, structural and thermal analysis, morphology study, in vitro and in silico aerodynamic investigation, and aerodynamic particle counter in addition to the solubility, in vitro dissolution, and diffusion of TN. Results: The carriers containing leucine and glycine revealed superior characteristics (mass median aerodynamic diameter (MMAD): 4.6-5 µm, fine particle fraction (FPF): 30.6-35.1%, and amorphous spherical structure) as candidates for further development of TN-DPIs, while arginine was excluded due to intensive aggregation and hygroscopicity, which led to poor aerodynamic performance. TN co-spray-dried samples demonstrated fine micronized particles (D [0.5]: 3.99-5.96 µm) with predominantly amorphous structure (crystallinity index: 24.1-45.2%) and significant solubility enhancement (~19-fold). Formulations containing leucine and leucine-glycine revealed the highest FPF (45.7-47.8%) and in silico lung deposition (39.3-40.1%), rapid in vitro drug release (~100% within 10 min), and improved in vitro diffusion (2.29-2.43-fold), respectively. Moreover, the aerodynamic counter confirmed the development of fine microparticles (mean number particle size = 2.3-2.02 µm). Conclusions: This innovative formulation possesses enhanced physicochemical, morphological, and aerodynamic characteristics of low-dose TN for local asthma treatment and could be applied as a promising carrier for dry powder inhaler development.
Collapse
Affiliation(s)
- Petra Party
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös Utca 6, 6720 Szeged, Hungary; (P.P.); (L.S.)
| | - Lomass Soliman
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös Utca 6, 6720 Szeged, Hungary; (P.P.); (L.S.)
| | - Attila Nagy
- Department of Applied and Nonlinear Optics, HUN-REN Wigner Research Centre for Physics, Konkoly-Thege Miklós St. 29-33, 1121 Budapest, Hungary;
| | - Árpád Farkas
- HUN-REN Centre for Energy Research, Institute for Energy Security and Environmental Safety, Konkoly-Thege Miklós St. 29-33, 1121 Budapest, Hungary;
| | - Rita Ambrus
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös Utca 6, 6720 Szeged, Hungary; (P.P.); (L.S.)
| |
Collapse
|
4
|
Doghish AS, Abulsoud AI, Nassar YA, Nasr SM, Mohammed OA, Abdel-Reheim MA, Rizk NI, Lutfy RH, Abdel Mageed SS, Ismail MA, Abd-Elhalim HM, Awad FA, Fayez SZ, Elimam H, Mansour RM. Harnessing miRNAs: A Novel Approach to Diagnosis and Treatment of Tuberculosis. J Biochem Mol Toxicol 2025; 39:e70119. [PMID: 39799557 DOI: 10.1002/jbt.70119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/09/2024] [Accepted: 12/21/2024] [Indexed: 01/15/2025]
Abstract
Mycobacterium tuberculosis (Mtb) complex, responsible for tuberculosis (TB) infection, continues to be a predominant global cause of mortality due to intricate host-pathogen interactions that affect disease progression. MicroRNAs (miRNAs), essential posttranscriptional regulators, have become pivotal modulators of these relationships. Recent findings indicate that miRNAs actively regulate immunological responses to Mtb complex by modulating autophagy, apoptosis, and immune cell activities. This has resulted in increased interest in miRNAs as prospective diagnostic indicators for TB, especially in differentiating active infection from latent or inactive stages. Variations in miRNA expression during Mtb infection indicate disease progression and offer insights into the immune response. Furthermore, miRNAs present potential as therapeutic targets in host-directed therapy (HDT) techniques for TB infection. This work examines the function of miRNAs in TB pathogenesis, with the objective of identifying particular miRNAs that regulate the immune response to the Mtb complex, evaluating their diagnostic value and exploring their therapeutic implications in host-directed therapy for TB infection. The objective is to enhance comprehension of how miRNAs can facilitate improved diagnosis and treatment of TB.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Badr University in Cairo (BUC), Badr City, Cairo, Egypt
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Ahmed I Abulsoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | - Yara A Nassar
- Department of Botany, Biotechnology and Its Application Program, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Sami Mohamed Nasr
- Biochemistry and Molecular Biology, Theodor Bilharz Research Institute, Giza, Egypt
- School of Biotechnology, Badr University in Cairo, Badr City, Cairo, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha, Saudi Arabia
| | | | - Nehal I Rizk
- Department of Biochemistry, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo, Egypt
| | - Radwa H Lutfy
- School of Biotechnology, Badr University in Cairo, Badr City, Cairo, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, Egypt
| | - Menattallah A Ismail
- Applied Biotechnology Program, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Haytham M Abd-Elhalim
- School of Biotechnology, Badr University in Cairo, Badr City, Cairo, Egypt
- Agricultural Research Center, Agricultural Genetic Engineering Research Institute, Giza, Egypt
| | - Farah A Awad
- School of Biotechnology, Badr University in Cairo, Badr City, Cairo, Egypt
| | - Salma Zaki Fayez
- School of Biotechnology, Badr University in Cairo, Badr City, Cairo, Egypt
| | - Hanan Elimam
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, Egypt
| | - Reda M Mansour
- Zoology and Entomology Department, Faculty of Science, Helwan University, Helwan, Egypt
- Molecular Biology and Biotechnology Department, School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo, Egypt
| |
Collapse
|
5
|
Waghmare S, Palekar R, Potey L, Khedekar P, Sabale P, Sabale V. Solid Lipid Nanoparticles as an Innovative Lipidic Drug Delivery System. Pharm Nanotechnol 2025; 13:22-40. [PMID: 38317470 DOI: 10.2174/0122117385271393231117063750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 02/07/2024]
Abstract
In order to overcome some of the drawbacks of traditional formulations, increasing emphasis has recently been paid to lipid-based drug delivery systems. Solid lipid nanoparticles (SLNs) are promising delivery methods, and they hold promise because of their simplicity in production, capacity to scale up, biocompatibility, and biodegradability of formulation components. Other benefits could be connected to a particular route of administration or the makeup of the ingredients being placed into these delivery systems. This article aims to review the significance of solid lipid nanocarriers, their benefits and drawbacks, as well as their types, compositions, methods of preparation, mechanisms of drug release, characterization, routes of administration, and applications in a variety of delivery systems with a focus on their efficacy.
Collapse
Affiliation(s)
- Suchita Waghmare
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, 440033, India
| | - Rohini Palekar
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, 440033, India
| | - Lata Potey
- Shree Sainath College of Pharmacy Dawalameti, Nagpur, Maharashtra, 440023, India
| | - Pramod Khedekar
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, 440033, India
| | - Prafulla Sabale
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, 440033, India
| | - Vidya Sabale
- Department of Pharmaceutics, Dadasaheb Balpande College of Pharmacy, Besa, Nagpur, Maharashtra, 440037, India
| |
Collapse
|
6
|
Van Nguyen TH, Tsapis N, Benrabah L, Gouilleux B, Baltaze JP, Domenichini S, Fattal E, Moine L. Poly(malic acid) Nanoconjugates of Pyrazinoic Acid for Lung Delivery in the Treatment of Tuberculosis. Bioconjug Chem 2024. [PMID: 39327983 DOI: 10.1021/acs.bioconjchem.4c00335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Tuberculosis (TB) remains a major global infection, and TB treatments could be improved by site-specific targeting with delivery systems that allow tissue and cell uptake. To increase the drug concentration at the target sites following lung delivery, polymeric nanoconjugates based on biodegradable poly(malic acid) were designed. Pyrazinoic acid (POA), the active moiety of pyrazinamide─a first-line antituberculosis drug─was covalently bound to poly(malic acid) using a hydrophobic linker at mole ratios of 25%, 50%, and 75%. Three linkers, hexanediol, octanediol, and decanediol, were considered. Independently of the linker or ratio, all the conjugates were able to self-assemble, forming nanoconjugates (NCs) in water with 130-190 nm in diameter. Pyrazinoic acid could be released in a controlled manner without any burst release effect. Its kinetics can be adjusted by modifying the grafting ratio and linker length. No cytotoxicity was observed on RAW 264.7 macrophages up to ∼14 μg/mL of POA. In addition, the nanoconjugates were efficiently taken up by these cells over 5 h. Thanks to their high loading capacity and modulable release profiles, these nanoconjugates hold great promise for more effective treatment of tuberculosis.
Collapse
Affiliation(s)
- Thi Hong Van Nguyen
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 17-19, Avenue des Sciences, Orsay F-91400, France
| | - Nicolas Tsapis
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 17-19, Avenue des Sciences, Orsay F-91400, France
| | - Lynda Benrabah
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 17-19, Avenue des Sciences, Orsay F-91400, France
| | - Boris Gouilleux
- RMN en Milieu Orienté, Institut de Chimie moléculaire et des Matériaux d'Orsay (ICMMO), UMR 8182, UFR des Sciences d'Orsay, Université Paris-Saclay, 17-19, Avenue des Sciences, Orsay F-91400, France
| | - Jean-Pierre Baltaze
- RMN en Milieu Orienté, Institut de Chimie moléculaire et des Matériaux d'Orsay (ICMMO), UMR 8182, UFR des Sciences d'Orsay, Université Paris-Saclay, 17-19, Avenue des Sciences, Orsay F-91400, France
| | - Séverine Domenichini
- UMS IPSIT Université Paris-Saclay - US 31 INSERM - UAR 3679 CNRS, 17-19, Avenue des Sciences, Orsay, F-91400, France
| | - Elias Fattal
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 17-19, Avenue des Sciences, Orsay F-91400, France
| | - Laurence Moine
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 17-19, Avenue des Sciences, Orsay F-91400, France
| |
Collapse
|
7
|
Abu Elella MH, Al Khatib AO, Al-Obaidi H. Spray-Dried Nanolipid Powders for Pulmonary Drug Delivery: A Comprehensive Mini Review. Pharmaceutics 2024; 16:680. [PMID: 38794342 PMCID: PMC11125033 DOI: 10.3390/pharmaceutics16050680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/28/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Lung diseases have received great attention in the past years because they contribute approximately one-third of the total global mortality. Pulmonary drug delivery is regarded as one of the most appealing routes to treat lung diseases. It addresses numerous drawbacks linked to traditional dosage forms. It presents notable features, such as, for example, a non-invasive route, localized lung drug delivery, low enzymatic activity, low drug degradation, higher patient compliance, and avoiding first-pass metabolism. Therefore, the pulmonary route is commonly explored for delivering drugs both locally and systemically. Inhalable nanocarrier powders, especially, lipid nanoparticle formulations, including solid-lipid and nanostructured-lipid nanocarriers, are attracting considerable interest in addressing respiratory diseases thanks to their significant advantages, including deep lung deposition, biocompatibility, biodegradability, mucoadhesion, and controlled drug released. Spray drying is a scalable, fast, and commercially viable technique to produce nanolipid powders. This review highlights the ideal criteria for inhalable spray-dried SLN and NLC powders for the pulmonary administration route. Additionally, the most promising inhalation devices, known as dry powder inhalers (DPIs) for the pulmonary delivery of nanolipid powder-based medications, and pulmonary applications of SLN and NLC powders for treating chronic lung conditions, are considered.
Collapse
Affiliation(s)
- Mahmoud H. Abu Elella
- School of Pharmacy, University of Reading, Reading RG6 6UR, UK; (M.H.A.E.); (A.O.A.K.)
| | - Arwa Omar Al Khatib
- School of Pharmacy, University of Reading, Reading RG6 6UR, UK; (M.H.A.E.); (A.O.A.K.)
- Faculty of Pharmacy, Al Ahliyya Amman University, Amman 19111, Jordan
| | - Hisham Al-Obaidi
- School of Pharmacy, University of Reading, Reading RG6 6UR, UK; (M.H.A.E.); (A.O.A.K.)
| |
Collapse
|
8
|
Tongkanarak K, Loupiac C, Neiers F, Chambin O, Srichana T. Evaluating the biomolecular interaction between delamanid/formulations and human serum albumin by fluorescence, CD spectroscopy and SPR: Effects on protein conformation, kinetic and thermodynamic parameters. Colloids Surf B Biointerfaces 2024; 239:113964. [PMID: 38761495 DOI: 10.1016/j.colsurfb.2024.113964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/27/2024] [Accepted: 05/10/2024] [Indexed: 05/20/2024]
Abstract
Delamanid is an anti-tuberculosis drug used for the treatment of drug-resistant tuberculosis. Since delamanid has a high protein bound potential, even patients with low albumin levels should experience high and rapid delamanid clearance. However, the interaction between delamanid and albumin should be better controlled to optimize drug efficacy. This study was designed to evaluate the binding characteristics of delamanid to human serum albumin (HSA) using various methods: fluorescence spectroscopy, circular dichroism (CD), surface plasmon resonance (SPR), and molecular docking simulation. The fluorescence emission band without any shift indicated the interaction was not affected by the polarity of the fluorophore microenvironment. The reduction of fluorescence intensity at 344 nm was proportional to the increment of delamanid concentration as a fluorescence quencher. UV-absorbance measurement at the maximum wavelength (λmax, 280 nm) was evaluated using inner filter effect correction. The HSA conformation change was explained by the intermolecular energy transfer between delamanid and HSA during complex formation. The study, which was conducted at temperatures of 298 K, 303 K, and 310 K, revealed a static quenching mechanism that correlated with a decreased of bimolecular quenching rate constant (kq) and binding constant (Ka) at increased temperatures. The Ka was 1.75-3.16 × 104 M-1 with a specific binding site with stoichiometry 1:1. The negative enthalpy change, negative entropy change, and negative Gibbs free energy change demonstrated an exothermic-spontaneous reaction while van der Waals forces and hydrogen bonds played a vital role in the binding. The molecular displacement approach and molecular docking confirmed that the binding occurred mainly in subdomain IIA, which is a hydrophobic pocket of HSA, with a theoretical binding free energy of -9.33 kcal/mol. SPR exhibited a real time negative sensorgram that resulted from deviation of the reflex angle due to ligand delamanid-HSA complex forming. The binding occurred spontaneously after delamanid was presented to the HSA surface. The SPR mathematical fitting model revealed that the association rate constant (kon) was 2.62 × 108 s-1M-1 and the dissociation rate constant (koff) was 5.65 × 10-3 s-1. The complexes were performed with an association constant (KA) of 4.64 × 1010 M-1 and the dissociation constant (KD) of 2.15 × 10-11 M. The binding constant indicated high binding affinity and high stability of the complex in an equilibrium. Modified CD spectra revealed that conformation of the HSA structure was altered by the presence of delamanid during preparation of the proliposomes that led to the reduction of secondary structure stabilization. This was indicated by the percentage decrease of α-helix. These findings are beneficial to understanding delamanid-HSA binding characteristics as well as the drug administration regimen.
Collapse
Affiliation(s)
- Krittawan Tongkanarak
- Drug Delivery System Excellence Center, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Camille Loupiac
- Univ. Bourgogne Franche - Comté, L'Institut Agro, Université de Bourgogne, INRAE, UMR PAM 1517, Joint Unit Food Processing and Microbiology, Food and Wine Physico-Chemistry Unit, 1 esplanade Erasme, Dijon 21000, France
| | - Fabrice Neiers
- Flavour Perception: Molecular Mechanisms (Flavours), Université de Bourgogne, 7 bd Jeanne d'Arc, Dijon 21000, France
| | - Odile Chambin
- Univ. Bourgogne Franche - Comté, L'Institut Agro, Université de Bourgogne, INRAE, UMR PAM 1517, Joint Unit Food Processing and Microbiology, Food and Wine Physico-Chemistry Unit, 1 esplanade Erasme, Dijon 21000, France; Department of Pharmaceutical Technology, Faculty of Health Sciences, Université de Bourgogne, 7 bd Jeanne d'Arc, Dijon Cedex 21079, France
| | - Teerapol Srichana
- Drug Delivery System Excellence Center, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.
| |
Collapse
|
9
|
Wang B, Wang L, Yang Q, Zhang Y, Qinglai T, Yang X, Xiao Z, Lei L, Li S. Pulmonary inhalation for disease treatment: Basic research and clinical translations. Mater Today Bio 2024; 25:100966. [PMID: 38318475 PMCID: PMC10840005 DOI: 10.1016/j.mtbio.2024.100966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 02/07/2024] Open
Abstract
Pulmonary drug delivery has the advantages of being rapid, efficient, and well-targeted, with few systemic side effects. In addition, it is non-invasive and has good patient compliance, making it a highly promising drug delivery mode. However, there have been limited studies on drug delivery via pulmonary inhalation compared with oral and intravenous modes. This paper summarizes the basic research and clinical translation of pulmonary inhalation drug delivery for the treatment of diseases and provides insights into the latest advances in pulmonary drug delivery. The paper discusses the processing methods for pulmonary drug delivery, drug carriers (with a focus on various types of nanoparticles), delivery devices, and applications in pulmonary diseases and treatment of systemic diseases (e.g., COVID-19, inhaled vaccines, diagnosis of the diseases, and diabetes mellitus) with an updated summary of recent research advances. Furthermore, this paper describes the applications and recent progress in pulmonary drug delivery for lung diseases and expands the use of pulmonary drugs for other systemic diseases.
Collapse
Affiliation(s)
- Bin Wang
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Lin Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Binzhou People's Hospital, Binzhou, 256610, Shandong, China
| | - Qian Yang
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Yuming Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Tang Qinglai
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Xinming Yang
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Zian Xiao
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Lanjie Lei
- Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, Zhejiang, China
| | - Shisheng Li
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
| |
Collapse
|
10
|
Ramachandran S, Prakash P, Mohtar N, Kumar KS, Parumasivam T. Review of inhalable nanoparticles for the pulmonary delivery of anti-tuberculosis drugs. Pharm Dev Technol 2023; 28:978-991. [PMID: 37937865 DOI: 10.1080/10837450.2023.2279691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 09/05/2023] [Indexed: 11/09/2023]
Abstract
Tuberculosis is an airborne disease caused by the pathogen, Mycobacterium tuberculosis, which predominantly affects the lungs. World Health Organization (WHO) has reported that about 85% of TB patients are cured with the existing 6-month antibiotic regimen. However, the lengthy oral administration of high-dose anti-TB drugs is associated with significant side effects and leads to drug resistance cases. Alternatively, reformulating existing anti-tubercular drugs into inhalable nanoparticulate systems is a promising strategy to overcome the challenges associated with oral treatment as they could enhance drug retention in the pulmonary region to achieve an optimal drug concentration in the infected lungs. Hence, this review provides an overview of the literature on inhalable nano-formulations for the delivery of anti-TB drugs, including their formulation techniques and preclinical evaluations between the years 2000 and 2020, gathered from electronic journals via online search engines such as Google Scholar and PubMed. Previous in vitro and in vivo studies highlighted that the nano-size, low toxicity, and high efficacy were among the factors influencing the fate of nanoparticulate system upon deposition in the lungs. Although many preclinical studies have shown that inhalable nanoparticles increased therapeutic efficacy and minimised adverse drug reactions when delivered through the pulmonary route, none of them has progressed into clinical trials to date. This could be attributed to the high cost of inhaled regimes due to the expensive production and characterisation of the nanoparticles as well as the need for an inhalation device as compared to the oral treatment. Another barrier could be the lack of medical acceptance due to insufficient number of trained staff to educate the patients on the correct usage of the inhalation device. Hence, these barriers should be addressed satisfactorily to make the inhaled nanoparticles regimen a reality for the treatment of TB.
Collapse
Affiliation(s)
- Sowmya Ramachandran
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Pulau Pinang, Malaysia
| | - Priyanka Prakash
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Pulau Pinang, Malaysia
| | - Noratiqah Mohtar
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Pulau Pinang, Malaysia
| | - K Sudesh Kumar
- School of Biological Sciences, Universiti Sains Malaysia, Minden, Pulau Pinang, Malaysia
| | - Thaigarajan Parumasivam
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Pulau Pinang, Malaysia
| |
Collapse
|
11
|
Krishna SS, Sudheesh MS, Viswanad V. Liposomal drug delivery to the lungs: a post covid-19 scenario. J Liposome Res 2023; 33:410-424. [PMID: 37074963 DOI: 10.1080/08982104.2023.2199068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/10/2023] [Indexed: 04/20/2023]
Abstract
High local delivery of anti-infectives to the lungs is required for activity against infections of the lungs. The present pandemic has highlighted the potential of pulmonary delivery of anti-infective agents as a viable option for infections like Covid-19, which specifically causes lung infections and mortality. To prevent infections of such type and scale in the future, target-specific delivery of drugs to the pulmonary region is a high-priority area in the field of drug delivery. The suboptimal effect of oral delivery of anti-infective drugs to the lungs due to the poor biopharmaceutical property of the drugs makes this delivery route very promising for respiratory infections. Liposomes have been used as an effective delivery system for drugs due to their biocompatible and biodegradable nature, which can be used effectively for target-specific drug delivery to the lungs. In the present review, we focus on the use of liposomal drug delivery of anti-infectives for the acute management of respiratory infections in the wake of Covid-19 infection.
Collapse
Affiliation(s)
- S Swathi Krishna
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS, Kochi, India
| | - M S Sudheesh
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS, Kochi, India
| | - Vidya Viswanad
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS, Kochi, India
| |
Collapse
|
12
|
Nair A, Greeny A, Nandan A, Sah RK, Jose A, Dyawanapelly S, Junnuthula V, K V A, Sadanandan P. Advanced drug delivery and therapeutic strategies for tuberculosis treatment. J Nanobiotechnology 2023; 21:414. [PMID: 37946240 PMCID: PMC10634178 DOI: 10.1186/s12951-023-02156-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/11/2023] [Indexed: 11/12/2023] Open
Abstract
Tuberculosis (TB) remains a significant global health challenge, necessitating innovative approaches for effective treatment. Conventional TB therapy encounters several limitations, including extended treatment duration, drug resistance, patient noncompliance, poor bioavailability, and suboptimal targeting. Advanced drug delivery strategies have emerged as a promising approach to address these challenges. They have the potential to enhance therapeutic outcomes and improve TB patient compliance by providing benefits such as multiple drug encapsulation, sustained release, targeted delivery, reduced dosing frequency, and minimal side effects. This review examines the current landscape of drug delivery strategies for effective TB management, specifically highlighting lipid nanoparticles, polymer nanoparticles, inorganic nanoparticles, emulsion-based systems, carbon nanotubes, graphene, and hydrogels as promising approaches. Furthermore, emerging therapeutic strategies like targeted therapy, long-acting therapeutics, extrapulmonary therapy, phototherapy, and immunotherapy are emphasized. The review also discusses the future trajectory and challenges of developing drug delivery systems for TB. In conclusion, nanomedicine has made substantial progress in addressing the challenges posed by conventional TB drugs. Moreover, by harnessing the unique targeting abilities, extended duration of action, and specificity of advanced therapeutics, innovative solutions are offered that have the potential to revolutionize TB therapy, thereby enhancing treatment outcomes and patient compliance.
Collapse
Affiliation(s)
- Ayushi Nair
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041, Kerala, India
| | - Alosh Greeny
- Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041, Kerala, India
| | - Amritasree Nandan
- Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041, Kerala, India
| | - Ranjay Kumar Sah
- Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041, Kerala, India
| | - Anju Jose
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041, Kerala, India
| | - Sathish Dyawanapelly
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, 400019, India
| | | | - Athira K V
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041, Kerala, India.
| | - Prashant Sadanandan
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041, Kerala, India.
| |
Collapse
|
13
|
Kumar M, Virmani T, Kumar G, Deshmukh R, Sharma A, Duarte S, Brandão P, Fonte P. Nanocarriers in Tuberculosis Treatment: Challenges and Delivery Strategies. Pharmaceuticals (Basel) 2023; 16:1360. [PMID: 37895831 PMCID: PMC10609727 DOI: 10.3390/ph16101360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
The World Health Organization identifies tuberculosis (TB), caused by Mycobacterium tuberculosis, as a leading infectious killer. Although conventional treatments for TB exist, they come with challenges such as a heavy pill regimen, prolonged treatment duration, and a strict schedule, leading to multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains. The rise of MDR strains endangers future TB control. Despite these concerns, the hunt for an efficient treatment continues. One breakthrough has been the use of nanotechnology in medicines, presenting a novel approach for TB treatment. Nanocarriers, such as lipid nanoparticles, nanosuspensions, liposomes, and polymeric micelles, facilitate targeted delivery of anti-TB drugs. The benefits of nanocarriers include reduced drug doses, fewer side effects, improved drug solubility, better bioavailability, and improved patient compliance, speeding up recovery. Additionally, nanocarriers can be made even more targeted by linking them with ligands such as mannose or hyaluronic acid. This review explores these innovative TB treatments, including studies on nanocarriers containing anti-TB drugs and related patents.
Collapse
Affiliation(s)
- Mahesh Kumar
- School of Pharmaceutical Sciences, Modern Vidya Niketan University, Palwal 121105, India; (M.K.); (G.K.); (A.S.)
| | - Tarun Virmani
- School of Pharmaceutical Sciences, Modern Vidya Niketan University, Palwal 121105, India; (M.K.); (G.K.); (A.S.)
| | - Girish Kumar
- School of Pharmaceutical Sciences, Modern Vidya Niketan University, Palwal 121105, India; (M.K.); (G.K.); (A.S.)
| | - Rohitas Deshmukh
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India;
| | - Ashwani Sharma
- School of Pharmaceutical Sciences, Modern Vidya Niketan University, Palwal 121105, India; (M.K.); (G.K.); (A.S.)
| | - Sofia Duarte
- iBB—Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, University of Lisboa, 1049-001 Lisbon, Portugal; (S.D.); (P.B.)
- Associate Laboratory i4HB—Institute for Health and Bio-Economy, Instituto Superior Técnico, University of Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Pedro Brandão
- iBB—Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, University of Lisboa, 1049-001 Lisbon, Portugal; (S.D.); (P.B.)
- Associate Laboratory i4HB—Institute for Health and Bio-Economy, Instituto Superior Técnico, University of Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, 2829-511 Almada, Portugal
- CQC-IMS, Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal
| | - Pedro Fonte
- iBB—Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, University of Lisboa, 1049-001 Lisbon, Portugal; (S.D.); (P.B.)
- Associate Laboratory i4HB—Institute for Health and Bio-Economy, Instituto Superior Técnico, University of Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Center for Marine Sciences (CCMar), University of Algarve, Gambelas Campus, 8005-139 Faro, Portugal
- Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, University of Algarve, Gambelas Campus, 8005-139 Faro, Portugal
| |
Collapse
|
14
|
de Oliveira PV, de Santana Lira RL, de Abreu Lima R, Mendes YC, Martins AB, de Melo BDO, Goiano MF, Filho RL, de Farias Nunes FBB, Aliança ASDS, Firmo WDCA, Carvalho RC, Zagminan A, de Sousa EM. Bibliometric Review on New Possibilities of Antimycobacterial Agents: Exploring Siderophore Desferrioxamine's Applications as an Antimicrobial Agent. Pharmaceuticals (Basel) 2023; 16:1335. [PMID: 37765143 PMCID: PMC10536058 DOI: 10.3390/ph16091335] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/07/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
Mycobacteria cause tuberculosis and other serious diseases. Understanding their mechanisms of resistance to our immune system and exploring novel drugs are critical strategies to combat infections. A bibliometric analysis was performed to identify publication trends and critical research areas in the field of the antimicrobial activity of desferrioxamine. A total of twenty-four publications on the topic, from 2012 to 2023, were retrieved from databases including Web of Science, Scopus, PubMed, and Embase, using specific keywords. The quality of the publications was assessed using impact and productivity metrics, with an average annual publication rate of 2.1 articles. The United States emerged as the most productive country, with medicine (23.4%, 11 publications) and biochemistry, genetics, and molecular biology (21.3%, 10 publications) as the top research fields. The five most cited publications accounted for 672 citations, with a relatively low h-index (11:11). In conclusion, there has been a lack of publications on this topic in the last decade. The United States dominates production and publication in this area, and there appears to be limited exchange of knowledge, ideas, and technology within the field. Therefore, fostering international cooperation through funding is essential to facilitate further research and development of desferrioxamine-related studies.
Collapse
Affiliation(s)
- Patrícia Vieira de Oliveira
- Graduate Program in Microbial Biology, CEUMA University—UNICEUMA, São Luís 65075-120, Brazil; (P.V.d.O.); (Y.C.M.); (A.S.d.S.A.); (W.d.C.A.F.); (A.Z.)
| | - Roseane Lustosa de Santana Lira
- Graduate Program in Health Sciences, Federal University of Maranhão—UFMA, São Luís 65080-805, Brazil; (R.L.d.S.L.); (R.d.A.L.); (R.C.C.)
| | - Rafael de Abreu Lima
- Graduate Program in Health Sciences, Federal University of Maranhão—UFMA, São Luís 65080-805, Brazil; (R.L.d.S.L.); (R.d.A.L.); (R.C.C.)
| | - Yasmim Costa Mendes
- Graduate Program in Microbial Biology, CEUMA University—UNICEUMA, São Luís 65075-120, Brazil; (P.V.d.O.); (Y.C.M.); (A.S.d.S.A.); (W.d.C.A.F.); (A.Z.)
| | - Antenor Bezerra Martins
- Graduate Program in Health and Services Management, CEUMA University—UNICEUMA, São Luís 65075-120, Brazil;
| | - Bruna de Oliveira de Melo
- Graduate Program in Biodiversity and Biotechnology—BIONORTE Amazonian Network, Federal University of Maranhão—UFMA, São Luís 65080-805, Brazil;
| | | | - Rivaldo Lira Filho
- Graduate Program in Nursing, St. Therese College—CEST, São Luís 65045-180, Brazil;
| | | | - Amanda Silva dos Santos Aliança
- Graduate Program in Microbial Biology, CEUMA University—UNICEUMA, São Luís 65075-120, Brazil; (P.V.d.O.); (Y.C.M.); (A.S.d.S.A.); (W.d.C.A.F.); (A.Z.)
- Graduate Program in Health and Services Management, CEUMA University—UNICEUMA, São Luís 65075-120, Brazil;
| | - Wellyson da Cunha Araújo Firmo
- Graduate Program in Microbial Biology, CEUMA University—UNICEUMA, São Luís 65075-120, Brazil; (P.V.d.O.); (Y.C.M.); (A.S.d.S.A.); (W.d.C.A.F.); (A.Z.)
- Graduate Program in Health and Services Management, CEUMA University—UNICEUMA, São Luís 65075-120, Brazil;
| | - Rafael Cardoso Carvalho
- Graduate Program in Health Sciences, Federal University of Maranhão—UFMA, São Luís 65080-805, Brazil; (R.L.d.S.L.); (R.d.A.L.); (R.C.C.)
| | - Adrielle Zagminan
- Graduate Program in Microbial Biology, CEUMA University—UNICEUMA, São Luís 65075-120, Brazil; (P.V.d.O.); (Y.C.M.); (A.S.d.S.A.); (W.d.C.A.F.); (A.Z.)
- Graduate Program in Health and Services Management, CEUMA University—UNICEUMA, São Luís 65075-120, Brazil;
| | - Eduardo Martins de Sousa
- Graduate Program in Microbial Biology, CEUMA University—UNICEUMA, São Luís 65075-120, Brazil; (P.V.d.O.); (Y.C.M.); (A.S.d.S.A.); (W.d.C.A.F.); (A.Z.)
- Graduate Program in Health Sciences, Federal University of Maranhão—UFMA, São Luís 65080-805, Brazil; (R.L.d.S.L.); (R.d.A.L.); (R.C.C.)
- Graduate Program in Health and Services Management, CEUMA University—UNICEUMA, São Luís 65075-120, Brazil;
- Graduate Program in Biodiversity and Biotechnology—BIONORTE Amazonian Network, Federal University of Maranhão—UFMA, São Luís 65080-805, Brazil;
| |
Collapse
|
15
|
Guerreiro F, Pontes JF, Gaspar MM, Rosa da Costa AM, Faleiro ML, Grenha A. Respirable konjac glucomannan microparticles as antitubercular drug carriers: Effects of in vitro and in vivo interactions. Int J Biol Macromol 2023; 248:125838. [PMID: 37455007 DOI: 10.1016/j.ijbiomac.2023.125838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
Pulmonary delivery of drugs is potentially beneficial in the context of lung disease, maximising drug concentrations in the site of action. A recent work proposed spray-dried konjac glucomannan (KGM) microparticles as antitubercular drug (isoniazid and rifabutin) carriers to treat pulmonary tuberculosis. The present work explores in vitro and in vivo effects of these microparticles, focusing on the ability for macrophage uptake, the exhibited antibacterial activity and safety issues. Efficient uptake of KGM microparticles by macrophages was demonstrated in vitro, while the antitubercular activity of the model drugs against Mycobacterium bovis was not affected by microencapsulation in KGM microparticles. Despite the good indications provided by the developed system, KGM is not yet approved for pulmonary applications, which is a limiting characteristic. To reinforce the available data on the performance of the material, safety parameters were evaluated both in vitro and in vivo, showing promising results. No significant cell toxicity was observed at concentrations considered realistic for lung delivery approaches (up to 125 μg/mL) when lung epithelial cells and macrophages were exposed to KGM microparticles (both drug-loaded and unloaded). Finally, no signs of systemic or lung inflammatory response were detected in mice after receiving 10 administrations of unloaded KGM microparticles.
Collapse
Affiliation(s)
- Filipa Guerreiro
- Centre for Marine Sciences (CCMAR), Universidade do Algarve, 8005-139 Faro, Portugal
| | - Jorge F Pontes
- Centre for Marine Sciences (CCMAR), Universidade do Algarve, 8005-139 Faro, Portugal
| | - Maria Manuela Gaspar
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Ana M Rosa da Costa
- Algarve Chemistry Research Centre (CIQA), Department of Chemistry and Pharmacy, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Maria Leonor Faleiro
- Algarve Biomedical Center (ABC), Research Institute, Universidade do Algarve, 8005-139 Faro, Portugal; Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisboa, Portugal
| | - Ana Grenha
- Centre for Marine Sciences (CCMAR), Universidade do Algarve, 8005-139 Faro, Portugal; Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| |
Collapse
|
16
|
Le-Deygen IM, Mamaeva PV, Skuredina AA, Safronova AS, Belogurova NG, Kudryashova EV. Combined System for the Simultaneous Delivery of Levofloxacin and Rifampicin: Structural and Functional Properties and Antibacterial Activity. J Funct Biomater 2023; 14:381. [PMID: 37504876 PMCID: PMC10381656 DOI: 10.3390/jfb14070381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023] Open
Abstract
The therapy of resistant forms of tuberculosis requires the simultaneous use of several drugs, in particular, a combination of rifampicin and levofloxacin. In this paper, we aimed to design a combined system for the simultaneous delivery of these drugs for potential inhalation administration. A feature of this system is the incorporation of rifampicin into optimized liposomal vesicles capable of forming a multipoint non-covalent complex with chitosan-β-cyclodextrin conjugates. Levofloxacin is incorporated into cyclodextrin tori by forming a host-guest complex. Here, a comprehensive study of the physicochemical properties of the obtained systems was carried out and special attention was paid to the kinetics of cargo release for individual drugs and in the combined system. The release of levofloxacin in combined system is slow and is described by the Higuchi model in all cases. The release of rifampicin from liposomes during the formation of complexes with polymeric conjugates is characterized by the change of the Higuchi model to the Korsmeyer-Peppas model with the main type of diffusion against Fick's law. Microbiological studies in solid and liquid growth media a consistently high antibacterial activity of the obtained systems was shown against B. subtilis and E. coli.
Collapse
Affiliation(s)
- Irina M Le-Deygen
- Chemical Enzymology Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Polina V Mamaeva
- Chemical Enzymology Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Anna A Skuredina
- Chemical Enzymology Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Anastasia S Safronova
- Chemical Enzymology Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Natalia G Belogurova
- Chemical Enzymology Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Elena V Kudryashova
- Chemical Enzymology Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
17
|
Baryakova TH, Pogostin BH, Langer R, McHugh KJ. Overcoming barriers to patient adherence: the case for developing innovative drug delivery systems. Nat Rev Drug Discov 2023; 22:387-409. [PMID: 36973491 PMCID: PMC10041531 DOI: 10.1038/s41573-023-00670-0] [Citation(s) in RCA: 118] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2023] [Indexed: 03/29/2023]
Abstract
Poor medication adherence is a pervasive issue with considerable health and socioeconomic consequences. Although the underlying reasons are generally understood, traditional intervention strategies rooted in patient-centric education and empowerment have proved to be prohibitively complex and/or ineffective. Formulating a pharmaceutical in a drug delivery system (DDS) is a promising alternative that can directly mitigate many common impediments to adherence, including frequent dosing, adverse effects and a delayed onset of action. Existing DDSs have already positively influenced patient acceptability and improved rates of adherence across various disease and intervention types. The next generation of systems have the potential to instate an even more radical paradigm shift by, for example, permitting oral delivery of biomacromolecules, allowing for autonomous dose regulation and enabling several doses to be mimicked with a single administration. Their success, however, is contingent on their ability to address the problems that have made DDSs unsuccessful in the past.
Collapse
Affiliation(s)
| | | | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kevin J McHugh
- Department of Bioengineering, Rice University, Houston, TX, USA.
- Department of Chemistry, Rice University, Houston, TX, USA.
| |
Collapse
|
18
|
Lokhande AS, Panchal F, Munshi R, Madkaikar M, Malshe VC, Devarajan PV. pH-responsive microparticles of rifampicin for augmented intramacrophage uptake and enhanced antitubercular efficacy. Int J Pharm 2023; 635:122729. [PMID: 36803923 DOI: 10.1016/j.ijpharm.2023.122729] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/10/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023]
Abstract
In this study we present pH-responsive rifampicin (RIF) microparticles comprising lecithin and a biodegradable hydrophobic polymer, polyethylene sebacate (PES), to achieve high intramacrophage delivery and enhanced antitubercular efficacy. PES and PES-lecithin combination microparticles (PL MPs) prepared by single step precipitation revealed average size of 1.5 to 2.7 µm, entrapment efficiency ∼ 60 %, drug loading 12-15 % and negative zeta potential. Increase in lecithin concentration enhanced hydrophilicity. PES MPs demonstrated faster release in simulated lung fluid pH 7.4, while lecithin MPs facilitated faster and concentration dependent release in acidic artificial lysosomal fluid (ALF) pH 4.5 due to swelling and destabilization confirmed by TEM. PES and PL (1:2) MPs exhibited comparable macrophage uptake which was ∼ 5-fold superior than free RIF, in the RAW 264.7 macrophage cells. Confocal microscopy depicted intensified accumulation of the MPs in the lysosomal compartment, with augmented release of coumarin dye from the PL MPs, confirming pH-triggered increased intracellular release. Although, PES MPs and PL (1:2) MPs displayed comparable and high macrophage uptake, antitubercular efficacy against macrophage internalised M. tuberculosis was significantly higher with PL (1:2) MPs. This suggested great promise of the pH-sensitive PL (1:2) MPs for enhanced antitubercular efficacy.
Collapse
Affiliation(s)
- Amit S Lokhande
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N. P. Marg, Matunga, Mumbai 400019, Maharashtra, India
| | - Falguni Panchal
- Department of Clinical Pharmacology, Topiwala National Medical College and B. Y. L. Nair Charitable Hospital, Dr A. L. Nair Road, Mumbai Central, Mumbai 400008, Maharashtra, India
| | - Renuka Munshi
- Department of Clinical Pharmacology, Topiwala National Medical College and B. Y. L. Nair Charitable Hospital, Dr A. L. Nair Road, Mumbai Central, Mumbai 400008, Maharashtra, India
| | - Manisha Madkaikar
- Department of Paediatric Immunology and Leukemia Biology, ICMR-National Institute of Immunohaematology, KEM Hospital campus, Parel, Mumbai 400012, Maharashtra, India
| | - Vinod C Malshe
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N. P. Marg, Matunga, Mumbai 400019, Maharashtra, India
| | - Padma V Devarajan
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N. P. Marg, Matunga, Mumbai 400019, Maharashtra, India.
| |
Collapse
|
19
|
Kia P, Ruman U, Pratiwi AR, Hussein MZ. Innovative Therapeutic Approaches Based on Nanotechnology for the Treatment and Management of Tuberculosis. Int J Nanomedicine 2023; 18:1159-1191. [PMID: 36919095 PMCID: PMC10008450 DOI: 10.2147/ijn.s364634] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 02/06/2023] [Indexed: 03/11/2023] Open
Abstract
Tuberculosis (TB), derived from bacterium named Mycobacterium tuberculosis, has become one of the worst infectious and contagious illnesses in the world after HIV/AIDS. Long-term therapy, a high pill burden, lack of compliance, and strict management regimens are disadvantages which resulted in the extensively drug-resistant (XDR) along with multidrug-resistant (MDR) in the treatment of TB. One of the main thrust areas for the current scenario is the development of innovative intervention tools for early diagnosis and therapeutics towards Mycobacterium tuberculosis (MTB). This review discusses various nanotherapeutic agents that have been developed for MTB diagnostics, anti-TB drugs and vaccine. Undoubtedly, the concept of employing nanoparticles (NPs) has strong potential in this therapy and offers impressive outcomes to conquer the disease. Nanocarriers with different types were designed for drug delivery applications via various administration methods. Controlling and maintaining the drug release might be an example of the benefits of utilizing a drug-loaded NP in TB therapy over conventional drug therapy. Furthermore, the drug-encapsulated NP is able to lessen dosage regimen and can resolve the problems of insufficient compliance. Over the past decade, NPs were developed in both diagnostic and therapeutic methods, while on the other hand, the therapeutic system has increased. These "theranostic" NPs were designed for nuclear imaging, optical imaging, ultrasound, imaging with magnetic resonance and the computed tomography, which includes both single-photon computed tomography and positron emission tomography. More specifically, the current manuscript focuses on the status of therapeutic and diagnostic approaches in the treatment of TB.
Collapse
Affiliation(s)
- Pooneh Kia
- Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Umme Ruman
- Nanomaterials Synthesis and Characterization Laboratory (NSCL), Institute of Nanoscience and Nanotechnology (ION2), Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Ariyati Retno Pratiwi
- Department of Oral Biology, Faculty of Dentistry, Universitas Brawijaya, Malang, Indonesia
| | - Mohd Zobir Hussein
- Nanomaterials Synthesis and Characterization Laboratory (NSCL), Institute of Nanoscience and Nanotechnology (ION2), Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| |
Collapse
|
20
|
Alipour S, Mahmoudi L, Ahmadi F. Pulmonary drug delivery: an effective and convenient delivery route to combat COVID-19. Drug Deliv Transl Res 2023; 13:705-715. [PMID: 36260223 PMCID: PMC9580423 DOI: 10.1007/s13346-022-01251-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2022] [Indexed: 02/05/2023]
Abstract
The recent outbreak of coronavirus disease 2019 (COVID-19) in Wuhan, China has spread rapidly around the world, leading to a widespread and urgent effort to develop and use comprehensive approaches in the treatment of COVID-19. While oral therapy is accepted as an effective and simple method, since the primary site of infection and disease progression of COVID-19 is mainly through the lungs, inhaled drug delivery directly to the lungs may be the most appropriate route of administration. To prevent or treat primary SARS-CoV-2 infections, it is essential to target the virus port of entry in the respiratory tract and airway epithelium, which requires rapid and high-intensity inhibition or control of viral entry or replication. To achieve success in this field, inhalation therapy is the most attractive treatment approach due to efficacy/safety profiles. In this review article, pulmonary drug delivery as a unique treatment option in lung diseases will be briefly reviewed. Then, possible inhalation therapies for the treatment of symptoms of COVID-19 will be discussed and the results of clinical trials will be presented. By pulmonary delivery of the currently approved drugs for COVID-19, efficacy of the treatment would be improved along with reducing systemic side effects.
Collapse
Affiliation(s)
- Shohreh Alipour
- Pharmaceutical Sciences Research Center and Department of Food & Drug Quality Control, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Laleh Mahmoudi
- Department of Clinical Pharmacy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Ahmadi
- Center for Nanotechnology in Drug Delivery and Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
21
|
Usharani N, Kanth SV, Saravanan N. Current nanotechnological strategies using lipids, carbohydrates, proteins and metal conjugates-based carrier systems for diagnosis and treatment of tuberculosis - A review. Int J Biol Macromol 2023; 227:262-272. [PMID: 36521715 DOI: 10.1016/j.ijbiomac.2022.12.087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/03/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
Tuberculosis is a fatal disease caused by Mycobacterium tuberculosis with highest morbidity and mortality every year. The evolution of anti-TB drugs is promising in controlling and treating TB. Yet, the drug response varies depending on the bacterial load and host immunological profiles. The prolonged anti-TB treatment regimen and high pill burden leads to poor adherence to treatment and acquired drug resistance. In the clinical arena, sustainable nanotechnology improves the targeted strategies leading to enhance therapeutic recovery with minimum treatment duration and virtuous drug adherence. Determinants of nanosystems are the size, nature, formulation techniques, stable dosing patterns, bioavailability and toxicity. In the treatment of chronic illness, nanomedicines inclusive of biological macromolecules such as lipids, peptides, and nucleic acids occur to be a successive alternative to synthetic carriers. Most biological nanomaterials possess antimicrobial properties with other intrinsic characteristics. Recently, the pulmonary delivery of anti-TB drugs through polymeric nanocarrier systems is shown to be effective in achieving optimal drug levels in lungs for longer duration, enhanced tissue permeation and sustained systemic clearance. This thematic review provides a holistic insight into the nanodelivery systems pertinent to the therapeutic applications in pulmonary tuberculosis describing the choice of carriers, optimized process, metabolic action and excretion processes.
Collapse
Affiliation(s)
- Nagarajan Usharani
- Department of Biochemistry, ICMR-National Institute for Research in Tuberculosis, Chennai, India
| | - Swarna Vinodh Kanth
- Centre for Human and Organizational Resources Development, CSIR-Central Leather Research Institute, Chennai, India
| | - Natarajan Saravanan
- Department of Biochemistry, ICMR-National Institute for Research in Tuberculosis, Chennai, India.
| |
Collapse
|
22
|
Maracaja L, Khanna AK, Murphy SV, Maracaja DL, Lane MR, Khoury O, Tan J, Damuka N, Crawford FF, Bottoms JA, Miller MD, Kaczka DW, Jordam JE, Sai KKS. Positron Emission Tomography-Computed Tomography Imaging of Selective Lobar Delivery of Stem Cells in Ex Vivo Lung Model of Mechanical Ventilation. J Aerosol Med Pulm Drug Deliv 2023; 36:20-26. [PMID: 36594924 PMCID: PMC9942179 DOI: 10.1089/jamp.2022.0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Introduction: The delivery of cell therapies may be an important frontier to treat different respiratory diseases in the near future. However, the cell size, delivery conditions, cell viability, and effect in the pulmonary function are critical factors. We performed a proof-of-concept experiment using ex vivo lungs and novel subglottic airway device that allows for selective lobar isolation and administration of drugs and biologics in liquid solution deep into the lung tissues, while simultaneously ventilating the rest of the lung lobes. Methods: We used radiolabeled cells and positron emission tomography-computed tomography (PET-CT) imaging to demonstrate the feasibility of high-yield cell delivery to a specifically targeted lobe. This study proposes an alternative delivery method of live cells labeled with radioactive isotope into the lung parenchyma and tracks the cell delivery using PET-CT imaging. The technique combines selective lobar isolation and lobar infusion to carry large particles distal to the trachea, subtending bronchial segments and reaching alveoli in targeted regions. Results: The solution with cells and carrier achieved a complete and homogeneous lobar distribution. An increase in tissue density was shown on the computed tomography (CT) scan, and the PET-CT imaging demonstrated retention of the activity at central, peripheral lung parenchyma, and pleural surface. The increase in CT density and metabolic activity of the isotope was restricted to the desired lobe only without leak to other lobes. Conclusion: The selective lobe delivery is targeted and imaging-guided by bronchoscopy and CT to a specific diseased lobe during mechanical ventilation. The feasibility of high-yield cell delivery demonstrated in this study will lead to the development of potential novel therapies that contribute to lung health.
Collapse
Affiliation(s)
- Luiz Maracaja
- Department of Anesthesiology, Wake Forest Baptist Medical Center–Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.,Address correspondence to: Luiz Maracaja, MD, Wake Forest Baptist Medical Center, Winston-Salem, NC 27157-0001, USA
| | - Ashish K. Khanna
- Department of Anesthesiology, Wake Forest Baptist Medical Center–Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.,Outcomes Research Consortium, Cleveland, Ohio, USA
| | - Sean V. Murphy
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Danielle L.V. Maracaja
- Department of Pathology, Wake Forest Baptist Medical Center–Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Magan R. Lane
- Department of Cardiothoracic Surgery, Wake Forest Baptist Medical Center–Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Oula Khoury
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Josh Tan
- Department of Radiology, Wake Forest Baptist Medical Center–Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Naresh Damuka
- Department of Radiology, Wake Forest Baptist Medical Center–Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Freda F. Crawford
- Department of Radiology, Wake Forest Baptist Medical Center–Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Joseph A. Bottoms
- Department of Radiology, Wake Forest Baptist Medical Center–Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Mack D. Miller
- Department of Radiology, Wake Forest Baptist Medical Center–Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - David W. Kaczka
- Department of Anesthesia, The University of Iowa Hospital and Clinics, The University of Iowa, Iowa City, Iowa, USA
| | - James Eric Jordam
- Department of Cardiothoracic Surgery, Wake Forest Baptist Medical Center–Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Kiran Kumar Solingapuram Sai
- Department of Radiology, Wake Forest Baptist Medical Center–Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
23
|
Patil SM, Barji DS, Chavan T, Patel K, Collazo AJ, Prithipaul V, Muth A, Kunda NK. Solubility Enhancement and Inhalation Delivery of Cyclodextrin-Based Inclusion Complex of Delamanid for Pulmonary Tuberculosis Treatment. AAPS PharmSciTech 2023; 24:49. [PMID: 36702977 DOI: 10.1208/s12249-023-02510-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/10/2023] [Indexed: 01/27/2023] Open
Abstract
Tuberculosis (TB) is a contiguous airborne disease caused by Mycobacterium tuberculosis (M.tb), primarily affecting the human lungs. The progression of drug-susceptible TB to drug-resistant strains, MDR-TB and XDR-TB, has become a global challenge toward eradicating TB. Conventional TB treatment involves frequent dosing and prolonged treatment regimens predominantly by an oral or invasive route, leading to treatment-related systemic adverse effects and patient's noncompliance. Pulmonary delivery is an attractive option as we could reduce dose, limit systemic side-effects, and achieve rapid onset of action. Delamanid (DLD), an antituberculosis drug, has poor aqueous solubility, and in this study, we aim to improve its solubility using cyclodextrin complexation. We screened different cyclodextrins and found that HP-β-CD resulted in a 54-fold increase in solubility compared to a 27-fold and 13-fold increase by SBE-β-CD and HP-ɣ-CD, respectively. The stability constant (265 ± 15 M-1) and complexation efficiency (8.5 × 10-4) suggest the formation of a stable inclusion complex of DLD and HP-β-CD in a 2:1 ratio. Solid-state characterization studies (DSC, PXRD, and NMR) further confirmed successful complexation of DLD in HP-β-CD. The nebulized DLD-CD complex solution showed a mass median aerodynamic diameter of 4.42 ± 0.62 μm and fine particle fraction of 82.28 ± 2.79%, suggesting deposition in the respiratory airways. In bacterial studies, minimum inhibitory concentration of DLD-CD complex was significantly reduced (four-fold) compared to free DLD in M.tb (H37Ra strain). Furthermore, accelerated stability studies confirmed that the inclusion complex was stable for 4 weeks with 90%w/w drug content. In conclusion, we increased the aqueous solubility of DLD through cyclodextrin complexation and improved its efficacy in vitro.
Collapse
Affiliation(s)
- Suyash M Patil
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Jamaica, New York, 11439, USA
| | - Druva Sarika Barji
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Jamaica, New York, 11439, USA
| | - Tejashri Chavan
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Jamaica, New York, 11439, USA
| | - Kinjal Patel
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Jamaica, New York, 11439, USA
| | - Andrew J Collazo
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Jamaica, New York, 11439, USA
| | - Vasudha Prithipaul
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Jamaica, New York, 11439, USA
| | - Aaron Muth
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Jamaica, New York, 11439, USA
| | - Nitesh K Kunda
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Jamaica, New York, 11439, USA.
| |
Collapse
|
24
|
Data-Driven Prediction of the Formation of Co-Amorphous Systems. Pharmaceutics 2023; 15:pharmaceutics15020347. [PMID: 36839668 PMCID: PMC9968185 DOI: 10.3390/pharmaceutics15020347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
Co-amorphous systems (COAMS) have raised increasing interest in the pharmaceutical industry, since they combine the increased solubility and/or faster dissolution of amorphous forms with the stability of crystalline forms. However, the choice of the co-former is critical for the formation of a COAMS. While some models exist to predict the potential formation of COAMS, they often focus on a limited group of compounds. Here, four classes of combinations of an active pharmaceutical ingredient (API) with (1) another API, (2) an amino acid, (3) an organic acid, or (4) another substance were considered. A model using gradient boosting methods was developed to predict the successful formation of COAMS for all four classes. The model was tested on data not seen during training and predicted 15 out of 19 examples correctly. In addition, the model was used to screen for new COAMS in binary systems of two APIs for inhalation therapy, as diseases such as tuberculosis, asthma, and COPD usually require complex multidrug-therapy. Three of these new API-API combinations were selected for experimental testing and co-processed via milling. The experiments confirmed the predictions of the model in all three cases. This data-driven model will facilitate and expedite the screening phase for new binary COAMS.
Collapse
|
25
|
Li G, Liu D, Zuo YY. Nano-bio Interactions in the Lung. Nanomedicine (Lond) 2023. [DOI: 10.1007/978-981-16-8984-0_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
26
|
Formulation, characterization and evaluation of inhalable effervescent dry powder of Rifampicin nanoparticles. Indian J Tuberc 2023; 70:49-58. [PMID: 36740318 DOI: 10.1016/j.ijtb.2022.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 01/25/2021] [Accepted: 03/05/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Dry powder inhaler is a popular approach to pulmonary drug delivery to treat tuberculosis. Spray dried Nanoparticles using lactose carrier is extensively used for pulmonary drug delivery. Though lactose nanoparticles show deep lung deposition, they fail to uniformly disperse nanoparticles in its original form in alveoli. Rifampicin is one of the first line drugs in tuberculosis treatment. Lung targeted drug delivery system is an approach to reduce dose related side effects of rifampicin. Inhalable nanoparticles also help to target alveolar macrophages, thus improving treatment efficiency. METHODOLOGY This study focuses on rifampicin nanosuspension formulation and optimization using nano-precipitation method followed by characterizing effervescent DPI of rifampicin nanoparticles with effervescent pair (citric acid and sodium bicarbonate). Preliminary studies showed suitability of 4:5 solvent: antisolvent ratio and lecithin (1%) as stabilizer. The drug and stabilizer concentration in nanoparticles was successfully optimized using 3 ∗ 2 factorial design using DESIGN EXPERT software. The rifampicin nanoparticles were further converted to spray dried powder using effervescent carrier. RESULT The effervescent pair formulation was monodisperse and had a particle size of 1.5 microns (polydispersity index 0.289), thus showing better redispersibility than lactose nanoparticles. The mass median aerodynamic diameter and fine particle diameter of both spray dried formulations were similar and suitable for deep lung deposition. CONCLUSION These findings are suggestive that effervescent technique can be successfully employed to improve redispersibility of rifampicin nanoparticles.
Collapse
|
27
|
Acharya AP, Sezginel KB, Gideon HP, Greene AC, Lawson HD, Inamdar S, Tang Y, Fraser AJ, Patel KV, Liu C, Rosi NL, Chan SY, Flynn JL, Wilmer CE, Little SR. In silico identification and synthesis of a multi-drug loaded MOF for treating tuberculosis. J Control Release 2022; 352:242-255. [PMID: 36273529 DOI: 10.1016/j.jconrel.2022.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/10/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2022]
Abstract
Conventional drug delivery systems have been applied to a myriad of active ingredients but may be difficult to tailor for a given drug. Herein, we put forth a new strategy, which designs and selects the drug delivery material by considering the properties of encapsulated drugs (even multiple drugs, simultaneously). Specifically, through an in-silico screening process of 5109 MOFs using grand canonical Monte Carlo simulations, a customized MOF (referred as BIO-MOF-100) was selected and experimentally verified to be biologically stable, and capable of loading 3 anti-Tuberculosis drugs Rifampicin+Isoniazid+Pyrazinamide at 10% + 28% + 23% wt/wt (total > 50% by weight). Notably, the customized BIO-MOF-100 delivery system cleared naturally Pyrazinamide-resistant Bacillus Calmette-Guérin, reduced growth of virulent Erdman infection in macaque macrophages 10-100-fold compared to soluble drugs in vitro and was also significantly reduced Erdman growth in mice. These data suggest that the methodology of identifying-synthesizing materials can be used to generate solutions for challenging applications such as simultaneous delivery of multiple, small hydrophilic and hydrophobic molecules in the same molecular framework.
Collapse
Affiliation(s)
- Abhinav P Acharya
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, PA 15261, USA; Department of Chemical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85281, USA
| | - Kutay B Sezginel
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, PA 15261, USA
| | - Hannah P Gideon
- Department of Microbiology and Molecular Genetics, and Center for Vaccine Research, University of Pittsburgh School of Medicine, PA 15261, USA
| | - Ashlee C Greene
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, PA 15261, USA
| | - Harrison D Lawson
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, PA 15261, USA
| | - Sahil Inamdar
- Department of Chemical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85281, USA
| | - Ying Tang
- Pittsburgh Heart, Lung, Blood Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA
| | - Amy J Fraser
- Department of Microbiology and Molecular Genetics, and Center for Vaccine Research, University of Pittsburgh School of Medicine, PA 15261, USA
| | - Kush V Patel
- Department of Microbiology and Molecular Genetics, and Center for Vaccine Research, University of Pittsburgh School of Medicine, PA 15261, USA
| | - Chong Liu
- Department of Chemistry, University of Pittsburgh, PA 15261, USA
| | - Nathaniel L Rosi
- Department of Chemistry, University of Pittsburgh, PA 15261, USA
| | - Stephen Y Chan
- Pittsburgh Heart, Lung, Blood Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA
| | - JoAnne L Flynn
- Department of Microbiology and Molecular Genetics, and Center for Vaccine Research, University of Pittsburgh School of Medicine, PA 15261, USA
| | - Christopher E Wilmer
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, PA 15261, USA; Department of Electrical and Computer Engineering, University of Pittsburgh, PA 15261, USA; Clinical and Translational Science Institute, University of Pittsburgh, PA 15261, USA
| | - Steven R Little
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, PA 15261, USA; Department of Bioengineering, University of Pittsburgh, PA 15261, USA; Department of Pharmaceutical Sciences, University of Pittsburgh, PA 15261, USA; Department of Ophthalmology, University of Pittsburgh, PA 15261, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, PA 15261, USA; Department of Immunology, University of Pittsburgh School of Medicine, PA 15261, USA; Clinical and Translational Science Institute, University of Pittsburgh, PA 15261, USA.
| |
Collapse
|
28
|
Valiulin SV, Onischuk AA, Baklanov AM, Dubtsov SN, Dultseva GG, An’kov SV, Tolstikova TG, Belogorodtsev SN, Schwartz YS. Studies of the Specific Activity of Aerosolized Isoniazid against Tuberculosis in a Mouse Model. Antibiotics (Basel) 2022; 11:antibiotics11111527. [PMID: 36358182 PMCID: PMC9686539 DOI: 10.3390/antibiotics11111527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
The aerosol inhalation delivery of isoniazid in mice was investigated, and the specific activity of the aerosol form of isoniazid was studied with the mouse model of tuberculosis infection, the M. tuberculosis H37Rv strain. Aerosol delivery was performed using a laminar-flow horizontal nucleation chamber. The inhalation dose was measured in real-time mode using a diffusion aerosol spectrometer. The mean particle diameter was 0.6 ± 0.03 μm, and the inhalation dose was 5–9 mg/kg. Pharmacokinetic measurements were carried out in nose-only and whole-body chambers. Isoniazid concentration in blood serum and its mass in the lungs were measured as a function of time using high-performance liquid chromatography. Studies of the specific activity of aerosolized isoniazid reveal that treatment with the aerosol lead to the complete recovery of the experimental tuberculosis infection as early as after 28 days after the start of inhalation treatment, while in the animals from the group receiving isoniazid per-orally, sole revivable tuberculosis mycobacteria were detected. Histologic examinations show that only a few macrophagal (nonspecific) granulomas without mycobacteria were detected in the spleen after per-oral and aerosol treatment, the number of granulomas on the 28th day being three times smaller in the latter case. The results show that the developed technique of isoniazid aerosol inhalation may have clinical potential.
Collapse
Affiliation(s)
- Sergey V. Valiulin
- Voevodsky Institute of Chemical Kinetics & Combustion, Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Correspondence:
| | - Andrey A. Onischuk
- Voevodsky Institute of Chemical Kinetics & Combustion, Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Anatoly M. Baklanov
- Voevodsky Institute of Chemical Kinetics & Combustion, Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Sergey N. Dubtsov
- Voevodsky Institute of Chemical Kinetics & Combustion, Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Galina G. Dultseva
- Voevodsky Institute of Chemical Kinetics & Combustion, Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Sergey V. An’kov
- Voevodsky Institute of Chemical Kinetics & Combustion, Russian Academy of Sciences, 630090 Novosibirsk, Russia
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Tatiana G. Tolstikova
- Voevodsky Institute of Chemical Kinetics & Combustion, Russian Academy of Sciences, 630090 Novosibirsk, Russia
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | | | - Yakov Sh. Schwartz
- Novosibirsk Tuberculosis Research Institute, Novosibirsk, 630040 Novosibirsk, Russia
| |
Collapse
|
29
|
Khadka P, Dummer J, Hill PC, Katare R, Das SC. A review of formulations and preclinical studies of inhaled rifampicin for its clinical translation. Drug Deliv Transl Res 2022; 13:1246-1271. [PMID: 36131190 PMCID: PMC9491662 DOI: 10.1007/s13346-022-01238-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2022] [Indexed: 11/15/2022]
Abstract
Inhaled drug delivery is a promising approach to achieving high lung drug concentrations to facilitate efficient treatment of tuberculosis (TB) and to reduce the overall duration of treatment. Rifampicin is a good candidate for delivery via the pulmonary route. There have been no clinical studies yet at relevant inhaled doses despite the numerous studies investigating its formulation and preclinical properties for pulmonary delivery. This review discusses the clinical implications of pulmonary drug delivery in TB treatment, the drug delivery systems reported for pulmonary delivery of rifampicin, animal models, and the animal studies on inhaled rifampicin formulations, and the research gaps hindering the transition from preclinical development to clinical investigation. A review of reports in the literature suggested there have been minimal attempts to test inhaled formulations of rifampicin in laboratory animals at relevant high doses and there is a lack of appropriate studies in animal models. Published studies have reported testing only low doses (≤ 20 mg/kg) of rifampicin, and none of the studies has investigated the safety of inhaled rifampicin after repeated administration. Preclinical evaluations of inhaled anti-TB drugs, such as rifampicin, should include high-dose formulations in preclinical models, determined based on allometric conversions, for relevant high-dose anti-TB therapy in humans.
Collapse
Affiliation(s)
- Prakash Khadka
- School of Pharmacy, University of Otago, Dunedin, 9054, New Zealand
| | - Jack Dummer
- Department of Medicine, Dunedin School of Medicine, University of Otago, Dunedin, 9054, New Zealand
| | - Philip C Hill
- Centre for International Health, Department of Preventive and Social Medicine, Dunedin School of Medicine, University of Otago, Dunedin, 9054, New Zealand
| | - Rajesh Katare
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, 9054, New Zealand
| | - Shyamal C Das
- School of Pharmacy, University of Otago, Dunedin, 9054, New Zealand.
| |
Collapse
|
30
|
Mori D, Jaroli T, Dudhat K, Vaishnav D, Parmar R, Kotadiya N, Bhalodiya M, Pashavan C. Preparation and characterization of slow dissolving linezolid salts for direct pulmonary delivery. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
31
|
Verma N, Arora V, Awasthi R, Chan Y, Jha NK, Thapa K, Jawaid T, Kamal M, Gupta G, Liu G, Paudel KR, Hansbro PM, George Oliver BG, Singh SK, Chellappan DK, Dureja H, Dua K. Recent developments, challenges and future prospects in advanced drug delivery systems in the management of tuberculosis. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
32
|
Antimicrobial polymeric biomaterials based on synthetic, nanotechnology, and biotechnological approaches. Curr Opin Biotechnol 2022; 76:102752. [PMID: 35809432 DOI: 10.1016/j.copbio.2022.102752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 05/23/2022] [Accepted: 06/03/2022] [Indexed: 12/19/2022]
Abstract
Antimicrobial resistance is the main threat to biomaterial failure with a huge impact on National Health Systems and patients' quality of life. Materials engineering and biotechnology have experienced great advances and have converged in the development of new and more sophisticated biomimetic systems with antimicrobial properties. In this sense, polymeric biomaterials play and will play a key role in the development of new antimicrobial devices for biomedical applications. In this Current Opinion article, we review recent and relevant advances reported in the field of polymeric biomaterials with antimicrobial properties with the potential to be applied in the clinic, that is, antimicrobial polymers, antifouling surfaces, nanodelivery systems of antibiotics and antiseptic drugs, biocide polymer-metal hybrid systems, and engineered living materials that actively interact with the pathogen. We conclude with a discussion on the implications of the results for clinical practice and future research.
Collapse
|
33
|
Dragostin I, Dragostin OM, Iacob AT, Dragan M, Chitescu CL, Confederat L, Zamfir AS, Tatia R, Stan CD, Zamfir CL. Chitosan Microparticles Loaded with New Non-Cytotoxic Isoniazid Derivatives for the Treatment of Tuberculosis: In Vitro and In Vivo Studies. Polymers (Basel) 2022; 14:2310. [PMID: 35745886 PMCID: PMC9230020 DOI: 10.3390/polym14122310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/04/2022] [Accepted: 06/05/2022] [Indexed: 02/01/2023] Open
Abstract
Lately, in the world of medicine, the use of polymers for the development of innovative therapies seems to be a major concern among researchers. In our case, as a continuation of the research that has been developed so far regarding obtaining new isoniazid (INH) derivatives for tuberculosis treatment, this work aimed to test the ability of the encapsulation method to reduce the toxicity of the drug, isoniazid and its new derivatives. To achieve this goal, the following methods were applied: a structural confirmation of isoniazid derivatives using LC-HRMS/MS; the obtaining of microparticles based on polymeric support; the determination of their loading and biodegradation capacities; in vitro biocompatibility using MTT cell viability assays; and, last but not least, in vivo toxicological screening for the determination of chronic toxicity in laboratory mice, including the performance of a histopathological study and testing for liver enzymes. The results showed a significant reduction in tissue alterations, the disappearance of cell necrosis and microvesicular steatosis areas and lower values of the liver enzymes TGO, TGP and alkaline phosphatase when using encapsulated forms of drugs. In conclusion, the encapsulation of INH and INH derivatives with chitosan had beneficial effects, suggesting a reduction in hepatotoxicity and, therefore, the achievement of the aim of this paper.
Collapse
Affiliation(s)
- Ionut Dragostin
- Research Centre in the Medical-Pharmaceutical Field, Faculty of Medicine and Pharmacy, Dunarea de Jos University, 35 Al. I. Cuza Str., 800017 Galati, Romania; (I.D.); (C.L.C.)
| | - Oana-Maria Dragostin
- Research Centre in the Medical-Pharmaceutical Field, Faculty of Medicine and Pharmacy, Dunarea de Jos University, 35 Al. I. Cuza Str., 800017 Galati, Romania; (I.D.); (C.L.C.)
| | - Andreea Teodora Iacob
- Faculty of Pharmacy, University of Medicine and Pharmacy Grigore T. Popa, 16 Universitatii Str., 700115 Iasi, Romania; (A.T.I.); (M.D.); (C.D.S.)
| | - Maria Dragan
- Faculty of Pharmacy, University of Medicine and Pharmacy Grigore T. Popa, 16 Universitatii Str., 700115 Iasi, Romania; (A.T.I.); (M.D.); (C.D.S.)
| | - Carmen Lidia Chitescu
- Research Centre in the Medical-Pharmaceutical Field, Faculty of Medicine and Pharmacy, Dunarea de Jos University, 35 Al. I. Cuza Str., 800017 Galati, Romania; (I.D.); (C.L.C.)
| | - Luminita Confederat
- Faculty of Medicine, University of Medicine and Pharmacy Grigore T. Popa, 16 Universitatii Str., 700115 Iasi, Romania;
| | - Alexandra-Simona Zamfir
- Department of Pneumology, Faculty of Medicine, University of Medicine and Pharmacy Grigore T. Popa, 16 Universitatii Str., 700115 Iasi, Romania;
| | - Rodica Tatia
- Department of Cellular and Molecular Biology, National Institute of Research and Development for Biological Sciences, 296 Splaiul Independentei, 060031 Bucharest, Romania;
| | - Catalina Daniela Stan
- Faculty of Pharmacy, University of Medicine and Pharmacy Grigore T. Popa, 16 Universitatii Str., 700115 Iasi, Romania; (A.T.I.); (M.D.); (C.D.S.)
| | - Carmen Lacramioara Zamfir
- Department of Histology, Faculty of Medicine, University of Medicine and Pharmacy Grigore T. Popa, 16 Universitatii Str., 700115 Iasi, Romania;
| |
Collapse
|
34
|
He S, Gui J, Xiong K, Chen M, Gao H, Fu Y. A roadmap to pulmonary delivery strategies for the treatment of infectious lung diseases. J Nanobiotechnology 2022; 20:101. [PMID: 35241085 PMCID: PMC8892824 DOI: 10.1186/s12951-022-01307-x] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/17/2022] [Indexed: 12/18/2022] Open
Abstract
Pulmonary drug delivery is a highly attractive topic for the treatment of infectious lung diseases. Drug delivery via the pulmonary route offers unique advantages of no first-pass effect and high bioavailability, which provides an important means to deliver therapeutics directly to lung lesions. Starting from the structural characteristics of the lungs and the biological barriers for achieving efficient delivery, we aim to review literatures in the past decade regarding the pulmonary delivery strategies used to treat infectious lung diseases. Hopefully, this review article offers new insights into the future development of therapeutic strategies against pulmonary infectious diseases from a delivery point of view.
Collapse
Affiliation(s)
- Siqin He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Jiajia Gui
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Kun Xiong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| | - Yao Fu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
35
|
Nano-Bio Interactions in the Lung. Nanomedicine (Lond) 2022. [DOI: 10.1007/978-981-13-9374-7_14-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
36
|
Sheikh BA, Bhat BA, Alshehri B, Mir RA, Mir WR, Parry ZA, Mir MA. Nano-Drug Delivery Systems: Possible End to the Rising Threats of Tuberculosis. J Biomed Nanotechnol 2021; 17:2298-2318. [PMID: 34974855 DOI: 10.1166/jbn.2021.3201] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Tuberculosis (TB) is still one of the deadliest disease across the globe caused by Mycobacterium tuberculosis (Mtb). Mtb invades host macrophages and other immune cells, modifies their lysosome trafficking proteins, prevents phagolysosomes formation, and inhibits the TNF receptor-dependent apoptosis in macrophages and monocytes. Tuberculosis (TB) killed 1.4 million people worldwide in the year 2019. Despite the advancements in tuberculosis (TB) treatments, multidrugresistant tuberculosis (MDR-TB) remains a severe threat to human health. The complications are further compounded by the emergence of MDR/XDR strains and the failure of conventional drug regimens to eradicate the resistant bacterial strains. Thus, new therapeutic approaches aim to ensure cure without relapse, to prevent the occurrence of deaths and emergence of drug-resistant strains. In this context, this review article summarises the essential nanotechnology-related research outcomes in the treatment of tuberculosis (TB), including drug-susceptible and drug-resistant strains of Mtb. The novel anti-tuberculosis drug delivery systems are also being detailed. This article highlights recent advances in tuberculosis (TB) treatments, including the use of novel drug delivery technologies such as solid lipid nanoparticles, liposomes, polymeric micelles, nano-suspensions, nano-emulsion, niosomes, liposomes, polymeric nanoparticles and microparticles for the delivery of anti-TB drugs and hence eradication and control of both drug-susceptible as well as drug-resistant strains of Mtb.
Collapse
Affiliation(s)
- Bashir A Sheikh
- Department of Bio-Resources, School of Biological Sciences, University of Kashmir, Srinagar 190006, J&K, India
| | - Basharat A Bhat
- Department of Bio-Resources, School of Biological Sciences, University of Kashmir, Srinagar 190006, J&K, India
| | - Bader Alshehri
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University KSA, Almajmaah, 11952, Saudi Arabia
| | - Rakeeb A Mir
- Department of Biotechnology, School of Biosciences and Biotechnology, BGSB University, Rajouri 185234, J&K, India
| | - Wajahat R Mir
- Department of Bio-Resources, School of Biological Sciences, University of Kashmir, Srinagar 190006, J&K, India
| | - Zahoor A Parry
- Clinical Microbiology PK/PD/Laboratory, Indian Institute of Integrated Medicine (IIIM)-Srinagar 190005, J&K, India
| | - Manzoor A Mir
- Department of Bio-Resources, School of Biological Sciences, University of Kashmir, Srinagar 190006, J&K, India
| |
Collapse
|
37
|
Lung-Derived Selectins Enhance Metastatic Behavior of Triple Negative Breast Cancer Cells. Biomedicines 2021; 9:biomedicines9111580. [PMID: 34829810 PMCID: PMC8615792 DOI: 10.3390/biomedicines9111580] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/24/2021] [Accepted: 10/28/2021] [Indexed: 12/26/2022] Open
Abstract
The lung is one of the deadliest sites of breast cancer metastasis, particularly for triple negative breast cancer (TNBC). We have previously shown that the lung produces several soluble factors that may enhance the metastatic behavior of TNBC, including E-, L-, and P-selectin. In this paper, we hypothesize that lung-derived selectins promote TNBC metastatic behavior and may serve as a potential therapeutic target. Lungs were isolated from mice and used to generate lung-conditioned media (CM). Lung-derived selectins were immunodepleted and TNBC migration and proliferation were assessed in response to native or selectin-depleted lung-CM. A 3D ex vivo pulmonary metastasis assay (PuMA) was used to assess the metastatic progression of TNBC in the lungs of wild-type versus triple-selectin (ELP-/-) knockout mice. We observed that individual lung-derived selectins enhance in vitro migration (p ≤ 0.05), but not the proliferation of TNBC cells, and that ex vivo metastatic progression is reduced in the lungs of ELP-/- mice compared to wild-type mice (p ≤ 0.05). Treatment with the pan-selectin inhibitor bimosiamose reduced in vitro lung-specific TNBC migration and proliferation (p ≤ 0.05). Taken together, these results suggest that lung-derived selectins may present a potential therapeutic target against TNBC metastasis. Future studies are aimed at elucidating the pro-metastatic mechanisms of lung-derived selectins and developing a lung-directed therapeutic approach.
Collapse
|
38
|
Chae J, Choi Y, Tanaka M, Choi J. Inhalable nanoparticles delivery targeting alveolar macrophages for the treatment of pulmonary tuberculosis. J Biosci Bioeng 2021; 132:543-551. [PMID: 34538591 DOI: 10.1016/j.jbiosc.2021.08.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 08/19/2021] [Accepted: 08/22/2021] [Indexed: 12/15/2022]
Abstract
Pulmonary tuberculosis is a highly prevalent respiratory disease that affects approximately a quarter of the world's population. The drug treatment protocol for tuberculosis is complex because the Mycobacterium tuberculosis (M. tuberculosis) invades macrophages and begins to infect. Thus treatment usually includes combination therapy with several drugs such as rifampicin, pyrazinamide, isoniazid, and ethambutol over a long dosing period. Therefore, drug-delivery technologies have been developed to improve patient compliance with medication, reduce adverse effects, and increase effectiveness of the treatment. In the present review, we have discussed recent inhalable nanopharmaceutical systems for the treatment of pulmonary tuberculosis and investigated their design and effectiveness. We examined the underlying processes and characteristics of spray-drying technology and studied the formulation of a dry carrier using spray-drying method. Moreover, we reviewed various research articles on pulmonary delivery of nanoparticles using these carriers, and studied their alveolar macrophage targeting ability and therapeutic effects. Further, we appraised the effectiveness of nanoparticle inhalation therapy for the treatment of pulmonary tuberculosis and its potential as a treatment strategy for lung diseases.
Collapse
Affiliation(s)
- Jayoung Chae
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Yonghyun Choi
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Masayoshi Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1-S1-24, O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Jonghoon Choi
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea.
| |
Collapse
|
39
|
Maurya P, Saklani R, Singh S, Nisha R, Pal RR, Mishra N, Singh P, Kumar A, Chourasia MK, Saraf SA. Appraisal of fluoroquinolone-loaded carubinose-linked hybrid nanoparticles for glycotargeting to alveolar macrophages. Drug Deliv Transl Res 2021; 12:1640-1658. [PMID: 34476764 DOI: 10.1007/s13346-021-01055-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2021] [Indexed: 01/10/2023]
Abstract
There is a curious case in Alveolar macrophages (AM), the frontline defence recruits that contain the spread of all intruding bacteria. In response to Mycobacterium tuberculosis (M.tb), AM either contain the spread or are modulated by M.tb to create a region for their replication. The M.tb containing granulomas so formed are organised structures with confined boundaries. The limited availability of drugs inside AM aid drug tolerance and poor therapeutic outcomes in diseases like tuberculosis. The present work proves the glycotargeting efficiency of levofloxacin (LVF) to AM. The optimised formulation developed displayed good safety with 2% hemolysis and a viability of 61.14% on J774A.1 cells. The physicochemical characterisations such as Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) proved that carubinose linkage was accomplished and LVF is entrapped inside carubinose-linked hybrid formulation (CHF) and hybrid formulation (HF) in amorphous form. The transmission electron microscopy (TEM) images revealed a core-shell structure of HF. The particle size of 471.5 nm estimated through dynamic light scattering (DLS) is enough to achieve active and passive targeting to AM. The nanoparticle tracking analysis (NTA) data revealed that the diluted samples were free from aggregates. Fluorescence-activated cell sorting (FACS) data exhibited excellent uptake via CHF (15 times) and HF(3 times) with reference to plain fluorescein isothiocyanate (FITC). The pharmacokinetic studies revealed that CHF and HF release the entrapped moiety LVF in a controlled manner over 72 h. The stability studies indicated that the modified formulation remains stable over 6 months at 5 ± 3℃. Hence, hybrid systems can be efficiently modified via carubinose to target AM via the parenteral route.
Collapse
Affiliation(s)
- Priyanka Maurya
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University, ) Vidya Vihar, Raebareli Road, Lucknow, 226025, India
| | - Ravi Saklani
- Department of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Samipta Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University, ) Vidya Vihar, Raebareli Road, Lucknow, 226025, India
| | - Raquibun Nisha
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University, ) Vidya Vihar, Raebareli Road, Lucknow, 226025, India
| | - Ravi Raj Pal
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University, ) Vidya Vihar, Raebareli Road, Lucknow, 226025, India
| | - Nidhi Mishra
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University, ) Vidya Vihar, Raebareli Road, Lucknow, 226025, India
| | - Priya Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University, ) Vidya Vihar, Raebareli Road, Lucknow, 226025, India
| | - Abhiram Kumar
- Department of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Manish K Chourasia
- Department of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Shubhini A Saraf
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University, ) Vidya Vihar, Raebareli Road, Lucknow, 226025, India.
| |
Collapse
|
40
|
|
41
|
Rossi I, Bettini R, Buttini F. Resistant Tuberculosis: the Latest Advancements of Second-line Antibiotic Inhalation Products. Curr Pharm Des 2021; 27:1436-1452. [PMID: 33480336 DOI: 10.2174/1381612827666210122143214] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/21/2020] [Accepted: 10/26/2020] [Indexed: 11/22/2022]
Abstract
Drug-resistant tuberculosis (TB) can be considered the man-made result of interrupted, erratic or inadequate TB therapy. As reported in WHO data, resistant Mycobacterium tuberculosis (Mtb) strains continue to constitute a public health crisis. Mtb is naturally able to survive host defence mechanisms and to resist most antibiotics currently available. Prolonged treatment regimens using the available first-line drugs give rise to poor patient compliance and a rapid evolution of strains resistant to rifampicin only or to both rifampicin and isoniazid (multi drug-resistant, MDR-TB). The accumulation of mutations may give rise to extensively drug-resistant strains (XDR-TB), i.e. strains with resistance also to fluoroquinolones and to the injectable aminoglycoside, which represent the second-line drugs. Direct lung delivery of anti-tubercular drugs, as an adjunct to conventional routes, provides high concentrations within the lungs, which are the intended target site of drug delivery, representing an interesting strategy to prevent or reduce the development of drug-resistant strains. The purpose of this paper is to describe and critically analyse the most recent and advanced results in the formulation development of WHO second-line drug inhalation products, with particular focus on dry powder formulation. Although some of these formulations have been developed for other lung infectious diseases (Pseudomonas aeruginosa, nontuberculous mycobacteria), they could be valuable to treat MDR-TB and XDR-TB.
Collapse
Affiliation(s)
- Irene Rossi
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Ruggero Bettini
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Francesca Buttini
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| |
Collapse
|
42
|
de Menezes BRC, Rodrigues KF, Schatkoski VM, Pereira RM, Ribas RG, Montanheiro TLDA, Thim GP. Current advances in drug delivery of nanoparticles for respiratory disease treatment. J Mater Chem B 2021; 9:1745-1761. [PMID: 33508058 DOI: 10.1039/d0tb01783c] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cases of respiratory diseases have been increasing around the world, affecting the health and quality of life of millions of people every year. Chronic respiratory diseases (CRDs) and acute respiratory infections (ARIs) are responsible for many hospital admissions and deaths, requiring sophisticated treatments that facilitate the delivery of therapeutics to specific target sites with controlled release. In this context, different nanoparticles (NPs) have been explored to match this demand, such as lipid, liposome, protein, carbon-based, polymeric, metallic, oxide, and magnetic NPs. The use of NPs as drug delivery systems can improve the efficacy of commercial drugs due to their advantages related to sustained drug release, targeting effects, and patient compliance. The current review presents an updated summary of recent advances regarding the use of NPs as drug delivery systems to treat diseases related to the respiratory tract, such as CRDs and ARIs. The latest applications presented in the literature were considered, and the opportunities and challenges of NPs in the drug delivery field are discussed.
Collapse
Affiliation(s)
- Beatriz Rossi Canuto de Menezes
- Laboratory of Plasma and Processes (LPP), Technological Institute of Aeronautics (ITA), Praça Marechal Eduardo Gomes, 50, Vila das Acácias, São José dos Campos, SP 12228-900, Brazil.
| | - Karla Faquine Rodrigues
- Laboratory of Plasma and Processes (LPP), Technological Institute of Aeronautics (ITA), Praça Marechal Eduardo Gomes, 50, Vila das Acácias, São José dos Campos, SP 12228-900, Brazil.
| | - Vanessa Modelski Schatkoski
- Laboratory of Plasma and Processes (LPP), Technological Institute of Aeronautics (ITA), Praça Marechal Eduardo Gomes, 50, Vila das Acácias, São José dos Campos, SP 12228-900, Brazil.
| | - Raíssa Monteiro Pereira
- Laboratory of Plasma and Processes (LPP), Technological Institute of Aeronautics (ITA), Praça Marechal Eduardo Gomes, 50, Vila das Acácias, São José dos Campos, SP 12228-900, Brazil.
| | - Renata Guimarães Ribas
- Laboratory of Plasma and Processes (LPP), Technological Institute of Aeronautics (ITA), Praça Marechal Eduardo Gomes, 50, Vila das Acácias, São José dos Campos, SP 12228-900, Brazil.
| | - Thaís Larissa do Amaral Montanheiro
- Laboratory of Plasma and Processes (LPP), Technological Institute of Aeronautics (ITA), Praça Marechal Eduardo Gomes, 50, Vila das Acácias, São José dos Campos, SP 12228-900, Brazil.
| | - Gilmar Patrocínio Thim
- Laboratory of Plasma and Processes (LPP), Technological Institute of Aeronautics (ITA), Praça Marechal Eduardo Gomes, 50, Vila das Acácias, São José dos Campos, SP 12228-900, Brazil.
| |
Collapse
|
43
|
Preference of inhalants over pills/injections among pulmonary tuberculosis patients in Western India: A cross-sectional study. J Clin Tuberc Other Mycobact Dis 2021; 23:100234. [PMID: 33997308 PMCID: PMC8095169 DOI: 10.1016/j.jctube.2021.100234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
India shares the highest burden of TB & MDR-TB cases in the world. Currently, pills/injections are two modes of treatment available for TB patients. Inhalants could be preferred and acceptable drug delivery method among TB patients. Exploration of diverse drug delivery options for TB patients is recommended.
Background Presently, pills and injections are the two modes of therapeutic treatment available for tuberculosis (TB) patients. Many researchers have hypothesized inhalation drug delivery for reducing treatment times and possibly limiting the insurgence of drug resistance. This study was aimed at identifying and assessing the preferences of inhalation therapy over injections/pills among pulmonary TB patients. Method Cross-sectional study design was used and a sample of 477 participants were recruited at selected three Directly Observed Treatment Short-Course (DOTS) centers in Bhiwandi city. Data was collected through self-reported questionnaire. Descriptive statistics were reported, and binomial regression models were applied for data analysis. Results The preference of inhalants over pills/injections among pulmonary TB patients was significantly associated with clinical characteristics. The patients who underwent treatment for more than 1 year were 1.7 times more likely to prefer inhalants over pills/injections when compared with treatment duration of less than 1 year. Similarly, patients taking five or more pills/day were 1.7 times more likely to prefer inhalants over pills/injections when compared with patients taking 1–4 pills per day. Conclusion The study results signify that inhalants could be an acceptable method of drug delivery in this population of TB patients. Diverse drug delivery options for TB patients may greatly contribute towards TB treatment adherence.
Collapse
|
44
|
Hetzel M, Ackermann M, Lachmann N. Beyond "Big Eaters": The Versatile Role of Alveolar Macrophages in Health and Disease. Int J Mol Sci 2021; 22:3308. [PMID: 33804918 PMCID: PMC8036607 DOI: 10.3390/ijms22073308] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 02/07/2023] Open
Abstract
Macrophages act as immune scavengers and are important cell types in the homeostasis of various tissues. Given the multiple roles of macrophages, these cells can also be found as tissue resident macrophages tightly integrated into a variety of tissues in which they fulfill crucial and organ-specific functions. The lung harbors at least two macrophage populations: interstitial and alveolar macrophages, which occupy different niches and functions. In this review, we provide the latest insights into the multiple roles of alveolar macrophages while unraveling the distinct factors which can influence the ontogeny and function of these cells. Furthermore, we will highlight pulmonary diseases, which are associated with dysfunctional macrophages, concentrating on congenital diseases as well as pulmonary infections and impairment of immunological pathways. Moreover, we will provide an overview about different treatment approaches targeting macrophage dysfunction. Improved knowledge of the role of macrophages in the onset of pulmonary diseases may provide the basis for new pharmacological and/or cell-based immunotherapies and will extend our understanding to other macrophage-related disorders.
Collapse
Affiliation(s)
- Miriam Hetzel
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (M.H.); (M.A.)
- REBIRTH Research Center for Translational and Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Mania Ackermann
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (M.H.); (M.A.)
- REBIRTH Research Center for Translational and Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, 30625 Hannover, Germany
| | - Nico Lachmann
- REBIRTH Research Center for Translational and Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, 30625 Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
45
|
Lipid nanoparticles with improved biopharmaceutical attributes for tuberculosis treatment. Int J Pharm 2021; 596:120321. [PMID: 33539994 DOI: 10.1016/j.ijpharm.2021.120321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/18/2021] [Accepted: 01/22/2021] [Indexed: 01/05/2023]
Abstract
Tuberculosis is a topic of relevance worldwide because of the social and biological factors that triggered the disease and the economic burden on the health-care systems that imply its therapeutic treatment. Challenges to handle these issues include, among others, research on technological breakthroughs modifying the drug regimens to facilitate therapy adherence, avoid mycobacterium drug resistance, and minimize toxic side-effects. Lipid nanoparticles arise as a promising strategy in this respect as deduced from the reported scientific data. They are prepared from biodegradable and biocompatible starting materials and compared to the use of the free drugs, the entrapment of active molecules into the carriers might lead to both dose reduction and controlled delivery. Moreover, the target to the lung, the organ mainly affected by the disease, could be possible if the particle surface is modified. Although conclusive statements cannot be made considering the limited number of available research works, looking into what has been achieved up to now definitively encourages to continue investigations in this regard.
Collapse
|
46
|
Versatility of hydrogel-forming microneedles in in vitro transdermal delivery of tuberculosis drugs. Eur J Pharm Biopharm 2021; 158:294-312. [DOI: 10.1016/j.ejpb.2020.12.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 12/02/2020] [Accepted: 12/06/2020] [Indexed: 01/08/2023]
|
47
|
Dahanayake MH, Jayasundera ACA. Nano-based drug delivery optimization for tuberculosis treatment: A review. J Microbiol Methods 2020; 181:106127. [PMID: 33359155 DOI: 10.1016/j.mimet.2020.106127] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/16/2020] [Accepted: 12/16/2020] [Indexed: 11/19/2022]
Abstract
Regardless of advanced technology and innovation, infectious diseases continue to be one of the extreme health challenges in modern world. Tuberculosis (TB) is one of the top ten causes of deaths worldwide and the leading cause of death from a single infectious agent. The conventional TB drug therapy requires a long term treatment with frequent and multiple drug dosing with a stiff administration schedule, which results in low patient compliance. This eventually leads to the recurrence of the infection and the emergence of multiple drug resistance. Hence, there is an urgent need to develop more successful and effective strategies to overcome the problems of drug resistance, duration of treatment course and devotion to treatment. Nanotechnology has considerable potential for diagnosis, treatment and prevention of infectious diseases including TB. The main advantages of nanoparticles to be used as drug carriers are their small size, high stability, enhanced delivery of hydrophilic and hydrophobic drugs, intracellular delivery of macromolecules, targeted delivery of drugs to specific cells or tissues, and the feasibility of various drug administration routes. Moreover, these carriers are adapted to facilitate controlled, slow, and persistent drug release from the matrix. Above properties of nanoparticles permit the improvement of drug bioavailability and reduction of dosing frequency and may reduce the toxicity and resolve the problem of low adherence to the prescribed therapy. In this review, various types of nanocarriers have been evaluated as promising drug delivery systems for different administration routes and main research outcomes in this area have been discussed.
Collapse
Affiliation(s)
| | - Anil C A Jayasundera
- Department of Chemistry, Faculty of Science, University of Paradeniya, Sri Lanka
| |
Collapse
|
48
|
Rasul RM, Tamilarasi Muniandy M, Zakaria Z, Shah K, Chee CF, Dabbagh A, Rahman NA, Wong TW. A review on chitosan and its development as pulmonary particulate anti-infective and anti-cancer drug carriers. Carbohydr Polym 2020; 250:116800. [PMID: 33049807 PMCID: PMC7434482 DOI: 10.1016/j.carbpol.2020.116800] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/17/2020] [Accepted: 07/19/2020] [Indexed: 12/24/2022]
Abstract
Chitosan, as a biodegradable and biocompatible polymer, is characterized by anti-microbial and anti-cancer properties. It lately has received a widespread interest for use as the pulmonary particulate backbone materials of drug carrier for the treatment of infectious disease and cancer. The success of chitosan as pulmonary particulate drug carrier is a critical interplay of their mucoadhesive, permeation enhancement and site/cell-specific attributes. In the case of nanocarriers, various microencapsulation and micro-nano blending systems have been devised to equip them with an appropriate aerodynamic character to enable efficient pulmonary aerosolization and inhalation. The late COVID-19 infection is met with acute respiratory distress syndrome and cancer. Chitosan and its derivatives are found useful in combating HCoV and cancer as a function of their molecular weight, substituent type and its degree of substitution. The interest in chitosan is expected to rise in the next decade from the perspectives of drug delivery in combination with its therapeutic performance.
Collapse
Affiliation(s)
- Ruhisy Mohd Rasul
- Non-Destructive Biomedical and Pharmaceutical Research Centre, iPROMISE, Universiti Teknologi MARA Selangor, 42300, Puncak Alam, Selangor, Malaysia; Faculty of Applied Sciences, Universiti Teknologi MARA, 40450, Shah Alam, Selangor, Malaysia
| | - M Tamilarasi Muniandy
- Non-Destructive Biomedical and Pharmaceutical Research Centre, iPROMISE, Universiti Teknologi MARA Selangor, 42300, Puncak Alam, Selangor, Malaysia; Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Zabliza Zakaria
- Non-Destructive Biomedical and Pharmaceutical Research Centre, iPROMISE, Universiti Teknologi MARA Selangor, 42300, Puncak Alam, Selangor, Malaysia; Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, Puncak Alam, Selangor, Malaysia
| | - Kifayatullah Shah
- Department of Pharmaceutics, Faculty of Pharmacy, Gomal University, Dera Ismail Khan, Khyber Pakhtunkhwa, Pakistan
| | - Chin Fei Chee
- Nanotechnology & Catalysis Research Centre, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Ali Dabbagh
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | - Noorsaadah Abd Rahman
- Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Tin Wui Wong
- Non-Destructive Biomedical and Pharmaceutical Research Centre, iPROMISE, Universiti Teknologi MARA Selangor, 42300, Puncak Alam, Selangor, Malaysia; Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, Puncak Alam, Selangor, Malaysia; Sino-Malaysia Molecular Oncology and Traditional Chinese Medicine Delivery Joint Research Centre, Medical College, Yangzhou University. China.
| |
Collapse
|
49
|
Shah S, Cristopher D, Sharma S, Soniwala M, Chavda J. Inhalable linezolid loaded PLGA nanoparticles for treatment of tuberculosis: Design, development and in vitro evaluation. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.102013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
50
|
Changsan N, Sinsuebpol C. Dry powder inhalation formulation of chitosan nanoparticles for co-administration of isoniazid and pyrazinamide. Pharm Dev Technol 2020; 26:181-192. [PMID: 33213232 DOI: 10.1080/10837450.2020.1852570] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Co-loaded isoniazid and pyrazinamide chitosan nanoparticles were formulated using the ionic gelation method. The formulations were adjusted to five mass ratios of tripolyphosphate (TPP) and chitosan at three TPP concentrations. Particle size, polydispersity index, zeta potential, and encapsulation efficiency were used to evaluate all formulations. The results revealed that the ratio of TPP to chitosan had the highest impact in generating chitosan nanoparticles. The selected nanoparticle formulations were freeze-dried, and the obtained dry powders were characterized using scanning electron microscopy, differential scanning calorimetry, X-ray diffraction, and Fourier-transform infrared spectroscopy to confirm the interaction of loaded drug and formulation excipients. The aerosolized performance of dry powders was also evaluated using the Andersen cascade impactor. A mass median aerodynamic diameter of 3.3-3.5 µm, % fine particle fraction of 30-44%, and 92-95% emitted dose were obtained from all formulations. The dry powder formulations were not toxic to the respiratory tract cell lines. Furthermore, they did not provoke alveolar macrophages into producing inflammatory cytokines or nitric oxides, indicating that the formulations are safe and could potentially be used to deliver to respiratory tract for tuberculosis treatment.
Collapse
Affiliation(s)
- Narumon Changsan
- Department of Pharmaceutical Technology, College of Pharmacy, Rangsit University, Pathumthani, Thailand
| | - Chutima Sinsuebpol
- Department of Pharmaceutical Technology, College of Pharmacy, Rangsit University, Pathumthani, Thailand
| |
Collapse
|