1
|
Bao J, Li Z, Zhang D. β-elemene: A promising natural compound in lung cancer therapy. Eur J Pharmacol 2025; 997:177399. [PMID: 40064226 DOI: 10.1016/j.ejphar.2025.177399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 04/18/2025]
Abstract
Lung cancer, a leading cause of cancer-related mortality globally, presents complex challenges in treatment and disease management. This review explores β-elemene, a sesquiterpene from Curcuma wenyujin, emphasising its pharmacological effects and therapeutic mechanisms in lung cancer. Focusing on its roles in modulating cellular pathways, this study details β-elemene's influence on apoptosis, autophagy, ferroptosis, hypoxic responses, metabolic shifts, and cell cycle arrest, as well as its impact on the tumour microenvironment and regulatory pathways (including PI3K/AKT, STAT3, AMPK/MAPK) and non-coding RNAs. The potential of β-elemene as a complementary agent in chemotherapy, radiotherapy, and hyperthermia therapy is examined, underscoring its capability to bolster treatment efficacy and counter drug resistance. The review also addresses current obstacles in clinical use, notably bioavailability issues, and explores innovative delivery systems like liposomes and microemulsions designed to enhance therapeutic delivery. Although preclinical studies indicate significant anti-tumor effects, further research is needed to address clinical translation challenges. Collectively, this review highlights β-elemene's multi-targeted therapeutic potential in lung cancer, advocating for ongoing research to refine its clinical use and optimize patient outcomes.
Collapse
Affiliation(s)
- Jiahui Bao
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, China
| | - Zhiliang Li
- Department of Critical Care Medicine, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, 110001, China
| | - Dan Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, China.
| |
Collapse
|
2
|
Fang W, Tao Z, Li H, Liu S, Ee YJ, Yin S, Wong T, Huang Y. Precise morphology control of all-organic core-shell droplets for synthesis of microencapsulated phase change materials through AC electric fields. J Colloid Interface Sci 2025; 685:961-974. [PMID: 39879781 DOI: 10.1016/j.jcis.2025.01.206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/23/2025] [Accepted: 01/23/2025] [Indexed: 01/31/2025]
Abstract
HYPOTHESIS Complex emulsions usually consist of aqueous phases, like oil-in-water-in-oil (o/w/o) and water-in-oil-in-water (w/o/w), serving foundational roles in colloid science. Oil-in-oil-oil (o/o/o) emulsions offer new avenues for non-aqueous reagents but face challenges in balancing the forces between multiple organic phases. EXPERIMENTS In this work, we generate o/o/o emulsions by integrating an AC electric field with a double cross-junction microchannel. The characteristics of generating dynamics is observed and analyzed based on the interaction between the electric force, viscous force, and interfacial tension. FINDINGS We first establish an innovative evaluation theory to quantify the generation efficiency for complex emulsions. The results show that the electric effect improves the generation efficiency and monodispersity across a variety of high flow rates compared with conventional methods, enabling the flexibility in adjusting droplet sizes and core-shell structures. At low flow rates, the breakup of core-shell droplets can also be controlled by the electric force under different types of o/o/o emulsions. The inner phase could be substituted with alkane phase-change materials and processed into microencapsulated phase-change materials (MEPCMs). These organic MEPCMs could be integrated into electrolytes due to their ultra-low electric conductivity, which shows a significant temperature buffering effect in lithium batteries. This research not only enhances our understanding of colloidal systems but also fabricates core-shell structures with customized functionalities, paving the way for advancements in energy conversion and management, drug delivery, and materials engineering.
Collapse
Affiliation(s)
- Weidong Fang
- National Key Laboratory of Science and Technology on Aero-Engine Aero-Thermodynamics, Research Institute of Aero-Engine, Beihang University, Beijing 100191, China; School of Mechanical and Aerospace Engineering, Nanyang Technological University. 50 Nanyang Avenue, 639798 Singapore, Singapore
| | - Zhi Tao
- National Key Laboratory of Science and Technology on Aero-Engine Aero-Thermodynamics, Research Institute of Aero-Engine, Beihang University, Beijing 100191, China
| | - Haiwang Li
- National Key Laboratory of Science and Technology on Aero-Engine Aero-Thermodynamics, Research Institute of Aero-Engine, Beihang University, Beijing 100191, China
| | - Sihang Liu
- National Key Laboratory of Science and Technology on Aero-Engine Aero-Thermodynamics, Research Institute of Aero-Engine, Beihang University, Beijing 100191, China
| | - Yen-Jie Ee
- School of Mechanical and Aerospace Engineering, Nanyang Technological University. 50 Nanyang Avenue, 639798 Singapore, Singapore
| | - Shuai Yin
- School of Mechanical and Power Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Teckneng Wong
- School of Mechanical and Aerospace Engineering, Nanyang Technological University. 50 Nanyang Avenue, 639798 Singapore, Singapore
| | - Yi Huang
- National Key Laboratory of Science and Technology on Aero-Engine Aero-Thermodynamics, Research Institute of Aero-Engine, Beihang University, Beijing 100191, China.
| |
Collapse
|
3
|
Rachmawati P, Susanto S, Christian YE. Impact of sterilization method on the system performance of lipid-based novel drug delivery. Int J Pharm 2025; 674:125486. [PMID: 40120779 DOI: 10.1016/j.ijpharm.2025.125486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/24/2025] [Accepted: 03/14/2025] [Indexed: 03/25/2025]
Abstract
Sterilization plays a crucial role in the safety and efficacy of lipid-based novel drug delivery systems (NDDS), particularly because of the high sensitivity of lipid components to various sterilization processes. This literature review investigates the impact of different sterilization methods, such as heat sterilization, filtration, radiation, as well as chemical and gas methods, on the physicochemical properties, stability, and therapeutic performance of lipid-based NDDS (LB-NDDS), including liposomes, microemulsions, nanoemulsions, solid lipid nanoparticles (SLN), and nanostructured lipid carriers (NLC). Special emphasis is placed on lipid degradation, drug content, and particle size alterations, that may occur during sterilization. Overall, understanding the suitable sterilization technique for LB-NDDS is critical for maintaining the integrity of drug delivery systems integrity and achieving optimal therapeutic outcomes. The findings provide a comprehensive analysis of the current challenges and recent advancement (supercritical CO2, electron beam, and ozone) of sterilization techniques that align with the sensitive nature of LB-NDDS.
Collapse
Affiliation(s)
- Putriana Rachmawati
- Department of Pharmacy, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Jakarta 14440, Indonesia.
| | - Sharon Susanto
- Department of Pharmacy, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Jakarta 14440, Indonesia.
| | - Yulius Evan Christian
- Department of Pharmacy, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Jakarta 14440, Indonesia.
| |
Collapse
|
4
|
Meng TK, Han RL, Ma P, Chen SX, Qi BH, Wang ZX, Li XY, Deng HS. Microemulsion-based drug delivery system identifies pepper alkaloids as anti-obesity compounds. Acta Pharmacol Sin 2025:10.1038/s41401-025-01521-x. [PMID: 40113987 DOI: 10.1038/s41401-025-01521-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 02/23/2025] [Indexed: 03/22/2025]
Abstract
Obesity is a significant contributor to various metabolic diseases such as heart disease and diabetes. Due to the adverse effects of synthetic anti-obesity drugs, natural products from functional food plants, which mimic the effects of synthetic chemicals, present promising alternatives. However, many natural plant-derived compounds are poorly soluble in water, resulting in low bioavailability within the gastrointestinal tract, a key limitation for the effectiveness of many hydrophobic substances. In this study we developed a microemulsion-based drug delivery system in Drosophila, which effectively enhanced the solubility of hydrophobic compounds without noticeable effects on food intake or survival in fruit flies. This system consisted of cremophor EL, ethanol and ethyl oleate (7:6:1), which enabled the establishment of an emulsion-based liquid high-fat diet (LHFD) model, followed by a pilot screening of 161 standard substances from traditional Chinese medicine. We found that piperine (PIP), an alkaloid derived from black pepper, significantly decreased triacylglycerol (TAG) levels in both the intestine and in whole flies. We demonstrated that piperine (1 mg/ml) significantly elevated cytosolic Ca2+ levels in enterocytes by activating Transient receptor potential (TRP) channels. TRPV1 agonists such as capsaicin and evodiamine (another alkaloid identified during the screening) also exhibited anti-obesity effects. Increased Ca2+ levels resulted in the suppression of dietary lipase Magro expression through the activation of the transcription factor cAMP response element binding protein (CREB). Furthermore, hydrophobic compounds in the microemulsion were successfully delivered to distal tissues including liver and brain blood vessels in mice, and PIP in the microemulsion was sufficient to reduce body weight in mice. In conclusion, we have developed a microemulsion-based U-GLAD platform for drug delivery, and piperine is identified as a weight-controlling compound, providing a novel approach to the treatment of obesity and its associated symptoms.
Collapse
Affiliation(s)
- Tian-Kai Meng
- Yangzhi Rehabilitation Hospital, Sunshine Rehabilitation Center, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Ruo-Lei Han
- Yangzhi Rehabilitation Hospital, Sunshine Rehabilitation Center, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Peng Ma
- Yangzhi Rehabilitation Hospital, Sunshine Rehabilitation Center, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Shu-Xin Chen
- Yangzhi Rehabilitation Hospital, Sunshine Rehabilitation Center, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Bo-Han Qi
- Yangzhi Rehabilitation Hospital, Sunshine Rehabilitation Center, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Zi-Xuan Wang
- Yangzhi Rehabilitation Hospital, Sunshine Rehabilitation Center, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Xiao-Yu Li
- Yangzhi Rehabilitation Hospital, Sunshine Rehabilitation Center, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Han-Song Deng
- Yangzhi Rehabilitation Hospital, Sunshine Rehabilitation Center, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
5
|
Alkhaldi M, Sengupta S, Keck CM. Curcumin Microemulsions: Influence of Compositions on the Dermal Penetration Efficacy. Pharmaceutics 2025; 17:301. [PMID: 40142965 PMCID: PMC11944443 DOI: 10.3390/pharmaceutics17030301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 03/28/2025] Open
Abstract
Background/Objective: This study provided a comparison of the influence of each component of the microemulsion formulation and investigated the impact of varying concentrations of the microemulsion components on curcumin's ability to penetrate the skin using an ex vivo porcine ear model. Methods: Curcumin microemulsions with different compositions were prepared and analyzed for their physicochemical properties. The dermal penetration efficacy of curcumin was evaluated from the different formulations and compared with non-microemulsion formulations. Results: Findings proved that microemulsion formulations improve the dermal penetration efficacy for curcumin when compared with non-microemulsion formulations. The composition of the microemulsion affects the penetration efficacy of curcumin and increases with decreasing oil content and increasing surfactant and water content. The best penetration for curcumin is achieved with a microemulsion that contained 7.7 g of medium-chain triglycerides as the oil phase, 6.92 g of Tween® 80 and 62.28 g of ethanol as the surfactant mixture, and 23.1 g water. Conclusions: The present study provides a foundational basis for further development of different microemulsion formulations for enhancing the dermal penetration of poorly water-soluble active compounds.
Collapse
Affiliation(s)
| | | | - Cornelia M. Keck
- Department of Pharmaceutics and Biopharmaceutics, Philipps-Universität Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany; (M.A.)
| |
Collapse
|
6
|
Nistor M, Nicolescu A, Amarandi RM, Pui A, Stiufiuc RI, Dragoi B. Multi spectroscopic investigation of maisine-based microemulsions as convenient carriers for co-delivery of anticancer and anti-inflammatory drugs. Sci Rep 2025; 15:5175. [PMID: 39939665 PMCID: PMC11822113 DOI: 10.1038/s41598-025-89540-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 02/06/2025] [Indexed: 02/14/2025] Open
Abstract
Lipid-based drug delivery systems are very promising in addressing critical medical needs associated with cancer because they are able to enhance the efficacy of the therapeutic agents loaded in. Yet, their transferability from bench to bedside is still a challenge as it hits many barriers. Among them, the absence of a clear design made on the deeper understanding of the intermolecular forces underlying the formation of the drug-carrier system and the controlled release of the drug is relevant. In this contribution, we rationally designed and prepared lipid-based formulations of an anticancer drug, fluorouracil (FU - hydrophilic) and an anti-inflammatory drug, ibuprofen (IBU - hydrophobic) to thoroughly characterize the specific intermolecular interactions between drugs and components of the carrier matrix. Microemulsions (ME) were selected as the main carriers for this study, but a comparison with liposomes was performed to observe if different organization of the lipophilic and hydrophilic compartments influences the loading capacity and controlled release of these two drugs. Using Maisine CC, a biocompatible oil, and Tween 20 as the surfactant, normal oil-in-water ME loaded with FU and IBU (1:1, 1:3, 1:6, wt:wt) were prepared by the water titration method. MEs were characterized by DLS, Zeta potential, and DOSY spectroscopies to assess their droplet size, surface charge, structure and type of emulsion. Intermolecular interactions between drugs and components of the ME's matrix were investigated by FT-IR, RAMAN and 1H-NMR spectroscopies. The experimental results of DOSY revealed that all components of MEs are gathered in normal oil-in-water ME. Due to their different affinities for the main components of the ME, FU, and IBU were mainly distributed in the aqueous and oily phases, respectively, as supported by the droplet size measured by DLS. It was observed that co-loading the two drugs impacted the release behavior, assessed by the dialysis bag method, as compared with the mono-drug formulations. Based on the findings of this work, a release mechanism for FU and IBU was proposed, as well. Overall, the ME proved to be more suitable nanocarriers since the drugs, which were loaded in higher amounts as compared to liposomes, followed a controlled and sustained release of at least 96 h.
Collapse
Grants
- 952390 European Commission
- 952390 European Commission
- 952390 European Commission
- 952390 European Commission
- 952390 European Commission
- 952390 European Commission
- PN-III-P3-3.6-H2020-2020-0105, 35/2021 Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii
- PN-III-P3-3.6-H2020-2020-0105, 35/2021 Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii
- PN-III-P3-3.6-H2020-2020-0105, 35/2021 Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii
- PN-III-P3-3.6-H2020-2020-0105, 35/2021 Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii
- PN-III-P3-3.6-H2020-2020-0105, 35/2021 Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii
- PN-III-P3-3.6-H2020-2020-0105, 35/2021 Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii
Collapse
Affiliation(s)
- Mirela Nistor
- Nanotechnology Laboratory, TRANSCEND Department, Regional Institute of Oncology, 2-4 General Henri Mathias Berthelot, Iasi, 700483, Romania
- Faculty of Chemistry, "Alexandru Ioan Cuza" University of Iasi, 11 Carol I Blvd., Iasi, 700506, Romania
| | - Alina Nicolescu
- "Petru Poni" Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, Iasi, 700487, Romania
| | - Roxana-Maria Amarandi
- Nanotechnology Laboratory, TRANSCEND Department, Regional Institute of Oncology, 2-4 General Henri Mathias Berthelot, Iasi, 700483, Romania
| | - Aurel Pui
- Faculty of Chemistry, "Alexandru Ioan Cuza" University of Iasi, 11 Carol I Blvd., Iasi, 700506, Romania
| | - Rares-Ionut Stiufiuc
- Nanotechnology Laboratory, TRANSCEND Department, Regional Institute of Oncology, 2-4 General Henri Mathias Berthelot, Iasi, 700483, Romania
- Department of Pharmaceutical Physics-Biophysics, Faculty of Pharmacy, "Iuliu Hatieganu" University of Medicine and Pharmacy, Pasteur 6, Cluj-Napoca, 400349, Romania
| | - Brindusa Dragoi
- Nanotechnology Laboratory, TRANSCEND Department, Regional Institute of Oncology, 2-4 General Henri Mathias Berthelot, Iasi, 700483, Romania.
- Faculty of Chemistry, "Alexandru Ioan Cuza" University of Iasi, 11 Carol I Blvd., Iasi, 700506, Romania.
| |
Collapse
|
7
|
Polamraju SM, Manochkumar J, Ganeshbabu M, Ramamoorthy S. Unveiling astaxanthin: biotechnological advances, delivery systems and versatile applications in nutraceuticals and cosmetics. Arch Microbiol 2025; 207:45. [PMID: 39869136 DOI: 10.1007/s00203-025-04241-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/04/2025] [Accepted: 01/07/2025] [Indexed: 01/28/2025]
Abstract
Astaxanthin (ASX), "king of carotenoids", is a xanthophyll carotenoid that is characterized by a distinct reddish-orange hue, procured from diverse sources including plants, microalgae, fungi, yeast, and lichens. It exhibits potent antioxidant and anti-ageing properties and has been demonstrated to mitigate ultraviolet-induced cellular and DNA damage, enhance immune system function, and improve cardiovascular diseases. Despite its broad utilization across nutraceutical, cosmetic, aquaculture, and pharmaceutical sectors, the large-scale production and application of ASX are constrained by the limited availability of natural sources, low production yields and stringent production requirements. This review provides a comprehensive analysis of ASX applications, emphasizing its dual roles in cosmetic and nutraceutical fields. It integrates insights into the qualitative differences of ASX from various natural sources and assesses biosynthetic pathways across organisms. Advanced biotechnological strategies for industrial-scale production are explored alongside innovative delivery systems, such as emulsions, films, microcapsules, nanoliposomes, and nanoparticles, designed to enhance ASX's bioavailability and functional efficacy. By unifying perspectives on its nutraceutical and cosmetic applications, this review highlights the challenges and advancements in formulation and commercialization. Prospective research directions for optimizing ASX's production and applications are also discussed, providing a roadmap for its future development.
Collapse
Affiliation(s)
- Sai Manojna Polamraju
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Janani Manochkumar
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Madhubala Ganeshbabu
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Siva Ramamoorthy
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India.
| |
Collapse
|
8
|
Ahmed N, Smith RW, Chen PX, Rogers MA, Spagnuolo PA. Bioaccessibility of avocado polyhydroxylated fatty alcohols. Food Chem 2025; 463:140811. [PMID: 39255710 DOI: 10.1016/j.foodchem.2024.140811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/26/2024] [Accepted: 08/08/2024] [Indexed: 09/12/2024]
Abstract
Avocado-derived polyhydroxylated fatty alcohols (PFAs), such as avocadene and avocadyne, have been recently identified as potent modulators of mitochondrial metabolism which selectively induce leukemia cell death and reverse pathologies associated with diet-induced obesity. However, avocadene and avocadyne bioaccessibility from avocado pulp is not reported; hence, this study aims to investigate if these PFAs are bioaccessible. Dynamic (TNO dynamic intestinal model-1 (TIM-1)) and static in vitro digestion of lyophilized Hass avocado pulp powder shows lipolytic gastrointestinal enzymes led to appreciable bioaccessibility of avocadene (55%) and avocadyne (50%). Furthermore, TIM-1 digestion of a 1:1 ratio of pure avocadene and avocadyne (avocatin B or AvoB) crystals formulated in an oil-in-water microemulsion has on average 15% higher bioaccessibility than the avocado pulp powder demonstrating both dosage forms as potential dietary sources of avocado PFAs. This research provides the impetus for further research on the nutritional significance of dietary long chain fatty alcohols.
Collapse
Affiliation(s)
- Nawaz Ahmed
- Department of Food Science, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Richard W Smith
- University of Waterloo Mass Spectrometry Facility, Department of Chemistry, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada.
| | - Peter X Chen
- Department of Food Science, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| | - Michael A Rogers
- Department of Food Science, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| | - Paul A Spagnuolo
- Department of Food Science, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| |
Collapse
|
9
|
Musakhanian J, Osborne DW. Understanding Microemulsions and Nanoemulsions in (Trans)Dermal Delivery. AAPS PharmSciTech 2025; 26:31. [PMID: 39794642 DOI: 10.1208/s12249-024-02997-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 11/07/2024] [Indexed: 01/13/2025] Open
Abstract
Continuously explored in pharmaceuticals, microemulsions and nanoemulsions offer drug delivery opportunities that are too significant to ignore, namely safe delivery of clinically relevant drug doses across biological membranes. Their effectiveness as drug vehicles in mucosal and (trans)dermal delivery is evident from the volume of published literature. Commonly, their ability to enhance skin permeation is attributed to dispersion size, a characteristic closely related to solubilization capacity. However, the literature falls short on distinctions between microemulsions and nanoemulsions for definitions, behavior, or specific differences in their mechanisms of action in (trans)dermal delivery. The focus is typically on surfactant/cosurfactant ratio and droplet size but the role of mesostructures or the effect of cosolvent (Csol), oil (O) or water (W) on permeation profile remain poorly explained. Towards a deeper understanding of these vehicles in (trans)dermal drug delivery, this review begins with their conceptual and practical distinctions before delving into the published works for less obvious but potentially important underlying mechanisms; notably composition and the competitive positioning of system constituents in the resulting microstructures and subsequent effect(s) these may have on skin structures and drug permeability. For practical purposes, this review focuses on formulation systems based on ternary diagrams with commonly accepted non-ionic surfactants, cosurfactants, cosolvents, and oils used in pharmaceutical applications.
Collapse
|
10
|
Chang NF, Wu PS, Yang HJ, Zheng YM, Lin CC. Preparation and Evaluation of Nanoemulsion Formulation Containing Kojic Acid and Kojyl 3-aminopropylphosphonic Acid. Curr Pharm Biotechnol 2025; 26:608-616. [PMID: 38982699 DOI: 10.2174/0113892010310230240615112928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/16/2024] [Accepted: 05/23/2024] [Indexed: 07/11/2024]
Abstract
BACKGROUND The kojyl 3-aminopropylphosphonic acid (KAP) was synthesized by kojic acid (KA) with a 3-aminopropylphosphonic acid. Which is more stable than KA and showed better skin penetration and anti-pigmentation efficacy in melanocytes. However, up till now, there have been no studies aimed at incorporating KAP into an emulsion system and evaluating its effectiveness. OBJECTIVE We develop a novel skin-lightening agent using KAP as the active ingredient and a low-cytotoxic nanoemulsion as the delivery system in this study. METHOD The sorbitan monooleate and polysorbate surfactants with polyethylene glycol (PEG) co-surfactant were used to generate a nanoemulsion system. RESULT The transparency and particle size stability over various storage times indicate that the formulated nanoemulsions are suitable for long-term storage. Besides, results demonstrate that the anti-pigmentation function of KA and KAP-containing nanoemulsions (NE-KA and NEKAP) evidently outperformed that of the non-packed KA and KAP group. Despite having the lowest concentration among other treatments, NE-KAP was able to reduce melanin content to approximately 80% of the blank. CONCLUSION Our findings suggest that this newly developed nanoemulsion containing KAP could potentially serve as a sustainable alternative to hydroquinone for treating dermal hyperpigmentation disorders in future applications.
Collapse
Affiliation(s)
- Nai-Fang Chang
- Department of Cosmetic Science, Providence University, No. 200, Sec. 7, Taiwan Boulevard, Shalu Dist., Taichung City 43301, Taiwan
| | - Pey-Shiuan Wu
- Department of Cosmetic Science, Providence University, No. 200, Sec. 7, Taiwan Boulevard, Shalu Dist., Taichung City 43301, Taiwan
| | - Hsiang-Ju Yang
- Department of Cosmetic Science, Providence University, No. 200, Sec. 7, Taiwan Boulevard, Shalu Dist., Taichung City 43301, Taiwan
| | - Ya-Min Zheng
- Department of Cosmetic Science, Providence University, No. 200, Sec. 7, Taiwan Boulevard, Shalu Dist., Taichung City 43301, Taiwan
| | - Chih-Chien Lin
- Department of Cosmetic Science, Providence University, No. 200, Sec. 7, Taiwan Boulevard, Shalu Dist., Taichung City 43301, Taiwan
| |
Collapse
|
11
|
Yue L, Ye P, Zhang Y, Guo R, Xu W, Huang S, Xiu Y, Huang Y, Wang B. An enhanced bioactive chitosan-modified microemulsion for mucosal healing of ulcerative colitis. Int J Biol Macromol 2025; 284:137847. [PMID: 39581424 DOI: 10.1016/j.ijbiomac.2024.137847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 11/10/2024] [Accepted: 11/17/2024] [Indexed: 11/26/2024]
Abstract
The intestinal mucus layer plays a crucial role in the systemic absorption of drugs. While penetration through this layer traditionally constitutes a pivotal phase in drug absorption, the approach for treating ulcerative colitis (UC) shifts towards facilitating the direct delivery of drugs to the colon. In this study, we engineered a chitosan-modified microemulsion encapsulated nobiletin (NOB-CS-ME) characterized by small particle dimensions and positive charge specifically, designed to enable targeted delivery. In vitro experiments demonstrated that this NOB-CS-ME effectively became less into the intestinal mucus layer, thus achieving successful escape of the intestinal mucus barrier absorption. After circumventing this barrier, NOB-CS-ME exhibited heightened cellular uptake by colonic epithelial cells, displaying an approximately 1.3-fold increase compared to the unmodified microemulsion. Collectively, these observations imply enhanced drug bioavailability, potentially resulting in more efficacious mucosal healing, providing a promising avenue for natural small-molecule drug delivery in UC treatment.
Collapse
Affiliation(s)
- Lixia Yue
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ping Ye
- Shanghai Institute for Minimally Invasive Therapy, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yi Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Department of Implant Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Ru Guo
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Weihua Xu
- Department of Pharmacy, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Shaogang Huang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 501405, China
| | - Yanfeng Xiu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Yongzhuo Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Bing Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China.
| |
Collapse
|
12
|
Chen Y, Xu J, Li P, Shi L, Zhang S, Guo Q, Yang Y. Advances in the use of local anesthetic extended-release systems in pain management. Drug Deliv 2024; 31:2296349. [PMID: 38130151 PMCID: PMC10763865 DOI: 10.1080/10717544.2023.2296349] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/15/2023] [Indexed: 12/23/2023] Open
Abstract
Pain management remains among the most common and largely unmet clinical problems today. Local anesthetics play an indispensable role in pain management. The main limitation of traditional local anesthetics is the limited duration of a single injection. To address this problem, catheters are often placed or combined with other drugs in clinical practice to increase the time that local anesthetics act. However, this method does not meet the needs of clinical analgesics. Therefore, many researchers have worked to develop local anesthetic extended-release types that can be administered in a single dose. In recent years, drug extended-release systems have emerged dramatically due to their long duration and efficacy, providing more possibilities for the application of local anesthetics. This paper summarizes the types of local anesthetic drug delivery systems and their clinical applications, discusses them in the context of relevant studies on local anesthetics, and provides a summary and outlook on the development of local anesthetic extended-release agents.
Collapse
Affiliation(s)
- Yulu Chen
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Jingmei Xu
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Ping Li
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Obstetrics, Xiangya Hospital, Central South University, Changsha, China
| | - Liyang Shi
- College of Biology, Hunan University, Changsha, China
| | - Sha Zhang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Qulian Guo
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yong Yang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
13
|
Xu C, Liu Y, Li K, Zhang J, Wei B, Wang H. Absorption of food-derived peptides: Mechanisms, influencing factors, and enhancement strategies. Food Res Int 2024; 197:115190. [PMID: 39593400 DOI: 10.1016/j.foodres.2024.115190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 11/28/2024]
Abstract
Food-derived peptides (FPs) are bioactive molecules produced from dietary proteins through enzymatic hydrolysis or fermentation. These peptides exhibit various biological activities. However, their efficacy largely depends on bioavailability, the ability to cross absorption barriers, and reach target sites within the body. This review addresses key issues in FP absorption, including barriers, pathways, influencing factors, and strategies to enhance absorption. The biochemical and physical barriers to FP absorption include pH variations, enzymes, unstirred water layer, mucus layer, and intestinal epithelial cells. FPs enter the bloodstream via four main pathways: carrier-mediated transport, endocytosis, paracellular, and passive diffusion. The barrier-crossing efficiency depends on the structural properties and state of FPs and coexisting substances. Absorption efficiency can be significantly improved with permeability enhancers, nano-delivery systems, and chemical modifications. These insights provide a scientific basis and practical guidance for optimizing the bioactivity and health benefits of food-derived peptides.
Collapse
Affiliation(s)
- Chengzhi Xu
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Yuting Liu
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Ke Li
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Juntao Zhang
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Benmei Wei
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China.
| | - Haibo Wang
- College of Life Science and Technology, Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, Hubei Engineering University, Xiaogan, Hubei, China.
| |
Collapse
|
14
|
Wang Z, Yang J, He P, Lan J, Shi T, Xu S, Hao Z, Xi Y, Wang J, He P. Therapeutic effect of total glucosides of paeony on IgA vasculitis nephritis: progress and prospects. Mol Biol Rep 2024; 52:13. [PMID: 39585482 PMCID: PMC11588768 DOI: 10.1007/s11033-024-10041-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/21/2024] [Indexed: 11/26/2024]
Abstract
IgA vasculitis nephritis (IgAVN), a type of immune system disease characterized by the deposition of IgA in the mesangial area of the glomerulus, is most common in children. Corticosteroids and immunosuppressants agents are commonly prescribed for the clinical management of IgAVN; however, these therapies are associated with numerous adverse reactions. This necessitates the discovery of alternative, potential therapeutic agents that can offer a safer treatment option. Natural plants contain abundant total glucosides of paeony (TGP), which represent one of the most prevalent secondary metabolites found within these organisms. TGP has been proven to be a safe and desirable natural medicine, with the most central ingredient being polyphenolic. TGP, a naturally occurring and cost-effective compound, exerts its therapeutic influence on IgAVN via diverse pathways and targets, with minimal side effects. Its substantial clinical potential underscores the importance of delving deeper into its pharmacological mechanisms, which hold great promise for novel drug development. This review examines the multifaceted therapeutic mechanisms of TGP in IgAVN encompassing modulation of Wnt/β-catenin pathways and programmed cell death pathways, antioxidant and anti-inflammatory effects, and enhancement of vascular repair. Additionally, we provide an overview of recent advancements in enhancing the bioavailability of TGP and highlight crucial considerations that may inform future research endeavors.
Collapse
Affiliation(s)
- Zhifeng Wang
- The First Clinical College of Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Jiao Yang
- The Second Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Pengfen He
- The First Clinical College of Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Junfeng Lan
- The First Clinical College of Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Ting Shi
- The First Clinical College of Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Shuangfeng Xu
- The First Clinical College of Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Zhihui Hao
- The First Clinical College of Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Yujiang Xi
- The First Clinical College of Yunnan University of Chinese Medicine, Kunming, Yunnan, China.
| | - Jian Wang
- The First Clinical College of Yunnan University of Chinese Medicine, Kunming, Yunnan, China.
| | - Ping He
- Yunnan Provincial Hospital of Chinese Medicine, Kunming, Yunnan, China.
| |
Collapse
|
15
|
Parisi C, Laneri F, Martins TJ, Fraix A, Sortino S. Nitric Oxide-Photodelivering Materials with Multiple Functionalities: From Rational Design to Therapeutic Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:59697-59720. [PMID: 39445390 DOI: 10.1021/acsami.4c13478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The achievement of materials that are able to release therapeutic agents under the control of light stimuli to improve therapeutic efficacy is a significant challenge in health care. Nitric oxide (NO) is one of the most studied molecules in the fascinating realm of biomedical sciences, not only for its crucial role as a gaseous signaling molecule in the human body but also for its great potential as an unconventional therapeutic in a variety of diseases including cancer, bacterial and viral infections, and neurodegeneration. Handling difficulties due to its gaseous nature, reduced region of action due to its short half-life, and strict dependence of the biological effects on its concentration and generation site are critical questions to be solved for appropriate therapeutic uses of NO. Light-activatable NO precursors, namely, NO photodonors (NOPDs), address the above issues since they are stable in the dark and permit in a noninvasive fashion the remote-controlled delivery of NO on demand with great spatiotemporal precision. Engineering biocompatible materials with NOPDs and their combination with additional imaging, therapeutic, and phototherapeutic components leads to intriguing light-responsive multifunctional constructs exhibiting promising potential for biomedical applications. This contribution illustrates the most significant progress made over the last five years in achieving engineered materials including nanoparticles, gels, and thin films, sharing the common feature to deliver NO under the exclusive control of the biocompatible visible/near infrared light inputs. We will highlight the logical design behind the fabrication of these systems, illustrating the potential therapeutic applications with particular emphasis on cancer and bacterial infections.
Collapse
Affiliation(s)
- Cristina Parisi
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, I-95125 Catania, Italy
| | - Francesca Laneri
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, I-95125 Catania, Italy
| | - Tassia J Martins
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, I-95125 Catania, Italy
| | - Aurore Fraix
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, I-95125 Catania, Italy
| | - Salvatore Sortino
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, I-95125 Catania, Italy
| |
Collapse
|
16
|
Chavan DD, Bhosale RR, Thorat VM, Yadav AR, Patil SV, Janugade BU, Patil SJ. Current Advances in Lipid-Based Drug Delivery Systems as Nanocarriers for the Management of Female Genital Tuberculosis. Cureus 2024; 16:e74452. [PMID: 39726465 PMCID: PMC11669736 DOI: 10.7759/cureus.74452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024] Open
Abstract
Female genital tuberculosis (FGTB) arises from Mycobacterium tuberculosis infection and can rarely be caused by Mycobacterium bovis or atypical mycobacteria. FGTB usually arises from tuberculosis (TB) that affects the lungs or other organs. The infection can enter the vaginal tract directly from abdominal TB or by hematogenous or lymphatic pathways. Menstrual dysfunction and infertility as a result of genital organ damage result from FGTB, which affects women's fallopian tubes, uterine endometrium, and ovaries. Consequently, FGTB remains a major worldwide health risk, posing challenges in its treatment due to the limited effectiveness of existing drugs and the resilient nature of the TB pathogen. Moreover, currently available antimicrobial drugs for FGTB suffer from inadequate bioavailability. Long treatment regimens are necessary because high doses often result in patient noncompliance and the emergence of drug-resistant strains of TB. Therefore, to improve TB therapy generally, especially FGTB, novel drug delivery techniques are essential. Because targeted drug delivery systems have the benefit of delivering higher drug concentrations directly to the infection site, fewer side effects have been reported. As a result, various lipid-based drug delivery systems as nanocarriers have been identified as successful antimicrobial drug delivery options, indicating their potential for treating FGTB.
Collapse
Affiliation(s)
- Dhanashri D Chavan
- Department of Pharmacology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| | - Rohit R Bhosale
- Department of Pharmaceutics, Krishna Foundation's Jaywant Institute of Pharmacy, Wathar, IND
| | - Vandana M Thorat
- Department of Pharmacology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| | - Akshay R Yadav
- Department of Pharmaceutical Chemistry, Krishna Charitable Trust's Krishna College of Pharmacy, Karad, IND
| | - Sachinkumar V Patil
- Department of Pharmaceutics, Dr. Ashok Gujar Institute of Pharmacy, Karad, IND
| | - Bhagyesh U Janugade
- Department of Pharmaceutics, Krishna Foundation's Jaywant Institute of Pharmacy, Wathar, IND
| | - Sarika J Patil
- Department of Pharmacology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| |
Collapse
|
17
|
Nery Dos Santos Q, Teles DCS, de Araujo GRS, Lima OVA, Silva LAS, de Carvalho RDCV, Carlos de Sousa V, Matos SS, Costa AMB, Andrade-Neto VV, Torres-Santos EC, Antunes de S Araújo A, Sarmento VHV, Aécio de Amorim Carvalho F, de S Nunes R, Lira AAM. Microemulsions strongly promoted the activity of α-bisabolol against different Leishmania species and its skin permeation. Exp Parasitol 2024; 265:108808. [PMID: 39094996 DOI: 10.1016/j.exppara.2024.108808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/15/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
This study aimed to develop microemulsions (MEs) containing α-bisabolol for the topical treatment of cutaneous leishmaniasis (CL). Initially, pseudoternary phase diagrams were developed using α-bisabolol as the oil phase, Eumulgin® CO 40 as the surfactant, Polymol® HE as the co-surfactant, and distilled water as the aqueous phase. Two transparent liquid systems (TLS) containing 5% of α-bisabolol were selected and characterized (F5E25 and F5EP25). Next, skin permeation and retention assays were performed using Franz cells. The interaction of the formulation with the stratum corneum (SC) was evaluated using the FTIR technique. The cytotoxicity was evaluated in murine peritoneal macrophages. Finally, the antileishmanial activity of microemulsions was determined in promastigotes and amastigotes of L. amazonensis (strain MHOM/BR/77/LTB 0016). As a result, the selected formulations showed isotropy, nanometric size (below 25 nm), Newtonian behavior and pH ranging from 6.5 to 6.9. The MEs achieved a 2.5-fold increase in the flux and skin-permeated amount of α-bisabolol. ATR-FTIR results showed that microemulsions promoted fluidization and extraction of lipids and proteins of the stratum corneum, increasing the diffusion coefficient and partition coefficient of the drug in the skin. Additionally, F5E25 and F5EP25 showed higher activity against promastigotes (IC50 13.27 and 18.29, respectively) compared to unencapsulated α-bisabolol (IC50 53.8). Furthermore, F5E25 and F5EP25 also showed antileishmanial activity against intracellular amastigotes of L. amazonensis, with IC50 50 times lower than free α-bisabolol and high selectivity index (up to 15). Therefore, the systems obtained are favorable to topical administration, with significant antileishmanial activity against L. amazonensis promastigotes and amastigotes, being a promising system for future in vivo trials.
Collapse
Affiliation(s)
| | | | | | | | - Luiz André S Silva
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | | | | | - Saulo S Matos
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | | | | | | | | | | | | | - Rogéria de S Nunes
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Ana Amélia M Lira
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão, SE, Brazil.
| |
Collapse
|
18
|
Yang F, Wang Y, He H, Wang G, Yang M, Hong M, Huang J, Wang Y. Construction of highly stable, monodisperse water-in-water Pickering emulsions with full particle coverage using a composite system of microfluidics and helical coiled tube. Colloids Surf B Biointerfaces 2024; 242:114079. [PMID: 39029247 DOI: 10.1016/j.colsurfb.2024.114079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/23/2024] [Accepted: 07/05/2024] [Indexed: 07/21/2024]
Abstract
Water-in-water (W/W) Pickering emulsions, exhibit considerable potential in the food and pharmaceutical fields owing to their compartmentalization and high biocompatibility. However, constrained by the non-uniform distribution of shear forces during emulsification or the spatial obstruction in polydimethylsiloxane (PDMS) passive microfluidic platform, the existing methods cannot generate monodisperse W/W Pickering emulsions with high particle coverage rate, thereby limiting their applications. Herein, a novel microfluidic system is designed for the preparation of monodisperse and highly particle-covered W/W Pickering emulsions under mild conditions. pH-responsive Polyethylene glycol (PEG)/phosphate aqueous two-phase system (ATPS) is used for the emulsions' preparation. Notably, a coverage rate of 96 ± 3 % is obtained by adjusting the length of the helical coiled tube, as well as the size and contact angle of genipin cross-linked BSA (BSA-GP) particles. Moreover, these W/W Pickering emulsions, with surfaces almost completely covered, can maintain monodisperse (Ncoal = 1.18 ± 0.03) for one day. Furthermore, the results of ranitidine hydrochloride (RH) release demonstrated that the drug release rate of W/W Pickering emulsions in the simulated gastric fluid (SGF) was 10 times faster than that in the neutral solution. We believe that the highly particle-covered monodisperse W/W Pickering emulsions possess great potential applications in bioencapsulation for foods and drug delivery.
Collapse
Affiliation(s)
- Feng Yang
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, PR China
| | - Yilan Wang
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, PR China
| | - Huatao He
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, PR China
| | - Guanxiong Wang
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, PR China
| | - Menghan Yang
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, PR China
| | - Meiying Hong
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, PR China
| | - Jin Huang
- Southwest Univ, Sch Chem & Chem Engn, Chongqing Key Lab Soft Matter Mat Chem & Funct Mfg, Chongqing 400715, PR China; Southwest Univ, State Key Lab Silkworm Genome Biol, Chongqing 400715, PR China.
| | - Yaolei Wang
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, PR China.
| |
Collapse
|
19
|
Li S, Huang Y, Sun Y, Lu T, Dong Y, Yu S, Zhang X, Hu H. Panax notoginseng saponins loaded W/O microemulsion for alopecia therapy with panthenol as cosurfactant to reduce skin irritation. Int J Pharm 2024; 663:124585. [PMID: 39147248 DOI: 10.1016/j.ijpharm.2024.124585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
The etiology of alopecia is so complex that current therapies with single-mechanism and attendant side-effects during long-term usage, are insufficient for treatment. Panax notoginseng saponins (PNS) is supposed to treat alopecia with multiple mechanisms, but difficult to penetrate skin efficiently due to water-solubility. Here, we designed water-in-oil microemulsion (PNS ME) using jojoba oil, fractioned coconut oil, RH 40 + Span 80 and cosurfactant D-panthenol, to help PNS penetrating the skin. Particularly, D-panthenol not only enlarges the microemulsion area, reduces the usage amounts of surfactants thus relieves skin irritation, but stimulates the migration of dermal papilla cells (DPCs), displaying cooperative effects on anti-alopecia. PNS ME penetrates through sebum-rich corneum via high-affinity lipid fusion, targets to hair follicles (HFs), where it resides in skin for sustained drug release, accelerates angiogenesis to build well-nourished environment for HFs, and facilitates the proliferation and migration of DPCs in vitro. PNS ME markedly improved hair density, skin pigmentation, new hair weight, skin thickness, and collagen generation of telogen effluvium mice. Moreover, PNS also took outstanding curative effects on androgenetic alopecia mice. Upon further exploration, PNS ME caused dramatic upregulations of β-catenin, VEGF and Ki67, suggesting it might function by triggering Wnt/β-catenin pathway, accelerating vessels formation, and activating the hair follicle stem cells. Notably, PNS ME indicated longer-term safety than minoxidil tincture. Together, PNS ME provides a comprehensive strategy for alopecia, especially it avoids defects by high-proportioned surfactants in traditional microemulsion, exhibiting milder and safer, which shows bright prospect of applying microemulsion in hair growth promotion.
Collapse
Affiliation(s)
- Shuxuan Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, University Town, Guangzhou 510006, PR China
| | - Yihua Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, University Town, Guangzhou 510006, PR China
| | - Yingying Sun
- School of Pharmaceutical Sciences, Sun Yat-sen University, University Town, Guangzhou 510006, PR China
| | - Tianli Lu
- School of Pharmaceutical Sciences, Sun Yat-sen University, University Town, Guangzhou 510006, PR China
| | - Yating Dong
- School of Pharmaceutical Sciences, Sun Yat-sen University, University Town, Guangzhou 510006, PR China
| | - Shihui Yu
- School of Pharmaceutical Sciences, Sun Yat-sen University, University Town, Guangzhou 510006, PR China
| | - Xuefei Zhang
- School of Traditional Dai-Thai Medicine, West Yunnan University of Applied Sciences, Jinghong 666100, PR China.
| | - Haiyan Hu
- School of Pharmaceutical Sciences, Sun Yat-sen University, University Town, Guangzhou 510006, PR China; State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Sun Yat-sen University, University Town, Guangzhou 510006, PR China.
| |
Collapse
|
20
|
Ali A, Aziz ARA, A Ismael M, Alqaed S. Biosurfactants as an alternative eco-friendly solution for water-in-diesel emulsions-A review paper. Heliyon 2024; 10:e37485. [PMID: 39290264 PMCID: PMC11407060 DOI: 10.1016/j.heliyon.2024.e37485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/19/2024] Open
Abstract
Diesel engines are used extensively in heavy-duty transportation due to their high thermal efficiency and energy density, but they also contribute to environmental pollution. Water-in-diesel emulsions have emerged as an alternative method for decreasing NOx and emissions, but there are still obstacles to assuring engine performance and stability. Surfactants are used to stabilise the emulsion by decreasing the interfacial tension between the fuel and water. Studies on water-in-diesel emulsions published literature suggest that chemical surfactants have been used in the production of emulsified fuels. In addition, research have shown that biosurfactants are less harmful to the environment than chemical surfactants. However, only limited study has been conducted on the use of biosurfactants in emulsified fuel. Consequently, it is important to investigate the possible use of biosurfactants in applications using emulsified fuels. This research studies the categorization of surfactants and biosurfactants and emulsion methods for the development of emulsified fuel. This research also aids in the selection of the most suitable surfactant and biosurfactant for applications, particularly in the context of water-in-diesel emulsions and diesel-in-water emulsions, with the goal of developing an environmentally friendly, stable emulsified fuel that can reduce the emission effect and protect the environment.
Collapse
Affiliation(s)
- Asghar Ali
- Center of Sustainable Resources for Intelligent and Efficient Mobility (CSRIEM), Mechanical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar, Perak, 32610,Malaysia
- Mechanical Engineering Department, MUET SZAB Campus Khairpur Mir's, 66020, Pakistan
| | - A Rashid A Aziz
- Center of Sustainable Resources for Intelligent and Efficient Mobility (CSRIEM), Mechanical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar, Perak, 32610,Malaysia
| | - Mhadi A Ismael
- Center of Sustainable Resources for Intelligent and Efficient Mobility (CSRIEM), Mechanical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar, Perak, 32610,Malaysia
| | - Saeed Alqaed
- Engineering Department, College of Engineering, Najran University, Najran, 61441, Saudi Arabia
| |
Collapse
|
21
|
Musakhanian J, Osborne DW, Rodier JD. Skin Penetration and Permeation Properties of Transcutol ® in Complex Formulations. AAPS PharmSciTech 2024; 25:201. [PMID: 39235493 DOI: 10.1208/s12249-024-02886-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/05/2024] [Indexed: 09/06/2024] Open
Abstract
Percutaneous delivery is explored as alternative pathway for addressing the drawbacks associated with the oral administration of otherwise efficacious drugs. Short of breaching the skin by physical means, the preference goes to formulation strategies that augment passive diffusion across the skin. One such strategy lies in the use of skin penetration and permeation enhancers notably of hydroxylated solvents like propylene glycol (PG), ethanol (EtOH), and diethylene glycol monoethyl ether (Transcutol®, TRC). In a previous publication, we focused on the role of Transcutol® as enhancer in neat or diluted systems. Herein, we explore its' role in complex formulation systems, including patches, emulsions, vesicles, solid lipid nanoparticles, and micro or nanoemulsions. This review discusses enhancement mechanisms associated with hydroalcoholic solvents in general and TRC in particular, as manifested in multi-component formulation settings alongside other solvents and enhancers. The principles that govern skin penetration and permeation, notably the importance of drug diffusion due to solubilization and thermodynamic activity in the vehicle (formulation), drug solubilization and partitioning in the stratum corneum (SC), and/or solvent drag across the skin into deeper tissue for systemic absorption are discussed. Emphasized also are the interplay between the drug properties, the skin barrier function and the formulation parameters that are key to successful (trans)dermal delivery.
Collapse
Affiliation(s)
| | - David W Osborne
- President of David W. Osborne, PhD Consulting Inc., Fort Collins, USA
| | | |
Collapse
|
22
|
Dong X, Thao Duyen Nguyen N. Exploring novel type of lipid-bases drug delivery systems that contain one lipid and one water-soluble surfactant only. Int J Pharm 2024; 661:124447. [PMID: 39002820 PMCID: PMC11571485 DOI: 10.1016/j.ijpharm.2024.124447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/02/2024] [Accepted: 07/06/2024] [Indexed: 07/15/2024]
Abstract
None of transitional lipid-based drug delivery systems (LBDDS) includes compositions containing one lipid and one water-soluble surfactant that form stable microemulsions. The conversion of liquid LBDDS to solid LBDDS has been limited by low drug loading. Previously, we have developed drug solid microemulsions containing one lipid and TPGS (a water-soluble surfactant) that achieved high drug loading and remarkably increased oral bioavailability. This study aimed to test if binary lipid systems (BLS), composed of one lipid and one water-soluble surfactant that form stable self-emulsifying microemulsions, is not an exclusive but widely applicable type of LBDDS for other lipids and surfactants and evaluate the influences of chemical structures of lipids and surfactants on microemulsions and solid microemulsions. We systemically identified new BLS by using a library of lipids and surfactants. Propylene glycol diesters and glycerol triesters were favorable for forming stable microemulsions with Tween 80, Cremophor EL, or TPGS. To the best of our knowledge, this is the first report exploring and confirming that the BLS is a new addition to traditional LBDDS, provides a promising option for researchers, and has the potential to increase drug loading to facilitate the development of solid microemulsions.
Collapse
Affiliation(s)
- Xiaowei Dong
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA.
| | - Ngoc Thao Duyen Nguyen
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA
| |
Collapse
|
23
|
Mohapatra D, Senapati PC, Senapati S, Pandey V, Dubey PK, Singh S, Sahu AN. Quality-by-design-based microemulsion of disulfiram for repurposing in melanoma and breast cancer therapy. Ther Deliv 2024; 15:521-544. [PMID: 38949622 PMCID: PMC11412148 DOI: 10.1080/20415990.2024.2363136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 05/30/2024] [Indexed: 07/02/2024] Open
Abstract
Aim: The current study aims to develop and optimize microemulsions (ME) through Quality-by-Design (QbD) approach to improve the aqueous solubility and dissolution of poorly water-soluble drug disulfiram (DSF) for repurposing in melanoma and breast cancer therapy.Materials & methods: The ME was formulated using Cinnamon oil & Tween® 80, statistically optimized using a D-optimal mixture design-based QbD approach to develop the best ME with low vesicular size (Zavg) and polydispersity index (PDI).Results: The DSF-loaded optimized stable ME showed enhanced dissolution, in-vitro cytotoxicity and improved cellular uptake in B16F10 and MCF-7 cell lines compared with their unformulated free DSF.Conclusion: Our investigations suggested the potential of the statistically designed DSF-loaded optimized ME for repurposing melanoma and breast cancer therapy.
Collapse
Affiliation(s)
- Debadatta Mohapatra
- Phytomedicine Research Laboratory, Department of Pharmaceutical Engineering & Technology, IIT (BHU), Varanasi- 221005, Uttar Pradesh, India
| | | | - Shantibhusan Senapati
- Tumor Microenvironment & Animal Models Laboratory, Institute of Life Sciences, Bhubaneswar- 751023, Odisha, India
| | - Vivek Pandey
- Centre for Genetics Disorders, Institute of Science (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Pawan K Dubey
- Centre for Genetics Disorders, Institute of Science (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Sanjay Singh
- Nanomedicine Research Laboratory, Department of Pharmaceutical Engineering & Technology, IIT (BHU), Varanasi- 221005, Uttar Pradesh, India
| | - Alakh N Sahu
- Phytomedicine Research Laboratory, Department of Pharmaceutical Engineering & Technology, IIT (BHU), Varanasi- 221005, Uttar Pradesh, India
| |
Collapse
|
24
|
Cui G, Yu X, He M, Huang S, Liu K, Li Y, Li J, Shao X, Lv Q, Li X, Tan M. Biological activity, limitations and steady-state delivery of functional substances for precision nutrition. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 112:1-50. [PMID: 39218500 DOI: 10.1016/bs.afnr.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Food-related functional substances with biological activity serve as a crucial material foundation for achieving precision nutrition, which has gained increasing attraction in regulating physiological functions, preventing chronic diseases, and maintaining human health. Nutritional substances typically include bioactive proteins, peptides, polysaccharides, polyphenols, functional lipids, carotenoids, probiotics, vitamins, saponins, and terpenes. These functional substances play an essential role in precise nutrition. This chapter introduces and summarizes typical functional substances to demonstrate the challenges in precision nutrition for their stability, solubility, and bioavailability. The current status of delivery systems of functional substances is described to give an insight into the development of desirable characteristics, such as food grade status, high loading capacity, site targeting, and controlled release capacity. Finally, the applications of food-borne delivery systems of functional substances for precision nutrition are emphasized to meet the requirement for precision nutrition during nutritional intervention for chronic diseases.
Collapse
Affiliation(s)
- Guoxin Cui
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P.R. China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P.R. China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, P.R. China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, P.R. China
| | - Xiaoting Yu
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P.R. China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P.R. China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, P.R. China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, P.R. China
| | - Ming He
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P.R. China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P.R. China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, P.R. China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, P.R. China
| | - Shasha Huang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P.R. China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P.R. China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, P.R. China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, P.R. China
| | - Kangjing Liu
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P.R. China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P.R. China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, P.R. China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, P.R. China
| | - Yu Li
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P.R. China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P.R. China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, P.R. China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, P.R. China
| | - Jiaxuan Li
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P.R. China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P.R. China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, P.R. China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, P.R. China
| | - Xiaoyang Shao
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P.R. China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P.R. China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, P.R. China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, P.R. China
| | - Qiyan Lv
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P.R. China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P.R. China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, P.R. China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, P.R. China
| | - Xueqian Li
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P.R. China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P.R. China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, P.R. China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, P.R. China
| | - Mingqian Tan
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P.R. China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P.R. China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, P.R. China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, P.R. China.
| |
Collapse
|
25
|
Paliwal H, Nakpheng T, Kumar Paul P, Prem Ananth K, Srichana T. Development of a self-microemulsifying drug delivery system to deliver delamanid via a pressurized metered dose inhaler for treatment of multi-drug resistant pulmonary tuberculosis. Int J Pharm 2024; 655:124031. [PMID: 38521375 DOI: 10.1016/j.ijpharm.2024.124031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/06/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
Tuberculosis (TB) is a serious health issue that contributes to millions of deaths throughout the world and increases the threat of serious pulmonary infections in patients with respiratory illness. Delamanid is a novel drug approved in 2014 to deal with multi-drug resistant TB (MDR-TB). Despite its high efficiency in TB treatment, delamanid poses delivery challenges due to poor water solubility leading to inadequate absorption upon oral administration. This study involves the development of novel formulation-based pressurized metered dose inhalers (pMDIs) containing self-microemulsifying mixtures of delamanid for efficient delivery to the lungs. To identify the appropriate self-microemulsifying formulations, ternary diagrams were plotted using different combinations of surfactant to co-surfactant ratios (1:1, 2:1, and 3:1). The combinations used Cremophor RH40, Poly Ethylene Glycol 400 (PEG 400), and peppermint oil, and those that showed the maximum microemulsion region and rapid and stable emulsification were selected for further characterization. The diluted self-microemulsifying mixtures underwent evaluation of dose uniformity, droplet size, zeta potential, and transmission electron microscopy. The selected formulations exhibited uniform delivery of the dose throughout the canister life, along with droplet sizes and zeta potentials that ranged from 24.74 to 88.99 nm and - 19.27 to - 10.00 mV, respectively. The aerosol performance of each self-microemulsifying drug delivery system (SMEDDS)-pMDI was assessed using the Next Generation Impactor, which indicated their capability to deliver the drug to the deeper areas of the lungs. In vitro cytotoxicity testing on A549 and NCI-H358 cells revealed no significant signs of toxicity up to a concentration of 1.56 µg/mL. The antimycobacterial activity of the formulations was evaluated against Mycobacterium bovis using flow cytometry analysis, which showed complete inhibition by day 5 with a minimum bactericidal concentration of 0.313 µg/mL. Moreover, the cellular uptake studies showed efficient delivery of the formulations inside macrophage cells, which indicated the potential for intracellular antimycobacterial activity. These findings demonstrated the potential of the Delamanid-SMEDDS-pMDI for efficient pulmonary delivery of delamanid to improve its effectiveness in the treatment of multi-drug resistant pulmonary TB.
Collapse
Affiliation(s)
- Himanshu Paliwal
- Drug Delivery System Excellence Center, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, Thailand; Department of Pharmaceutics, Sanjivani College of Pharmaceutical Education and Research, Kopargaon 423603, Maharashtra, India
| | - Titpawan Nakpheng
- Drug Delivery System Excellence Center, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Pijush Kumar Paul
- Drug Delivery System Excellence Center, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, Thailand; Department of Pharmacy, Gono Bishwabidyalay (University), Dhaka 1344, Bangladesh
| | - K Prem Ananth
- Drug Delivery System Excellence Center, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Teerapol Srichana
- Drug Delivery System Excellence Center, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, Thailand.
| |
Collapse
|
26
|
Li J, Amador C, Wilson MR. Computational predictions of interfacial tension, surface tension, and surfactant adsorption isotherms. Phys Chem Chem Phys 2024; 26:12107-12120. [PMID: 38587476 DOI: 10.1039/d3cp06170a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
All-atom (AA) molecular dynamics (MD) simulations are employed to predict interfacial tensions (IFT) and surface tensions (ST) of both ionic and non-ionic surfactants. The general AMBER force field (GAFF) and variants are examined in terms of their performance in predicting accurate IFT/ST, γ, values for chosen water models, together with the hydration free energy, ΔGhyd, and density, ρ, predictions for organic bulk phases. A strong correlation is observed between the quality of ρ and γ predictions. Based on the results, the GAFF-LIPID force field, which provides improved ρ predictions is selected for simulating surfactant tail groups. Good γ predictions are obtained with GAFF/GAFF-LIPID parameters and the TIP3P water model for IFT simulations at a water-triolein interface, and for GAFF/GAFF-LIPID parameters together with the OPC4 water model for ST simulations at a water-vacuum interface. Using a combined molecular dynamics-molecular thermodynamics theory (MD-MTT) framework, a mole fraction of C12E6 molecule of 1.477 × 10-6 (from the experimental critical micelle concentration, CMC) gives a simulated surface excess concentration, ΓMAX, of 76 C12E6 molecules at a 36 nm2 water-vacuum surface (3.5 × 10-10 mol cm-2), which corresponds to a simulated ST of 35 mN m-1. The results compare favourably with an experimental ΓMAX of C12E6 of 3.7 × 10-10 mol cm-2 (80 surfactants for a 36 nm2 surface) and experimental ST of C12E6 of 32 mN m-1 at the CMC.
Collapse
Affiliation(s)
- Jing Li
- Department of Chemistry, Durham University, Stockton Road, Durham, DH1 3LE, UK.
| | - Carlos Amador
- Newcastle Innovation Centre, Procter & Gamble Ltd, Newcastle Upon Tyne, NE12 9BZ, UK
| | - Mark R Wilson
- Department of Chemistry, Durham University, Stockton Road, Durham, DH1 3LE, UK.
| |
Collapse
|
27
|
Tomas M, Wen Y, Liao W, Zhang L, Zhao C, McClements DJ, Nemli E, Bener M, Apak R, Capanoglu E. Recent progress in promoting the bioavailability of polyphenols in plant-based foods. Crit Rev Food Sci Nutr 2024; 65:2343-2364. [PMID: 38590257 DOI: 10.1080/10408398.2024.2336051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Polyphenols are important constituents of plant-based foods, exhibiting a range of beneficial effects. However, many phenolic compounds have low bioavailability because of their low water solubility, chemical instability, food matrix effects, and interactions with other nutrients. This article reviews various methods of improving the bioavailability of polyphenols in plant-based foods, including fermentation, natural deep eutectic solvents, encapsulation technologies, co-crystallization and amorphous solid dispersion systems, and exosome complexes. Several innovative technologies have recently been deployed to improve the bioavailability of phenolic compounds. These technologies may be utilized to increase the healthiness of plant-based foods. Further research is required to better understand the mechanisms of action of these novel approaches and their potential to be used in food production.
Collapse
Affiliation(s)
- Merve Tomas
- Department of Food Engineering, Istanbul Technical University, Maslak, Istanbul, Türkiye
| | - Yuxi Wen
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wei Liao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lizhu Zhang
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chao Zhao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | | | - Elifsu Nemli
- Department of Food Engineering, Istanbul Technical University, Maslak, Istanbul, Türkiye
| | - Mustafa Bener
- Department of Chemistry, Faculty of Science, Istanbul University, Istanbul, Türkiye
| | - Resat Apak
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpasa, Istanbul, Türkiye
- Turkish Academy of Sciences (TUBA), Ankara, Türkiye
| | - Esra Capanoglu
- Department of Food Engineering, Istanbul Technical University, Maslak, Istanbul, Türkiye
| |
Collapse
|
28
|
Acharya B, Behera A, Behera S, Moharana S. Recent Advances in Nanotechnology-Based Drug Delivery Systems for the Diagnosis and Treatment of Reproductive Disorders. ACS APPLIED BIO MATERIALS 2024; 7:1336-1361. [PMID: 38412066 DOI: 10.1021/acsabm.3c01064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Over the past decade, nanotechnology has seen extensive integration into biomedical applications, playing a crucial role in biodetection, drug delivery, and diagnostic imaging. This is especially important in reproductive health care, which has become an emerging and significant area of research. Global concerns have intensified around disorders such as infertility, endometriosis, ectopic pregnancy, erectile dysfunction, benign prostate hyperplasia, sexually transmitted infections, and reproductive cancers. Nanotechnology presents promising solutions to address these concerns by introducing innovative tools and techniques, facilitating early detection, targeted drug delivery, and improved imaging capabilities. Through the utilization of nanoscale materials and devices, researchers can craft treatments that are not only more precise but also more effective, significantly enhancing outcomes in reproductive healthcare. Looking forward, the future of nanotechnology in reproductive medicine holds immense potential for reshaping diagnostics, personalized therapies, and fertility preservation. The utilization of nanotechnology-driven drug delivery systems is anticipated to elevate treatment effectiveness, minimize side effects, and offer patients therapies that are not only more precise but also more efficient. This review aims to delve into the various types, properties, and preparation techniques of nanocarriers specifically designed for drug delivery in the context of reproductive disorders, shedding light on the current landscape and potential future directions in this dynamic field.
Collapse
Affiliation(s)
- Biswajeet Acharya
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Bhubaneswar, Odisha 752050, India
| | - Amulyaratna Behera
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Bhubaneswar, Odisha 752050, India
| | | | - Srikanta Moharana
- Department of Chemistry, School of Applied Sciences, Centurion University of Technology and Management, Bhubaneswar, Odisha 752050, India
| |
Collapse
|
29
|
Arpa MD, Çağlar EŞ, Güreşçi D, Sipahi H, Üstündağ Okur N. Novel Microemulsion Containing Benzocaine and Fusidic Acid Simultaneously: Formulation, Characterization, and In Vitro Evaluation for Wound Healing. AAPS PharmSciTech 2024; 25:53. [PMID: 38443698 DOI: 10.1208/s12249-024-02762-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/06/2024] [Indexed: 03/07/2024] Open
Abstract
Modern drug carrier technologies, such as microemulsions with small droplet sizes and high surface areas, improve the ability of low water solubility active ingredients to permeate and localize. The goal of this study was to create microemulsion formulations for wound healing that contained both fusidic acid (FA), an antibacterial agent, and benzocaine (BNZ), a local anesthetic. Studies on characterization were carried out, including viscosity, droplet size, and zeta potential. The drug-loaded microemulsion had a stable structure with -3.014 ± 1.265 mV of zeta potential and 19.388 ± 0.480 nm of droplet size. In both in vitro release and ex vivo permeability studies, the microemulsion was compared with Fucidin cream and oily BNZ solution. According to the drug release studies, BNZ release from the microemulsion and the BNZ solution showed a similar profile (p > 0.05), while FA release from the microemulsion had a higher drug release compared to Fucidin cream (p < 0.001). The microemulsion presented lower drug permeation (p > 0.05) for both active ingredients, on the other hand, provided higher drug accumulation compared to the control preparations. Moreover, according to the results of in vitro wound healing activity, the microemulsion indicated a dose-dependent wound healing potential with the highest wound healing activity at the highest concentrations. To the best of our knowledge, this developed BNZ- and FA-loaded microemulsion would be a promising candidate to create new opportunities for wound healing thanks to present the active ingredients, which have low water solubility, in a single formulation and achieved higher accumulation than control preparations.
Collapse
Affiliation(s)
- Muhammet Davut Arpa
- Department of Pharmaceutical Technology, School of Pharmacy, Istanbul Medipol University, 34815, Istanbul, Turkey
| | - Emre Şefik Çağlar
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Health Sciences, 34668, Istanbul, Turkey
| | - Dilara Güreşçi
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Yeditepe University, 34755, Istanbul, Turkey
| | - Hande Sipahi
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Yeditepe University, 34755, Istanbul, Turkey
| | - Neslihan Üstündağ Okur
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Health Sciences, 34668, Istanbul, Turkey.
| |
Collapse
|
30
|
Pant A, Sharma G, Saini S, Kaur G, Jain A, Thakur A, Singh B. QbD-driven development of phospholipid-embedded lipidic nanocarriers of raloxifene: extensive in vitro and in vivo evaluation studies. Drug Deliv Transl Res 2024; 14:730-756. [PMID: 37768530 DOI: 10.1007/s13346-023-01427-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2023] [Indexed: 09/29/2023]
Abstract
Raloxifene (RLX) is popularly indicated in treatment of osteoporosis and prevention of breast cancer. Owing to its poor aqueous solubility, high pre-systemic metabolism, intestinal glucuronidation, and P-glycoprotein (P-gp) efflux, however, it demonstrates low (< 2%) and inconsistent oral bioavailability. The current work, Quality by Design (QbD)-driven development of phospholipid-embedded nanostructured lipidic carriers (NLCs) of RLX, accordingly, was undertaken to potentiate its lymphatic uptake, augment oral bioavailability, and possibly reduce drug dosage. Factor screening and failure mode effect analysis (FMEA) studies were performed to delineate high-risk factors using solid lipid (glyceryl monostearate), liquid lipid (vitamin E), and surfactant (Tween 80). Response surface optimization studies were performed employing the Box-Behnken design. Mathematical and graphical methods were adopted to embark upon the selection of optimized NLCs with various critical quality attributes (CQAs) of mean particle size as 186 nm, zeta potential of - 23.6 mV, entrapment efficiency of 80.09%, and cumulative drug release at 12 h of 83.87%. The DSC and FTIR studies, conducted on optimized NLCs, indicated successful entrapment of drug into the lipid matrix. In vitro drug release studies demonstrated Fickian diffusion mechanism. In vivo pharmacokinetic studies in rats construed significant improvement in AUC0-72 h (4.48-folds) and in Cmax (5.11-folds), unequivocally indicating markedly superior (p < 0.001) oral bioavailability of RLX-NLCs vis-à-vis marketed tablet formulation. Subsequently, level "A" in vitro/in vivo correlation (IVIVC) was also successfully attempted between the percentages of in vitro drug dissolved and of in vivo drug absorbed at the matching time points. In vitro cytotoxicity and cellular uptake studies also corroborated higher efficacy and successful localization of coumarin-6-loaded NLCs into MG-63 cells through microfluidic channels.
Collapse
Affiliation(s)
- Anjali Pant
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Gajanand Sharma
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Sumant Saini
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, India
| | - Gurjeet Kaur
- Department of Renal Transplant Surgery, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Atul Jain
- Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Anil Thakur
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Bhupinder Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India.
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| |
Collapse
|
31
|
Opriș O, Mormile C, Lung I, Stegarescu A, Soran ML, Soran A. An Overview of Biopolymers for Drug Delivery Applications. APPLIED SCIENCES 2024; 14:1383. [DOI: 10.3390/app14041383] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Nowadays, drug delivery has an important role in medical therapy. The use of biopolymers in developing drug delivery systems (DDSs) is increasingly attracting attention due to their remarkable and numerous advantages, in contrast to conventional polymers. Biopolymers have many advantages (biodegradability, biocompatibility, renewability, affordability, and availability), which are extremely important for developing materials with applications in the biomedical field. Additionally, biopolymers are appropriate when they improve functioning and have a number of positive effects on human life. Therefore, this review presents the most used biopolymers for biomedical applications, especially in drug delivery. In addition, by combining different biopolymers DDSs with tailored functional properties (e.g., physical properties, biodegradability) can be developed. This review summarizes and provides data on the progress of research on biopolymers (chitosan, alginate, starch, cellulose, albumin, silk fibroin, collagen, and gelatin) used in DDSs, their preparation, and mechanism of action.
Collapse
Affiliation(s)
- Ocsana Opriș
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania
| | - Cristina Mormile
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania
- Faculty of Chemistry, University of Rome La Sapienza, P. le Aldo Moro 5, 00185 Rome, Italy
- INFN—National Laboratories of Frascati, Via Enrico Fermi 54, 00044 Frascati, Italy
| | - Ildiko Lung
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania
| | - Adina Stegarescu
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania
| | - Maria-Loredana Soran
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania
| | - Albert Soran
- Department of Chemistry, Supramolecular Organic and Organometallic Chemistry Centre (SOOMCC), Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, 11 Arany Janos, 400028 Cluj-Napoca, Romania
| |
Collapse
|
32
|
Samananda Singh L. Nano-emulsion encapsulation for the efficient delivery of bacteriophage therapeutics. Biologicals 2024; 85:101725. [PMID: 37951140 DOI: 10.1016/j.biologicals.2023.101725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 10/20/2023] [Accepted: 10/31/2023] [Indexed: 11/13/2023] Open
Abstract
Antibiotic resistance has become the major concern for global public health. Phage therapy is being considered as an alternative for antibiotics to treat the multidrug resistant bacterial infections. Bacteriophage therapeutic developments has faced many challenges, including the drug formulations for sustainable phage delivery. The nano-emulsion platform has been described as the best approach to retain phage efficacy, shelf life and stability. Encapsulated phage drugs ensure stable delivery of phages to the target site and integrate in the system. In this review, our main focus is on the nano-emulsion encapsulation of bacteriophages and its effects towards the phage therapeutic development.
Collapse
|
33
|
Al Ashmawy AZG, Balata GF. Formulation and in vitro characterization of nanoemulsions containing remdesivir or licorice extract: A potential subcutaneous injection for coronavirus treatment. Colloids Surf B Biointerfaces 2024; 234:113703. [PMID: 38096607 DOI: 10.1016/j.colsurfb.2023.113703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 02/09/2024]
Abstract
The management of coronavirus necessitates that medicines are available, reasonably priced, and easy to administer. The work aimed at formulating and characterizing remdesivir and licorice extract nanoemulsions and comparing their efficacy against coronavirus for further subcutaneous injection. First, the solubility of remdesivir was determined in different oils, surfactants, and co-surfactants to choose the optimal nanoemulsion components. Nanoemulsions were optimized concerning surfactant: co-surfactant ratio (5:1, 4:1, 3:1, 2:1, and 1:1) and oil to surfactant: co-surfactant ratio (1:9, 1:8, 1:7, 1:6, 1:5, 1:4, 1:3, 1:2, and 1:1). The formulations were evaluated concerning % transmittance, emulsification time, pH, viscosity, droplet size, polydispersity index, zeta potential, drug content, transmission electron microscopy, in-vitro drug release, stability (of the optimal formulas), and antiviral effect against coronavirus. The optimal nanoemulsion formula was F7, exhibiting an acceptable pH level, a rapid emulsification rate, a viscosity of 20 cP, and 100% drug content. The formulation droplet size was 16 and 17 nm, the polydispersity index was 0.18 and 0.26, and the zeta potential was - 6.29 and - 10.34 mV for licorice extract and remdesivir nanoemulsions, respectively. However, licorice extract nanoemulsion exhibited better release and physical stability. Licorice extract nanoemulsion may be a potential subcutaneous injection for combating mild to moderate coronavirus.
Collapse
Affiliation(s)
- Al Zahraa G Al Ashmawy
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt.
| | - Gehan F Balata
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44511, Egypt; Pharmacy Practice Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| |
Collapse
|
34
|
Liu H, Long Y, Liang F. Interfacial Activity of Janus Particle: Unity of Molecular Surfactant and Homogeneous Particle. Chem Asian J 2024:e202301078. [PMID: 38221222 DOI: 10.1002/asia.202301078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/28/2023] [Accepted: 01/12/2024] [Indexed: 01/16/2024]
Abstract
Janus particles with different compositions and properties segmented to different regions on the surface of one objector provide more opportunities for interfacial engineering. As a novel interfacial active material, Janus particles integrate the amphiphilic properties of molecular surfactants and the Pickering effect of homogeneous particles. In this research, the outstanding properties of Janus particles on various interfaces are examined from both theoretical and practical perspectives, and the advantages of Janus particles over molecular surfactants and homogeneous particle surfactants are analyzed. We believe that Janus particles are ideal tools for interface regulation and functionalization in the future.
Collapse
Affiliation(s)
- Haipeng Liu
- Department of Chemical Engineering, Tsinghua University, 100084, Beijing, P. R. China
| | - Yingchun Long
- Department of Chemical Engineering, Tsinghua University, 100084, Beijing, P. R. China
| | - Fuxin Liang
- Department of Chemical Engineering, Tsinghua University, 100084, Beijing, P. R. China
| |
Collapse
|
35
|
Song Y, Chen W, Yin Y, Li J, Wang M, Liu Y, Ren X. Advancements in the Transdermal Drug Delivery Systems Utilizing Microemulsion-based Gels. Curr Pharm Des 2024; 30:2753-2764. [PMID: 39092731 DOI: 10.2174/0113816128305190240718112945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 08/04/2024]
Abstract
Microemulsion gel, as a promising transdermal nanoparticle delivery system, addresses the limitations of microemulsions and enhances their performance in drug delivery and release. This article aims to discuss the advantages of microemulsion gel, including improved drug bioavailability, reduced drug irritation, enhanced drug penetration and skin adhesion, and increased antimicrobial properties. It explores the methods for selecting microemulsion formulations and the general processes of microemulsion preparation, as well as commonly used oil phases, surfactants, and co-surfactants. Additionally, the biomedical applications of microemulsion gel in treating conditions, such as acne and psoriasis, are also discussed. Overall, this article elucidates the significant potential of microemulsion gel in topical drug delivery, providing insights into future development and clinical applications.
Collapse
Affiliation(s)
- Yongjian Song
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Wei Chen
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yu Yin
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jiunian Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Meng Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yi Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaoliang Ren
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
36
|
Dao L, Dong Y, Song L, Sa C. The Fate of 1,8-cineole as a Chemical Penetrant: A Review. Curr Drug Deliv 2024; 21:697-708. [PMID: 37165499 DOI: 10.2174/1567201820666230509101602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/22/2023] [Accepted: 03/13/2023] [Indexed: 05/12/2023]
Abstract
The stratum corneum continues to pose the biggest obstacle to transdermal drug delivery. Chemical penetrant, the first generation of transdermal drug delivery system, offers a lot of potential. In order to fully examine the permeation mechanism of 1,8-cineole, a natural monoterpene, this review summarizes the effects of permeation-enhancing medications on drugs that are lipophilic and hydrophilic as well as the toxicity of this substance on the skin and other tissues. For lower lipophilic drugs, 1,8-cineole appears to have a stronger osmotic-enhancing impact. An efficient and secure tactic would be to combine enhancers and dose forms. 1,8-cineole is anticipated to be further developed in the transdermal drug delivery system and even become a candidate drug for brain transport due to its permeability and low toxicity.
Collapse
Affiliation(s)
- Ligema Dao
- School of Mongolian Medicine, Inner Mongolian Medical University, Hohhot, China
| | - Yu Dong
- School of Pharmacy, Inner Mongolian Medical University, Hohhot, China
| | - Lin Song
- School of Mongolian Medicine, Inner Mongolian Medical University, Hohhot, China
| | - Chula Sa
- School of Mongolian Medicine, Inner Mongolian Medical University, Hohhot, China
| |
Collapse
|
37
|
Debiasi BW, Dourado SHA, Andrighetti CR, Ribeiro EB, Battirola LD, Valladão DMS. Incorporation of Cordia glabrata (Mart.) A.DC. extract in microemulsions and their potential antioxidant, photoprotective and virucidal activities. BRAZ J BIOL 2024; 84:e259451. [DOI: 10.1590/1519-6984.259451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/19/2022] [Indexed: 11/22/2022] Open
Abstract
Abstract Extracts of species from the Cordia genus have been reported with potential biological activities, such as antioxidant, antimicrobial, antiviral, and antiparasitic. The aim of this study was to develop microemulsions containing ethanolic extracts of C. glabrata leaves and to evaluate their stability and biological activities. The five developed microemulsions presented physicochemical stability and presented Newtonian behavior when submitted to rheological analysis. The diameter values of the globules ranged between 225.74 and 273.33 nm and the zeta potential of the formulations remained between -22.40 and -25.08. All phenolic acids of the extract, quantified by HPLC, showed consistency after being microemulsified. The EC50 values for the antioxidant activity by the DPPH scavenging method ranged between 38.13 and 45.54 µgmL-1, and between 34.46 and 39.60 mM for the ABTS+ scavenging method. The virucidal activity presented a CV50 <0.195 µgmL-1 and a selectivity index greater than 20. The photoprotection results ranged between 2.14 to 2.84. The study revealed stable microemulsions and potentiation of the antioxidant effect in the microemulsified extracts.
Collapse
|
38
|
Virani A, Dholaria N, Matharoo N, Michniak-Kohn B. A Study of Microemulsion Systems for Transdermal Delivery of Risperidone Using Penetration Enhancers. J Pharm Sci 2023; 112:3109-3119. [PMID: 37429357 DOI: 10.1016/j.xphs.2023.07.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/12/2023]
Abstract
The aim of this study was to develop and characterize microemulsion formulations using penetration enhancers as potential transdermal delivery systems for risperidone. Initially, a simple formulation of risperidone in Propylene Glycol (PG) was prepared as a control formulation, together with formulations incorporating various penetration enhancers, alone and/or in combination, and also microemulsion formulations with various chemical penetration enhancers, were prepared and all were evaluated for risperidone transdermal delivery. An ex-vivo permeation study was carried out using human cadaver skin and vertical glass Franz diffusion cells to compare all the microemulsion formulations. The microemulsion prepared from oleic acid as the oil (15%), Tween 80 (15%) as the surfactant and isopropyl alcohol (20%) as the co-surfactant, and water (50%) showed higher permeation with a flux value of 32.50±3.60 ug/hr/sq.cm, a globule size of 2.96±0.01 nm, a polydispersity index of 0.33±0.02 and pH of 4.95. This novel in vitro research disclosed that an optimized microemulsion formulated using penetration enhancers was able to increase permeation of risperidone by 14-fold compared to the control formulation. The data suggested that microemulsions may be useful in the delivery of risperidone via the transdermal route.
Collapse
Affiliation(s)
- Amitkumar Virani
- Ernest Mario School of Pharmacy, Rutgers-The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, United States; Center for Dermal Research, Rutgers-The State University of New Jersey, 145 Bevier Road, Piscataway, NJ 08854, United States
| | - Nirali Dholaria
- Ernest Mario School of Pharmacy, Rutgers-The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, United States; Center for Dermal Research, Rutgers-The State University of New Jersey, 145 Bevier Road, Piscataway, NJ 08854, United States
| | - Namrata Matharoo
- Ernest Mario School of Pharmacy, Rutgers-The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, United States; Center for Dermal Research, Rutgers-The State University of New Jersey, 145 Bevier Road, Piscataway, NJ 08854, United States
| | - Bozena Michniak-Kohn
- Ernest Mario School of Pharmacy, Rutgers-The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, United States; Center for Dermal Research, Rutgers-The State University of New Jersey, 145 Bevier Road, Piscataway, NJ 08854, United States.
| |
Collapse
|
39
|
Nascimento BZ, Muniz EP, Bueno Cotta AJ, Couto Oliveira FD, Sérgio da Silva Porto P. Oily wastewater treatment by a continuous flow electrocoagulation reactor with polarity switch: Assessment of the relation between process variables and the aluminum released to the environment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119072. [PMID: 37774662 DOI: 10.1016/j.jenvman.2023.119072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/23/2023] [Accepted: 08/30/2023] [Indexed: 10/01/2023]
Abstract
Electrocoagulation with electrical polarity inversion was used to treat oil in water emulsions (145 ± 5 mg dm-3) using a cylindrical 4.8 dm3 reactor in continuous mode. The effects of spatial time and time between polarity inversion were explored using a three-level full factorial design (32), followed by Spearman correlation (ps), which has shown that the aluminum concentration in the treated effluent is not directly dependent on the mass of aluminum released by the electrodes. Nonetheless, the loss of mass of the electrodes is correlated (ps = 0.6970) to oil removal and to less electric power consumption (ps = -0.6909). Surface response analysis revealed that increasing the number of inversion cycles reduces electrode degradation. The treatment reduced the effluent's chemical oxygen demand by over 92.8%. Regarding environmental impact, there is an inverse statistical correlation between aluminum in the treated effluent and oil removal (ps = -0.7426), indicating that removing more oil with less environmental impact is possible. The better condition, considering oil removal and lower electrode consumption, was obtained with a spatial time of 36 min and a polarity inversion time of 10 s; for this condition, oil removal reached 87.0% with an energy expenditure of about 7.21 kW h.m-3.
Collapse
Affiliation(s)
- Bárbara Zon Nascimento
- Programa de Pós-graduação Em Energia, Universidade Federal Do Espírito Santo, Rodovia Governador Mario Covas, Km 60, Bairro Litorâneo, CEP 29932-540, São Mateus, ES, Brazil
| | - Eduardo Perini Muniz
- Programa de Pós-graduação Em Energia, Universidade Federal Do Espírito Santo, Rodovia Governador Mario Covas, Km 60, Bairro Litorâneo, CEP 29932-540, São Mateus, ES, Brazil; Departamento de Ciências Naturais, Universidade Federal Do Espírito Santo, Rodovia Governador Mario Covas, Km 60, Bairro Litorâneo, CEP 29932-540, São Mateus, ES, Brazil.
| | - Aloisio José Bueno Cotta
- Departamento de Ciências Naturais, Universidade Federal Do Espírito Santo, Rodovia Governador Mario Covas, Km 60, Bairro Litorâneo, CEP 29932-540, São Mateus, ES, Brazil
| | - Flavio Duarte Couto Oliveira
- Departamento de Computação e Eletrônica, Universidade Federal Do Espírito Santo, Rodovia Governador Mario Covas, Km 60, Bairro Litorâneo, CEP 29932-540, São Mateus, ES, Brazil
| | - Paulo Sérgio da Silva Porto
- Programa de Pós-graduação Em Energia, Universidade Federal Do Espírito Santo, Rodovia Governador Mario Covas, Km 60, Bairro Litorâneo, CEP 29932-540, São Mateus, ES, Brazil; Departamento de Engenharias e Tecnologia, Universidade Federal Do Espírito Santo, Rodovia Governador Mario Covas, Km 60, Bairro Litorâneo, CEP 29932-540, São Mateus, ES, Brazil
| |
Collapse
|
40
|
Hu Y, Xing Y, Yue H, Chen T, Diao Y, Wei W, Zhang S. Ionic liquids revolutionizing biomedicine: recent advances and emerging opportunities. Chem Soc Rev 2023; 52:7262-7293. [PMID: 37751298 DOI: 10.1039/d3cs00510k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Ionic liquids (ILs), due to their inherent structural tunability, outstanding miscibility behavior, and excellent electrochemical properties, have attracted significant research attention in the biomedical field. As the application of ILs in biomedicine is a rapidly emerging field, there is still a need for systematic analyses and summaries to further advance their development. This review presents a comprehensive survey on the utilization of ILs in the biomedical field. It specifically emphasizes the diverse structures and properties of ILs with their relevance in various biomedical applications. Subsequently, we summarize the mechanisms of ILs as potential drug candidates, exploring their effects on various organisms ranging from cell membranes to organelles, proteins, and nucleic acids. Furthermore, the application of ILs as extractants and catalysts in pharmaceutical engineering is introduced. In addition, we thoroughly review and analyze the applications of ILs in disease diagnosis and delivery systems. By offering an extensive analysis of recent research, our objective is to inspire new ideas and pathways for the design of innovative biomedical technologies based on ILs.
Collapse
Affiliation(s)
- Yanhui Hu
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yuyuan Xing
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hua Yue
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tong Chen
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yanyan Diao
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Wei
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Suojiang Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
41
|
Qiao Y, Wang X, Ren H, Cui Y, Ren J, Hao C, Zhao Z, Liu J, Zhao R, Li Y, Tian Q, Qiu L. A study on the preparation conditions of lidocaine microemulsion based on multi-objective genetic algorithm. Front Pharmacol 2023; 14:1272454. [PMID: 37841920 PMCID: PMC10576434 DOI: 10.3389/fphar.2023.1272454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/19/2023] [Indexed: 10/17/2023] Open
Abstract
Background: Topical lidocaine microemulsion preparations with low toxicity, low irritation, strong transdermal capability and convenient administration are urgently needed. Methods: Box-Behnken design was performed for three preparation conditions of 5% lidocaine microemulsions: mass ratio of the mass ratio of surfactant/(oil phase + surfactant) (X1), the mass ratio of olive oil/(α-linolenic acid + linoleic acid) (X2) and the water content W% (X3). Then, five multi-objective genetic algorithms were used to optimize the three evaluation indices to optimize the effects of lidocaine microemulsion preparations. Finally, the ideal optimization scheme was experimentally verified. Results: Non-dominated Sorting Genetic Algorithm-II was used for 30 random searches. Among these, Scheme 2: X1 = 0.75, X2 = 0.35, X3 = 75%, which resulted in Y1 = 0.17 μg/(cm2·s) and Y2 = 0.74 mg/cm2; and the Scheme 19: X1 = 0.68, X2 = 1.42, X3 = 75% which resulted in Y1 = 0.14 μg/(cm2·s) and Y2 = 0.80 mg/cm2, provided the best matches for the objective function requirements. The maximum and average fitness of the method have reached stability after 3 generations of evolution. Experimental verification of the above two schemes showed that there were no statistically significant differences between the measured values of Y1 and Y2 and the predicted values obtained by optimization (p > 0.05) and are close to the target value. Conclusion: Two lidocaine microemulsion preparation protocols were proposed in this study. These preparations resulted in good transdermal performance or long anesthesia duration, respectively.
Collapse
Affiliation(s)
- Yuchao Qiao
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xuchun Wang
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Hao Ren
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yu Cui
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jiahui Ren
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Chongqi Hao
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Zhiyang Zhao
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jing Liu
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ruiqing Zhao
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yiting Li
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Qingping Tian
- School of Pharmacy, Shanxi Medical University, Taiyuan, China
| | - Lixia Qiu
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
42
|
van Staden D, Haynes RK, Viljoen JM. The Development of Dermal Self-Double-Emulsifying Drug Delivery Systems: Preformulation Studies as the Keys to Success. Pharmaceuticals (Basel) 2023; 16:1348. [PMID: 37895819 PMCID: PMC10610238 DOI: 10.3390/ph16101348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Self-emulsifying drug delivery systems (SEDDSs) are lipid-based systems that are superior to other lipid-based oral drug delivery systems in terms of providing drug protection against the gastrointestinal (GI) environment, inhibition of drug efflux as mediated by P-glycoprotein, enhanced lymphatic drug uptake, improved control over plasma concentration profiles of drugs, enhanced stability, and drug loading efficiency. Interest in dermal spontaneous emulsions has increased, given that systems have been reported to deliver drugs across mucus membranes, as well as the outermost layer of the skin into the underlying layers. The background and development of a double spontaneous emulsion incorporating four anti-tubercular drugs, clofazimine (CFZ), isoniazid (INH), pyrazinamide (PZY), and rifampicin (RIF), are described here. Our methods involved examination of oil miscibility, the construction of pseudoternary phase diagrams, the determination of self-emulsification performance and the emulsion stability index of primary emulsions (PEs), solubility, and isothermal micro calorimetry compatibility and examination of emulsions via microscopy. Overall, the potential of self-double-emulsifying drug delivery systems (SDEDDSs) as a dermal drug delivery vehicle is now demonstrated. The key to success here is the conduct of preformulation studies to enable the development of dermal SDEDDSs. To our knowledge, this work represents the first successful example of the production of SDEDDSs capable of incorporating four individual drugs.
Collapse
Affiliation(s)
- Daniélle van Staden
- Faculty of Health Sciences, Centre of Excellence for Pharmaceutical Sciences (PharmacenTM), Building G16, North-West University, 11 Hoffman Street, Potchefstroom 2520, South Africa; (D.v.S.); (R.K.H.)
| | - Richard K. Haynes
- Faculty of Health Sciences, Centre of Excellence for Pharmaceutical Sciences (PharmacenTM), Building G16, North-West University, 11 Hoffman Street, Potchefstroom 2520, South Africa; (D.v.S.); (R.K.H.)
- Rural Health Research Institute, Charles Sturt University, 346 Leeds Parade, Orange, NSW 2800, Australia
| | - Joe M. Viljoen
- Faculty of Health Sciences, Centre of Excellence for Pharmaceutical Sciences (PharmacenTM), Building G16, North-West University, 11 Hoffman Street, Potchefstroom 2520, South Africa; (D.v.S.); (R.K.H.)
| |
Collapse
|
43
|
Borges HS, Gusmão LA, Tedesco AC. Multi-charged nanoemulsion for photodynamic treatment of glioblastoma cell line in 2D and 3D in vitro models. Photodiagnosis Photodyn Ther 2023; 43:103723. [PMID: 37487809 DOI: 10.1016/j.pdpdt.2023.103723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/05/2023] [Accepted: 07/21/2023] [Indexed: 07/26/2023]
Abstract
Multi-charged nanoemulsions (NE) were designed to deliver Cannabidiol (CBD), Indocyanine green (ICG), and Protoporphyrin (PpIX) to treat glioblastoma (GBM) through Photodynamic Therapy (PDT). The phase-inversion temperature (PIT) method resulted in a highly stable NE that can be scaled easily, with a six-month shelf-life. We observed the quasi-spherical morphology of the nanoemulsions without any unencapsulated material and that 89% (± 5.5%) of the material was encapsulated. All physicochemical properties were within the expected range for a nanostructured drug delivery system, making these multi-charged nanoemulsions promising for further research and development. NE-PIC (NE-Protoporphyrin + Indocyanine + CBD) was easily internalized on GBM cells after three hours of incubation. Nanoemulsion (NE and NE-PIC) did not result in significant cytotoxicity, even for GBM or non-tumorigenic cell lines (NHF). Phototoxicity was significantly higher for the U87MG cell than the T98G cell when exposed to: visible (430 nm) and infrared (810 nm) laser light, with a difference of about 20%. From 50 mJ.cm-2, the viability of GBM cell lines decreases significantly, ranging from 65% to 85%. The NE-PIC was also effective for inhibiting cell proliferation into a 3D spheroidal GBM cell model, which is promising for mimicking the tumor cell environment. Irradiation at 810 nm was more effective in treating spheroid due to its deeper penetration in complex structures. NE-PIC has the potential as a drug delivery system for photoinactivation and photo diagnostic of GBM cell lines, taking advantage of the versatility of its active components.
Collapse
Affiliation(s)
- Hiago Salge Borges
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering ‒ Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, 14040-901, Ribeirão Preto-SP, Brazil
| | - Luiza Araújo Gusmão
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering ‒ Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, 14040-901, Ribeirão Preto-SP, Brazil
| | - Antonio Claudio Tedesco
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering ‒ Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, 14040-901, Ribeirão Preto-SP, Brazil.
| |
Collapse
|
44
|
Leanpolchareanchai J, Teeranachaideekul V. Topical Microemulsions: Skin Irritation Potential and Anti-Inflammatory Effects of Herbal Substances. Pharmaceuticals (Basel) 2023; 16:999. [PMID: 37513911 PMCID: PMC10384732 DOI: 10.3390/ph16070999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/26/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Microemulsions (MEs) have gained prominence as effective drug delivery systems owing to their optical transparency, low viscosity, and thermodynamic stability. MEs, when stabilized with surfactants and/or co-surfactants, exhibit enhanced drug solubilization, prolonged shelf life, and simple preparation methods. This review examines the various types of MEs, explores different preparation techniques, and investigates characterization approaches. Plant extracts and bioactive compounds are well established for their utilization as active ingredients in the pharmaceutical and cosmetic industries. Being derived from natural sources, they serve as preferable alternatives to synthetic chemicals. Furthermore, they have demonstrated a wide range of therapeutic effects, including anti-inflammatory, antimicrobial, and antioxidant activities. However, the topical application of plant extracts and bioactive compounds has certain limitations, such as low skin absorption and stability. To overcome these challenges, the utilization of MEs enables enhanced skin absorption, thereby making them a valuable mode of administration. However, considering the significant surfactant content in MEs, this review evaluates the potential skin irritation caused by MEs containing herbal substances. Additionally, the review explores the topical application of MEs specifically for herbal substances, with an emphasis on their anti-inflammatory properties.
Collapse
|
45
|
Shi J, Yang J, Xu H, Luo Q, Sun J, Zhang Y, Liang Z, Zhao N, Zhang J. Preparation of a Sunitinib loaded microemulsion for ocular delivery and evaluation for the treatment of corneal neovascularization in vitro and in vivo. Front Pharmacol 2023; 14:1157084. [PMID: 37497104 PMCID: PMC10366539 DOI: 10.3389/fphar.2023.1157084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/19/2023] [Indexed: 07/28/2023] Open
Abstract
Background: Corneal neovascularization (CNV) is a pathological condition that can disrupt corneal transparency, thus harming visual acuity. However, there is no effective drug to treat CNV. Sunitinib (STB), a small-molecule multiple receptor tyrosine kinase inhibitor, was shown to have an effect on CNV. The purpose of this study was to develop an STB microemulsion (STB-ME) eye drop to inhibit CNV by topical application. Methods: We successfully prepared an STB-ME by the phase inversion emulsification method, and the physicochemical properties of STB-MEs were investigated. The short-term storage stability, cytotoxicity to human corneal epithelial cells, drug release, ocular irritation, ocular pharmacokinetics and the inhibitory effect on CNV were evaluated in vitro and in vivo. Results: The optimal formulation of STB-ME is composed of oleic acid, CRH 40, Transcutol P, water and sodium hyaluronate (SH). It is a uniform spherical particle with a mean droplet size of 18.74 ± 0.09 nm and a polydispersity index of 0.196 ± 0.004. In the in vitro drug release results, STB-ME showed sustained release and was best fitted by a Korsmeyer-Peppas model (R 2 = 0.9960). The results of the ocular pharmacokinetics in rabbits showed that the formulation containing SH increased the bioavailability in the cornea (2.47-fold) and conjunctiva (2.14-fold). STB-ME (0.05% and 0.1%), administered topically, suppressed alkali burn-induced CNV in mice more effectively than saline, and high-dose (0.1%) STB-ME had similar efficacy to dexamethasone (0.025%). Conclusion: This study provides a promising formulation of STB-ME for the inhibition of CNV by topical administration, which has the excellent characteristics of effectiveness, sustained release and high ocular bioavailability.
Collapse
Affiliation(s)
- Jieran Shi
- Department of Pharmacy, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Jingjing Yang
- Henan Eye Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Haohang Xu
- Department of Pharmacy, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Qing Luo
- Department of Pharmacy, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Jun Sun
- Department of Pharmacy, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Yali Zhang
- First School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Zhen Liang
- Henan Eye Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Ningmin Zhao
- Department of Pharmacy, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Junjie Zhang
- Henan Eye Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| |
Collapse
|
46
|
Ait-Touchente Z, Zine N, Jaffrezic-Renault N, Errachid A, Lebaz N, Fessi H, Elaissari A. Exploring the Versatility of Microemulsions in Cutaneous Drug Delivery: Opportunities and Challenges. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13101688. [PMID: 37242104 DOI: 10.3390/nano13101688] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/19/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023]
Abstract
Microemulsions are novel drug delivery systems that have garnered significant attention in the pharmaceutical research field. These systems possess several desirable characteristics, such as transparency and thermodynamic stability, which make them suitable for delivering both hydrophilic and hydrophobic drugs. In this comprehensive review, we aim to explore different aspects related to the formulation, characterization, and applications of microemulsions, with a particular emphasis on their potential for cutaneous drug delivery. Microemulsions have shown great promise in overcoming bioavailability concerns and enabling sustained drug delivery. Thus, it is crucial to have a thorough understanding of their formulation and characterization in order to optimize their effectiveness and safety. This review will delve into the different types of microemulsions, their composition, and the factors that affect their stability. Furthermore, the potential of microemulsions as drug delivery systems for skin applications will be discussed. Overall, this review will provide valuable insights into the advantages of microemulsions as drug delivery systems and their potential for improving cutaneous drug delivery.
Collapse
Affiliation(s)
- Zouhair Ait-Touchente
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, 69100 Villeurbanne, France
| | - Nadia Zine
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, 69100 Villeurbanne, France
| | | | - Abdelhamid Errachid
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, 69100 Villeurbanne, France
| | - Noureddine Lebaz
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS, LAGEPP UMR 5007, 69100 Villeurbanne, France
| | - Hatem Fessi
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS, LAGEPP UMR 5007, 69100 Villeurbanne, France
| | - Abdelhamid Elaissari
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, 69100 Villeurbanne, France
| |
Collapse
|
47
|
Milutinov J, Krstonošić V, Ćirin D, Pavlović N. Emulgels: Promising Carrier Systems for Food Ingredients and Drugs. Polymers (Basel) 2023; 15:polym15102302. [PMID: 37242878 DOI: 10.3390/polym15102302] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/03/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Novel delivery systems for cosmetics, drugs, and food ingredients are of great scientific and industrial interest due to their ability to incorporate and protect active substances, thus improving their selectivity, bioavailability, and efficacy. Emulgels are emerging carrier systems that represent a mixture of emulsion and gel, which are particularly significant for the delivery of hydrophobic substances. However, the proper selection of main constituents determines the stability and efficacy of emulgels. Emulgels are dual-controlled release systems, where the oil phase is utilized as a carrier for hydrophobic substances and it determines the occlusive and sensory properties of the product. The emulsifiers are used to promote emulsification during production and to ensure emulsion stability. The choice of emulsifying agents is based on their capacity to emulsify, their toxicity, and their route of administration. Generally, gelling agents are used to increase the consistency of formulation and improve sensory properties by making these systems thixotropic. The gelling agents also impact the release of active substances from the formulation and stability of the system. Therefore, the aim of this review is to gain new insights into emulgel formulations, including the components selection, methods of preparation, and characterization, which are based on recent advances in research studies.
Collapse
Affiliation(s)
- Jovana Milutinov
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| | - Veljko Krstonošić
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| | - Dejan Ćirin
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| | - Nebojša Pavlović
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| |
Collapse
|
48
|
Zhu J, Wei Y, Zhang J, Qian S, Gao Y, Heng W. Are all poorly soluble drugs dissolved in deep eutectic solvents true solutions? J Colloid Interface Sci 2023; 645:813-822. [PMID: 37172491 DOI: 10.1016/j.jcis.2023.04.164] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/27/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023]
Abstract
HYPOTHESIS The ability of deep eutectic solvents (DES) to enhance solubility of poorly soluble drugs has attracted increasing attention. Researchers have shown that drugs could be dissolved well in DES. In this study, we propose a new existence state of drugs in DES: a quasi-two-phase colloidal system. EXPERIMENTS Six poorly soluble drugs were used as the models. The formation of colloidal systems was observed visually by the Tyndall effect and DLS. TEM and SAXS were performed to obtain their structure information. The intermolecular interactions between components were probed via DSC and 1H1H-ROESY. In addition, the properties of colloidal systems were further studied. FINDINGS Our key finding is that several drugs like lurasidone hydrochloride (LH) could form stable colloids in [Th (thymol)] - [Da (decanoic acid)] DES, resulting from weak interactions between drugs and DES, which is different from the true solution of drugs like ibuprofen where strong interactions were formed. In this LH-DES colloidal system, DES solvation layer was directly observed on the surface of drug particles. In addition, the colloidal system with polydispersity shows superior physical and chemical stability. Different to the prevailing view that substances are fully dissolved in DES, this study discovers another existence state as stable colloidal particles in DES.
Collapse
Affiliation(s)
- Junxiao Zhu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Yuanfeng Wei
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Jianjun Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Shuai Qian
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Yuan Gao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P.R. China.
| | - Weili Heng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P.R. China.
| |
Collapse
|
49
|
Pérez Ramos Á, Zheng Y, Peng J, Ridruejo Á. Structure, Partitioning, and Transport behavior of Microemulsion Electrolytes: Molecular Dynamics and Electrochemical Study. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
|
50
|
Altay Benetti A, Tarbox T, Benetti C. Current Insights into the Formulation and Delivery of Therapeutic and Cosmeceutical Agents for Aging Skin. COSMETICS 2023. [DOI: 10.3390/cosmetics10020054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
“Successful aging” counters the traditional idea of aging as a disease and is increasingly equated with minimizing age signs on the skin, face, and body. From this stems the interest in preventative aesthetic dermatology that might help with the healthy aging of skin, help treat or prevent certain cutaneous disorders, such as skin cancer, and help delay skin aging by combining local and systemic methods of therapy, instrumental devices, and invasive procedures. This review will discuss the main mechanisms of skin aging and the potential mechanisms of action for commercial products already on the market, highlighting the issues related to the permeation of the skin from different classes of compounds, the site of action, and the techniques employed to overcome aging. The purpose is to give an overall perspective on the main challenges in formulation development, especially nanoparticle formulations, which aims to defeat or slow down skin aging, and to highlight new market segments, such as matrikines and matrikine-like peptides. In conclusion, by applying enabling technologies such as those delivery systems outlined here, existing agents can be repurposed or fine-tuned, and traditional but unproven treatments can be optimized for efficacious dosing and safety.
Collapse
|